JP2002231301A - Method of manufacturing granule type sealed lead-acid battery - Google Patents

Method of manufacturing granule type sealed lead-acid battery

Info

Publication number
JP2002231301A
JP2002231301A JP2001018333A JP2001018333A JP2002231301A JP 2002231301 A JP2002231301 A JP 2002231301A JP 2001018333 A JP2001018333 A JP 2001018333A JP 2001018333 A JP2001018333 A JP 2001018333A JP 2002231301 A JP2002231301 A JP 2002231301A
Authority
JP
Japan
Prior art keywords
battery
granular
acid battery
silica
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001018333A
Other languages
Japanese (ja)
Inventor
Motoji Kiribayashi
基司 桐林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001018333A priority Critical patent/JP2002231301A/en
Publication of JP2002231301A publication Critical patent/JP2002231301A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a granule type sealed lead-acid battery shortening the required manufacturing time. SOLUTION: Electricity is carried in the charging direction through the battery, when an excess electrolyte is exhausted in the manufacturing process of the granule type sealed lead-acid battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、顆粒式密閉鉛電池
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a granular sealed lead battery.

【0002】[0002]

【従来の技術】密閉鉛電池の一般的な液保持方式に、微
細ガラス繊維からなるマット状のセパレータに電解液を
含浸・保持させる、いわゆるリテーナ式がある。この方
式の電池は、初期容量は良いが、セパレータが活物質を
圧迫する力が弱く、活物質の劣化や格子の伸びなどによ
り寿命性能が早期に低下するという問題点を持ってい
る。
2. Description of the Related Art As a general liquid holding system for a sealed lead battery, there is a so-called retainer system in which a mat-like separator made of fine glass fibers is impregnated and held with an electrolytic solution. The battery of this type has a good initial capacity, but has a problem that the separator has a weak force to press the active material, and the life performance deteriorates early due to the deterioration of the active material and the expansion of the lattice.

【0003】この欠点を解消するため、近年、顆粒状の
シリカ粉体を極板間および極板群の周囲に密に充填し
て、極板、セパレータおよび顆粒シリカに電解液を保持
させる、顆粒式密閉鉛電池が提案されている。顆粒シリ
カに電解液を保持とは、顆粒と顆粒との間の空間部や顆
粒の孔中に保持させることである。電池内に密に充填し
たシリカが極板を全方向から圧迫するため、寿命性能は
著しく改善される。例えば、特開平3−252063に
は、電池に直径が10〜500μmのシリカ粉体を充填
して、極板、セパレータおよびシリカ粉体に電解液を保
持させた顆粒式密閉鉛電池が記載されている。しかもシ
リカ粉体は、従来のガラス繊維セパレータに比べ非常に
安価な材料でありことから、安価で性能の優れた電池の
提供を可能にする重要な材料であると言える。
[0003] In order to solve this drawback, in recent years, granular silica powder has been densely filled between the electrodes and around the electrode group, and the electrode plate, the separator and the granular silica have an electrolytic solution held therein. A sealed lead-acid battery has been proposed. Holding the electrolytic solution in the granular silica means to hold the electrolytic solution in the space between the granules or in the pores of the granules. The life performance is remarkably improved because the silica closely packed in the battery presses the electrode plate from all directions. For example, Japanese Unexamined Patent Publication No. 3-252063 describes a granular sealed lead battery in which a battery is filled with silica powder having a diameter of 10 to 500 μm, and an electrode plate, a separator, and an electrolyte are held in the silica powder. I have. Moreover, since silica powder is a very inexpensive material as compared with conventional glass fiber separators, it can be said that silica powder is an important material that enables provision of a battery that is inexpensive and has excellent performance.

【0004】上記顆粒式密閉鉛電池の製造方法として
は、スラリー充填方式が知られている。これは、所定量
に計量した顆粒及び電解液をスラリー状に混合して、電
池上部から注入した後、下部より電池内を減圧して余分
な電解液を所定の計量値になるまで排出するという方式
である。
[0004] As a method of manufacturing the above-mentioned granular sealed lead battery, a slurry filling method is known. This means that a predetermined amount of granules and an electrolytic solution are mixed in a slurry state, injected from the upper part of the battery, and then the inside of the battery is depressurized from the lower part and the excess electrolytic solution is discharged until a predetermined measured value is reached. It is a method.

【0005】[0005]

【発明が解決しようとする課題】電池の電解液保持材に
用いる上記シリカ粉体は、できるだけ多量の電解液を保
持させることが必要であるので、多孔質なシリカを用い
ている。ところがシリカを多孔質にすると、シリカの流
動性が悪くなり、電池内への充填にかなり時間を要する
という欠点をもっていた。また、そのようなシリカ粉体
は比表面積が高く、シリカ粒子の表面が滑らかでないた
め、電解液を注液することにもかなりの時間を要して、
電池コストが高くなるという欠点を持っていた。さら
に、電解液が入りにくいために、電池によっては所定量
よりも少ない液量しか注液できず、放電性能が悪くなる
場合もあった。
The above-mentioned silica powder used for the electrolyte holding material of the battery uses porous silica because it is necessary to hold as much electrolyte as possible. However, when the silica is made porous, the flowability of the silica deteriorates, and there is a disadvantage that it takes a considerable amount of time to fill the battery. Also, since such silica powder has a high specific surface area and the surface of the silica particles is not smooth, it takes a considerable amount of time to inject the electrolyte,
There was a disadvantage that the battery cost was high. Furthermore, since it is difficult for the electrolyte to enter, depending on the battery, only a smaller amount than the predetermined amount can be injected, and the discharge performance sometimes deteriorates.

【0006】図1に、顆粒シリカ1gあたりの保持液量
(以下、保持液率という)と、セル内を減圧して余剰電
解液の排出する際の単位時間あたりの排出量(以下、吸
引速度という)との関係を示す。排出開始時は、顆粒の
保持液率が非常に高いため電解液が抜け易いが、排液が
進んで保持液率が減少するにつれ、空気ばかりが抜け、
電解液吸引速度が非常に遅くなる。また、終了直前の吸
引速度は、非常にばらつきが大きいため、余剰電解液の
吸引にかかる時間が安定しない。
FIG. 1 shows the amount of retentate per 1 g of granular silica (hereinafter referred to as “retentate ratio”) and the amount of discharge per unit time when the pressure inside the cell is reduced to discharge the surplus electrolyte (hereinafter, suction speed). The relationship is shown. At the start of discharging, the electrolyte is easily released because the retentate ratio of the granules is very high, but as the drainage proceeds and the retentate ratio decreases, only air escapes,
The electrolyte suction speed becomes very slow. In addition, since the suction speed immediately before the end is very large, the time required for sucking the excess electrolyte is not stable.

【0007】そこで、本発明の課題は、製造にかかる時
間を短縮する顆粒式密閉鉛電池の製造方法を提供するこ
とにある。
Accordingly, an object of the present invention is to provide a method of manufacturing a sealed granular lead-acid battery that reduces the time required for manufacturing.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する、本
発明の顆粒式密閉鉛電池の製造方法は、顆粒シリカを電
解液に分散させてなるスラリーを鉛電池内に充填する充
填工程と、充填した前記スラリーの余剰電解液を排出す
る排出工程とを有する顆粒式密閉鉛電池の製造方法にお
いて、前記充填工程および/または前記排出工程の際
に、前記顆粒式密閉鉛電池に充電方向の通電を行う工程
を有することを特徴とする。
Means for Solving the Problems To solve the above problems, a method for producing a granular closed lead battery of the present invention comprises: a filling step of filling a slurry formed by dispersing granular silica in an electrolytic solution into a lead battery; Discharging a surplus electrolytic solution of the filled slurry, the method comprising the steps of: discharging a surplus electrolytic solution of the filled slurry; and supplying electricity to the granular closed lead battery in the charging direction during the filling step and / or the discharging step. Is carried out.

【0009】充電側に通電することで、あらかじめ化成
された化成済みの極板が過充電状態となるので、すぐに
極板表面で水の電気分解が発生する。そのため、発生し
たガスにより極板の孔内に含まれていた電解液が押し出
されるかたちで排出される。その結果、例えば図2に示
すように、元々極板に保持されていた電解液が顆粒に保
持されるので、一時的に顆粒の保持液率が上昇し、より
大きい吸引速度の領域で十分な量の排出が可能となる。
また、通電なしのときと同じ量を排出させる場合には、
吸引時間を短縮することができる。
[0009] When the charging side is energized, the electrode plate which has been formed in advance is in an overcharged state, so that electrolysis of water immediately occurs on the surface of the electrode plate. Therefore, the electrolytic solution contained in the hole of the electrode plate is pushed out and discharged by the generated gas. As a result, for example, as shown in FIG. 2, since the electrolyte originally held on the electrode plate is held by the granules, the holding solution ratio of the granules temporarily increases, and is sufficiently sufficient in the region of a larger suction speed. The volume can be discharged.
When discharging the same amount as when no electricity is supplied,
The suction time can be shortened.

【0010】好ましくは、上記通電を、0.05CA以
上0.5CA以下となる充電電流で行うのがよい。電池
への影響を抑え、効率よく排出を行うことができるから
である。
[0010] Preferably, the energization is performed with a charging current of 0.05 CA or more and 0.5 CA or less. This is because the effect on the battery can be suppressed and the discharge can be performed efficiently.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】本発明は、顆粒シリカを極板間および極板
群の周囲に密に充填して、極板、セパレータおよび顆粒
シリカに電解液を保持させる、顆粒式密閉鉛電池の製造
方法に関するものであって、その特徴とするところは、
前記製造工程中に、通電を行うことにある。
The present invention relates to a method for producing a sealed granular lead-acid battery, in which granular silica is densely packed between the electrodes and around the group of electrodes, and the electrode plate, the separator and the granular silica retain an electrolyte. And the features of the
During the manufacturing process, current is supplied.

【0013】顆粒シリカとは、顆粒状のシリカ、すなわ
ちシリカ粉体である。直径が10〜500μmのものが
好ましく、特に多孔質なシリカが好ましい。多量の電解
液を保持できるからである。
The granular silica is granular silica, that is, silica powder. Those having a diameter of 10 to 500 μm are preferred, and porous silica is particularly preferred. This is because a large amount of electrolyte can be held.

【0014】電解液は、比重1.25〜1.34(20
℃)の希硫酸を用いるのが良い。
The electrolytic solution has a specific gravity of 1.25 to 1.34 (20
° C) dilute sulfuric acid.

【0015】顆粒シリカと電解液の分散溶液であるスラ
リーの作製は、特に限定されるものではないが、好まし
くは、顆粒シリカを希硫酸に分散させる工程において、
スラリー充填タンクに先ず希硫酸をいれ、次に顆粒シリ
カを添加して攪拌し、最後に希硫酸を注入して攪拌する
ことにより製造するのが良い。顆粒シリカが充填タンク
に付着することなく均一に混合した溶液とすることがで
きるからである。さらに好ましくは、最後に注入する希
硫酸の量を、希硫酸注入量全体の20%以下とするのが
良い。
The preparation of the slurry, which is a dispersion solution of the granular silica and the electrolytic solution, is not particularly limited, but preferably, in the step of dispersing the granular silica in dilute sulfuric acid,
It is preferred that the slurry filling tank is prepared by first adding diluted sulfuric acid, then adding granular silica and stirring, and finally injecting and stirring diluted sulfuric acid. This is because a solution in which the granular silica is uniformly mixed without adhering to the filling tank can be obtained. More preferably, the amount of dilute sulfuric acid injected last is preferably 20% or less of the total amount of dilute sulfuric acid injected.

【0016】上記スラリーの濃度は、顆粒シリカ/硫酸
=0.15〜0.25g/ccが良い。電池への充填が
速く完了し、かつ余剰の希硫酸排出を速やかに行うこと
ができるからである。
The concentration of the above slurry is preferably in the range of granular silica / sulfuric acid = 0.15 to 0.25 g / cc. This is because the filling of the battery is completed quickly, and excess dilute sulfuric acid can be discharged quickly.

【0017】電槽内に、正・負極およびセパレータから
なる電極群を収納する。前記正・負極は、あらかじめ化
成された化成済みの極板を用いる。そして、前記電槽内
に、上記スラリーを充填する。
An electrode group including a positive electrode, a negative electrode, and a separator is housed in a battery case. As the positive and negative electrodes, use is made of an electrode plate which has been formed in advance. Then, the slurry is filled in the battery case.

【0018】上記スラリーの充填工程時、あるいは充填
工程の後に、上記スラリーの余剰電解液すなわち希硫酸
の排出工程を行う。好ましくは、充填後に放置を行った
後、排出を行うのが良い。放置時間は、2秒以上が好ま
しく、30秒以下であればより好ましい。溶液が均一に
充填されてから、電池内の余剰の希硫酸を排出すること
により、顆粒シリカを均一かつ高密度に充填することが
でき、余剰希硫酸排出後の電池内電解液分布も均一にな
るので、良好な電池性能を安定して得ることができるか
らである。
During or after the step of filling the slurry, a step of discharging the surplus electrolytic solution of the slurry, that is, dilute sulfuric acid, is performed. Preferably, after filling, it is preferable to discharge after leaving to stand. The leaving time is preferably 2 seconds or more, and more preferably 30 seconds or less. By discharging the excess diluted sulfuric acid in the battery after the solution is uniformly filled, the granular silica can be uniformly and densely filled, and the electrolyte distribution in the battery after discharging the excess diluted sulfuric acid is also uniform. This is because good battery performance can be stably obtained.

【0019】そして上記充填工程および/または排出工
程中に、電池を充電する方向に通電を行う。これによ
り、排出にかかる時間を短くすることができる。さら
に、前記通電を、0.05CA以上0.5CA以下とな
る充電電流で行うのが好ましい。また、充電電圧は、
2.7V以上が好ましい。特に好ましくは、充電電流
0.05CA以上0.5CA以下で、かつ充電電圧2.
7V以上で通電を行うのが良い。電池への悪影響を生じ
ること無く、余剰電解液の排出にかかる時間がより顕著
に短縮されるからである。
During the filling step and / or the discharging step, power is supplied in the direction of charging the battery. Thereby, the time required for discharging can be shortened. Further, it is preferable that the energization is performed with a charging current of 0.05 CA or more and 0.5 CA or less. The charging voltage is
It is preferably 2.7 V or more. Particularly preferably, the charging current is 0.05 CA or more and 0.5 CA or less, and the charging voltage is 2.
It is preferable to conduct electricity at 7 V or more. This is because the time required for discharging the surplus electrolyte solution is significantly reduced without causing any adverse effect on the battery.

【0020】なお、余剰電解液の排出は、例えば液枯れ
が発生してしまって、電池の特性を損なうことの無いよ
う、排出時間、排出量は適宜設定して行う。
The discharge of the surplus electrolytic solution is performed by appropriately setting the discharge time and the discharge amount so that the characteristics of the battery are not impaired due to, for example, liquid withering.

【0021】[0021]

【実施例】以下に、本発明の実施例を、比較例とあわせ
て、説明する。
EXAMPLES Examples of the present invention will be described below together with comparative examples.

【0022】図3に本願発明の製造方法に用いる装置の
構造の一例を示す。顆粒式密閉鉛電池2は、図示しない
電槽内に化成済みのペースト式正・負極板および合成樹
脂製のセパレータからなる極板群を収納後、蓋を溶着し
て製造されたものである。電槽の下部には、シリカの通
らないフィルターを取り付けた孔が開けられ、蓋にはス
ラリーの充填口が設けられている。1はスラリー充填タ
ンク、2は顆粒式密閉鉛電池、3は真空ポンプ、4は排
液タンクである。
FIG. 3 shows an example of the structure of an apparatus used in the manufacturing method of the present invention. The granular sealed lead battery 2 is manufactured by storing an electrode group consisting of a pasted positive / negative electrode plate and a separator made of synthetic resin in a battery case (not shown), and then welding the lid. In the lower part of the battery case, a hole was provided in which a filter through which silica did not pass was attached, and a lid was provided with a slurry filling port. 1 is a slurry filling tank, 2 is a granular sealed lead battery, 3 is a vacuum pump, and 4 is a drainage tank.

【0023】平均粒子径約60μm(コールターカウン
ター法で測定)の顆粒シリカを0.20g/ccの濃度
で比重1.31(20℃)の希硫酸に添加した溶液を電
池上部の充填口から充填し、下部の孔からは真空ポンプ
で余剰の希硫酸を抜きながら、電池内に顆粒シリカの充
填と電解液の排出とを行った。希硫酸の排出と同時に、
直流電源装置5から電池に、その充電方向に通電を行っ
た。その時の余剰電解液の排出に要した時間を測定し
た。
A solution prepared by adding granular silica having an average particle diameter of about 60 μm (measured by a Coulter counter method) to a diluted sulfuric acid having a concentration of 0.20 g / cc and a specific gravity of 1.31 (20 ° C.) is filled from a charging port at the top of the battery. Then, while removing excess dilute sulfuric acid from the lower hole with a vacuum pump, the inside of the battery was filled with granular silica and the electrolyte was discharged. At the same time as dilute sulfuric acid is discharged,
Electric current was supplied from the DC power supply 5 to the battery in the charging direction. The time required for discharging the excess electrolyte at that time was measured.

【0024】通電条件は、条件A:電流0.01CA、
最大電圧2.35V/セル、条件B:電流0.05C
A、最大電圧3V/セル、条件C:電流0.5CA、最
大電圧3V/セルである。比較のため、従来条件とし
て、通電を行わないで排出し、要する時間を測定した。
その結果を表1に示す。
The energization conditions are as follows: condition A: current 0.01 CA;
Maximum voltage 2.35V / cell, condition B: current 0.05C
A, maximum voltage 3V / cell, condition C: current 0.5CA, maximum voltage 3V / cell. For comparison, as a conventional condition, discharge was performed without energization, and the time required was measured.
Table 1 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】従来条件である通電なしでは、所定液量ま
での排出時間は、5分かかっているが、0.01CA以
上の通電を行うことにより、排出時間を短縮することが
できた。特に、0.05CA以上の電流で通電すること
により、半分以下の時間で排出を行うことができた。
Under the conventional condition without energization, the discharge time up to a predetermined liquid amount takes 5 minutes, but by applying an electric current of 0.01 CA or more, the discharge time could be shortened. In particular, by applying a current of 0.05 CA or more, discharge could be performed in less than half the time.

【0027】[0027]

【発明の効果】本発明の製造方法によれば、余剰電解液
の排出をスムーズに行うことができ、製造にかかる時間
を短縮することができる。
According to the manufacturing method of the present invention, surplus electrolyte can be discharged smoothly, and the time required for manufacturing can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電解液の保持液率と余剰電解液の吸引速度との
関係を示す図。
FIG. 1 is a diagram showing a relationship between a retention rate of an electrolyte and a suction speed of an excess electrolyte.

【図2】通電前後における電解液の分布を示す図。FIG. 2 is a diagram showing a distribution of an electrolytic solution before and after energization.

【図3】本願発明に係る製造装置の一例を示す図。FIG. 3 is a diagram showing an example of a manufacturing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 スラリー充填タンク 2 顆粒式密閉鉛電池 3 真空ポンプ 4 排液タンク 5 直流電源装置 DESCRIPTION OF SYMBOLS 1 Slurry filling tank 2 Granular closed lead battery 3 Vacuum pump 4 Drainage tank 5 DC power supply

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】顆粒シリカを電解液に分散させてなるスラ
リーを鉛電池内に充填する充填工程と、充填した前記ス
ラリーの余剰電解液を排出する排出工程とを有する顆粒
式密閉鉛電池の製造方法において、前記充填工程および
/または前記排出工程の際に、前記顆粒式密閉鉛電池に
充電方向の通電を行う工程を有することを特徴とする顆
粒式密閉鉛電池の製造方法。
1. Production of a sealed granular lead-acid battery having a filling step of filling a slurry formed by dispersing granular silica in an electrolytic solution into a lead battery, and a discharging step of discharging excess electrolytic solution of the filled slurry. A method for producing a sealed granular lead-acid battery, comprising the step of energizing the sealed granular lead-acid battery in the charging direction during the filling step and / or the discharging step.
【請求項2】上記通電を、0.05CA以上0.5CA
以下となる充電電流で行うことを特徴とする請求項1に
記載の顆粒式密閉鉛電池の製造方法。
2. The method according to claim 1, wherein the energization is performed between 0.05 CA and 0.5 CA.
The method for producing a sealed granular lead-acid battery according to claim 1, wherein the method is performed with the following charging current.
JP2001018333A 2001-01-26 2001-01-26 Method of manufacturing granule type sealed lead-acid battery Pending JP2002231301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001018333A JP2002231301A (en) 2001-01-26 2001-01-26 Method of manufacturing granule type sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001018333A JP2002231301A (en) 2001-01-26 2001-01-26 Method of manufacturing granule type sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JP2002231301A true JP2002231301A (en) 2002-08-16

Family

ID=18884373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001018333A Pending JP2002231301A (en) 2001-01-26 2001-01-26 Method of manufacturing granule type sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2002231301A (en)

Similar Documents

Publication Publication Date Title
JP2002231301A (en) Method of manufacturing granule type sealed lead-acid battery
JP3555177B2 (en) Sealed lead-acid battery
JPS6030063A (en) Sealed type lead-acid battery
JPH0231462B2 (en)
JPH0696793A (en) Manufacture of sealed lead-acid battery
JP4812257B2 (en) Sealed lead-acid battery for cycle use
JP2001185203A (en) Manufacturing method of sealed type lead-acid battery
JP2002367667A (en) Manufacturing method of granular silica type enclosed lead acid storage battery
JPH07122288A (en) Manufacture of sealed type lead-acid battery
JP6724442B2 (en) Control valve type lead-acid battery
JPH07135018A (en) Manufacture of sealed lead acid battery
JP2002305020A (en) Sealed lead-acid battery
JP2001202989A (en) Sealed lead-acid battery
JP2001319638A (en) Sealed lead-acid battery
JP2958790B2 (en) Sealed lead-acid battery
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JP2573094B2 (en) Manufacturing method of sealed lead-acid battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JP4390481B2 (en) Lead acid battery
JPH05205732A (en) Manufacture of anode plate for lead-acid battery
JP2003142151A (en) Quick service type lead acid storage battery and its using method
JP2952374B2 (en) Sealed lead-acid battery
JPH08153535A (en) Sealed lead-acid battery and its manufacture
JP2002184452A (en) Method of manufacturing sealed lead-acid battery
JP2005044703A (en) Manufacturing method of control valve type lead storage battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213