JP2002235971A - Method for using existing refrigerant piping - Google Patents

Method for using existing refrigerant piping

Info

Publication number
JP2002235971A
JP2002235971A JP2001033815A JP2001033815A JP2002235971A JP 2002235971 A JP2002235971 A JP 2002235971A JP 2001033815 A JP2001033815 A JP 2001033815A JP 2001033815 A JP2001033815 A JP 2001033815A JP 2002235971 A JP2002235971 A JP 2002235971A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
outdoor unit
existing
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001033815A
Other languages
Japanese (ja)
Other versions
JP3680740B2 (en
Inventor
Seiji Inoue
誠司 井上
Norikazu Ishikawa
憲和 石川
Masato Yosomiya
正人 四十宮
Norihide Kazemura
典秀 風村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001033815A priority Critical patent/JP3680740B2/en
Publication of JP2002235971A publication Critical patent/JP2002235971A/en
Application granted granted Critical
Publication of JP3680740B2 publication Critical patent/JP3680740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion

Abstract

PROBLEM TO BE SOLVED: To solve the problem in the conventional method for using existing piping that the replacement work takes much expenses in time and effort in replacement of a refrigerating machine oil in a taken-out compressor, enclosing a new refrigerating machine oil, and the following evacuation work, enclosing a new refrigerant. SOLUTION: If an outdoor unit constituting a refrigerating cycle of an old refrigerant can be operated, a cooling operation is performed for a certain period of time by using the outdoor unit. If the outdoor unit can not be operated, old refrigerant recovered from the refrigerating cycle is separated from the refrigerating machine oil by a refrigerant regenerating device. The liquid refrigerant having a low concentration of contained refrigerating oil is circulated in the piping to clean the refrigerating cycle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩素を含む弗化炭
素水素系冷媒を作動流体とする空気調和機を、非塩素系
新冷媒を作動流体とする空気調和機に機器を入れ替える
際に、既存の冷媒配管を流用する場合に好適な空気調和
機の既設冷媒配管の利用方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for replacing an air conditioner which uses a chlorine-containing hydrogen fluoride-based refrigerant as a working fluid with an air conditioner which uses a non-chlorine-based new refrigerant as a working fluid. The present invention relates to a method of using an existing refrigerant pipe of an air conditioner suitable for diverting an existing refrigerant pipe.

【0002】[0002]

【従来の技術】従来の技術として、特開平7−8354
5号公報記載の空気調和機の冷媒変更方法を示す。図1
0に作業フローを、また、図11に機器構成を示す。図
11において、室外機10には、圧縮機1、室外熱交換
器2、室外送風機12、室外膨張装置3、四方弁4、ア
キュムレータ5、受液器16、ドライヤ15、ガス側阻
止弁7、液側阻止弁6、液側チェックバルブ13、およ
びこれらを連結する冷媒配管と、冷凍サイクルの圧力お
よび温度、各室内制御装置24a,24b,24cから
の各種情報により、圧縮機1、室外送風機3および室外
膨張装置4等を制御する室外制御装置8が含まれ、その
主要部品がひとつの筐体中に収容されている。一方、複
数の室内機20a,20b,20cには、それぞれ冷媒
配管で連結された、室内熱交換器21a,21b,21
cと室内膨張装置23a,23b,23cと、吸い込み
温度、吹き出し温度、リモコンスイッチ25a,25
b,25c、または室外制御装置8からの情報により室
内送風機22a,22b,22cと室内膨張装置23
a,23b,23cとを制御する室内制御装置24a,
24b,24cとを備えており、それそれ筐体中に収容
されている。これら室外機10と室内機20a,20
b,20cとは、ガス冷媒配管31および液冷媒配管3
2により接続されている。さらに、室外制御装置8と室
内制御装置24a,24b,24cとの間を、制御信号
伝送線30が渡り接続されている。
2. Description of the Related Art As a conventional technique, Japanese Patent Application Laid-Open No. 7-8354 is disclosed.
5 shows a method for changing the refrigerant of the air conditioner described in Japanese Patent Application Publication No. 5 (JP-A-5). Figure 1
0 shows a work flow, and FIG. 11 shows a device configuration. In FIG. 11, the outdoor unit 10 includes a compressor 1, an outdoor heat exchanger 2, an outdoor blower 12, an outdoor expansion device 3, a four-way valve 4, an accumulator 5, a liquid receiver 16, a dryer 15, a gas-side blocking valve 7, The compressor 1, the outdoor blower 3, and the liquid-side check valve 6, the liquid-side check valve 13, and the refrigerant piping connecting them, the pressure and temperature of the refrigeration cycle, and various information from the indoor controllers 24a, 24b, and 24c. And an outdoor control device 8 for controlling the outdoor expansion device 4 and the like, the main components of which are housed in one housing. On the other hand, the indoor heat exchangers 21a, 21b, 21c connected to the plurality of indoor units 20a, 20b, 20c by refrigerant pipes, respectively.
c, indoor expansion devices 23a, 23b, 23c, suction temperature, blowout temperature, remote control switches 25a, 25
b, 25c or the indoor blowers 22a, 22b, 22c and the indoor expansion device 23 based on information from the outdoor control device 8.
a, 23b, and 23c, an indoor control device that controls
24b and 24c, each of which is housed in a housing. These outdoor unit 10 and indoor units 20a, 20
b, 20c are the gas refrigerant pipe 31 and the liquid refrigerant pipe 3
2 are connected. Further, a control signal transmission line 30 is connected between the outdoor control device 8 and the indoor control devices 24a, 24b, 24c.

【0003】つぎに、このように構成された従来の空気
調和機の既設配管利用方法について、図10の作業フロ
ーにしたがって説明する。ここでは、従来の冷媒を使用
した空気調和機の構成要素には添え字qをつけて新冷媒
を使用した空気調和機を構成する要素と区別する。
Next, a method of using the existing piping of the conventional air conditioner thus configured will be described with reference to the work flow of FIG. Here, the components of the air conditioner using the conventional refrigerant are denoted by a suffix q to distinguish them from the components forming the air conditioner using the new refrigerant.

【0004】第1のステップS101の冷媒回収運転で
は、初めに、室外機10qの液側阻止弁6qを閉じて冷
房の試運転モードで空気調和機を運転する。この時、冷
凍サイクルの圧力または温度による保護装置が動作しな
い範囲で運転を続け、頃合いを見計らいガス側阻止弁7
qを閉じた後、試運転モードを解除し、空気調和機を停
止させる。この作業により、冷凍サイクル中の従来冷媒
であるHCFC22の大部分は室外機10qに回収され
る。
[0004] In the refrigerant recovery operation of the first step S101, first, the liquid-side stop valve 6q of the outdoor unit 10q is closed, and the air conditioner is operated in the test operation mode of cooling. At this time, the operation is continued within a range in which the protection device based on the pressure or the temperature of the refrigeration cycle does not operate, and the gas-side blocking valve 7 is not properly monitored.
After closing q, the test operation mode is released and the air conditioner is stopped. By this operation, most of the HCFC 22, which is the conventional refrigerant in the refrigeration cycle, is recovered by the outdoor unit 10q.

【0005】次に第2のステップS102(室外機の交
換)において、従来冷媒(例えばHCFC22)を回収
した室外機10qを、新冷媒、例えばHFC32/HF
C125/HFC134a混合冷媒に対応した新室外機
10と交換し、ガス冷媒配管31q、液冷媒配管32
q、制御信号伝送線33を新室外機へ連結する。新室外
機10は、新冷媒の熱力学的特性や輸送特性等の物性に
適合する新冷凍機油、たとえばポリオールエステル系オ
イルの特性に合致している。
[0005] Next, in a second step S102 (replacement of the outdoor unit), the outdoor unit 10q in which the conventional refrigerant (for example, HCFC22) has been recovered is replaced with a new refrigerant, for example, HFC32 / HF.
Replace with a new outdoor unit 10 corresponding to the C125 / HFC134a mixed refrigerant, and replace the gas refrigerant pipe 31q and the liquid refrigerant pipe 32
q, connect the control signal transmission line 33 to the new outdoor unit. The new outdoor unit 10 conforms to the characteristics of a new refrigeration oil, for example, a polyol ester-based oil, which conforms to the physical properties of the new refrigerant, such as thermodynamic characteristics and transport characteristics.

【0006】次の第3のステップS103(真空引き、
冷媒封入)では、室内機20aq,20bq,20cq
とガス冷媒配管31qと液冷媒配管32q中の空気およ
び冷凍サイクル内に残留する従来冷媒を排出する真空引
きが終了したら、ガス側阻止弁7、液側阻止弁6を開
き、新冷媒を封入する。
The next third step S103 (evacuation,
In the case of using refrigerant, the indoor units 20aq, 20bq, 20cq
When the evacuation for exhausting the air in the gas refrigerant pipe 31q and the air in the liquid refrigerant pipe 32q and the conventional refrigerant remaining in the refrigeration cycle is completed, the gas-side stop valve 7 and the liquid-side stop valve 6 are opened, and the new refrigerant is sealed. .

【0007】次の第4のステップS104(洗浄運転)
において、先に実施したと同じように冷房の試運転モー
ドで空気調和機を所定時間運転して、冷凍サイクル中に
新冷媒と新冷凍機油を循環させる。冷媒と冷凍機油の循
環により、室内機20aq,20bq,20cqとガス
冷媒配管31qおよび液冷媒配管32q中に残留してい
る従来の冷凍機油を圧縮機に戻し、残留濃度を薄めるも
のである。
The next fourth step S104 (cleaning operation)
In the above, the air conditioner is operated for a predetermined time in the cooling test operation mode in the same manner as the above, and the new refrigerant and the new refrigerating machine oil are circulated during the refrigeration cycle. By circulating the refrigerant and the refrigerating machine oil, the conventional refrigerating machine oil remaining in the indoor units 20aq, 20bq, 20cq, the gas refrigerant pipe 31q, and the liquid refrigerant pipe 32q is returned to the compressor to reduce the residual concentration.

【0008】そして第5のステップS105(冷凍機油
の入れ替え)にて、冷媒を液側阻止弁6等から回収する
とともに、圧縮機1を新室外機10より取り外して圧縮
機1内にある従来冷凍機油を含む冷凍機油を排出する。
そして未使用の新冷凍機油を圧縮機1に封入して、新室
外機10に戻す。さらに真空引きを実施して新冷媒を封
入する。
In a fifth step S105 (replacement of refrigerating machine oil), the refrigerant is recovered from the liquid-side check valve 6 and the like, and the compressor 1 is removed from the new outdoor unit 10 to remove the conventional refrigeration in the compressor 1. Discharge refrigerating machine oil including machine oil.
Then, the unused fresh refrigerating machine oil is sealed in the compressor 1 and returned to the new outdoor unit 10. Further, a new refrigerant is sealed by performing evacuation.

【0009】そして、上記の第4ステップS104と第
5ステップS105を繰り返すことにより、冷凍サイク
ル中に残留する従来冷媒および従来冷凍機油は、初期残
留量より徐々に減少していく。この作業を所定回数繰り
返して、従来冷媒および従来冷凍機油の残留濃度が、新
冷媒および新冷凍機油を使用する機器の信頼性を維持で
きる程度まで微量となるようにする。
Then, by repeating the fourth step S104 and the fifth step S105, the conventional refrigerant and the conventional refrigeration oil remaining in the refrigeration cycle gradually decrease from the initial residual amounts. This operation is repeated a predetermined number of times so that the residual concentrations of the conventional refrigerant and the conventional refrigerating machine oil become very small to such an extent that the reliability of the equipment using the new refrigerant and the new refrigerating machine oil can be maintained.

【0010】また、別の従来の技術として、特開平11
−325621号公報記載の冷凍装置および冷凍装置に
おける既設配管利用方法では、鉱油系またはアルキルベ
ンゼン系の冷凍機油を使用するHFC系冷媒利用の空気
調和機への置き換えに際しては、従来冷媒であるHCF
C系またはCFC系冷媒で使用していた冷媒配管を洗浄
せずにそのまま使用する技術、およびHCFC225,
141b等のHCFC系洗浄剤で洗浄してから再利用す
る技術が開示されている。
Another conventional technique is disclosed in Japanese Unexamined Patent Application Publication No.
In the refrigerating apparatus and the method for using the existing piping in the refrigerating apparatus described in JP-A-325621, when replacing the air conditioner using an HFC-based refrigerant using a mineral oil-based or alkylbenzene-based refrigerating machine oil, the conventional refrigerant HCF is used.
Technology for using refrigerant pipes that have been used for C-based or CFC-based refrigerants without cleaning, and HCFC225,
A technique for reusing after cleaning with an HCFC-based cleaning agent such as 141b is disclosed.

【0011】[0011]

【発明が解決しようとする課題】従来から、空気調和機
の置き換えの際には、特に、室内機と室外機を接続する
延長配管が建物の壁面あるいは天井面などに埋め込まれ
ている場合、延長配管の撤去や処理および新延長配管の
敷設に伴う工事費用(新延長配管の部品代を含む)およ
び工事時間の削減のため、既設の延長配管を利用するこ
とが一般的であった。また、従来は、冷媒および冷凍機
油が同一のもの同士の置き換えであったため、圧縮機が
焼損して冷凍機油が劣化した場合など特別の場合を除
き、既設配管は特に洗浄等の作業を伴わずにそのまま再
利用して室内機および室外機を置き換えていた。
Conventionally, when an air conditioner is replaced, particularly when an extension pipe connecting an indoor unit and an outdoor unit is embedded in a wall surface or a ceiling surface of a building, etc. In order to reduce the construction cost (including the cost of parts for the new extension pipe) and the construction time associated with removing and treating the pipe and laying the new extension pipe, it was common to use the existing extension pipe. Conventionally, since the refrigerant and the refrigerating machine oil have been replaced with each other, the existing pipes do not require any particular cleaning or other operations except in special cases such as when the compressor burns out and the refrigerating machine oil deteriorates. Was reused as it was, replacing the indoor unit and the outdoor unit.

【0012】ところが、オゾン層保護の観点から、塩素
を含む弗化炭素水素系冷媒(以下、旧冷媒という)の使
用、排出が規制されるため、今後は、塩素を含まない弗
化炭素水素系冷媒(以下、新冷媒という)を作動流体と
する空気調和機への順次置き換えが進んでいくことが容
易に想像できる。その際、従来と同様に、工事費用削減
のため既設の冷媒配管を利用したいが、既設配管利用時
に混入または既設配管中に残留する旧冷凍機油およびこ
れに溶解している旧冷媒、あるいは水分、空気、塩化
鉄、塩化銅等の不純物が新冷媒に適合した冷凍機油を化
学的に劣化させ、冷凍サイクルを構成する管内に析出、
付着して冷凍サイクルを詰まらせ、空気調和機の信頼性
を低下させるという問題があった。
However, from the viewpoint of protecting the ozone layer, the use and discharge of a chlorine-containing hydrogen fluoride-based refrigerant (hereinafter referred to as an old refrigerant) is regulated. It can easily be imagined that the replacement with an air conditioner using a refrigerant (hereinafter, referred to as a new refrigerant) as a working fluid will proceed sequentially. At that time, as in the past, we want to use the existing refrigerant pipe to reduce construction costs, but the old refrigerant oil mixed with or remaining in the existing pipe and the old refrigerant dissolved in it, or moisture, when using the existing pipe, Impurities such as air, iron chloride, and copper chloride chemically degrade the refrigerating machine oil compatible with the new refrigerant, and precipitate in the tubes that make up the refrigeration cycle.
There is a problem that the refrigeration cycle is clogged and adhered, and the reliability of the air conditioner is reduced.

【0013】また、従来の技術による従来の既設配管利
用方法は、前述のような構成および動作であるので、圧
縮機を取り外して冷凍機油を入れ替える方法は、新冷媒
に対応した新室外機10から圧縮機1が取り外せる構造
が必要であり高価なものとなるとともに、取り外した圧
縮機内の冷凍機油の入れ替えおよび新冷凍機油を封入し
た後の真空引き、新冷媒封入といった作業を何回か繰り
返す必要があり作業が大変手間で、したがってこれに伴
う工事費用も多額となるという問題点があった。
Further, since the conventional method of using existing piping according to the conventional technology has the above-described configuration and operation, the method of removing the compressor and replacing the refrigerating machine oil is performed by the new outdoor unit 10 corresponding to the new refrigerant. It is necessary to have a structure in which the compressor 1 can be removed, which is expensive, and it is necessary to repeat several times such as replacing the refrigerating machine oil in the removed compressor, evacuation after enclosing the new refrigerating machine oil, and enclosing the new refrigerant. There is a problem that the work is very troublesome, and accordingly the construction cost is large.

【0014】また、新室外機を鉱油あるいはアルキルベ
ンゼン油とHFC系冷媒の組み合わせとする方法は、分
岐等も含む長く複雑な室内外機間を接続する冷媒配管を
使用する店舗用や業務用の空気調和機に対しては、これ
らの非相溶性ゆえに、冷凍サイクル中に流出した冷凍機
油が再び圧縮機へ戻ってきて潤滑性を保証することが困
難であり、したがって、HFC系冷媒と相溶性のあるエ
ステル系あるいはエーテル系の合成油を冷凍機油として
使用する空気調和機とせざるを得ず、店舗用や業務用の
空気調和機に対しては従来の技術は適用できないという
問題点があった。
In addition, a method in which a new outdoor unit is a combination of a mineral oil or an alkylbenzene oil and an HFC-based refrigerant is used for a store or business air using a refrigerant pipe connecting long and complicated indoor and outdoor units including branching and the like. For a harmony machine, it is difficult for the refrigerating machine oil that has flowed out during the refrigeration cycle to return to the compressor to ensure lubricity because of these incompatibilities. There has been a problem that an air conditioner must use an ester or ether synthetic oil as a refrigerating machine oil, and the conventional technology cannot be applied to a store or commercial air conditioner.

【0015】さらに、HCFC系等旧冷媒で使用してい
た際に、圧縮機の焼損等冷凍機油を極端に劣化させる状
況下で新冷媒へ置き換える場合には、相溶性の低い鉱油
あるいはアルキルベンゼン油を用いても、劣化した旧冷
凍機油が冷凍回路中を循環するため、スラッジによる回
路詰まりや圧縮機摺動部の摩耗等を発生させ、HFC系
新冷媒での冷凍サイクル性能を保証することは困難であ
るという問題点があった。
Further, when replacing the refrigerant with a new refrigerant in a situation where the refrigerating machine oil is extremely deteriorated, such as burning of a compressor, when using an old refrigerant such as an HCFC system, mineral oil or alkylbenzene oil having low compatibility is used. Even if used, the deteriorated old refrigerating machine oil circulates through the refrigerating circuit, causing circuit clogging by sludge and abrasion of the sliding part of the compressor, etc., making it difficult to guarantee the refrigerating cycle performance with a new HFC-based refrigerant. There was a problem that it is.

【0016】さらにまた、HCFC225,141b等
のHCFC系洗浄剤で洗浄してからHFC系冷媒と相溶
性のあるエステル系あるいはエーテル系の合成油を冷凍
機油として使用する空気調和機で既設冷媒配管を利用す
る場合は、これら洗浄剤が配管中に残留することによ
り、その塩素分により冷凍機油が劣化して冷凍回路内に
スラッジを発生し、冷凍回路を詰まらせたり、圧縮機内
摺動部の潤滑性を悪化させたりすることにより、空気調
和機の信頼性を損なうという問題点があった。
Further, after washing with an HCFC-based detergent such as HCFC 225, 141b or the like, an existing refrigerant pipe is connected with an air conditioner using an ester-based or ether-based synthetic oil compatible with the HFC-based refrigerant as a refrigerating machine oil. When used, these detergents remain in the piping, causing the chlorine to degrade the refrigerating machine oil and generate sludge in the refrigerating circuit, clogging the refrigerating circuit and lubricating the sliding parts in the compressor. For example, there is a problem that the reliability of the air conditioner is impaired by deteriorating the performance.

【0017】本発明は上記のような問題点を解消するた
めになされたもので、既設配管を再利用する以前に使用
していた室外機の状態に応じて配管洗浄の必要性を判断
し、必要に応じて既設配管を使用していた従来冷媒を洗
浄剤として配管中を循環させることにより、利用したい
配管中の残留冷凍機油濃度を所定値以下にまで洗浄し、
その後、既設配管を新冷媒に対して再利用することを目
的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is necessary to judge the necessity of pipe cleaning according to the state of an outdoor unit used before reusing an existing pipe, By circulating through the piping as necessary a conventional refrigerant that used the existing piping as a cleaning agent, the residual refrigeration oil concentration in the piping to be used is cleaned to a predetermined value or less, if necessary.
Thereafter, the purpose is to reuse the existing piping for new refrigerant.

【0018】[0018]

【課題を解決するための手段】請求項1に係るこの発明
は、室内機および室外機を備えた空気調和機の作動冷媒
を変更する際の既設冷媒配管の利用方法において、変更
前の作動冷媒を所定時間循環させて、既設冷媒配管中に
残存する変更前の作動冷媒に適合した冷凍機油残存量を
変更後の作動冷媒に適合した冷凍機の使用量に対して所
定値以下の含有濃度とした後、空気調和機の作動冷媒を
変更するものである。
According to a first aspect of the present invention, there is provided a method of using an existing refrigerant pipe for changing an operating refrigerant of an air conditioner having an indoor unit and an outdoor unit, wherein the operating refrigerant before the change is used. Is circulated for a predetermined time, the remaining concentration of the refrigerating machine oil remaining in the existing refrigerant pipe, which is suitable for the working refrigerant before the change, and the content of the refrigerating machine suitable for the working refrigerant after the change, the content concentration of which is equal to or lower than a predetermined value. After that, the working refrigerant of the air conditioner is changed.

【0019】請求項2に係るこの発明は、請求項1に記
載の既設冷媒配管の利用方法において、変更前の作動冷
媒を使用した室外機が運転可能な場合は、室外機を冷房
もしくは暖房モードで所定時間運転して変更前の作動冷
媒を既設冷媒配管へ流通洗浄するステップと、室外機を
ポンプダウン運転して変更前の作動冷媒を室外機に回収
するステップと、既存冷媒配管に変更後の作動冷媒に適
合した室外機および室内機を入れ替え接続するステップ
と、を備えたものである。
According to a second aspect of the present invention, in the method of using the existing refrigerant pipe according to the first aspect, when the outdoor unit using the working refrigerant before the change is operable, the outdoor unit is set in the cooling or heating mode. Operating for a predetermined time to flow and wash the working refrigerant before the change to the existing refrigerant pipe, pumping down the outdoor unit to collect the working refrigerant before the change to the outdoor unit, and changing to the existing refrigerant pipe Replacing and connecting the outdoor unit and the indoor unit suitable for the working refrigerant of the above.

【0020】請求項3に係るこの発明は、請求項1に記
載の既設冷媒配管の利用方法において、変更前の作動冷
媒を使用した室外機が運転不可能な場合は、室外機に冷
媒搬送手段を有した冷媒回収機を接続して、冷媒回収機
により変更前の作動冷媒を冷媒回収機の出口側に接続さ
れた冷媒回収ボンベに回収するステップと、既存冷媒配
管から変更前の作動冷媒を使用した室外機および室内機
を取り外すとともに冷媒回収機と冷媒回収ボンベに繋が
る冷媒再生手段を有した冷媒再生装置を既存冷媒配管に
接続して循環回路を形成するステップと、冷媒回収機の
冷媒搬送手段を所定時間運転することにより回収した変
更前の作動冷媒を既設冷媒配管へ流通洗浄させるととも
に冷媒再生装置で変更前の作動冷媒に溶解している冷凍
機油を分離除去して変更前の作動冷媒を循環させるステ
ップと、既存冷媒配管に変更後の作動冷媒に適合した室
外機および室内機を入れ替え接続するステップと、を備
えたものである。
According to a third aspect of the present invention, in the method of using an existing refrigerant pipe according to the first aspect, when the outdoor unit using the working refrigerant before the change cannot be operated, the outdoor unit uses a refrigerant conveying means. Connecting a refrigerant recovery machine having a refrigerant recovery machine to recover the working refrigerant before the change to a refrigerant recovery cylinder connected to the outlet side of the refrigerant recovery machine, and removing the working refrigerant before the change from the existing refrigerant piping. Removing the used outdoor unit and the indoor unit, connecting a refrigerant recovery device having a refrigerant recovery device and a refrigerant recovery unit connected to the refrigerant recovery cylinder to an existing refrigerant pipe to form a circulation circuit, and transferring the refrigerant to the refrigerant recovery device By operating the means for a predetermined time, the collected working refrigerant collected before the change is flow-washed to the existing refrigerant pipes, and the refrigerant regeneration device separates and removes the refrigerating machine oil dissolved in the working refrigerant before the change. A step of circulating a working refrigerant before the change, in which and a step of connecting interchanged outdoor unit and an indoor unit adapted for working refrigerant after the change to the existing refrigerant piping.

【0021】請求項4に係るこの発明は、請求項1に記
載の既設冷媒配管の利用方法において、変更前の作動冷
媒を使用した室外機が運転不可能な場合は、室外機に冷
媒搬送手段と冷媒再生手段を有した配管洗浄装置を接続
して、冷媒搬送手段により変更前の作動冷媒を配管洗浄
装置の出口側に接続された冷媒回収ボンベに回収するス
テップと、既存冷媒配管から変更前の作動冷媒を使用し
た室外機および室内機を取り外すとともに既存冷媒配管
に配管洗浄装置を接続するステップと、冷媒回収ボンベ
に回収した変更前の作動冷媒に溶解している冷凍機油を
冷媒再生手段により分離除去するステップと、搬送手段
を所定時間運転することにより再生された変更前の作動
冷媒を既設冷媒配管へ流通洗浄しながら循環させるステ
ップと、既存冷媒配管に変更後の作動冷媒に適合した室
外機および室内機を入れ替え接続するステップと、を備
えたものである。
According to a fourth aspect of the present invention, in the method of using the existing refrigerant pipe according to the first aspect, when the outdoor unit using the working refrigerant before the change cannot be operated, the outdoor unit uses the refrigerant conveying means. Connecting a pipe cleaning device having a refrigerant regenerating unit with the refrigerant cleaning unit, and collecting the working refrigerant before the change into a refrigerant recovery cylinder connected to the outlet side of the pipe cleaning device by the refrigerant conveying unit; and Removing the outdoor unit and the indoor unit using the working refrigerant and connecting the pipe cleaning device to the existing refrigerant pipe, and using the refrigerant regenerating means to recover the refrigerating machine oil dissolved in the working refrigerant before the change collected in the refrigerant collection cylinder. Separating and removing, and circulating the working refrigerant before the change regenerated by operating the conveying means for a predetermined time while circulating and washing the existing refrigerant pipe to the existing refrigerant pipe; A step outdoor adapted to working refrigerant after the change to the tube machine and connecting interchanged indoor unit, those having a.

【0022】請求項5に係るこの発明の冷媒再生手段
は、密閉容器と、密閉容器内の下方に貫通横断した再生
熱交換器と、密閉容器内の上方に貫通配設され一端が開
いた流入管および流出管とを備え、流入管から密閉容器
に流入する冷凍機油を溶解している低温低圧の液冷媒
が、冷媒搬送手段により高温高圧となって再生熱交換器
を通過する冷媒から吸熱蒸発し、蒸発したガス冷媒が流
出管より冷媒搬送手段へ戻り循環することにより冷凍機
油を分離除去するものである。
According to a fifth aspect of the present invention, there is provided a refrigerant regenerating means comprising: a closed vessel; a regenerative heat exchanger penetrating downward in the closed vessel; A low-temperature and low-pressure liquid refrigerant that has a pipe and an outflow pipe and that dissolves refrigerating machine oil that flows from the inflow pipe into the closed container is heated and heated by the refrigerant transport means to endothermically evaporate from the refrigerant passing through the regenerative heat exchanger. Then, the evaporated gas refrigerant returns from the outflow pipe to the refrigerant conveying means and circulates, thereby separating and removing the refrigerating machine oil.

【0023】請求項6に係るこの発明は、変更前の作動
冷媒を高圧液状態で既設冷媒配管中を循環させるもので
ある。
According to a sixth aspect of the present invention, the working refrigerant before the change is circulated in an existing refrigerant pipe in a high-pressure liquid state.

【0024】請求項7に係るこの発明は、変更前の作動
冷媒が塩素を含む弗化炭素水素系冷媒であり、変更後の
作動冷媒が塩素を含まない弗化炭素水素系冷媒である。
According to a seventh aspect of the present invention, the working refrigerant before the change is a hydrogen fluoride-based refrigerant containing chlorine, and the working refrigerant after the change is a hydrogen-hydrocarbon fluoride refrigerant containing no chlorine.

【0025】[0025]

【発明の実施の形態】実施の形態1.以下、本発明の実
施の形態1を図1および図2に基づいて説明する。図1
は、本発明による既設冷媒配管の利用方法の一実施例を
示す手順フローである。また、図2の(a)は再利用し
たい既設配管を含む置き換え前、そして(b)は置き換
え後の空気調和機の構成図である。図2の(a)におい
て、1qは圧縮機、2qは室外熱交換器、3qは減圧装
置、4qは四方弁、5qはアキュムレータ、6qは液側
阻止弁、7qはガス側阻止弁であり、これらは図2に示
すように冷媒配管で順次接続され、室外機10qを構成
している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. Figure 1
5 is a procedure flow showing an embodiment of a method of using an existing refrigerant pipe according to the present invention. FIG. 2A is a configuration diagram of an air conditioner before replacement including existing piping to be reused, and FIG. 2B is a configuration diagram of an air conditioner after replacement. In FIG. 2A, 1q is a compressor, 2q is an outdoor heat exchanger, 3q is a decompression device, 4q is a four-way valve, 5q is an accumulator, 6q is a liquid side check valve, 7q is a gas side check valve, These are sequentially connected by a refrigerant pipe as shown in FIG. 2, and constitute an outdoor unit 10q.

【0026】8qは室内熱交換器であり、室内機11q
内に設置されている。室内熱交換器8qの一端は、ガス
延長配管31qを介して室外機10qのガス側阻止弁7
qに接続され、他端は、液延長配管32qを介して室外
機10qの液側阻止弁6qに接続されている。
Reference numeral 8q denotes an indoor heat exchanger, and the indoor unit 11q
It is installed in. One end of the indoor heat exchanger 8q is connected to the gas-side blocking valve 7 of the outdoor unit 10q via the gas extension pipe 31q.
q, and the other end is connected to a liquid-side blocking valve 6q of the outdoor unit 10q via a liquid extension pipe 32q.

【0027】以上のように構成された本実施の形態の空
気調和機において、次に、動作を説明する。冷房運転で
は、圧縮機1qで高温高圧に圧縮された冷媒が、四方弁
4qを通って室外熱交換器2qへ流入し、ここで、図示
しない室外送風機で送り込まれる室外空気へ放熱して凝
縮、液化する。この液冷媒は、減圧装置3qで低温、低
圧の気液二相冷媒となって、液側阻止弁6q、液延長配
管32qを通って室内熱交換器8qへ流入する。ここ
で、図示しない室内送風機によって送り込まれる室内空
気から吸熱して蒸発、ガス化する。このガス冷媒は、ガ
ス延長配管31q、ガス側阻止弁7q、四方弁4qおよ
びアキュムレータ5qを経て圧縮機1qに戻る。
Next, the operation of the air conditioner of the present embodiment configured as described above will be described. In the cooling operation, the refrigerant compressed to a high temperature and a high pressure by the compressor 1q flows into the outdoor heat exchanger 2q through the four-way valve 4q, and radiates heat to outdoor air sent by an outdoor blower (not shown) to condense. Liquefy. This liquid refrigerant becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant in the pressure reducing device 3q, and flows into the indoor heat exchanger 8q through the liquid-side check valve 6q and the liquid extension pipe 32q. Here, heat is absorbed from indoor air sent by an indoor blower (not shown) to evaporate and gasify. This gas refrigerant returns to the compressor 1q via the gas extension pipe 31q, the gas side check valve 7q, the four-way valve 4q, and the accumulator 5q.

【0028】一方、暖房運転では、圧縮機1qで高温高
圧に圧縮された冷媒は、四方弁4q、ガス側阻止弁7q
およびガス延長配管31qを経て、室内熱交換器8qへ
流入し、ここで、図示しない室内送風機で送り込まれる
室内空気へ放熱して凝縮、液化する。この液冷媒は、液
延長配管32q、液側阻止弁6qを通って減圧装置3q
で低温、低圧の気液二相冷媒となって室外熱交換器2q
へ流入する。ここで、図示しない室外送風機によって送
り込まれる室外空気から吸熱して蒸発、ガス化する。こ
のガス冷媒は、四方弁4qおよびアキュムレータ5qを
経て圧縮機1qに戻る。
On the other hand, in the heating operation, the refrigerant compressed to a high temperature and a high pressure by the compressor 1q is supplied to the four-way valve 4q and the gas-side blocking valve 7q.
Then, the gas flows into the indoor heat exchanger 8q via the gas extension pipe 31q, and radiates heat to indoor air sent by an indoor blower (not shown) to condense and liquefy. This liquid refrigerant passes through the liquid extension pipe 32q and the liquid-side check valve 6q, and is then supplied to the pressure reducing device 3q.
To become a low-temperature, low-pressure gas-liquid two-phase refrigerant at the outdoor heat exchanger 2q
Flows into Here, heat is absorbed from outdoor air sent by an outdoor blower (not shown) to evaporate and gasify. This gas refrigerant returns to the compressor 1q via the four-way valve 4q and the accumulator 5q.

【0029】上記のように構成され、動作する冷凍サイ
クル(以下、旧冷媒の冷凍サイクル)を構成する室外機
および室内機は、塩素を含む弗化炭素水素HCFC22
を作動流体とし、鉱油を冷凍機油として使用している。
この鉱油系冷凍機油は、HCFC系冷媒と相溶性があ
り、圧縮機から冷媒とともに流出した一部の冷凍機油
は、使用中に冷凍サイクル内を循環するため、空気調和
機の停止時には、冷凍サイクル中に、すなわちガスおよ
び液延長配管中に、若干の冷凍機油が残留する。
The outdoor unit and the indoor unit constituting the refrigeration cycle (hereinafter referred to as the old refrigerant refrigeration cycle) constructed and operated as described above are provided with a chlorine-containing hydrogen hydrocarbon HCFC22.
Is used as a working fluid, and mineral oil is used as refrigeration oil.
This mineral oil-based refrigerating machine oil is compatible with the HCFC-based refrigerant, and some of the refrigerating machine oil that has flowed out together with the refrigerant from the compressor circulates in the refrigerating cycle during use. Some refrigerating machine oil remains in it, ie in the gas and liquid extension piping.

【0030】次に、前記旧冷媒の冷凍サイクルを、塩素
を含まない弗化炭素水素HFC系冷媒であるR407C
を作動流体とし、冷凍機油としてポリオールエステル油
を使用する冷凍サイクル(以下、新冷媒の冷凍サイク
ル)に置き換える場合に、ガスおよび液延長配管31q
および32qをそのまま利用する方法について、図1お
よび図2を基に、そして図3を使って説明する。図3は
運転時間変化による既設配管中の鉱油濃度を表す図であ
り、縦軸に(既設)延長配管中における冷凍機油残存
量、横軸に冷房運転の時間を示している。
Next, the refrigeration cycle of the old refrigerant was changed to R407C, which is a chlorine-free HFC-based HFC-based refrigerant.
Is replaced by a refrigeration cycle using a polyol ester oil as a refrigerating machine oil (hereinafter referred to as a refrigeration cycle of a new refrigerant).
The method of using the 32q and 32q as they are will be described based on FIGS. 1 and 2 and with reference to FIG. FIG. 3 is a diagram showing the concentration of mineral oil in the existing pipe due to the change in operation time, in which the vertical axis indicates the amount of the refrigerating machine oil remaining in the (existing) extension pipe and the horizontal axis indicates the cooling operation time.

【0031】まず、旧冷媒の冷凍サイクルにおいて、室
外機10qが正常に動作する場合について説明する。初
めに、ステップS11(室外機の強制冷房運転)で室外
機10qを冷房の試運転モードによって、強制的に一定
時間運転する。この運転により、再利用する延長配管3
1qおよび32qに残留している冷凍機油を所定レベル
以下に管理することができる。延長配管中の残留冷凍機
油量は、図3に示すように、運転時間が短い場合には、
多量の冷凍機油が延長配管中に残存するのに対して、あ
る程度以上運転すれば延長配管中の冷凍機油の残存量は
少量となる傾向がある。これは、起動直後には圧縮機1
qが十分に暖まっていないため、圧縮機内で吐出ガス冷
媒と冷凍機油とが十分に分離されず多量の冷凍機油が圧
縮機から冷凍サイクル中に流出するのに対し、運転が安
定して圧縮機1qがある程度暖まってくると、圧縮機内
で冷媒ガスと冷凍機油とが分離して、冷凍サイクルに冷
凍機油があまり流出されなくなるとともに、冷凍サイク
ル中に流出した冷凍機油は、冷媒HCFC22の液に溶
解して、あるいは冷媒HCFC22のガスの流速に引っ
張られて圧縮機1qに戻ってくるためである。
First, the case where the outdoor unit 10q operates normally in the refrigeration cycle of the old refrigerant will be described. First, in step S11 (forcible cooling operation of the outdoor unit), the outdoor unit 10q is forcibly operated for a certain period of time in the cooling operation test mode. By this operation, the extension piping 3 to be reused
The refrigerating machine oil remaining in 1q and 32q can be controlled to a predetermined level or less. As shown in FIG. 3, when the operation time is short, the amount of residual refrigerating machine oil in the extension pipe is as follows.
While a large amount of refrigerating machine oil remains in the extension piping, the amount of refrigerating machine oil remaining in the extension piping tends to be small if the operation is performed to a certain extent or more. This is because the compressor 1
Since q is not sufficiently warmed, the discharged gas refrigerant and the refrigerating machine oil are not sufficiently separated in the compressor and a large amount of the refrigerating machine oil flows out of the compressor into the refrigerating cycle. When 1q warms up to a certain extent, the refrigerant gas and the refrigerating machine oil are separated in the compressor, so that the refrigerating machine oil does not flow out much to the refrigerating cycle, and the refrigerating machine oil flowing out during the refrigerating cycle dissolves in the liquid of the refrigerant HCFC22. This is because the pressure is returned to the compressor 1q due to the flow rate of the gas of the refrigerant HCFC22.

【0032】ちなみに、既設配管中の残留鉱油の許容値
としては、新冷媒の冷凍サイクルで冷凍機油として用い
られるエステル油の質量に対して、少なくとも5%以
下、さらにより望ましくは1%以下とする。この許容値
以下であれば、配管中に残留した旧冷凍機油およびそこ
に溶解している塩素を含む旧冷媒が、新冷媒の冷凍サイ
クル中でエステル油を劣化させたり、スラッジを生成さ
せたりすることはない。残留鉱油の濃度を許容値以下と
するために必要な強制冷房運転時間は15分程度であれ
ばよい。この時間は、圧縮機が十分暖まるのに要する時
間と、冷凍サイクル中の油の循環時間とによって決ま
る。
Incidentally, the allowable value of the residual mineral oil in the existing pipe is at least 5% or less, more preferably 1% or less, based on the mass of the ester oil used as the refrigerating machine oil in the refrigerating cycle of the new refrigerant. . If it is less than or equal to this allowable value, the old refrigerating machine oil remaining in the pipe and the old refrigerant containing chlorine dissolved therein may cause the ester oil to deteriorate in the refrigerating cycle of the new refrigerant or generate sludge. Never. The forced cooling operation time required to keep the concentration of the residual mineral oil below the allowable value may be about 15 minutes. This time is determined by the time required for the compressor to warm up sufficiently and the oil circulation time in the refrigeration cycle.

【0033】上記運転中に、既設配管に塩化鉄、塩化銅
などの不純物が存在しても、そのうちの50%程度はH
CFC22冷媒により除去できる。室外機が運転できる
場合は、これら不純物の存在量は元々極めて微量である
ので、問題とはならない。
During the above operation, even if impurities such as iron chloride and copper chloride are present in the existing piping, about 50% of the impurities are H
It can be removed by CFC22 refrigerant. If the outdoor unit can be operated, there is no problem because the amount of these impurities is originally extremely small.

【0034】上記ステップS11で冷房運転を行なうの
は、通常の空気調和機が冷房運転の方が運転可能な空気
条件(室内温度、室外温度)範囲が広いためである。も
ちろん暖房で運転できる空気条件であれば、暖房の試運
転モードでも構わない。
The reason why the cooling operation is performed in step S11 is that the range of air conditions (indoor temperature, outdoor temperature) in which the ordinary air conditioner can operate in the cooling operation is wider. Of course, as long as it is an air condition that can be operated by heating, a test run mode of heating may be used.

【0035】また、試運転モードでなく、通常の運転モ
ードでも構わない。この場合、圧縮機の運転容量がある
程度以上大きくなるように、冷房運転であれば設定温度
を最低温度に設定し、暖房運転であれば設定温度を最高
温度に設定すると良い。これにより運転時間は短くなり
15分程度で良い。
The normal operation mode may be used instead of the test operation mode. In this case, it is preferable to set the set temperature to the lowest temperature in the cooling operation and to set the set temperature to the highest temperature in the heating operation so that the operating capacity of the compressor is increased to a certain degree or more. As a result, the operation time is shortened to about 15 minutes.

【0036】次に、ステップS12(冷媒回収)におい
て、室外機10qの液側阻止弁6qを閉じて冷房の試運
転モード、またはポンプダウンモードで空気調和機を運
転(ポンプダウン運転:室外機の液側阻止弁6を閉そし
てガス側阻止弁7を開とし、冷房モードに設定して、冷
媒を室外機に追い込むための運転)する。冷凍サイクル
の温度または圧力による保護装置が動作しない範囲で運
転を続け、頃合いを見計らいガス側阻止弁7qを閉じた
後、試運転モードを解除し、空気調和機を停止させる。
この作業により、冷凍サイクル中の従来冷媒であるHC
FC22冷媒の大部分は室外機10q内に回収される。
このとき、四方弁4qとアキュムレータ5qとの間など
の低圧配管部分に設置されているサービスポート9qに
圧力計を取り付け、その検出圧力がある程度低くなった
時点、たとえば−0.3[kg/cm(G)]となっ
た時点で運転を終了するようにすれば、より確実に、か
つ圧縮機を破損することなく冷媒を室外機に回収するこ
とができる。
Next, in step S12 (refrigerant recovery), the air-conditioning apparatus is operated in the cooling test run mode or the pump down mode by closing the liquid side check valve 6q of the outdoor unit 10q (pump down operation: the liquid of the outdoor unit). The side stop valve 6 is closed, the gas side stop valve 7 is opened, the cooling mode is set, and an operation for driving the refrigerant into the outdoor unit is performed. The operation is continued within a range in which the protection device based on the temperature or pressure of the refrigeration cycle does not operate. After a short time, the gas-side blocking valve 7q is closed, the test operation mode is released, and the air conditioner is stopped.
By this operation, the conventional refrigerant HC in the refrigeration cycle
Most of the FC22 refrigerant is recovered in the outdoor unit 10q.
At this time, a pressure gauge is attached to the service port 9q installed in the low-pressure pipe portion such as between the four-way valve 4q and the accumulator 5q, and when the detected pressure is reduced to some extent, for example, -0.3 [kg / cm] 2 (G)], the operation can be terminated, and the refrigerant can be more reliably recovered to the outdoor unit without damaging the compressor.

【0037】そして次のステップS13(室外機、室内
機の交換)にて、旧冷媒の室外機10qおよび室内機1
1qをガス延長配管31qおよび液延長配管32qから
取り外し、HFC系冷媒およびエステル系冷凍機油に対
応した新冷媒の冷凍サイクルを構成する新冷媒対応の室
外機10および新冷媒対応の室内機11を、既設の配管
であるガス延長配管31qおよび液延長配管32qに接
続する。
In the next step S13 (replacement of the outdoor unit and the indoor unit), the outdoor unit 10q of the old refrigerant and the indoor unit 1
1q is removed from the gas extension pipe 31q and the liquid extension pipe 32q, and the new refrigerant-compatible outdoor unit 10 and the new refrigerant-compatible indoor unit 11, which constitute a refrigeration cycle of a new refrigerant corresponding to the HFC-based refrigerant and the ester-based refrigerant oil, It is connected to the existing pipes, gas extension pipe 31q and liquid extension pipe 32q.

【0038】その後、ステップS2(真空引き)にて、
新冷媒の室外機、室内機を接続後、新冷媒対応の室外機
10内に設置されている液側阻止弁6と一体または近傍
に設置されている液側チェックバルブ13に真空ポンプ
を接続して、延長配管31q,32qおよび室内機11
を真空引きする。この過程で、既設配管中の空気および
水分を問題ないレベルまで除去することができる。
Then, in step S2 (evacuation),
After connecting the outdoor unit and the indoor unit for the new refrigerant, a vacuum pump is connected to the liquid-side check valve 13 integrated with or near the liquid-side check valve 6 installed in the outdoor unit 10 corresponding to the new refrigerant. And the extension pipes 31q and 32q and the indoor unit 11
Is evacuated. In this process, air and moisture in the existing piping can be removed to a level that does not cause any problem.

【0039】そしてステップS3(阻止弁を開放、冷媒
充填)へ移る。真空引き完了後、液側阻止弁6およびガ
ス側阻止弁7を開くことにより、新冷媒対応室外機に予
め必要量充填されている新冷媒が冷凍サイクル中に充填
されるので、新冷媒の冷凍サイクルの運転が可能とな
る。延長配管が長い場合などは、液側阻止弁6およびガ
ス側阻止弁7を開く前に必要に応じて所定量のHFC冷
媒を液側チェックバルブ21から追加充填する。
Then, the process proceeds to step S3 (opening of the stop valve, charging of refrigerant). After the evacuation is completed, by opening the liquid-side check valve 6 and the gas-side check valve 7, the new refrigerant that has been charged in the outdoor unit corresponding to the new refrigerant in a required amount in advance is charged into the refrigeration cycle. Cycle operation becomes possible. If the extension pipe is long, for example, before opening the liquid-side check valve 6 and the gas-side check valve 7, a predetermined amount of HFC refrigerant is additionally charged from the liquid-side check valve 21 as needed.

【0040】以上のように、本実施の形態によれば、既
設配管を洗浄するための特別な機器を必要としないの
で、塩素を含まないHFC系冷媒等への置き換えに際し
ての工事時間および工事費用を大幅に削減することがで
きる。
As described above, according to the present embodiment, there is no need for special equipment for cleaning existing pipes, and therefore, the construction time and construction cost when replacing with an HFC-based refrigerant or the like that does not contain chlorine. Can be greatly reduced.

【0041】実施の形態2.つぎに、実施の形態1と同
一構成の冷凍サイクルにおいて、室外機10qが圧縮機
の焼損、電気系統のトラブル等で運転できない場合に、
新冷媒の冷凍サイクルに置き換えるとともに既設の延長
配管を利用する方法について説明する。
Embodiment 2 Next, in the refrigeration cycle having the same configuration as that of the first embodiment, when the outdoor unit 10q cannot be operated due to burnout of the compressor, trouble in the electric system, or the like,
A method of using a new refrigerant refrigeration cycle and using an existing extension pipe will be described.

【0042】旧冷媒で用いられていた既設のガス延長配
管31qおよび液延長配管32q内には、旧冷媒の冷凍
サイクルで使用されていた冷凍機油である鉱油が残留し
ている。この残留鉱油および残留鉱油内部に溶解してい
る旧冷媒HCFC22等の不純物は、新冷媒HFCの冷
凍サイクルで用いられる冷凍機油であるエステル油を劣
化させ、スラッジを生成して新冷媒の冷凍サイクル内に
詰まりを生じて適正な運転を不可能にするため、旧冷媒
で使用していた既設配管中の鉱油等の不純物を洗浄する
必要がある。この洗浄において、洗浄剤は旧冷媒の冷凍
サイクルで使用していたHCFC22を用いる。
In the existing gas extension pipe 31q and liquid extension pipe 32q used for the old refrigerant, mineral oil which is a refrigerating machine oil used in the refrigeration cycle of the old refrigerant remains. The residual mineral oil and impurities such as the old refrigerant HCFC22 dissolved in the residual mineral oil degrade the ester oil which is a refrigerating machine oil used in the refrigeration cycle of the new refrigerant HFC, generate sludge, and generate sludge in the refrigeration cycle of the new refrigerant. It is necessary to clean impurities such as mineral oil in the existing piping used by the old refrigerant in order to prevent clogging and make proper operation impossible. In this cleaning, HCFC22 used in the refrigerating cycle of the old refrigerant is used as the cleaning agent.

【0043】図4は既設配管利用方法を説明する冷凍サ
イクル図の(a)冷媒回収機を接続使用する場合と、
(b)冷媒再生装置および冷媒回収機を接続使用する場
合である。図において、室外機10q、室内機11q、
およびこれらを構成する要素機器、ガス延長配管31
q、液延長配管32qに関して、図1と同一または相当
部分には同符号を付し、その説明を省略する。
FIG. 4 is a refrigeration cycle diagram for explaining a method of using an existing pipe, and FIG.
(B) A case where a refrigerant regeneration device and a refrigerant recovery device are connected and used. In the figure, an outdoor unit 10q, an indoor unit 11q,
And the components and gas extension piping 31 that constitute them
Regarding q and the liquid extension pipe 32q, the same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.

【0044】以上のように構成された本実施の形態の空
気調和機において、旧冷媒の冷凍サイクルを、HFC系
冷媒であるR407Cを作動流体とし、冷凍機油として
ポリオールエステル油を使用する冷凍サイクル(以下、
新冷媒の冷凍サイクル)に置き換える場合に、ガスおよ
び液延長配管31qおよび32qをそのまま利用する方
法について、図1および図4を基に説明する。
In the air conditioner of the present embodiment configured as described above, the refrigeration cycle of the old refrigerant is a refrigeration cycle using R407C, which is an HFC-based refrigerant, as the working fluid, and using polyol ester oil as the refrigeration oil. Less than,
A method of using the gas and liquid extension pipes 31q and 32q as they are when replacing with a refrigeration cycle of a new refrigerant) will be described with reference to FIGS.

【0045】まず、ステップS21(冷媒回収)におい
て、図4(a)に示すように、冷媒回収機を用いて旧冷
媒の冷凍サイクル中の冷媒HCFC22を回収ボンベに
回収する。図中、45は冷媒回収機であり、第2の圧縮
機41、凝縮熱交換器42、第2の液側阻止弁43およ
び第2のガス側阻止弁44を図4に示すように順次接続
して構成されている。また、旧冷媒の室外機10qの液
側チェックバルブ13qと冷媒回収機45の第2のガス
側阻止弁44とは第1の接続管33によって接続し、冷
媒回収ボンベ47と冷媒回収機45の第2の液側阻止弁
43とは第2の接続管34によって接続する。第2のガ
ス側阻止弁44、第2の液側阻止弁43、および冷媒回
収ボンベ47の図示しない流入側の開閉弁を開け、第2
の圧縮機41を運転して、旧冷媒の冷凍サイクル内のH
CFC22を回収ボンベに回収する。そして、頃合いを
見計らい第2のガス側阻止弁44を閉じた後、第2の圧
縮機41を停止させる。あるいは冷媒回収機45内の第
2の圧縮機41の低圧側に低圧スイッチが取り付けられ
ている場合には、この低圧スイッチの信号により冷媒回
収が終了すれば自動的に圧縮機は停止するので、圧縮機
停止直後に第2のガス側阻止弁44を閉じればよい。こ
の作業により、冷凍サイクル中の従来冷媒であるHCF
C22の大部分は冷媒回収ボンベ47内に回収される。
First, in step S21 (refrigerant recovery), as shown in FIG. 4A, the refrigerant HCFC22 in the refrigeration cycle of the old refrigerant is recovered in a recovery cylinder using a refrigerant recovery machine. In the figure, reference numeral 45 denotes a refrigerant recovery machine, which sequentially connects a second compressor 41, a condensation heat exchanger 42, a second liquid-side check valve 43, and a second gas-side check valve 44 as shown in FIG. It is configured. Further, the liquid-side check valve 13q of the old refrigerant outdoor unit 10q and the second gas-side check valve 44 of the refrigerant recovery unit 45 are connected by the first connection pipe 33, and the refrigerant recovery cylinder 47 and the refrigerant recovery unit 45 are connected. The second liquid-side stop valve 43 is connected to the second connection pipe 34 by the second connection pipe 34. The second gas-side blocking valve 44, the second liquid-side blocking valve 43, and the open / close valve (not shown) of the refrigerant recovery cylinder 47 are opened, and the second
Of the refrigerant in the refrigeration cycle of the old refrigerant
The CFC 22 is collected in a collection cylinder. Then, the second compressor 41 is stopped after closing the second gas-side check valve 44 at an appropriate time. Alternatively, when a low-pressure switch is attached to the low-pressure side of the second compressor 41 in the refrigerant recovery device 45, the compressor is automatically stopped when the refrigerant recovery is terminated by a signal from the low-pressure switch, The second gas-side check valve 44 may be closed immediately after the compressor stops. By this operation, the conventional refrigerant HCF in the refrigeration cycle
Most of C22 is collected in the refrigerant collection cylinder 47.

【0046】次に、ステップS22(室外機、室内機の
取り外し)で、旧冷媒の室外機10qおよび室内機11
qをガス延長配管31qおよび液延長配管32qから取
り外し、ガス延長配管31qおよび液延長配管32qの
室内機側接続部を第3の接続管35で接続する。
Next, in step S22 (removal of the outdoor unit and the indoor unit), the outdoor unit 10q of the old refrigerant and the indoor unit 11 are removed.
q is removed from the gas extension pipe 31q and the liquid extension pipe 32q, and the indoor unit side connection portion of the gas extension pipe 31q and the liquid extension pipe 32q is connected by the third connection pipe 35.

【0047】次のステップS23(既設配管の洗浄運
転)に進む。ここでは、図4(b)に示すように冷媒再
生装置および冷媒回収機45を既設延長配管31q,3
2qに接続する。図中、50は冷媒再生装置であり、油
回収容器51、再生熱交換器52、油回収口53、冷媒
流入管54、冷媒流出管55および再生減圧装置56で
構成されている。再生熱交換器52は、油回収容器51
の内部に設置されており、再生減圧装置56は、冷媒流
入管54の途中に設置されている。
The process proceeds to the next step S23 (cleaning operation of existing pipes). Here, as shown in FIG. 4B, the refrigerant regeneration device and the refrigerant recovery device 45 are connected to the existing extension pipes 31q, 3q.
Connect to 2q. In the figure, reference numeral 50 denotes a refrigerant regenerating device, which comprises an oil recovery container 51, a regenerative heat exchanger 52, an oil recovery port 53, a refrigerant inflow pipe 54, a refrigerant outflow pipe 55, and a regeneration decompression device 56. The regenerative heat exchanger 52 includes an oil recovery container 51.
, And the regenerative decompression device 56 is installed in the middle of the refrigerant inflow pipe 54.

【0048】そして、再生熱交換器52の一端は第4の
接続管36を介して冷媒回収ボンベ47に接続し、他端
は冷媒回収機45の第2の液側阻止弁43に接続する。
また、冷媒回収ボンベ47の内側下部から外部に伸びる
冷媒液流出用配管37は液延長配管32qの室外機側一
端に接続する。ここで、冷媒液流出用配管37には、第
3の液側阻止弁46が設置されている。さらに、冷媒再
生装置50の冷媒流入管54は、第5の接続管38を介
してガス延長配管31qの室外機側一端に接続する。さ
らにまた、冷媒再生装置50の冷媒流出管55は、冷媒
回収機45の第2のガス側阻止弁44に接続する。
Then, one end of the regenerative heat exchanger 52 is connected to the refrigerant recovery cylinder 47 via the fourth connection pipe 36, and the other end is connected to the second liquid-side stop valve 43 of the refrigerant recovery machine 45.
In addition, a refrigerant liquid outflow pipe 37 extending from the lower portion inside the refrigerant recovery cylinder 47 to the outside is connected to one end of the liquid extension pipe 32q on the outdoor unit side. Here, a third liquid-side stop valve 46 is provided in the refrigerant liquid outflow pipe 37. Further, the refrigerant inflow pipe 54 of the refrigerant regeneration device 50 is connected to one end of the gas extension pipe 31q on the outdoor unit side via the fifth connection pipe 38. Furthermore, the refrigerant outlet pipe 55 of the refrigerant regeneration device 50 is connected to the second gas-side blocking valve 44 of the refrigerant recovery unit 45.

【0049】以上のように構成された冷凍サイクルにお
いて、次にその動作を説明する。第2の圧縮機41で高
温高圧となった冷媒HCFC22は、凝縮熱交換器42
へ流入し、ここで、図示しない送風機で送り込まれる室
外空気へ放熱して一部凝縮、液化する。この気液二相冷
媒は、第2の液側阻止弁43を通って再生熱交換器52
へ流入する。ここで、油回収容器51内部の低温低圧冷
媒に放熱してさらに凝縮、液化する。この液冷媒は、第
4の接続管36を経て冷媒回収ボンベ47へ流入する。
冷媒回収ボンベ47内部下部から流出した液冷媒は、冷
媒液流出用配管37を通って、既設配管である液延長配
管32qに流入する。ここで、旧冷媒の冷凍サイクルの
運転によって残留した冷凍機油である鉱油を溶解する。
液延長配管32q中の残留鉱油を溶解した液冷媒は、第
3の接続管35を経てもう一方の既設配管であるガス延
長配管31qに流入する。ここで、さらに旧冷媒の冷凍
サイクルの運転によって残留した冷凍機油である鉱油を
溶解して、第5の接続管38を経て、冷媒再生装置50
の冷媒流入管54に流入する。この液冷媒は、再生減圧
装置56で絞られて低温低圧の気液二相冷媒となり、油
回収容器51に流入する。ここで、残留鉱油を溶解した
気液二相冷媒は、再生熱交換器52により加熱されて、
冷媒HCFC22のみ蒸発、ガス化する。このガス冷媒
は、冷媒流出管55を通って冷媒回収機45に戻り、第
2のガス側阻止弁44を経由して第2の圧縮機41に吸
入され循環する。このような冷媒による既設配管の洗浄
運転は、少なくとも冷媒が一巡するまでの時間継続運転
すれば、既設配管中の残留鉱油を許容値以下にすること
ができる。
Next, the operation of the refrigeration cycle configured as described above will be described. The refrigerant HCFC 22, which has become high temperature and high pressure in the second compressor 41, is condensed by the condensing heat exchanger 42.
Then, heat is radiated to outdoor air sent by a blower (not shown) and partially condensed and liquefied. The gas-liquid two-phase refrigerant passes through the second liquid-side check valve 43 and passes through the regenerative heat exchanger 52.
Flows into Here, heat is radiated to the low-temperature and low-pressure refrigerant inside the oil recovery container 51 to be further condensed and liquefied. This liquid refrigerant flows into the refrigerant recovery cylinder 47 via the fourth connection pipe 36.
The liquid refrigerant flowing out from the lower part inside the refrigerant recovery cylinder 47 passes through the refrigerant liquid outflow pipe 37 and flows into the existing liquid extension pipe 32q. Here, the mineral oil, which is the refrigerating machine oil remaining by the operation of the refrigeration cycle of the old refrigerant, is dissolved.
The liquid refrigerant in which the residual mineral oil in the liquid extension pipe 32q is dissolved flows into the other existing pipe, the gas extension pipe 31q, via the third connection pipe 35. Here, the mineral oil, which is the refrigerating machine oil remaining by the operation of the refrigeration cycle of the old refrigerant, is further dissolved, and the refrigerant is recycled through the fifth connection pipe 38 to the refrigerant regeneration device 50.
Flows into the refrigerant inflow pipe 54. This liquid refrigerant is throttled by the regeneration decompression device 56 to become a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the oil recovery container 51. Here, the gas-liquid two-phase refrigerant in which the residual mineral oil is dissolved is heated by the regenerative heat exchanger 52,
Only the refrigerant HCFC22 evaporates and gasifies. The gas refrigerant returns to the refrigerant recovery device 45 through the refrigerant outflow pipe 55, is drawn into the second compressor 41 via the second gas-side blocking valve 44, and circulates. In such a cleaning operation of the existing pipe by the refrigerant, the residual mineral oil in the existing pipe can be reduced to an allowable value or less by continuing the operation at least until the refrigerant makes one cycle.

【0050】油回収容器51では、既設配管中に残留し
ていた鉱油を溶解したHCFC22だけが再生熱交換器
52から吸熱して蒸発し、鉱油は容器内下部に滞留す
る。このようにして、冷媒と鉱油とを分離し、抽出され
た鉱油は、追って、油回収口53から排出する。また、
再生した冷媒HCFC22は、鉱油濃度が極めて低く、
既設配管に残留した鉱油をより多く溶解、除去すること
ができる。
In the oil recovery container 51, only the HCFC 22, in which the mineral oil remaining in the existing piping is dissolved, absorbs heat from the regenerative heat exchanger 52 and evaporates, and the mineral oil stays in the lower part of the container. Thus, the refrigerant and the mineral oil are separated, and the extracted mineral oil is discharged from the oil recovery port 53 later. Also,
Regenerated refrigerant HCFC22 has extremely low mineral oil concentration,
Mineral oil remaining in the existing piping can be dissolved and removed more.

【0051】また、HCFC22は塩化鉄、塩化銅もそ
の約50%を除去することができるので、既設冷媒配管
にこれら不純物が存在しても、その存在量が新冷媒に適
合した冷凍機油に対するそれぞれの許容値の2倍以下で
あれば、許容値以下に洗浄することができるので、新冷
媒の冷凍サイクルの信頼性を確保することができる。
The HCFC 22 can also remove about 50% of iron chloride and copper chloride. Therefore, even if these impurities are present in the existing refrigerant pipe, the amount of each of these impurities is different from that of the refrigerating machine oil suitable for the new refrigerant. If the value is equal to or less than twice the allowable value, the washing can be performed to the allowable value or less, so that the reliability of the refrigeration cycle of the new refrigerant can be ensured.

【0052】なお、再生減圧装置56は、冷媒流出管5
5における冷媒の過熱度がある値、たとえば5[de
g]以上となるように制御する。再生減圧装置56とし
ては、温度式膨張弁、電子式膨張弁(LEV)などを用
いれば、自動的に過熱度を調節することができる。
The regeneration pressure reducing device 56 is connected to the refrigerant outlet pipe 5
5 is a certain value, for example, 5 [de]
g] or more. If a temperature-type expansion valve, an electronic expansion valve (LEV), or the like is used as the regeneration decompression device 56, the degree of superheat can be automatically adjusted.

【0053】また、再生熱交換器52は、想定している
外気温度より若干高い温度の飽和液冷媒を所定の圧力ま
で等エンタルピ変化で絞った二相冷媒を、前記所定の圧
力の過熱ガス状態まで加熱できる容量(伝熱面積、熱通
過率)であることが望ましいが、加熱容量が不足する場
合は、油回収容器51の周囲または内部にヒータ等の加
熱装置を追加すると良い。
Further, the regenerative heat exchanger 52 converts the two-phase refrigerant obtained by squeezing the saturated liquid refrigerant having a temperature slightly higher than the assumed outside air temperature to a predetermined pressure by an equal enthalpy change into a superheated gas state at the predetermined pressure. It is desirable that the heating capacity be sufficient (heat transfer area, heat transmission rate). However, if the heating capacity is insufficient, a heating device such as a heater may be added around or inside the oil recovery container 51.

【0054】次に、ステップS24(冷媒回収)におい
て、冷媒回収機を用いて配管洗浄で使用した冷媒HCF
C22を回収ボンベに回収する。第3の液側阻止弁46
を閉じ、第2のガス側阻止弁44、第2の液側阻止弁4
3、および冷媒回収ボンベ47の図示しない流入側の開
閉弁を開け、第2の圧縮機41を運転して、配管洗浄に
使用したHCFC22を回収ボンベに回収する。
Next, in step S24 (refrigerant recovery), the refrigerant HCF
C22 is collected in a collection cylinder. Third liquid-side check valve 46
Are closed, and the second gas-side check valve 44 and the second liquid-side check valve 4
3, the on-off valve (not shown) of the refrigerant recovery cylinder 47 is opened, and the second compressor 41 is operated to recover the HCFC 22 used for pipe cleaning in the recovery cylinder.

【0055】そして、ステップS25(新冷媒対応室外
機、室内機の取り付け)に進み、第3の接続管35、第
5の接続管38および冷媒液流出用配管37を既設配管
であるガス延長配管31qおよび液延長配管32qから
取り外す。その後、HFC系冷媒およびエステル系冷凍
機油に対応した新冷媒の冷凍サイクルを構成する新冷媒
対応の室外機10および新冷媒対応の室内機8を、既設
の配管であるガス延長配管31qおよび液延長配管32
qに接続する。
Then, the process proceeds to step S25 (installation of an outdoor unit and an indoor unit corresponding to a new refrigerant), where the third connection pipe 35, the fifth connection pipe 38, and the refrigerant liquid outflow pipe 37 are connected to the existing gas extension pipe. Remove from 31q and liquid extension pipe 32q. Thereafter, the outdoor unit 10 corresponding to the new refrigerant and the indoor unit 8 corresponding to the new refrigerant constituting the refrigeration cycle of the new refrigerant corresponding to the HFC-based refrigerant and the ester-based refrigerating machine oil are connected to the existing pipe, ie, the gas extension pipe 31q and the liquid extension. Piping 32
Connect to q.

【0056】その後、ステップS2(真空引き)におい
て、上記接続後、新冷媒対応の室外機10内に設置され
ている液側阻止弁6と一体または近傍に設置されている
液側チェックパルブ21に真空ポンプを接続して、延長
配管31q,32qおよび室内機11を真空引きする。
この過程で、既設配管中の空気および水分を問題ないレ
ベルまで除去することができる。
Thereafter, in step S2 (vacuum evacuation), after the connection, the liquid-side check valve 21 installed integrally with or near the liquid-side check valve 6 installed in the outdoor unit 10 corresponding to the new refrigerant. A vacuum pump is connected, and the extension pipes 31q, 32q and the indoor unit 11 are evacuated.
In this process, air and moisture in the existing piping can be removed to a level that does not cause any problem.

【0057】最後に、ステップS3(阻止弁を開放、冷
媒充填)にて、真空引き完了後、液側阻止弁6およびガ
ス側阻止弁7を開くことにより、新冷媒対応室外機に予
め必要量充填されている新冷媒が冷凍回路中に充填され
るので、新冷媒の冷凍サイクルの運転が可能となる。延
長配管が長い場合などは、液側阻止弁6およびガス側阻
止弁7を開く前に必要に応じて所定量のHFC冷媒を液
側チェックバルブ21から追加充填する。
Finally, in step S3 (opening of the stop valve, charging of the refrigerant), after the evacuation is completed, the liquid-side stop valve 6 and the gas-side stop valve 7 are opened, so that the new refrigerant-compatible outdoor unit has a required amount in advance. Since the charged new refrigerant is charged into the refrigeration circuit, the refrigeration cycle of the new refrigerant can be operated. If the extension pipe is long, for example, before opening the liquid-side check valve 6 and the gas-side check valve 7, a predetermined amount of HFC refrigerant is additionally charged from the liquid-side check valve 21 as needed.

【0058】本実施の形態で使用する冷媒回収ボンベ4
7は、洗浄、再利用する延長配管のうちガス管の容積と
旧冷媒の冷凍サイクルに充填されていた旧冷媒の体積の
合計以上の容積を必要とする。これは、延長配管のガス
管を旧冷媒の液が循環するためであり、したがって、配
管洗浄時には、少なくとも洗浄する延長配管の容積以上
の量の旧冷媒が必要であるため、必要に応じて、別の現
場で回収してきた旧冷媒HCFC22や新品のHCFC
22を追加充填するか、予め、冷媒回収ボンベ47に充
填しておくことが望ましい。
Refrigerant recovery cylinder 4 used in the present embodiment
7 requires a volume equal to or greater than the sum of the volume of the gas pipe and the volume of the old refrigerant filled in the refrigeration cycle of the old refrigerant in the extension pipe to be cleaned and reused. This is because the liquid of the old refrigerant circulates through the gas pipe of the extension pipe, and therefore, at the time of pipe cleaning, at least the volume of the old refrigerant that is equal to or greater than the volume of the extension pipe to be cleaned is necessary. Old refrigerant HCFC22 and new HCFC collected at another site
It is desirable to additionally charge 22 or to charge the refrigerant recovery cylinder 47 in advance.

【0059】また、洗浄時に冷媒量が不足すると、洗浄
すべき既設冷媒配管中を旧冷媒HCFC22が二相状態
で循環することになるが、この場合は、洗浄対象の配管
中を冷媒液が環状をなし中心部を冷媒ガスが流れるいわ
ゆる環状流となるか、冷媒液中に冷媒ガスが大きな気泡
となって流れるいわゆるプラグ流となるか、あるいは冷
媒液中を冷媒ガスが小さな気泡となって流れるいわゆる
気泡流となっていれば、配管内面を冷媒液が接触して配
管内面に付着した冷凍機油を溶解、除去できるので都合
が良い。冷媒量が不足する場合は、既設配管中で上記の
ような流動状態を実現するように第2の圧縮機41の容
量、再生減圧装置56の開度、再生熱交換器52の熱交
換量、凝縮熱交換器42の熱交換量などを調整する。
If the amount of the refrigerant is insufficient at the time of cleaning, the old refrigerant HCFC22 circulates in a two-phase state in the existing refrigerant pipe to be cleaned. In this case, the refrigerant liquid is annularly circulated in the pipe to be cleaned. The refrigerant gas flows in the central part in a so-called annular flow, the refrigerant gas flows as large bubbles in the refrigerant liquid, or a so-called plug flow, or the refrigerant gas flows in the refrigerant liquid as small bubbles. A so-called bubble flow is convenient because the refrigerant liquid comes into contact with the inner surface of the pipe and the refrigerating machine oil attached to the inner surface of the pipe can be dissolved and removed. When the refrigerant amount is insufficient, the capacity of the second compressor 41, the opening degree of the regenerative pressure reducing device 56, the heat exchange amount of the regenerative heat exchanger 52, The amount of heat exchange of the condensation heat exchanger 42 is adjusted.

【0060】本実施の形態で使用する冷媒回収機45で
用いられる第2の圧縮機41は、摺動部に潤滑油を必要
としないオイルフリー圧縮機を用いることが望ましい。
油回収容器51が回収した油で溢れてしまった場合など
に冷媒回収機45に既設延長配管の残留鉱油が流入する
ことがあっても、オイルフリー圧縮機であれば故障等の
問題は起きない。
As the second compressor 41 used in the refrigerant recovery unit 45 used in the present embodiment, it is desirable to use an oil-free compressor that does not require lubricating oil in the sliding part.
Even if the residual mineral oil in the existing extension pipe flows into the refrigerant recovery device 45 when the oil recovery container 51 overflows with the recovered oil, the oil-free compressor does not cause a problem such as failure. .

【0061】また、冷媒回収機45内の第2の圧縮機4
1に適当なオイルフリー圧縮機がない場合は、通常の空
気調和機で用いられているレシプロ形、ロータリ形、ス
クロール形等の圧縮機を用いても良い。この場合、圧縮
機の吐出側には、望ましくは油分離効率が90%以上と
なる高性能油分離器を設置する。高性能油分離器の例と
しては、特開平11−173707号公報に示されるメ
ッシュ式のものや、特開昭58−168864号公報に
示される遠心式のものなどがある。
The second compressor 4 in the refrigerant recovery unit 45
If there is no suitable oil-free compressor, a compressor of a reciprocating type, a rotary type, a scroll type, or the like used in an ordinary air conditioner may be used. In this case, a high-performance oil separator having an oil separation efficiency of preferably 90% or more is installed on the discharge side of the compressor. Examples of the high-performance oil separator include a mesh type shown in JP-A-11-173707 and a centrifugal type shown in JP-A-58-168864.

【0062】実施の形態3.上述した実施の形態2にお
いては、冷媒再生装置と冷媒回収機が分離した形で示さ
れているが、図5から図7に示すような冷媒回収機能、
冷媒再生機能、配管洗浄機能を備えた装置(以下、配管
洗浄装置)を用いてもよい。以下、実施の形態3では、
この配管洗浄装置を用いてガス及び液延長配管を洗浄
し、新冷媒ユニットで利用可能とする方法を説明する。
図5は冷媒回収運転時の冷媒回路図、図6は冷媒再生運
転時の冷媒回路図、図7は延長配管洗浄時の冷媒回路図
である。なお、図4と同一または相当部分には同符合を
付し、その説明は省略する。また、図8に本実施の形態
3における既設冷媒配管の利用方法の手順フローを表
す。
Embodiment 3 In the above-described second embodiment, the refrigerant regenerating apparatus and the refrigerant recovery machine are shown as being separated from each other, but the refrigerant recovery function as shown in FIGS.
An apparatus having a refrigerant regeneration function and a pipe cleaning function (hereinafter, a pipe cleaning apparatus) may be used. Hereinafter, in the third embodiment,
A method for cleaning gas and liquid extension pipes using this pipe cleaning apparatus and making the pipes usable in a new refrigerant unit will be described.
5 is a refrigerant circuit diagram during the refrigerant recovery operation, FIG. 6 is a refrigerant circuit diagram during the refrigerant regeneration operation, and FIG. 7 is a refrigerant circuit diagram during the extension pipe washing. The same or corresponding parts as those in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted. FIG. 8 shows a procedure flow of a method of using an existing refrigerant pipe in the third embodiment.

【0063】まず、図8のステップS31(冷媒回収)
において、図5に示すように旧冷媒の室外機10qの液
側チェックバルブ21q(図示せず)と配管洗浄装置5
7の入口側阻止弁58を接続管33によって接続し、冷
媒回収ボンベ47と配管洗浄装置57の出口側阻止弁6
1とを接続管34により接続する。なおこのとき配管洗
浄装置57に搭載された流路切替弁62は図示の実線方
向(回収、再生側)に切り替えておく。入口側阻止弁5
8、出口側阻止弁61、冷媒回収ボンベ47の流入側の
開閉弁を開け、配管洗浄装置の圧縮機41を運転させて
旧冷媒の冷凍サイクル内のHCFC22を冷媒回収ボン
ベ47に回収する。
First, step S31 in FIG. 8 (refrigerant recovery)
5, the liquid side check valve 21q (not shown) of the old refrigerant outdoor unit 10q and the pipe cleaning device 5 as shown in FIG.
7 is connected by the connection pipe 33 to the refrigerant recovery cylinder 47 and the outlet-side prevention valve 6 of the pipe cleaning device 57.
1 are connected by a connection pipe 34. At this time, the flow path switching valve 62 mounted on the pipe cleaning device 57 is switched in the direction indicated by the solid line in FIG. Inlet blocking valve 5
8. The outlet-side blocking valve 61 and the open / close valve on the inflow side of the refrigerant recovery cylinder 47 are opened, and the compressor 41 of the pipe cleaning device is operated to recover the HCFC 22 in the refrigeration cycle of the old refrigerant into the refrigerant recovery cylinder 47.

【0064】頃合いを見計らい入口側阻止弁58を閉じ
た後、圧縮機41を停止させる。あるいは配管洗浄機の
低圧側に低圧スイッチ68が取り付けられていれば、そ
の検出圧力による作動信号により冷媒回収が終了すれば
自動的に圧縮機は停止するので、圧縮機停止直後に入口
側阻止弁58を閉じればよい。また逆止弁64を取り付
けておくことで圧縮機停止時に旧冷媒の室外機にHCF
C22が逆流するのを防ぐことができる。さらに、冷媒
回収が進み回収されるHCFC22がガス化した際に、
減圧装置63のバイパス弁65を開くことで、冷媒ガス
回収速度を速めることができる。上記作業により、室外
機10q内の冷凍サイクル中の従来冷媒であるHCFC
22の大部分が冷媒回収ボンベに回収される。
After closing the inlet-side stop valve 58 at an appropriate time, the compressor 41 is stopped. Alternatively, if the low pressure switch 68 is mounted on the low pressure side of the pipe washer, the compressor is automatically stopped when the refrigerant recovery is completed by the operation signal based on the detected pressure. What is necessary is just to close 58. In addition, by installing the check valve 64, when the compressor is stopped, the outdoor unit of the old refrigerant has HCF.
C22 can be prevented from flowing backward. Further, when the HCFC 22 to be recovered gasifies as the refrigerant recovery proceeds,
By opening the bypass valve 65 of the pressure reducing device 63, the refrigerant gas recovery speed can be increased. By the above operation, HCFC which is the conventional refrigerant in the refrigeration cycle in the outdoor unit 10q
Most of 22 is collected in the refrigerant collection cylinder.

【0065】次に、ステップS32(室外機、室内機の
取り外し)にて、旧冷媒の室外機10qおよび室内機1
1qをガス延長配管31qおよび液延長配管32qから
取り外し、ガス延長配管及び液延長配管の室内機側接続
部を接続管35で接続する。またガス延長配管31qの
室外機側接続部を配管洗浄装置の配管接続ポート60
に、液延長配管32qの室外機側接続部を配管洗浄装置
の配管接続ポート59にそれぞれ接続する。既設配管接
続後、配管洗浄装置のガスまたは液延長配管接続部にあ
るチェックバルブを使用して真空引きをあらかじめ行っ
ておく。
Next, in step S32 (removal of the outdoor unit and the indoor unit), the outdoor unit 10q and the indoor unit 1
1q is removed from the gas extension pipe 31q and the liquid extension pipe 32q, and the connection unit 35 of the gas extension pipe and the liquid extension pipe is connected to the indoor unit side. Further, the connection part of the gas extension pipe 31q on the outdoor unit side is connected to the pipe connection port 60 of the pipe cleaning device.
Then, the outdoor unit side connection part of the liquid extension pipe 32q is connected to the pipe connection port 59 of the pipe cleaning device, respectively. After connecting the existing pipe, vacuum evacuation is performed in advance using a check valve at the gas or liquid extension pipe connection of the pipe cleaning device.

【0066】次のステップS33(回収冷媒の再生運
転)において、旧冷媒の室外機からHCFC22を回収
する際に、同時に旧冷媒圧縮機から回収される冷凍機油
の一部も回収し、そこで回収したHCFC22を、配管
の洗浄に使用可能なレベルにまで浄化(再生)する。図6
の冷媒再生運転の冷媒回路図を基に説明する。まず配管
洗浄装置57の入口側阻止弁58と冷媒回収ボンベ47
出口とを接続管33で接続する。一方、配管洗浄装置5
7の出口側阻止弁61と冷媒回収ボンベ47入口は冷媒
回収運転時に接続管34にて接続しているため、特に接
続し直す必要はない。
In the next step S33 (regeneration operation of the recovered refrigerant), when the HCFC 22 is recovered from the outdoor unit of the old refrigerant, a part of the refrigerating machine oil recovered from the old refrigerant compressor is also recovered and recovered there. The HCFC 22 is purified (regenerated) to a level usable for cleaning the piping. FIG.
Will be described based on the refrigerant circuit diagram of the refrigerant regeneration operation. First, the inlet blocking valve 58 of the pipe cleaning device 57 and the refrigerant recovery cylinder 47
The outlet and the connection pipe 33 are connected. On the other hand, the pipe cleaning device 5
The outlet-side stop valve 61 of FIG. 7 and the inlet of the refrigerant recovery cylinder 47 are connected by the connection pipe 34 during the refrigerant recovery operation, so there is no particular need to reconnect.

【0067】本構成における冷媒再生運転時のサイクル
について、図6をもとに動作を説明する。配管洗浄装置
57の流路切替弁62は上記ステップS21で設定され
た図示の実線方向のまま保持し、圧縮機41を運転させ
ることで冷凍サイクルにHCFC22冷媒が循環する。
このとき、冷媒回収ボンベ47から吸い上げられて配管
洗浄装置57に流れ込む液状のHCFC22冷媒は、ス
トレーナ66により冷媒に含まれる固形異物が除去さ
れ、減圧装置63を通過して圧力低下し気液二相状態に
なり油回収容器51に流入する。ここで冷凍機油を溶解
した気液二相状態のHCHC22冷媒は、再生熱交換器
52内を通過する高温高圧状態のHCHC22と熱交換
し過熱され、HCFC22のみ蒸発、ガス化する。この
過程においてHCFC22中に含まれた冷凍機油が分離
捕集され,浄化される。このガス化されたHCFC22
が圧縮機41に吸入され、圧縮工程により高温高圧ガス
となって吐出され、凝縮熱交換器42に流入する。ここ
で室外空気へ放熱して一部凝縮し気液二相状態となる。
この高圧二相状態のHCFC22は再生熱交換器52に
流れ込み、油回収容器51内部に貯留された再生熱交換
器外の低温低圧の冷媒に放熱してさらに凝縮し、液化す
る。この液冷媒が冷媒回収ボンベ47に流入して循環を
なす。
The operation of the cycle during the refrigerant regeneration operation in this configuration will be described with reference to FIG. The HCFC 22 refrigerant is circulated through the refrigeration cycle by operating the compressor 41 while maintaining the flow path switching valve 62 of the pipe cleaning device 57 in the direction indicated by the solid line in FIG.
At this time, the liquid HCFC22 refrigerant sucked up from the refrigerant recovery cylinder 47 and flowing into the pipe cleaning device 57 has solid foreign substances contained in the refrigerant removed by the strainer 66, passes through the pressure reducing device 63, and the pressure is reduced, and the gas-liquid two-phase It enters the state and flows into the oil recovery container 51. Here, the gas-liquid two-phase HCHC22 refrigerant in which the refrigerator oil is dissolved exchanges heat with the high-temperature and high-pressure HCHC22 passing through the regenerative heat exchanger 52, is superheated, and only the HCFC22 evaporates and gasifies. In this process, the refrigerating machine oil contained in the HCFC 22 is separated and collected and purified. This gasified HCFC22
Is sucked into the compressor 41, discharged as a high-temperature and high-pressure gas by the compression process, and flows into the condensation heat exchanger 42. Here, heat is radiated to the outdoor air and partially condensed to be in a gas-liquid two-phase state.
The HCFC 22 in the high-pressure two-phase state flows into the regenerative heat exchanger 52, radiates heat to the low-temperature and low-pressure refrigerant outside the regenerative heat exchanger stored inside the oil recovery container 51, and is further condensed and liquefied. This liquid refrigerant flows into the refrigerant recovery cylinder 47 and circulates.

【0068】このようにHCFC22冷媒を配管洗浄装
置57に循環させることで、冷媒中に溶解している鉱油
を油回収容器51にて分離捕集し、冷媒を浄化する。そ
して、この浄化されたHCFC22を配管の洗浄剤とし
て使用する。冷媒再生運転を一定時間行った後、運転を
停止し、次のステップである配管洗浄運転へと移行す
る。なお、再生運転後運転を停止せずに配管洗浄運転に
移行しても構わない。
By circulating the HCFC22 refrigerant in the pipe cleaning device 57 in this manner, the mineral oil dissolved in the refrigerant is separated and collected in the oil recovery container 51 to purify the refrigerant. Then, the purified HCFC 22 is used as a pipe cleaning agent. After performing the refrigerant regeneration operation for a certain period of time, the operation is stopped, and the process proceeds to the next step, which is the pipe cleaning operation. The operation may be shifted to the pipe cleaning operation without stopping the operation after the regeneration operation.

【0069】次のステップS34(配管洗浄運転)で
は、図7の配管洗浄時の冷媒回路図で示すように流路切
替弁62を洗浄運転側(図中の実線)に切り替え、配管
洗浄装置の配管接続ポート59、60の開閉弁を開き、
配管洗浄装置57の運転を開始する。配管洗浄装置の圧
縮機41が運転すると冷媒再生運転により浄化されたH
CFC22が冷媒回収ボンベ47から液状で流れ出し、
配管洗浄装置入口58からいったん配管洗浄装置内に流
れ込み、流路切替弁62を通過して配管接続ポート59
より洗浄対象配管であるガス延長配管31qに流入し、
ステップS32で取付けた室内機側のガス延長配管31
qと液延長配管32qを接続する接続管35を経由し配
管接続ポート60より再び配管洗浄装置57に流入す
る。このステップS34で使用する再生されたHCFC
22冷媒は鉱油濃度が極めて低く、配管内に残留した鉱
油を多く溶解、除去することが可能である。
In the next step S34 (pipe cleaning operation), the flow path switching valve 62 is switched to the cleaning operation side (solid line in the figure) as shown in the refrigerant circuit diagram at the time of pipe cleaning in FIG. Open the on-off valves of the pipe connection ports 59 and 60,
The operation of the pipe cleaning device 57 is started. When the compressor 41 of the pipe cleaning device is operated, H purified by the refrigerant regeneration operation is removed.
The CFC 22 flows out of the refrigerant recovery cylinder 47 in a liquid state,
Once flowing into the pipe cleaning device from the pipe cleaning device inlet 58, it passes through the flow path switching valve 62 and is connected to the pipe connection port 59.
The gas flows into the gas extension pipe 31q, which is a pipe to be cleaned,
Gas extension pipe 31 on the indoor unit side attached in step S32
The liquid flows into the pipe cleaning device 57 again from the pipe connection port 60 via the connection pipe 35 connecting the q and the liquid extension pipe 32q. The regenerated HCFC used in step S34
The 22 refrigerant has a very low concentration of mineral oil, and can dissolve and remove a large amount of mineral oil remaining in the piping.

【0070】ガスおよび液延長配管31q,32qから
配管洗浄装置57に戻った冷媒(配管中の鉱油を含ん
だ)は、以降ステップS33で述べた再生運転時のサイ
クルと同じように、ストレーナ66により固形異物が除
去され、減圧装置63を通過し油回収容器51で油分を
分離除去し、圧縮機41、凝縮熱交換器42、再生熱交
換器52を経由して冷媒回収ボンベ47に戻る。
The refrigerant (including the mineral oil in the pipes) returned from the gas and liquid extension pipes 31q and 32q to the pipe cleaning device 57 is thereafter subjected to the strainer 66 by the strainer 66 in the same manner as the cycle during the regeneration operation described in step S33. The solid foreign matter is removed, passes through the pressure reducing device 63, separates and removes oil in the oil recovery container 51, and returns to the refrigerant recovery cylinder 47 via the compressor 41, the condensation heat exchanger 42, and the regenerative heat exchanger 52.

【0071】このような配管洗浄運転を、少なくとも冷
媒が洗浄対象配管内を一巡するまでの時間継続し、既設
配管内の残留鉱油量を許容値以下にする。配管の洗浄が
終了した後、冷媒回収ボンベ47出口の開閉弁を閉じ、
洗浄に使用したHCFC22を回収する。冷媒回収時は
旧冷媒室外機から回収する時と同様に、頃合いを見計ら
い入口側阻止弁58もしくは冷媒回収ボンベ47出口の
開閉弁を閉じてボンベから冷媒の流出を止め配管内のH
CFC22冷媒の回収を開始し、冷媒をボンベへ追い込
んで真空が引けた頃合いを見計らい配管接続ポート5
9,60の開閉弁を閉じ、運転を停止する。
Such a pipe cleaning operation is continued at least until the refrigerant makes a round in the pipe to be cleaned, and the amount of residual mineral oil in the existing pipe is reduced to an allowable value or less. After the cleaning of the pipe is completed, the on-off valve at the outlet of the refrigerant recovery cylinder 47 is closed,
The HCFC 22 used for washing is collected. At the time of refrigerant recovery, in the same manner as when recovering from the old refrigerant outdoor unit, at an appropriate time, the inlet-side blocking valve 58 or the on-off valve at the outlet of the refrigerant recovery cylinder 47 is closed to stop the refrigerant from flowing out of the cylinder and to stop the H in the pipe.
Start collection of CFC22 refrigerant, drive refrigerant into cylinder and wait for the time when vacuum is released.
Close the on-off valves 9, 60 and stop the operation.

【0072】次にステップS35(新冷媒対応室外機、
室内機の取り付け)では、配管を洗浄した後、配管洗浄
装置57の配管接続ポート59,60から洗浄されたガ
スおよび液延長配管31q,32qを外す。その後、新
冷媒対応室外機10、室内機11を洗浄した上記ガスお
よび液延長配管31q,32qに接続する。接続した後
に上記延長配管及び室内機を真空引きし、完了後に室外
機液側阻止弁6、ガス側阻止弁7を開放し、新冷媒が冷
媒回路中に充填され、新冷媒対応ユニットが運転可能状
態となる。
Next, at step S35 (the outdoor unit corresponding to the new refrigerant,
In the installation of the indoor unit), after cleaning the pipes, the cleaned gas and liquid extension pipes 31q, 32q are removed from the pipe connection ports 59, 60 of the pipe cleaning device 57. Thereafter, the new refrigerant compatible outdoor unit 10 and indoor unit 11 are connected to the cleaned gas and liquid extension pipes 31q, 32q. After the connection, the above-mentioned extension pipe and the indoor unit are evacuated, and after completion, the outdoor unit liquid-side check valve 6 and the gas-side check valve 7 are opened, and the new refrigerant is charged into the refrigerant circuit, so that the unit corresponding to the new refrigerant can be operated. State.

【0073】本実施の形態で使用する冷媒回収ボンベ4
7は、洗浄して再利用する延長配管のうちガス延長配管
31qの容積と旧冷媒の冷凍サイクルに充填されていた
旧冷媒の体積の合計以上の容積を必要とする。実施の形
態2と同様に、ガス延長配管31qを旧冷媒の液が循環
するためである。そのため、配管洗浄時には少なくとも
洗浄する延長配管の容積以上の量の旧冷媒が必要であ
る。
Refrigerant recovery cylinder 4 used in this embodiment
7 requires a volume equal to or greater than the total volume of the gas extension pipe 31q and the volume of the old refrigerant filled in the refrigeration cycle of the old refrigerant among the extension pipes to be cleaned and reused. This is because the liquid of the old refrigerant circulates in the gas extension pipe 31q as in the second embodiment. Therefore, at the time of pipe cleaning, at least the amount of old refrigerant that is equal to or larger than the volume of the extension pipe to be cleaned is required.

【0074】また、洗浄時に冷媒量が不足すると、洗浄
すべき既設冷媒配管中を旧冷媒が気液二相状態で循環す
ることになるが、この場合は洗浄対象の延長配管中を冷
媒液が環状を成し中心部を冷媒ガスが流れるいわゆる環
状流となるか、冷媒液中を冷媒ガスが大きな気泡となっ
て流れるいわゆるプラグ流となるか、あるいは冷媒液中
に冷媒ガスが小さな気泡となって流れるいわゆる気泡流
となっていれば、配管内面を冷媒液が接触して配管内面
に付着した冷凍機油を溶解除去できるので都合がよい。
よって冷媒量が不足する場合は、既設配管中で上記のよ
うな流動状態が実現できるように圧縮機41の容量、再
生減圧装置56の開度、再生熱交換器52の熱交換量、
凝縮熱交換器42の熱交換量などを調整する。
If the amount of the refrigerant is insufficient during the cleaning, the old refrigerant circulates in the existing refrigerant pipe to be cleaned in a gas-liquid two-phase state. In this case, the refrigerant liquid flows through the extension pipe to be cleaned. Either a so-called annular flow in which the refrigerant gas flows in the center and flows in the center portion, a so-called plug flow in which the refrigerant gas flows as large bubbles in the refrigerant liquid, or small bubbles in the refrigerant liquid The so-called bubble flow is convenient because the refrigerant liquid comes into contact with the inner surface of the pipe and the refrigerating machine oil attached to the inner surface of the pipe can be dissolved and removed.
Therefore, when the refrigerant amount is insufficient, the capacity of the compressor 41, the opening degree of the regenerative decompression device 56, the heat exchange amount of the regenerative heat exchanger 52,
The amount of heat exchange of the condensation heat exchanger 42 is adjusted.

【0075】また、本実施の形態で使用する配管洗浄機
57で使用する圧縮機41は、摺動部に潤滑油を必要と
しないオイルフリー圧縮機を用いることが望ましいが、
配管洗浄機に適当なオイルフリー圧縮機がない場合は通
常の空気調和機で用いられているレシプロ形、ロータリ
ー形、スクロール形等の圧縮機を用いてもよい。この場
合、圧縮機の吐出側には望ましくは油分離効率が90%
以上となる高性能油分離器を設置する。
It is desirable to use an oil-free compressor which does not require a lubricating oil for the sliding part as the compressor 41 used in the pipe washing machine 57 used in the present embodiment.
If there is no suitable oil-free compressor in the pipe washer, a reciprocating compressor, a rotary compressor, a scroll compressor, or the like used in an ordinary air conditioner may be used. In this case, the oil separation efficiency is desirably 90% on the discharge side of the compressor.
A high performance oil separator as described above will be installed.

【0076】また、実施の形態1〜実施の形態3では旧
冷媒の冷凍サイクルで用いられる冷媒としてHCFC2
2、冷凍機油として鉱油を用い、新冷媒の冷凍サイクル
で用いられる冷媒としてR407C、冷凍機油としてポ
リオールエステルを用いる場合を例に説明したが、その
他のHCFC系冷媒(R22、R502等)またはCF
C系冷媒(R12等)と相溶の鉱油、アルキルベンゼン
等の冷凍機油を用いる冷凍サイクルで使用されていた配
管を、塩素を含まないR407C,R410A,R13
4a,R32,R404A,R507A等のHFC系冷
媒と相溶の冷凍機油(ポリオールエステル、ポリビニル
エーテル、フッ素系油等)用いる冷凍サイクルで使用す
る場合すべてに対して同様の効果が得られる。
In the first to third embodiments, HCFC2 is used as the refrigerant used in the refrigeration cycle of the old refrigerant.
2. The case where mineral oil is used as the refrigerating machine oil, R407C is used as the refrigerant used in the refrigerating cycle of the new refrigerant, and polyol ester is used as the refrigerating machine oil has been described as an example, but other HCFC-based refrigerants (R22, R502, etc.) or CF
Pipes used in a refrigerating cycle using a refrigerating machine oil such as a mineral oil compatible with a C-based refrigerant (such as R12) and alkylbenzene are replaced with chlorine-free R407C, R410A, and R13.
Similar effects can be obtained in all cases where the refrigerant is used in a refrigeration cycle using a refrigerating machine oil (polyol ester, polyvinyl ether, fluorine-based oil, etc.) compatible with HFC-based refrigerants such as 4a, R32, R404A, and R507A.

【0077】実施の形態4.新冷媒の冷凍サイクルにお
いて、HFC系冷媒と相溶性が低い鉱油やアルキルベン
ゼン油を冷凍機油として用いる場合、既設配管の利用に
際しては、洗浄しない例が特開平11−325621号
公報に開示されているが、旧冷媒の冷凍サイクルで過剰
に圧縮機に負荷がかかる運転、たとえば液バック運転の
継続等により圧縮機を焼損してしまった場合には、上述
の実施の形態2と同様に既設配管をHCFC22で洗浄
する。旧冷媒の冷凍サイクルで圧縮機が焼損した場合に
既設配管に残留する冷凍機油は、劣化が著しく、また、
その残留量も多いことが想定されるため、たとえ新冷媒
の冷凍サイクルで冷凍機油として鉱油やアルキルベンゼ
ン油等、HFC系新冷媒と相溶性の低い油を使用すると
いっても、スラッジをまったく発生しないとは言えない
ためである。したがって、実施の形態2と同様に、HC
FC22で配管を洗浄することにより、新冷媒の冷凍サ
イクルの信頼性を高めることができる。
Embodiment 4 In the refrigeration cycle of the new refrigerant, when mineral oil or alkylbenzene oil having low compatibility with the HFC-based refrigerant is used as the refrigerating machine oil, an example in which the existing piping is not washed is disclosed in JP-A-11-325621. In the case where the compressor is burned due to an excessive load applied to the compressor in the refrigeration cycle of the old refrigerant, for example, the continuation of the liquid back operation or the like, the existing piping is connected to the HCFC 22 as in the second embodiment. Wash with. The refrigerating machine oil remaining in the existing piping when the compressor burns out in the refrigerating cycle of the old refrigerant is significantly deteriorated, and
Since the residual amount is expected to be large, no sludge is generated at all even if a new refrigerant having a low compatibility with the new HFC-based refrigerant, such as mineral oil or alkylbenzene oil, is used as the refrigerating machine oil in the refrigeration cycle. This is because it cannot be said. Therefore, similarly to Embodiment 2, HC
By cleaning the piping with FC22, the reliability of the refrigeration cycle of the new refrigerant can be improved.

【0078】また、塩素を含まない弗化炭素水素系冷媒
であるHFC系冷媒で使用していた配管を、同じく塩素
を含まない弗化炭素水素系冷媒であるHFC系冷媒を使
用する冷凍サイクルで利用する場合でも、実施の形態1
乃至実施の形態3に従って作業する。さらに、旧冷媒と
旧冷凍機油がR410Aとアルキルベンゼン油、新冷媒
と新冷凍機油が新たな非相溶油であっても、本発明の方
法に従って高圧高温の旧冷媒を既設配管に循環させるこ
とにより、アルキルベンゼン油のR410Aへの溶解度
が若干増加するので、実施の形態1と2で説明したのと
同様の効果が得られる。
Further, the piping used for the HFC-based refrigerant, which is a chlorine-free hydrogen fluoride-based refrigerant, is replaced with a refrigeration cycle using the HFC-based refrigerant, which is also a chlorine-free refrigerant containing hydrogen fluoride. Even when using, Embodiment 1
The operation is performed according to the third embodiment. Further, even if the old refrigerant and the old refrigerating machine oil are R410A and an alkylbenzene oil, and the new refrigerant and the new refrigerating machine oil are new incompatible oils, the old refrigerant having a high pressure and a high temperature is circulated through the existing piping according to the method of the present invention. Since the solubility of the alkylbenzene oil in R410A is slightly increased, the same effects as described in the first and second embodiments can be obtained.

【0079】さらに、本発明は作動流体として弗化炭素
水素系冷媒に限定されるものではなく、旧冷媒および新
冷媒は炭化水素系冷媒、二酸化炭素、アンモニア、水、
空気などを含め、旧冷媒および旧冷凍機油の既設配管へ
の残留が新冷媒の冷凍サイクルに悪影響を及ぼすことが
あるあらゆる冷媒に適用可能である。
Further, the present invention is not limited to a hydrocarbon-based fluorocarbon refrigerant as the working fluid, and the old refrigerant and the new refrigerant may be hydrocarbon-based refrigerants, carbon dioxide, ammonia, water,
The present invention can be applied to any refrigerant, including air and the like, in which the old refrigerant and the old refrigerating machine oil remaining in the existing piping may adversely affect the refrigeration cycle of the new refrigerant.

【0080】すなわち、図8に示す通り、本発明に記載
の既設配管利用方法の手順に従って作業することによ
り、既設配管中に残留する旧冷凍機油およびそれに溶解
している旧冷媒の影響を極力少なくすることができるの
で、既設配管を利用した新冷媒の冷凍サイクルの信頼性
を高めることができる。
That is, as shown in FIG. 8, by working according to the procedure of the existing pipe utilization method described in the present invention, the influence of the old refrigerating machine oil remaining in the existing pipe and the old refrigerant dissolved therein is minimized. Therefore, the reliability of the refrigeration cycle of the new refrigerant using the existing piping can be improved.

【0081】[0081]

【発明の効果】本発明の既設配管利用方法は、以下のよ
うな効果を奏する。
The method for utilizing an existing pipe according to the present invention has the following effects.

【0082】請求項1に係るこの発明によれば、室内機
および室外機を備えた空気調和機の作動冷媒を変更する
際の既設冷媒配管の利用方法において、変更前の作動冷
媒を所定時間循環させて、既設冷媒配管中に残存する変
更前の作動冷媒に適合した冷凍機油残存量を変更後の作
動冷媒に適合した冷凍機の使用量に対して所定値以下の
含有濃度とした後、空気調和機の作動冷媒を変更するの
で、新冷媒の冷凍サイクルで既設冷媒配管を洗浄するこ
となく再利用することができ、塩素を含まない冷媒への
置き換えに伴う工事時間および工事費用を削減するとと
もに信頼性の高いHFC系冷媒の冷凍サイクルを提供す
ることが可能となる。
According to the first aspect of the present invention, in the method of using the existing refrigerant pipe when changing the working refrigerant of the air conditioner including the indoor unit and the outdoor unit, the working refrigerant before the change is circulated for a predetermined time. Then, the concentration of the refrigerating machine oil remaining in the existing refrigerant pipe, which is suitable for the working refrigerant before the change, is set to a concentration below a predetermined value with respect to the usage amount of the refrigerator suitable for the working refrigerant after the change, and then the air Since the working refrigerant of the air conditioner is changed, the existing refrigerant piping can be reused in the refrigeration cycle of the new refrigerant without cleaning, reducing the construction time and construction costs associated with replacing with refrigerant that does not contain chlorine. A highly reliable HFC-based refrigerant refrigeration cycle can be provided.

【0083】また、請求項2に係るこの発明によれば、
変更前の作動冷媒を使用した室外機が運転可能な場合
は、室外機を冷房もしくは暖房モードで所定時間運転し
て変更前の作動冷媒を既設冷媒配管へ流通洗浄するステ
ップと、室外機をポンプダウン運転して変更前の作動冷
媒を室外機に回収するステップと、既存冷媒配管に変更
後の作動冷媒に適合した室外機および室内機を入れ替え
接続するステップと、を備えたので、既設冷媒配管を洗
浄するための特別な機器を必要とせず、塩素を含まない
HFC系冷媒等への置き換えに伴う工事時間および工事
費用を大幅に削減することができる。
According to the second aspect of the present invention,
When the outdoor unit using the working refrigerant before the change is operable, the outdoor unit is operated in the cooling or heating mode for a predetermined time to flow and wash the working refrigerant before the change to the existing refrigerant pipe, and the outdoor unit is pumped. A step of recovering the working refrigerant before the change by the down operation to the outdoor unit, and a step of replacing and connecting the outdoor unit and the indoor unit suitable for the working refrigerant after the change to the existing refrigerant piping, so that the existing refrigerant piping is provided. This does not require special equipment for cleaning, and can greatly reduce the construction time and construction costs associated with replacement with HFC-based refrigerants containing no chlorine.

【0084】また、請求項3に係るこの発明によれば、
変更前の作動冷媒を使用した室外機が運転不可能な場合
は、室外機に冷媒搬送手段を有した冷媒回収機を接続し
て、冷媒回収機により変更前の作動冷媒を冷媒回収機の
出口側に接続された冷媒回収ボンベに回収するステップ
と、既存冷媒配管から変更前の作動冷媒を使用した室外
機および室内機を取り外すとともに冷媒回収機と冷媒回
収ボンベに繋がる冷媒再生手段を有した冷媒再生装置を
既存冷媒配管に接続して循環回路を形成するステップ
と、冷媒回収機の冷媒搬送手段を所定時間運転すること
により回収した変更前の作動冷媒を既設冷媒配管へ流通
洗浄させるとともに冷媒再生装置で変更前の作動冷媒に
溶解している冷凍機油を分離除去して変更前の作動冷媒
を循環させるステップと、既存冷媒配管に変更後の作動
冷媒に適合した室外機および室内機を入れ替え接続する
ステップと、を備えたので、回収した旧冷媒を冷媒再生
装置で油から分離し、冷凍機油の濃度を低下させた冷媒
液を配管中を循環させることにより、配管中に残留した
冷凍機油を溶解、除去することができるので、塩素を含
まない冷媒への置き換えに伴う工事時間および工事費用
を削減するとともに信頼性の高いHFC系冷媒の冷凍サ
イクルを提供することが可能となる。
According to the third aspect of the present invention,
If the outdoor unit using the working refrigerant before the change cannot be operated, connect the outdoor unit to a refrigerant recovery device having a refrigerant transport unit, and the refrigerant recovery device outputs the working refrigerant before the change to the outlet of the refrigerant recovery device. And a refrigerant recovery means connected to the refrigerant recovery cylinder connected to the refrigerant recovery cylinder and removing the outdoor unit and the indoor unit using the working refrigerant before the change from the existing refrigerant pipe. Connecting the regenerating device to the existing refrigerant pipe to form a circulation circuit, and operating the refrigerant conveying means of the refrigerant recovery machine for a predetermined time to flow and clean the collected working refrigerant to the existing refrigerant pipe and regenerate the refrigerant. A step of separating and removing the refrigerating machine oil dissolved in the working refrigerant before the change by the device and circulating the working refrigerant before the change, and an outdoor suitable for the working refrigerant after the change to the existing refrigerant piping. And the step of switching and connecting the indoor unit, and the collected old refrigerant is separated from the oil by the refrigerant regenerating device, and the refrigerant liquid having a reduced concentration of the refrigerating machine oil is circulated in the piping, so that Dissolves and removes the refrigerating machine oil remaining in the furnace, reducing the construction time and construction costs associated with replacing with refrigerants that do not contain chlorine, and providing a reliable refrigeration cycle for HFC-based refrigerants. Becomes

【0085】また、請求項4に係るこの発明によれば、
変更前の作動冷媒を使用した室外機が運転不可能な場合
は、室外機に冷媒搬送手段と冷媒再生手段を有した配管
洗浄装置を接続して、冷媒搬送手段により変更前の作動
冷媒を配管洗浄装置の出口側に接続された冷媒回収ボン
ベに回収するステップと、既存冷媒配管から変更前の作
動冷媒を使用した室外機および室内機を取り外すととも
に既存冷媒配管に配管洗浄装置を接続するステップと、
冷媒回収ボンベに回収した変更前の作動冷媒に溶解して
いる冷凍機油を冷媒再生手段により分離除去するステッ
プと、搬送手段を所定時間運転することにより再生され
た変更前の作動冷媒を既設冷媒配管へ流通洗浄しながら
循環させるステップと、既存冷媒配管に変更後の作動冷
媒に適合した室外機および室内機を入れ替え接続するス
テップと、を備えたので、塩素を含まない冷媒への置き
換えに伴う工事時間および工事費用を削減するとともに
信頼性の高いHFC系冷媒の冷凍サイクルを提供するこ
とが可能となる。
According to the fourth aspect of the present invention,
If the outdoor unit using the working refrigerant before the change is not operable, connect a pipe cleaning device having a refrigerant transfer unit and a refrigerant regeneration unit to the outdoor unit, and pipe the working refrigerant before the change by the refrigerant transfer unit. Collecting the refrigerant in the refrigerant recovery cylinder connected to the outlet side of the cleaning device, removing the outdoor unit and the indoor unit using the working refrigerant before the change from the existing refrigerant piping, and connecting the piping cleaning device to the existing refrigerant piping; ,
A step of separating and removing the refrigerating machine oil dissolved in the working refrigerant before the change collected in the refrigerant recovery cylinder by the refrigerant regenerating means, and a step of operating the transport means for a predetermined time to transfer the working refrigerant before the change regenerated by the existing refrigerant pipe Circulating while washing and circulating to the existing refrigerant pipe, and replacing and connecting the outdoor unit and indoor unit that are compatible with the working refrigerant after the change to the existing refrigerant pipe. It is possible to provide a highly reliable HFC-based refrigerant refrigeration cycle while reducing time and construction costs.

【0086】また、請求項5に係るこの発明によれば、
冷媒再生手段は、密閉容器と、密閉容器内の下方に貫通
横断した再生熱交換器と、密閉容器内の上方に貫通配設
され一端が開いた流入管および流出管とを備え、流入管
から密閉容器に流入する冷凍機油を溶解している低温低
圧の液冷媒が、冷媒搬送手段により高温高圧となって再
生熱交換器を通過する冷媒から吸熱蒸発し、蒸発したガ
ス冷媒が流出管より冷媒搬送手段へ戻り循環することに
より冷凍機油を分離除去するので、塩素を含まない冷媒
への置き換えに伴う工事時間および工事費用を削減する
とともに信頼性の高いHFC系冷媒の冷凍サイクルを提
供することが可能となる。
According to the fifth aspect of the present invention,
The refrigerant regenerating means includes a closed vessel, a regenerative heat exchanger that penetrates downward in the closed vessel, and an inflow pipe and an outflow pipe that are disposed through the upper part of the closed vessel and open at one end. The low-temperature and low-pressure liquid refrigerant that dissolves the refrigerating machine oil that flows into the closed container becomes high-temperature and high-pressure by the refrigerant conveying means, and is endothermic and evaporates from the refrigerant that passes through the regenerative heat exchanger. Since the refrigerating machine oil is separated and removed by circulating back to the transporting means, it is possible to reduce the construction time and construction cost associated with the replacement with a refrigerant containing no chlorine and to provide a highly reliable refrigeration cycle of HFC-based refrigerant. It becomes possible.

【0087】また、請求項6に係るこの発明によれば、
変更前の作動冷媒を高圧液状態で既設冷媒配管中を循環
させるので、冷媒流れの状態が環状流やプラグ流となっ
て液冷媒が配管内面を接触して流れ、配管内面に付着し
た冷凍機油の溶解、除去が効率よく行なえ、工事時間の
短縮化が図れる効果がある。
According to the sixth aspect of the present invention,
Since the working refrigerant before the change is circulated in the existing refrigerant pipe in a high-pressure liquid state, the state of the refrigerant flow becomes an annular flow or a plug flow, and the liquid refrigerant flows in contact with the inner surface of the piping, and the refrigerating machine oil adheres to the inner surface of the piping. Can be efficiently dissolved and removed, and the construction time can be shortened.

【0088】また、請求項7に係るこの発明によれば、
変更前の作動冷媒が塩素を含む弗化炭素水素系冷媒であ
り、変更後の作動冷媒が塩素を含まない弗化炭素水素系
冷媒であるので、信頼性の高いHFC系冷媒の冷凍サイ
クルを提供することが可能となる。
According to the seventh aspect of the present invention,
Since the working refrigerant before the change is a hydrogen fluoride-based refrigerant containing chlorine, and the working refrigerant after the change is a hydrogen-carbon fluoride-based refrigerant containing no chlorine, a highly reliable HFC-based refrigerant refrigeration cycle is provided. It is possible to do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1および実施の形態2に
係る既設配管利用方法の手順フローである。
FIG. 1 is a procedure flow of a method for using an existing pipe according to Embodiments 1 and 2 of the present invention.

【図2】 本発明の実施の形態1に係る空気調和機の
(a)置き換え前と(b)置き換え後の構成図である。
FIG. 2 is a configuration diagram of the air conditioner according to Embodiment 1 of the present invention before (a) replacement and after (b) replacement.

【図3】 本発明の実施の形態1に係る既設配管中の鉱
油濃度を説明する図である。
FIG. 3 is a diagram illustrating a mineral oil concentration in an existing pipe according to Embodiment 1 of the present invention.

【図4】 本発明の実施の形態2に係る既設配管利用方
法の(a)冷媒回収機を使用する場合と(b)冷媒再生
装置および冷媒回収機を使用する場合の冷凍サイクル図
である。
FIG. 4 is a refrigeration cycle diagram of (a) a case where a refrigerant recovery device is used and (b) a case where a refrigerant regeneration device and a refrigerant recovery device are used in a method of utilizing an existing pipe according to Embodiment 2 of the present invention.

【図5】 本発明の実施の形態3に係る冷媒回収運転時
の冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram during a refrigerant recovery operation according to Embodiment 3 of the present invention.

【図6】 本発明の実施の形態3に係る冷媒再生運転時
の冷媒回路図である。
FIG. 6 is a refrigerant circuit diagram during a refrigerant regeneration operation according to Embodiment 3 of the present invention.

【図7】 本発明の実施の形態3に係る延長配管洗浄時
の冷媒回路図である。
FIG. 7 is a refrigerant circuit diagram at the time of cleaning an extension pipe according to Embodiment 3 of the present invention.

【図8】 本発明の実施の形態3に係る既設冷媒配管の
利用方法の手順フローである。
FIG. 8 is a procedure flow of a method of using an existing refrigerant pipe according to Embodiment 3 of the present invention.

【図9】 本発明の実施の形態4に係る適用分類を説明
する図である。
FIG. 9 is a diagram illustrating an application classification according to a fourth embodiment of the present invention.

【図10】 従来の既設配管利用方法の作業フローであ
る。
FIG. 10 is a work flow of a conventional method of using existing piping.

【図11】 従来の既設配管利用方法の機器構成図であ
る。
FIG. 11 is a diagram showing a device configuration of a conventional method of using existing piping.

【符号の説明】[Explanation of symbols]

1,1q 圧縮機、2,2q 室外熱交換器、3,3q
減圧装置、4,4q四方弁、5,5q アキュムレー
タ、6,6q 液側阻止弁、7,7q ガス側阻止弁、
8q 室内熱交換器、9q サービスポート、10,1
0q 室外機、11,11q 室内機、12 室外送風
機、13 液側チェックバルブ、14室外制御装置、1
5 ドライヤ、16 受液器、20 室内機、21 室
内熱交換器、22 室内送風機、23 室内膨張装置、
24 室内制御装置、25リモコンスイッチ、30 制
御信号伝送線、31,31q ガス延長配管、32,3
2q 液延長配管、33 第1の接続管、34 第2の
接続管、35 第3の接続管、36 第4の接続管、3
7 冷媒液流出用配管、38 第5の接続管、41 第
2の圧縮機、42 凝縮熱交換器、43 第2の液側阻
止弁、44第2のガス側阻止弁、45 冷媒回収機、4
6 第3の液側阻止弁、47 冷媒回収ボンベ、50
冷媒再生装置、51 油回収容器、52 再生熱交換
器、53 油回収口、54 冷媒流入管、55 冷媒流
出管、56 再生減圧装置、57 配管洗浄装置、58
入口側阻止弁、59,60 配管接続ポート、61出
口側阻止弁、62 流路切替弁、63 減圧装置、64
逆止弁、65 バイパス弁、66 ストレーナ。
1,1q compressor, 2,2q outdoor heat exchanger, 3,3q
Pressure reducing device, 4,4q four-way valve, 5,5q accumulator, 6,6q liquid side check valve, 7,7q gas side check valve,
8q indoor heat exchanger, 9q service port, 10,1
0q outdoor unit, 11, 11q indoor unit, 12 outdoor blower, 13 liquid side check valve, 14 outdoor control device, 1
5 dryer, 16 liquid receiver, 20 indoor unit, 21 indoor heat exchanger, 22 indoor blower, 23 indoor expansion device,
24 indoor control device, 25 remote control switch, 30 control signal transmission line, 31, 31q gas extension pipe, 32, 3
2q liquid extension pipe, 33 first connection pipe, 34 second connection pipe, 35 third connection pipe, 36 fourth connection pipe, 3
7 refrigerant liquid outflow pipe, 38 fifth connection pipe, 41 second compressor, 42 condensation heat exchanger, 43 second liquid-side check valve, 44 second gas-side check valve, 45 refrigerant recovery machine, 4
6 third liquid side check valve, 47 refrigerant recovery cylinder, 50
Refrigerant recycling device, 51 oil recovery container, 52 regenerative heat exchanger, 53 oil recovery port, 54 refrigerant inflow pipe, 55 refrigerant outflow pipe, 56 regeneration decompression device, 57 pipe washing device, 58
Inlet blocking valve, 59, 60 piping connection port, 61 outlet blocking valve, 62 flow switching valve, 63 pressure reducing device, 64
Check valve, 65 bypass valve, 66 strainer.

フロントページの続き (72)発明者 四十宮 正人 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 風村 典秀 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内Continuing from the front page (72) Inventor Masato Shijunomiya 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Sanrishi Electric Co., Ltd. (72) Inventor Norihide Kazemura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Electric Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 室内機および室外機を備えた空気調和機
の作動冷媒を変更する際の既設冷媒配管の利用方法にお
いて、変更前の作動冷媒を所定時間循環させて、前記既
設冷媒配管中に残存する変更前の作動冷媒に適合した冷
凍機油残存量を変更後の作動冷媒に適合した冷凍機の使
用量に対して所定値以下の含有濃度とした後、前記空気
調和機の作動冷媒を変更することを特徴とする既設冷媒
配管の利用方法。
1. A method of using an existing refrigerant pipe when changing an operating refrigerant of an air conditioner including an indoor unit and an outdoor unit, wherein the operating refrigerant before the change is circulated for a predetermined time, and the refrigerant flows through the existing refrigerant pipe. The working refrigerant of the air conditioner is changed after the remaining amount of the refrigerating machine oil that is compatible with the working refrigerant before the change is set to a concentration equal to or less than a predetermined value with respect to the usage amount of the refrigerator that is compatible with the changed working refrigerant. A method for utilizing an existing refrigerant pipe.
【請求項2】 変更前の作動冷媒を使用した室外機が運
転可能な場合は、前記室外機を冷房もしくは暖房モード
で所定時間運転して前記変更前の作動冷媒を前記既設冷
媒配管へ流通洗浄するステップと、前記室外機をポンプ
ダウン運転して前記変更前の作動冷媒を前記室外機に回
収するステップと、前記既存冷媒配管に変更後の作動冷
媒に適合した室外機および室内機を入れ替え接続するス
テップと、を備えたことを特徴とする請求項1に記載の
既設冷媒配管の利用方法。
2. When the outdoor unit using the working refrigerant before the change is operable, the outdoor unit is operated in a cooling or heating mode for a predetermined time to flow and wash the working refrigerant before the change to the existing refrigerant pipe. Performing the step of pumping down the outdoor unit to recover the working refrigerant before the change to the outdoor unit, and switching and connecting the outdoor unit and the indoor unit suitable for the working refrigerant after the change to the existing refrigerant pipe. The method according to claim 1, further comprising the step of:
【請求項3】 変更前の作動冷媒を使用した室外機が運
転不可能な場合は、前記室外機に冷媒搬送手段を有した
冷媒回収機を接続して、前記冷媒回収機により前記変更
前の作動冷媒を前記冷媒回収機の出口側に接続された冷
媒回収ボンベに回収するステップと、前記既存冷媒配管
から前記変更前の作動冷媒を使用した室外機および室内
機を取り外すとともに前記冷媒回収機と前記冷媒回収ボ
ンベに繋がる冷媒再生手段を有した冷媒再生装置を前記
既存冷媒配管に接続して循環回路を形成するステップ
と、前記冷媒回収機の冷媒搬送手段を所定時間運転する
ことにより回収した前記変更前の作動冷媒を前記既設冷
媒配管へ流通洗浄させるとともに前記冷媒再生装置で前
記変更前の作動冷媒に溶解している冷凍機油を分離除去
して前記変更前の作動冷媒を循環させるステップと、前
記既存冷媒配管に変更後の作動冷媒に適合した室外機お
よび室内機を入れ替え接続するステップと、を備えたこ
とを特徴とする請求項1に記載の既設冷媒配管の利用方
法。
3. When the outdoor unit using the working refrigerant before the change is not operable, a refrigerant recovery device having a refrigerant transfer means is connected to the outdoor unit, and the refrigerant recovery device is connected to the outdoor unit by the refrigerant recovery device. Recovering the working refrigerant in a refrigerant recovery cylinder connected to the outlet side of the refrigerant recovery machine, and removing the outdoor unit and the indoor unit using the working refrigerant before the change from the existing refrigerant pipe and removing the refrigerant recovery machine; Forming a circulation circuit by connecting a refrigerant regenerating device having refrigerant regenerating means connected to the refrigerant collecting cylinder to the existing refrigerant pipe, and recovering the refrigerant by operating the refrigerant conveying means of the refrigerant collecting machine for a predetermined time; The working refrigerant before the change is flow-washed to the existing refrigerant pipes, and the refrigerant regenerating device separates and removes the refrigerating machine oil dissolved in the working refrigerant before the change to perform the operation before the change. The method according to claim 1, further comprising the steps of: circulating a refrigerant; and exchanging and connecting an outdoor unit and an indoor unit adapted to the working refrigerant after the change to the existing refrigerant piping. How to Use.
【請求項4】 変更前の作動冷媒を使用した室外機が運
転不可能な場合は、前記室外機に冷媒搬送手段と冷媒再
生手段を有した配管洗浄装置を接続して、前記冷媒搬送
手段により前記変更前の作動冷媒を前記配管洗浄装置の
出口側に接続された冷媒回収ボンベに回収するステップ
と、前記既存冷媒配管から前記変更前の作動冷媒を使用
した室外機および室内機を取り外すとともに前記既存冷
媒配管に前記配管洗浄装置を接続するステップと、前記
冷媒回収ボンベに回収した前記変更前の作動冷媒に溶解
している冷凍機油を前記冷媒再生手段により分離除去す
るステップと、前記搬送手段を所定時間運転することに
より再生された前記変更前の作動冷媒を前記既設冷媒配
管へ流通洗浄しながら循環させるステップと、前記既存
冷媒配管に変更後の作動冷媒に適合した室外機および室
内機を入れ替え接続するステップと、を備えたことを特
徴とする請求項1に記載の既存冷媒配管の利用方法。
4. When the outdoor unit using the working refrigerant before the change is not operable, a pipe cleaning device having a refrigerant conveying unit and a refrigerant regenerating unit is connected to the outdoor unit, and the outdoor unit is connected to the outdoor unit by the refrigerant conveying unit. Collecting the working refrigerant before the change into a refrigerant recovery cylinder connected to the outlet side of the pipe cleaning device, removing the outdoor unit and the indoor unit using the working refrigerant before the change from the existing refrigerant pipe and Connecting the pipe cleaning device to an existing refrigerant pipe, separating and removing the refrigerating machine oil dissolved in the working refrigerant before change collected in the refrigerant collection cylinder by the refrigerant regenerating means, and the transporting means. Circulating the working refrigerant before the change regenerated by operating for a predetermined time while circulating and washing the existing refrigerant pipe to the existing refrigerant pipe; and 2. A method of using an existing refrigerant pipe according to claim 1, further comprising a step of switching and connecting an outdoor unit and an indoor unit suitable for the working refrigerant.
【請求項5】 冷媒再生手段は密閉容器と、前記密閉容
器内の下方に貫通横断した再生熱交換器と、前記密閉容
器内の上方に貫通配設され一端が開いた流入管および流
出管とを備え、前記流入管から前記密閉容器に流入する
冷凍機油を溶解している低温低圧の液冷媒が、冷媒搬送
手段により高温高圧となって前記再生熱交換器を通過す
る冷媒から吸熱蒸発し、この蒸発したガス冷媒が前記流
出管より前記冷媒搬送手段へ戻り循環することにより上
記冷凍機油を分離除去することを特徴とする請求項3ま
たは請求項4に記載の既設冷媒配管の利用方法。
5. A refrigerant regenerating means comprising: a closed vessel; a regenerative heat exchanger that penetrates downward in the closed vessel; and an inflow pipe and an outgoing pipe that are disposed in the upper part of the closed vessel and open at one end. Comprising a low-temperature and low-pressure liquid refrigerant dissolving refrigerating machine oil flowing into the closed vessel from the inflow pipe, endothermic and evaporate from the refrigerant passing through the regenerative heat exchanger at a high temperature and high pressure by refrigerant conveying means, The method according to claim 3 or 4, wherein the evaporated gas refrigerant returns from the outlet pipe to the refrigerant conveying means and circulates to separate and remove the refrigerating machine oil.
【請求項6】 変更前の作動冷媒を高圧液状態で既設冷
媒配管中を循環させることを特徴とする請求項1乃至請
求項4のいずれかに記載の既設冷媒配管の利用方法。
6. The method for utilizing an existing refrigerant pipe according to claim 1, wherein the working refrigerant before the change is circulated in the existing refrigerant pipe in a high-pressure liquid state.
【請求項7】 変更前の作動冷媒が塩素を含む弗化炭素
水素系冷媒であり、変更後の作動冷媒が塩素を含まない
弗化炭素水素系冷媒であることを特徴とする請求項1乃
至請求項6のいずれかに記載の既設冷媒配管の利用方
法。
7. The refrigerant according to claim 1, wherein the working refrigerant before the change is a hydrogen fluoride-based refrigerant containing chlorine, and the working refrigerant after the change is a hydrogen-carbon fluoride-based refrigerant containing no chlorine. A method for utilizing an existing refrigerant pipe according to claim 6.
JP2001033815A 2001-02-09 2001-02-09 How to use existing refrigerant piping, how to install air conditioner, air conditioner Expired - Lifetime JP3680740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001033815A JP3680740B2 (en) 2001-02-09 2001-02-09 How to use existing refrigerant piping, how to install air conditioner, air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001033815A JP3680740B2 (en) 2001-02-09 2001-02-09 How to use existing refrigerant piping, how to install air conditioner, air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004349547A Division JP4517834B2 (en) 2004-12-02 2004-12-02 How to use existing refrigerant piping

Publications (2)

Publication Number Publication Date
JP2002235971A true JP2002235971A (en) 2002-08-23
JP3680740B2 JP3680740B2 (en) 2005-08-10

Family

ID=18897506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001033815A Expired - Lifetime JP3680740B2 (en) 2001-02-09 2001-02-09 How to use existing refrigerant piping, how to install air conditioner, air conditioner

Country Status (1)

Country Link
JP (1) JP3680740B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211944A (en) * 2002-12-27 2004-07-29 Sanyo Electric Co Ltd Oil recovery method for air conditioner, and air conditioner
JP2008025924A (en) * 2006-07-21 2008-02-07 Daikin Ind Ltd Refrigerant filling method in refrigerating device using carbon dioxide as refrigerant
JP2011242078A (en) * 2010-05-20 2011-12-01 Hitachi Appliances Inc Refrigerating cycle device and method of renewing refrigerating cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5213538B2 (en) * 2008-06-19 2013-06-19 三菱電機株式会社 Renewal method of refrigeration cycle equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211944A (en) * 2002-12-27 2004-07-29 Sanyo Electric Co Ltd Oil recovery method for air conditioner, and air conditioner
JP2008025924A (en) * 2006-07-21 2008-02-07 Daikin Ind Ltd Refrigerant filling method in refrigerating device using carbon dioxide as refrigerant
US8479526B2 (en) 2006-07-21 2013-07-09 Daikin Industries, Ltd. Refrigerant charging method for refrigeration device having carbon dioxide as refrigerant
US9869498B2 (en) 2006-07-21 2018-01-16 Daikin Industries, Ltd. Refrigerant charging method for refrigeration device having carbon dioxide as refrigerant
JP2011242078A (en) * 2010-05-20 2011-12-01 Hitachi Appliances Inc Refrigerating cycle device and method of renewing refrigerating cycle device

Also Published As

Publication number Publication date
JP3680740B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
JP4120221B2 (en) Refrigerant and oil recovery operation method, and refrigerant and oil recovery control device
EP1591730B1 (en) Refrigerant pipe washing method
JP3680740B2 (en) How to use existing refrigerant piping, how to install air conditioner, air conditioner
JP4517834B2 (en) How to use existing refrigerant piping
JP4052478B2 (en) Refrigerator oil separation and recovery system and cleaning method for air conditioning system
JP4061494B2 (en) Connection pipe cleaning method, refrigerating device renewal method, and freezing device
JP2003302127A (en) Refrigeration unit
JP4186764B2 (en) Refrigeration equipment
JP3885601B2 (en) Refrigerant and oil recovery method, refrigerant and oil recovery control device, and air conditioner
WO2003064939A1 (en) Oil collecting method for refrigerator
JP2004333121A (en) Method for updating air conditioner, and air conditioner
JP2004333121A5 (en)
JP4803234B2 (en) Pipe cleaning device
JP2007085643A (en) Cleaning method for air conditioning system, and outdoor unit used therein
JP3666343B2 (en) Cleaning device, refrigeration air conditioner and its replacement method
US7334426B2 (en) Refrigerating apparatus
JP2003329337A (en) Method for cleaning piping of refrigerating machine
JP3370959B2 (en) Renewal method and operation method of refrigeration cycle device
JP4295136B2 (en) Piping cleaning device and piping cleaning method
JP4375925B2 (en) Air conditioner
JP2003139444A (en) Refrigerant replacement method for air conditioner, cleaner, and air conditioner
JP2004308934A (en) Freezing apparatus and method of washing piping
JP2010185585A (en) Air conditioner and method of updating unit
JP2003194436A (en) Bottom oil recovery method
JP2004317115A (en) Refrigerating apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R151 Written notification of patent or utility model registration

Ref document number: 3680740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term