JP2002235581A - Controller for internal combustion engine - Google Patents

Controller for internal combustion engine

Info

Publication number
JP2002235581A
JP2002235581A JP2001035168A JP2001035168A JP2002235581A JP 2002235581 A JP2002235581 A JP 2002235581A JP 2001035168 A JP2001035168 A JP 2001035168A JP 2001035168 A JP2001035168 A JP 2001035168A JP 2002235581 A JP2002235581 A JP 2002235581A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
fuel injection
engine speed
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001035168A
Other languages
Japanese (ja)
Inventor
Chikahiko Kuroda
京彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001035168A priority Critical patent/JP2002235581A/en
Publication of JP2002235581A publication Critical patent/JP2002235581A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide a stable operating condition by properly correcting a control amount when an internal combustion engine is started in a simplified system configuration without a temperature sensor. SOLUTION: When the internal combustion engine is started, an initial fuel injection amount after starting is calculated by using a post-start fuel injection correction factor FSE estimated based on a history obtained when an engine speed NE is less than a specified engine speed NESTA. The initial fuel injection amount is properly corrected by using the post-start fuel injection correction factor FSE discriminated and updated according to the behavior of the engine speed NE. Thus, even in the simplified system configuration without the temperature sensor, the fuel injection amount of the internal combustion engine after starting can be corrected properly and the stable operating condition can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の始動の
際の運転状態を制御する内燃機関用制御装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an internal combustion engine for controlling an operation state at the time of starting the internal combustion engine.

【0002】[0002]

【従来の技術】従来、内燃機関の始動に際して、その運
転状態を制御するため、運転状態検出センサとして例え
ば、内燃機関に温度センサを配設し、その温度センサに
よって検出される機関温度に基づき、内燃機関の燃料噴
射量を補正するようにしたものが知られている。
2. Description of the Related Art Conventionally, when an internal combustion engine is started, in order to control its operation state, for example, a temperature sensor is provided in the internal combustion engine as an operation state detection sensor, and based on the engine temperature detected by the temperature sensor, 2. Description of the Related Art There is known an engine in which a fuel injection amount of an internal combustion engine is corrected.

【0003】[0003]

【発明が解決しようとする課題】ところで、前述のよう
に、機関温度が温度センサを用いて検出されるシステム
構成であれば、その温度センサの変化量に基づき、内燃
機関の始動に際しての燃料噴射量を適切に補正すること
ができる。ここで、温度センサを省いた簡素化されたシ
ステム構成によって内燃機関の運転状態を知ることがで
きれば、当然のことながら、相当なコストダウンを達成
することができる。
As described above, if the system is configured so that the engine temperature is detected using a temperature sensor, the fuel injection at the time of starting the internal combustion engine is performed based on the amount of change of the temperature sensor. The amount can be corrected appropriately. Here, if the operating state of the internal combustion engine can be known by a simplified system configuration in which the temperature sensor is omitted, a considerable cost reduction can be naturally attained.

【0004】しかし、従来、温度センサは必須の構成要
素であり、温度センサからの信号入力がないと、内燃機
関の始動に際し、燃料噴射量を適切に補正することがで
きないという不具合があった。
[0004] However, conventionally, the temperature sensor is an essential component, and there has been a problem that the fuel injection amount cannot be properly corrected when starting the internal combustion engine without a signal input from the temperature sensor.

【0005】そこで、この発明はかかる不具合を解決す
るためになされたもので、温度センサを有しない簡素化
されたシステム構成において、内燃機関の始動に際し、
制御量を適切に補正し安定した運転状態を得ることが可
能な内燃機関用制御装置の提供を課題としている。
Accordingly, the present invention has been made to solve such a problem. In a simplified system configuration having no temperature sensor, the present invention provides a method for starting an internal combustion engine.
It is an object of the present invention to provide a control device for an internal combustion engine that can appropriately correct a control amount and obtain a stable operation state.

【0006】[0006]

【課題を解決するための手段】請求項1の内燃機関用制
御装置によれば、内燃機関の始動に際して、機関回転数
が所定の機関回転数以上となった直後の初期制御量が、
機関回転数が所定の機関回転数未満のときの履歴に基づ
き推定され、このときの初期制御量が、その後の機関回
転数の挙動に応じて逐次、判別され適切に補正される。
これにより、内燃機関の始動に際して、機関回転数が所
定の機関回転数以上となった後の制御量が適切に補正さ
れることで安定した運転状態が得られる。
According to the control device for an internal combustion engine of the first aspect, when the internal combustion engine is started, the initial control amount immediately after the engine speed becomes equal to or higher than a predetermined engine speed is:
The engine speed is estimated based on the history when the engine speed is less than the predetermined engine speed, and the initial control amount at this time is sequentially determined and appropriately corrected according to the subsequent behavior of the engine speed.
Thus, when the internal combustion engine is started, a stable operation state can be obtained by appropriately correcting the control amount after the engine speed becomes equal to or higher than the predetermined engine speed.

【0007】請求項2の内燃機関用制御装置では、制御
量推定手段によって機関回転数が所定の機関回転数未満
のときの所要時間、燃料噴射回数、総燃料噴射量等の履
歴に基づき初期制御量が推定される。これにより、内燃
機関は機関回転数が所定の機関回転数以上となった直後
における運転状態が安定化される。
In the control apparatus for an internal combustion engine according to the second aspect, the control amount estimating means performs initial control based on the history of the required time when the engine speed is less than the predetermined engine speed, the number of fuel injections, and the total fuel injection amount. The amount is estimated. This stabilizes the operating state of the internal combustion engine immediately after the engine speed becomes equal to or higher than the predetermined engine speed.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を実施
例に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples.

【0009】図1は本発明の実施の形態の一実施例にか
かる内燃機関用制御装置が適用された内燃機関及びその
周辺機器を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an internal combustion engine to which an internal combustion engine control device according to an embodiment of the present invention is applied and peripheral devices thereof.

【0010】図1において、1は内燃機関(エンジン)
であり、内燃機関1の吸気通路2にはエアクリーナ3か
らの空気が導入される。この吸気通路2途中には、図示
しないアクセルペダルの操作に連動して開閉されるスロ
ットルバルブ11が設けられている。このスロットルバ
ルブ11が開閉されることにより、吸気通路2への吸気
量(吸入空気量)が調節される。また、この吸気量と同
時に、内燃機関1には吸気ポート4の近傍で吸気通路2
に設けられたインジェクタ(燃料噴射弁)5から燃料が
噴射供給される。そして、所定の燃料量及び吸気量から
なる混合気が吸気バルブ6を介して燃焼室7内に吸入さ
れる。
In FIG. 1, reference numeral 1 denotes an internal combustion engine (engine).
The air from the air cleaner 3 is introduced into the intake passage 2 of the internal combustion engine 1. A throttle valve 11 which is opened and closed in conjunction with operation of an accelerator pedal (not shown) is provided in the intake passage 2. By opening and closing the throttle valve 11, the amount of intake air (intake air amount) to the intake passage 2 is adjusted. Simultaneously with the intake air amount, the internal combustion engine 1 is provided with an intake passage 2 near the intake port 4.
The fuel is injected and supplied from an injector (fuel injection valve) 5 provided in the fuel cell. Then, an air-fuel mixture composed of a predetermined fuel amount and an intake amount is sucked into the combustion chamber 7 through the intake valve 6.

【0011】また、吸気通路2途中に設けられたスロッ
トルバルブ11の下流側には、吸気通路2内の吸気圧P
Mを検出する吸気圧センサ21が設けられている。そし
て、内燃機関1のクランクシャフト12にはその回転に
伴うクランク角〔°CA(Crank Angle)〕を検出するク
ランク角センサ22が設けられている。このクランク角
センサ22で検出されるクランク角に応じて内燃機関1
の機関回転数NEが算出される。
On the downstream side of the throttle valve 11 provided in the intake passage 2, the intake pressure P in the intake passage 2 is set.
An intake pressure sensor 21 for detecting M is provided. The crankshaft 12 of the internal combustion engine 1 is provided with a crank angle sensor 22 for detecting a crank angle [° CA (Crank Angle)] accompanying the rotation. The internal combustion engine 1 according to the crank angle detected by the crank angle sensor 22
Is calculated.

【0012】また、内燃機関1の燃焼室7内に向けて点
火プラグ13が配設されている。この点火プラグ13に
はクランク角センサ22で検出されるクランク角に同期
して後述のECU(Electronic Control Unit:電子制御
ユニット)30から出力される点火指令信号に基づき点
火コイル/イグナイタ14からの高電圧が印加され、燃
焼室7内の混合気に対する点火燃焼が行われる。このよ
うに、燃焼室7内の混合気が燃焼(膨張)され駆動力が
得られ、この燃焼後の排気ガスは、排気バルブ8を介し
て排気マニホールドから排気通路9に導出され外部に排
出される。
An ignition plug 13 is provided toward the inside of the combustion chamber 7 of the internal combustion engine 1. The ignition plug 13 receives a high signal from the ignition coil / igniter 14 based on an ignition command signal output from an electronic control unit (ECU) 30 described later in synchronization with the crank angle detected by the crank angle sensor 22. A voltage is applied, and ignition combustion of the air-fuel mixture in the combustion chamber 7 is performed. In this manner, the air-fuel mixture in the combustion chamber 7 is burned (expanded) to obtain a driving force, and the exhaust gas after the combustion is led out of the exhaust manifold through the exhaust valve 8 to the exhaust passage 9 and discharged to the outside. You.

【0013】ECU30は、周知の各種演算処理を実行
する中央処理装置としてのCPU31、制御プログラム
を格納したROM32、各種データを格納するRAM3
3、B/U(バックアップ)RAM34、入出力回路3
5及びそれらを接続するバスライン36等からなる論理
演算回路として構成されている。このECU30には、
吸気圧センサ21からの吸気圧PM、クランク角センサ
22からのクランク角等が入力されている。これら各種
センサ情報に基づくECU30からの出力信号に基づ
き、燃料噴射時期及び燃料噴射量に関連するインジェク
タ5、点火プラグ13の点火時期に関連する点火コイル
/イグナイタ14等が適宜、制御される。
The ECU 30 includes a CPU 31 serving as a central processing unit for executing various known arithmetic processing, a ROM 32 storing a control program, and a RAM 3 storing various data.
3, B / U (backup) RAM 34, input / output circuit 3
5 and a logical operation circuit including a bus line 36 connecting them. This ECU 30 includes:
The intake pressure PM from the intake pressure sensor 21, the crank angle from the crank angle sensor 22, and the like are input. Based on output signals from the ECU 30 based on these various sensor information, the injector 5 related to the fuel injection timing and the fuel injection amount, the ignition coil / igniter 14 related to the ignition timing of the ignition plug 13 and the like are appropriately controlled.

【0014】次に、本発明の実施の形態の一実施例にか
かる内燃機関用制御装置で使用されているECU30内
のCPU31における始動後燃料噴射補正係数演算の処
理手順を示す図2のフローチャートに基づき、図3を参
照して説明する。ここで、図3は内燃機関1の機関回転
数NE〔rpm〕に応じた始動後燃料噴射補正係数の遷
移状態を示すタイムチャートである。なお、この始動後
燃料噴射補正係数演算ルーチンは内燃機関の各気筒の1
燃焼サイクル毎にCPU31にて繰返し実行される。
Next, FIG. 2 is a flowchart showing a processing procedure of a post-start fuel injection correction coefficient calculation in the CPU 31 in the ECU 30 used in the control apparatus for an internal combustion engine according to one embodiment of the present invention. This will be described with reference to FIG. Here, FIG. 3 is a time chart showing a transition state of the post-start fuel injection correction coefficient according to the engine speed NE [rpm] of the internal combustion engine 1. Note that this post-start fuel injection correction coefficient calculation routine is performed for each cylinder of the internal combustion engine.
It is repeatedly executed by the CPU 31 for each combustion cycle.

【0015】図2において、まず、ステップS101
で、内燃機関1が始動後であるかが判定される。ここ
で、内燃機関1の始動後とは、図3に示すように、イグ
ニッションスイッチ(図示略)の「ON(オン)」のク
ランキングによる内燃機関1の始動に際して、機関回転
数NEがアイドル回転数よりやや低く設定された所定の
機関回転数NESTA を越え、所謂エンジンがかかったと
見做し得る時刻t1 以降を言う。これに対して、内燃機
関1の始動時とは、図3に示すように、イグニッション
スイッチの「ON」のクランキングによる内燃機関1の
始動に際して、機関回転数NEが所定の機関回転数NE
STA 未満の時刻t0 〜時刻t1 を言う。
In FIG. 2, first, in step S101,
It is determined whether or not the internal combustion engine 1 has been started. Here, after the internal combustion engine 1 is started, as shown in FIG. 3, when the internal combustion engine 1 is started by cranking an ignition switch (not shown) to “ON”, the engine speed NE becomes the idle speed. The engine speed exceeds a predetermined engine speed NESTA, which is set slightly lower than the engine speed, and the time after time t1 at which it can be considered that the engine has started. On the other hand, when the internal combustion engine 1 is started, as shown in FIG. 3, when the internal combustion engine 1 is started by cranking the ignition switch to “ON”, the engine speed NE becomes a predetermined engine speed NE.
The time from time t0 to time t1 before STA is referred to.

【0016】ステップS101の判定条件が成立せず、
即ち、内燃機関1の始動時であるときには何もすること
なく、本ルーチンを終了する。一方、ステップS101
の判定条件が成立、即ち、内燃機関1の始動後であると
きにはステップS102に移行し、内燃機関1が始動時
から始動後への変化直後(図3に示す時刻t1 )である
かが判定される。ステップS102の判定条件が成立、
即ち、内燃機関1が始動後になった直後であるときには
ステップS103に移行し、始動時の履歴として始動時
状態における、例えば、始動に要した時間である始動時
間TSTまたは始動の際の燃料噴射回数である始動時燃
料噴射回数NSTまたは始動時間TST及び始動時燃料
噴射回数NSTの積分値である始動時総燃料噴射量TA
UAST等が算出される。
If the condition of step S101 is not satisfied,
That is, when the internal combustion engine 1 is being started, this routine ends without performing any operation. On the other hand, step S101
Is satisfied, that is, when the internal combustion engine 1 has been started, the process proceeds to step S102, and it is determined whether the internal combustion engine 1 has just changed from the start to the post-start (time t1 shown in FIG. 3). You. The determination condition of step S102 is satisfied,
That is, when it is immediately after the internal combustion engine 1 has just started, the process proceeds to step S103, and the starting time, for example, the starting time TST, which is the time required for starting, or the number of fuel injections at the time of starting, in the starting state. Starting fuel injection number NST or the starting fuel injection amount TA which is an integral value of the starting time TST and the starting fuel injection frequency NST.
UAST and the like are calculated.

【0017】次にステップS104に移行して、ステッ
プS103で算出された始動時間TST、始動時噴射回
数NST、始動時総燃料噴射量TAUAST等に基づ
き、後述の基本燃料噴射量を増量補正するための始動後
燃料噴射補正係数FSEの初期値が次式(1)にて算出
される。ここで、A,B,Cは各補正ゲインである。
Next, the process proceeds to step S104, in which the basic fuel injection amount described later is increased and corrected based on the start time TST, the number of injections NST at start, the total fuel injection amount TAUAST at start calculated in step S103. The initial value of the post-start fuel injection correction coefficient FSE is calculated by the following equation (1). Here, A, B, and C are each correction gain.

【0018】[0018]

【数1】 FSE=A×TST+B×NST+C×TAUAST+… ・・・(1)FSE = A × TST + B × NST + C × TAAUAST + (1)

【0019】一方、ステップS102の判定条件が成立
せず、即ち、内燃機関1が始動時から始動後になった直
後でないときには、既に始動後燃料噴射補正係数FSE
の初期値は算出されているため、上述のステップS10
3及びステップS104がスキップされる。
On the other hand, if the determination condition of step S102 is not satisfied, that is, if the internal combustion engine 1 is not immediately after starting but immediately after starting, the post-starting fuel injection correction coefficient FSE has already been set.
Has been calculated, the above-described step S10
Step 3 and step S104 are skipped.

【0020】次にステップS105に移行して、同期噴
射が実施されたかが判定される。ステップS105の判
定条件が成立せず、即ち、同期噴射が未だ実施されてい
ないときには何もすることなく、本ルーチンを終了す
る。一方、ステップS105の判定条件が成立、即ち、
同期噴射が実施されているときにはステップS106に
移行し、このときの機関回転数NEが予め設定された下
限の機関回転数D以下であるかが判定される。ステップ
S106の判定条件が成立、即ち、機関回転数NEが下
限の機関回転数D以下と低いとき(図3に示す時刻t1
〜時刻t2 、時刻t5 〜時刻t6 、…)にはステップS
107に移行し、始動後燃料噴射補正係数FSEが小さ
過ぎるとして、所定値Eが加算され始動後燃料噴射補正
係数FSEが更新されたのち、本ルーチンを終了する。
Next, the process proceeds to step S105, where it is determined whether the synchronous injection has been performed. If the determination condition in step S105 is not satisfied, that is, if the synchronous injection has not been performed yet, the routine ends without performing any operation. On the other hand, the determination condition of step S105 is satisfied, that is,
When the synchronous injection is being performed, the process proceeds to step S106, and it is determined whether the engine speed NE at this time is equal to or less than a preset lower limit engine speed D. When the determination condition of step S106 is satisfied, that is, when the engine speed NE is lower than or equal to the lower limit engine speed D (time t1 shown in FIG. 3)
To time t2, time t5 to time t6,.
The routine proceeds to 107, where it is determined that the post-start fuel injection correction coefficient FSE is too small, the predetermined value E is added, and the post-start fuel injection correction coefficient FSE is updated, followed by terminating the present routine.

【0021】一方、ステップS106の判定条件が成立
せず、即ち、機関回転数NEが下限の機関回転数Dを越
え高いとき(図3に示す時刻t3 〜時刻t4 、時刻t7
〜時刻t8 、…)にはステップS108に移行し、機関
回転数NEが予め設定された上限の機関回転数F以上で
あるかが判定される。ステップS108の判定条件が成
立、即ち、機関回転数NEが上限の機関回転数F以上と
高いときにはステップS109に移行し、始動後燃料噴
射補正係数FSEが大き過ぎるとして、所定値Gが減算
され始動後燃料噴射補正係数FSEが更新されたのち、
本ルーチンを終了する。
On the other hand, when the determination condition of step S106 is not satisfied, that is, when the engine speed NE exceeds the lower limit engine speed D and is high (time t3 to time t4 and time t7 shown in FIG. 3).
At time t8,...), The process proceeds to step S108, and it is determined whether the engine speed NE is equal to or higher than a preset upper limit engine speed F. When the determination condition of step S108 is satisfied, that is, when the engine speed NE is higher than or equal to the upper limit engine speed F, the process proceeds to step S109. After the post-fuel injection correction coefficient FSE is updated,
This routine ends.

【0022】一方、ステップS108の判定条件が成立
せず、即ち、機関回転数NEが下限の機関回転数Dを越
え、かつ上限の機関回転数F未満であるとき(図3に示
す時刻t2 〜時刻t3 、時刻t4 〜時刻t5 、時刻t6
〜時刻t7 、…)にはステップS110に移行し、始動
後燃料噴射補正係数FSEが適切であるとして、そのと
きの始動後燃料噴射補正係数FSEが保持されたのち、
本ルーチンを終了する。
On the other hand, when the determination condition in step S108 is not satisfied, that is, when the engine speed NE is higher than the lower limit engine speed D and lower than the upper limit engine speed F (from time t2 to time t2 shown in FIG. 3). Time t3, time t4 to time t5, time t6
At time t7,...), The routine proceeds to step S110, where the post-start fuel injection correction coefficient FSE is determined to be appropriate, and the post-start fuel injection correction coefficient FSE at that time is held.
This routine ends.

【0023】なお、本ルーチンによる処理ののち、図示
しないメインルーチンにて周知のように、内燃機関1の
機関回転数NE及び負荷としての吸気圧PMに基づき算
出された基本燃料噴射量が、上述の始動後燃料噴射補正
係数FSEを用いて増量補正され、実際にインジェクタ
5から噴射供給される燃料噴射量が調節される。
After the processing of this routine, as is well known in a main routine (not shown), the basic fuel injection amount calculated based on the engine speed NE of the internal combustion engine 1 and the intake pressure PM as a load is calculated as described above. Is increased using the fuel injection correction coefficient FSE after the start, and the fuel injection amount actually injected and supplied from the injector 5 is adjusted.

【0024】このように、本実施例の内燃機関用制御装
置は、内燃機関1の機関回転数NEを検出する回転数検
出手段としてのクランク角センサ22と、内燃機関1の
始動に際して、機関回転数NEが所定の機関回転数NE
STA 以上となった直後の初期制御量としての初期燃料噴
射量を算出するための始動後燃料噴射補正係数FSE
を、機関回転数NEが所定の機関回転数NESTA 未満の
ときの履歴に基づき推定するECU30内のCPU31
にて達成される制御量推定手段と、前記制御量推定手段
で推定された初期制御量以降における制御量としての燃
料噴射量を、機関回転数NEの挙動に応じて逐次、判別
し更新された始動後燃料噴射補正係数FSEを用いて補
正するECU30内のCPU31にて達成される制御量
補正手段とを具備するものである。
As described above, the control device for an internal combustion engine according to the present embodiment includes a crank angle sensor 22 as a rotation speed detecting means for detecting the engine rotation speed NE of the internal combustion engine 1 and the engine rotation speed when the internal combustion engine 1 is started. The number NE is a predetermined engine speed NE
A post-start fuel injection correction coefficient FSE for calculating an initial fuel injection amount as an initial control amount immediately after STA or more.
CPU 31 in the ECU 30 for estimating the engine speed NE based on the history when the engine speed NE is lower than the predetermined engine speed NESTA.
And the fuel injection amount as a control amount after the initial control amount estimated by the control amount estimating means is sequentially determined and updated according to the behavior of the engine speed NE. And a control amount correction means which is achieved by the CPU 31 in the ECU 30 for correcting using the post-start fuel injection correction coefficient FSE.

【0025】つまり、内燃機関1の始動に際して、始動
後の初期燃料噴射量が機関回転数NEが所定の機関回転
数NESTA 未満のときの履歴に基づき推定された始動後
燃料噴射補正係数FSEによって算出され、このときの
初期燃料噴射量が、機関回転数NEの挙動に応じて逐
次、判別され更新された始動後燃料噴射補正係数FSE
によって適切に補正される。これにより、温度センサを
有しない簡素化されたシステム構成であっても、内燃機
関1の始動後における燃料噴射量が適切に補正され安定
した運転状態を得ることができる。
That is, when the internal combustion engine 1 is started, the initial fuel injection amount after the start is calculated by the post-start fuel injection correction coefficient FSE estimated based on the history when the engine speed NE is less than the predetermined engine speed NESTA. The initial fuel injection amount at this time is sequentially determined and updated according to the behavior of the engine speed NE, and the post-start fuel injection correction coefficient FSE is updated.
Is corrected appropriately. As a result, even with a simplified system configuration having no temperature sensor, the fuel injection amount after the start of the internal combustion engine 1 is appropriately corrected, and a stable operating state can be obtained.

【0026】また、本実施例の内燃機関用制御装置のE
CU30内のCPU31にて達成される制御量推定手段
は、初期制御量としての初期燃料噴射量を算出するため
の始動後燃料噴射補正係数FSEを、機関回転数NEが
所定の機関回転数NESTA 未満のときの所要時間、燃料
噴射回数、総燃料噴射量等の履歴に基づき推定するもの
である。このように、機関回転数NEが所定の機関回転
数NESTA 未満のときの所要時間、燃料噴射回数、総燃
料噴射量等の履歴に基づき適切な初期燃料噴射量が推定
されることで、内燃機関1が始動後となった直後の運転
状態を安定化させることができる。
The control device E for the internal combustion engine according to this embodiment
The control amount estimating means achieved by the CPU 31 in the CU 30 calculates the post-start fuel injection correction coefficient FSE for calculating the initial fuel injection amount as the initial control amount by setting the engine speed NE to less than the predetermined engine speed NESTA. Is estimated based on the history of the required time, the number of fuel injections, the total amount of fuel injection, and the like at the time of. As described above, the appropriate initial fuel injection amount is estimated based on the history such as the required time, the number of fuel injections, and the total fuel injection amount when the engine speed NE is less than the predetermined engine speed NESTA. It is possible to stabilize the operation state immediately after the start of 1.

【0027】ところで、上記実施例では、内燃機関1の
始動に際して、始動後燃料噴射補正係数FSEを用いた
燃料噴射量の補正について述べたが、本発明を実施する
場合には、これに限定されるものではなく、この他、I
SC(Idle Speed Control:アイドル回転数制御)弁を
有するシステムでは、ISC弁開度を補正するようにし
ても、上述の実施例と同様の作用・効果が期待できる。
In the above-described embodiment, the correction of the fuel injection amount using the post-start fuel injection correction coefficient FSE when starting the internal combustion engine 1 has been described. However, the present invention is not limited to this. Not the other
In a system having an SC (Idle Speed Control) valve, the same operation and effect as in the above-described embodiment can be expected even if the ISC valve opening is corrected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は本発明の実施の形態の一実施例にかか
る内燃機関用制御装置が適用された内燃機関及びその周
辺機器を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an internal combustion engine to which an internal combustion engine control device according to an embodiment of the present invention is applied and peripheral devices thereof.

【図2】 図2は本発明の実施の形態の一実施例にかか
る内燃機関用制御装置で使用されているECU内のCP
Uにおける始動後燃料噴射補正係数演算の処理手順を示
すフローチャートである。
FIG. 2 is a diagram showing a CP in an ECU used in a control device for an internal combustion engine according to an embodiment of the present invention;
9 is a flowchart illustrating a processing procedure of a post-start fuel injection correction coefficient calculation in U.

【図3】 図3は図2の処理に対応する始動後燃料噴射
補正係数の遷移状態を示すタイムチャートである。
FIG. 3 is a time chart showing a transition state of a post-start fuel injection correction coefficient corresponding to the processing of FIG. 2;

【符号の説明】[Explanation of symbols]

1 内燃機関 21 吸気圧センサ 22 クランク角センサ 30 ECU(電子制御ユニット) Reference Signs List 1 internal combustion engine 21 intake pressure sensor 22 crank angle sensor 30 ECU (electronic control unit)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の機関回転数を検出する回転数
検出手段と、 前記内燃機関の始動に際して、前記機関回転数が所定の
機関回転数以上となった直後の初期制御量を、前記機関
回転数が前記所定の機関回転数未満のときの履歴に基づ
き推定する制御量推定手段と、 前記制御量推定手段で推定された前記初期制御量以降に
おける制御量を、前記機関回転数の挙動に応じて逐次、
判別し補正する制御量補正手段とを具備することを特徴
とする内燃機関用制御装置。
1. An engine speed detecting means for detecting an engine speed of an internal combustion engine, wherein an initial control amount immediately after the engine speed becomes equal to or higher than a predetermined engine speed at the time of starting the internal combustion engine, Control amount estimating means for estimating based on the history when the rotational speed is less than the predetermined engine rotational speed, and controlling the control amount after the initial control amount estimated by the control amount estimating means to the behavior of the engine rotational speed. Sequentially according to
A control device for an internal combustion engine, comprising: control amount correction means for determining and correcting.
【請求項2】 前記制御量推定手段は、前記初期制御量
を前記機関回転数が前記所定の機関回転数未満のときの
所要時間、燃料噴射回数、総燃料噴射量のうち少なくと
も1つの履歴に基づき推定することを特徴とする請求項
1に記載の内燃機関用制御装置。
2. The control amount estimating means stores the initial control amount in a history of at least one of time required when the engine speed is less than the predetermined engine speed, fuel injection frequency, and total fuel injection amount. The control device for an internal combustion engine according to claim 1, wherein the estimation is performed based on:
JP2001035168A 2001-02-13 2001-02-13 Controller for internal combustion engine Pending JP2002235581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001035168A JP2002235581A (en) 2001-02-13 2001-02-13 Controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001035168A JP2002235581A (en) 2001-02-13 2001-02-13 Controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2002235581A true JP2002235581A (en) 2002-08-23

Family

ID=18898648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001035168A Pending JP2002235581A (en) 2001-02-13 2001-02-13 Controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2002235581A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114438A (en) * 1984-06-30 1986-01-22 Daihatsu Motor Co Ltd Engine starting system
JPH05141292A (en) * 1991-11-19 1993-06-08 Daihatsu Motor Co Ltd Increase amount control method after starting
JPH0828321A (en) * 1994-07-18 1996-01-30 Isuzu Motors Ltd Warming-up control device for diesel engine
JP2001032739A (en) * 1999-07-21 2001-02-06 Denso Corp Air-fuel ratio control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114438A (en) * 1984-06-30 1986-01-22 Daihatsu Motor Co Ltd Engine starting system
JPH05141292A (en) * 1991-11-19 1993-06-08 Daihatsu Motor Co Ltd Increase amount control method after starting
JPH0828321A (en) * 1994-07-18 1996-01-30 Isuzu Motors Ltd Warming-up control device for diesel engine
JP2001032739A (en) * 1999-07-21 2001-02-06 Denso Corp Air-fuel ratio control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JPH07259629A (en) Fuel property detecting device of internal combustion engine
JPH0211729B2 (en)
US6959242B2 (en) Engine fuel injection control device
JP2002070706A (en) Ignition timing control system of internal combustion engine
US6848427B2 (en) Method and system for providing fuel injection time scheduling for internal combustion engines using engine speed prediction
JP4034531B2 (en) Air-fuel ratio control device for internal combustion engine
JP4423824B2 (en) Control device for internal combustion engine
JP2003176749A (en) Atmospheric pressure detection device for internal combustion engine
JP2012197688A (en) Control system for internal combustion engine
JPS63117137A (en) Method for controlling fuel injection under acceleration of internal combustion engine
CA2513222C (en) Ignition control system for internal combustion engine
JP2002235581A (en) Controller for internal combustion engine
JP2001123879A (en) Combustion state detecting device for internal combustion engine
JPH09151777A (en) Fuel nature detecting device for internal combustion engine
JP3850632B2 (en) Fuel injection control device for internal combustion engine
JP4239578B2 (en) Operating state discrimination device for internal combustion engine
JPH109031A (en) Fuel injection timing control device
JP3692641B2 (en) Fuel injection control device for internal combustion engine
JP3991685B2 (en) Fuel injection control device for internal combustion engine
JP2002242735A (en) Fuel injection control device for internal combustion engine
JP2611473B2 (en) Fuel injection amount control device for internal combustion engine
JPH06185387A (en) Fuel injection controller for internal combustion engine
JP3900002B2 (en) Fuel injection control device for internal combustion engine
JP2503466B2 (en) Fuel injection control device for internal combustion engine
JPH08284710A (en) Engine air-fuel ratio controlling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609