JP2002231195A - Non-aqueous electrolyte secondary battery and method of manufacturing the same - Google Patents

Non-aqueous electrolyte secondary battery and method of manufacturing the same

Info

Publication number
JP2002231195A
JP2002231195A JP2001029462A JP2001029462A JP2002231195A JP 2002231195 A JP2002231195 A JP 2002231195A JP 2001029462 A JP2001029462 A JP 2001029462A JP 2001029462 A JP2001029462 A JP 2001029462A JP 2002231195 A JP2002231195 A JP 2002231195A
Authority
JP
Japan
Prior art keywords
metal
secondary battery
electrolyte secondary
aqueous electrolyte
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001029462A
Other languages
Japanese (ja)
Inventor
Dan Ishizaki
段 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001029462A priority Critical patent/JP2002231195A/en
Publication of JP2002231195A publication Critical patent/JP2002231195A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion proof non-aqueous electrolyte secondary battery by coating a metallic armor can with a composite plating material whose corrosion proof characteristic does not easily deteriorate even when it is stored for a long period. SOLUTION: This non-aqueous electrolyte secondary battery has composite plating layers 10a, 10b composed of nickel metal and fluororesin fine powdered particles on a surface of the metallic armor can 10. As the fluororesin fine powdered particles having superior corrosion proof characteristic is uniformly attached to the surface of the metallic armor can 10, with nickel metal by forming the composite plating layers 10a, 10b composed of nickel metal and fluororesin fine powdered particles on the surface of the metallic armor can 10, the corrosion proof characteristic of the metallic armor can 10 can be improved. Whereby the corrosion of the metallic armor can 10 can be prevented even in the rise of potential of the metallic armor can 10 by the rise of potential of a negative electrode in an over-discharge state of the non-aqueous electrolyte secondary battery, and the long-term storage stability can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンを
吸蔵・放出することが可能な負極とリチウムイオンを吸
蔵・放出することが可能な正極をセパレータを介して対
向させた電極群と、有機溶媒に溶質としてリチウム塩を
溶解した非水電解質とを備えた非水電解質二次電池に係
り、特に、電極群および非水電解質を収容する金属製外
装缶の改良およびこの金属製外装缶を用いた非水電解質
二次電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode group in which a negative electrode capable of occluding and releasing lithium ions and a positive electrode capable of occluding and releasing lithium ions are opposed to each other via a separator, and an organic solvent. The present invention relates to a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte in which a lithium salt is dissolved as a solute, and in particular, an improvement in a metal outer can containing an electrode group and a non-aqueous electrolyte and use of the metal outer can The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、小型ビデオカメラ、携帯電話、ノ
ートパソコン等の携帯用電子・通信機器等に用いられる
電池として、リチウム−コバルト複合酸化物(LiCo
2)、リチウム−ニッケル複合酸化物(LiNi
2)、リチウム−マンガン複合酸化物(LiMn
24)等のリチウムイオンを吸蔵・放出することが可能
なリチウム含有遷移金属複合酸化物あるいは二酸化マン
ガン(MnO2)などを正極活物質とし、リチウム金
属、リチウム合金あるいはリチウムイオンを吸蔵・放出
できる炭素材料などを負極活物質とするリチウムイオン
電池で代表されるリチウム二次電池が注目され、炭素材
料を負極活物質とするリチウム二次電池が実用化される
ようになった。
2. Description of the Related Art In recent years, lithium-cobalt composite oxides (LiCo) have been used as batteries used in portable electronic and communication devices such as small video cameras, mobile phones, and notebook computers.
O 2 ), lithium-nickel composite oxide (LiNi
O 2 ), lithium-manganese composite oxide (LiMn)
A lithium-containing transition metal composite oxide or manganese dioxide (MnO 2 ) capable of occluding and releasing lithium ions such as 2 O 4 ) is used as a positive electrode active material, and lithium metal, a lithium alloy or lithium ions are inserted and released. Attention has been paid to lithium secondary batteries typified by lithium ion batteries using a carbon material or the like as a negative electrode active material, and lithium secondary batteries using a carbon material as a negative electrode active material have come into practical use.

【0003】ところで、この種のリチウム二次電池にお
いては、上述した負極活物質を備えた負極と、上述した
正極活物質を備えた正極をセパレータを介して対向させ
て積層して電極群とし、この電極群と有機溶媒に溶質と
してリチウム塩を溶解した非水電解質とを金属製外装缶
(電池容器)内に収納して密閉することにより製造され
るものである。そして、この種のリチウム二次電池に用
いられる金属製外装缶としては、安価で製造が容易な鉄
製の外装缶を用いるようにしている。
In this type of lithium secondary battery, a negative electrode provided with the above-described negative electrode active material and a positive electrode provided with the above-described positive electrode active material are laminated with a separator interposed therebetween to form an electrode group. The electrode group and the nonaqueous electrolyte in which a lithium salt is dissolved as a solute in an organic solvent are housed in a metal outer can (battery container) and sealed. As a metal outer can used for this kind of lithium secondary battery, an iron outer can that is inexpensive and easy to manufacture is used.

【0004】[0004]

【発明が解決しようとする課題】ところが、鉄製の外装
缶を用いると、過放電の進行による電池電圧の低下に伴
って、鉄製外装缶に腐食電流が流れるようになって、鉄
製外装缶が腐食するという問題を生じた。ここで、鉄製
外装缶が腐食する理由は以下のように考えられている。
即ち、通常使用での放電状態の電池電圧(正極の電位と
負極の電位との差)が約3.0Vであったとすると、非
水電解液中のリチウム金属の電位を基準にしたときの正
極電位は3.5V〜3.7Vで、負極電位は0.5V〜
0.7V程度である。
However, when an iron outer can is used, a corrosion current flows through the iron outer can as the battery voltage decreases due to the progress of overdischarge, and the iron outer can becomes corroded. The problem arises. Here, the reason why the iron outer can corrodes is considered as follows.
That is, assuming that the battery voltage (difference between the potential of the positive electrode and the potential of the negative electrode) in the discharge state in normal use is about 3.0 V, the positive electrode based on the potential of lithium metal in the non-aqueous electrolyte is referred to. The potential is 3.5 V to 3.7 V, and the negative electrode potential is 0.5 V to
It is about 0.7V.

【0005】ところで、このような状態の電池をさらに
放電させて過放電状態にすると、図4(なお、図4は非
水電解質電池を過放電させたときの、負極と正極のリチ
ウム金属を基準とした電位および電池電圧の変化の状態
を模式的に示す図である)に示されるように変化して、
電池電圧はさらに低下する。具体的には、過放電状態に
しても正極の電位はあまり変動しないが、負極の電位は
徐々に上昇して、やがては負極のリチウム金属を基準と
した電位は3Vを越えるようになる。そして、負極の電
位が3Vを越える程に上昇すると、鉄製外装缶は腐食電
位に達するようになり、外装缶を構成する鉄が電解液中
に溶出して腐食電流が流れるようになって、鉄製外装缶
は腐食することとなる。
By the way, when the battery in such a state is further discharged to an overdischarged state, FIG. 4 (FIG. 4 is based on the lithium metal of the negative electrode and the positive electrode when the nonaqueous electrolyte battery is overdischarged). FIG. 3 is a diagram schematically showing the state of the change of the potential and the battery voltage.)
Battery voltage drops further. More specifically, the potential of the positive electrode does not fluctuate so much even in the overdischarge state, but the potential of the negative electrode gradually increases, and eventually the potential based on the lithium metal of the negative electrode exceeds 3 V. When the potential of the negative electrode rises so as to exceed 3 V, the iron outer can reaches a corrosion potential, and iron constituting the outer can elutes into the electrolytic solution to cause a corrosion current to flow. The outer can will corrode.

【0006】そこで、鉄製外装缶の表面にニッケルメッ
キを施して、腐食電位を上昇させるようにして、鉄製外
装缶の耐食性を向上させた外装缶が使用されるようにな
った。ところが、鉄製外装缶の表面にニッケルメッキを
施するようにしても、この外装缶の表面に形成されたニ
ッケルメッキ層(膜)は完全ではなかった。これは、ニ
ッケルメッキ膜に欠陥等が存在するとともに、電池組立
時に外装缶に封口体をかしめるための溝入れ等の加工を
行うため、加工した部分のメッキにひび割れ等を生じる
ためである。このため、ニッケルメッキを施した鉄製外
装缶にあっては、これらの欠陥やひび割れ等を介して腐
食電流が流れるようになって、腐食が進行するため、長
期の保存に耐え得るほどに充分なものではなかった。そ
こで、本発明は上記問題点を解消するためになされたも
のであって、長期間保存しても耐食性が低下しにくい複
合メッキ層を金属製外装缶の表面に被覆して、耐食性に
優れ、保存特性に優れた非水電解質電池を提供できるよ
うにすることを目的とするものである。
[0006] Therefore, an outer can having an improved corrosion resistance has been used by increasing the corrosion potential by applying nickel plating to the surface of the outer can made of iron. However, even if nickel plating is performed on the surface of the iron outer can, the nickel plating layer (film) formed on the surface of the outer can is not perfect. This is because there is a defect or the like in the nickel plating film and a crack or the like is generated in the plating of the processed portion because a process such as grooving for caulking the sealing body in the outer can is performed at the time of assembling the battery. Therefore, in a nickel-plated iron outer can, a corrosion current flows through these defects and cracks and the like, and the corrosion progresses, so that it is enough to withstand long-term storage. It was not something. Therefore, the present invention has been made in order to solve the above problems, coating the surface of a metal outer can with a composite plating layer that does not easily deteriorate in corrosion resistance even when stored for a long time, has excellent corrosion resistance, It is an object of the present invention to provide a non-aqueous electrolyte battery having excellent storage characteristics.

【0007】[0007]

【課題を解決するための手段およびその作用・効果】上
記目的を達成するため、本発明の非水電解質二次電池
は、金属製外装缶の表面にニッケル金属とフッ素樹脂微
粉末粒子とからなる複合メッキ層を備えるようにしてい
る。このように、金属製外装缶の表面にニッケル金属と
フッ素樹脂微粉末粒子からなる複合メッキ層を備えるよ
うにすると、耐食性に優れたフッ素樹脂微粉末がニッケ
ル金属とともに金属製外装缶の表面に均一に付着してい
るので、金属製外装缶の耐食性が向上する。これによ
り、このような非水電解質二次電池が過放電状態になっ
ても、電池内の負極に電気的に接続された金属製外装缶
が腐食電位に達することが抑制できるようになるため、
金属製外装缶に腐食電流が流れることが防止できるよう
になって、非水電解質二次電池の長期保存特性が向上す
る。なお、フッ素樹脂としては良好なメッキ層が形成さ
れるポリビニリデンフルオライド(PVdF)を用いる
のが望ましく、金属製外装缶としては、安価で製造が容
易な鉄製外装缶とするのが好ましい。
Means for Solving the Problems and Actions / Effects To achieve the above object, a non-aqueous electrolyte secondary battery of the present invention comprises nickel metal and fluororesin fine powder particles on the surface of a metal outer can. A composite plating layer is provided. As described above, when the composite plating layer composed of nickel metal and fluororesin fine powder particles is provided on the surface of the metal outer can, the fluororesin fine powder having excellent corrosion resistance is uniformly formed on the surface of the metal outer can together with the nickel metal. , The corrosion resistance of the metal outer can is improved. Thereby, even if such a nonaqueous electrolyte secondary battery is in an overdischarged state, the metal outer can electrically connected to the negative electrode in the battery can be prevented from reaching the corrosion potential,
The corrosion current can be prevented from flowing through the metal outer can, and the long-term storage characteristics of the nonaqueous electrolyte secondary battery can be improved. It is desirable to use polyvinylidene fluoride (PVdF) on which a favorable plating layer is formed as the fluororesin, and it is preferable that the metal outer can be an iron outer can that is inexpensive and easy to manufacture.

【0008】この場合、ニッケル金属が溶解した水溶液
にフッ素樹脂微粉末粒子を溶解させたメッキ浴中に金属
製外装缶を浸漬して電解メッキを施すようにすれば、金
属製外装缶の表面にニッケル金属とフッ素樹脂微粉末粒
子とからなる複合メッキ層を容易に形成することができ
る。しかしながら、金属製外装缶の底部内面にニッケル
金属とフッ素樹脂微粉末粒子とからなる複合メッキ層が
形成されていると、この複合メッキ層は若干導電性が劣
るため、後の工程で、外装缶の内面底部と電極群の負極
から延出する集電タブとを溶接する際に溶接不良が発生
する恐れがある。
[0008] In this case, if the metal outer can is immersed in a plating bath in which fine particles of fluororesin are dissolved in an aqueous solution in which nickel metal is dissolved and electrolytic plating is performed, the surface of the metal outer can can be treated. A composite plating layer composed of nickel metal and fluororesin fine powder particles can be easily formed. However, if a composite plating layer composed of nickel metal and fine particles of fluororesin is formed on the inner surface of the bottom of the metal outer can, the composite plating layer is slightly inferior in conductivity. When welding the bottom of the inner surface and the current collecting tab extending from the negative electrode of the electrode group, welding failure may occur.

【0009】そこで、予め、金属製外装缶の底部内表面
に金属片を溶接する溶接工程と、この底部内表面に溶接
された金属片の表面に保護膜を被着させる内部保護膜被
着工程とをメッキ工程の前に備えるようにしている。こ
れにより、金属片の表面に被着した保護膜を剥がした
後、この金属片に電極群の負極から延出する集電タブを
溶接するようにすれば、この金属片の導電性は良好であ
るため、溶接不良が発生することを未然に防止すること
が可能となる。なお、メッキ工程の前に、予め、金属製
外装缶の底部外表面にも保護膜を被着させる外部保護膜
被着工程を備えるようにすると、後に負端子となる金属
製外装缶の底部外表面にニッケル金属とフッ素樹脂微粉
末粒子とからなる複合メッキ層が形成されることがない
ので、金属製外装缶の底部外表面は導電性に優れた負極
端子となる。また、複合メッキされていない部分の防錆
のため、その部分にだけ別途ニッケルメッキを施すよう
にすれば、該部分の耐食性が向上するので望ましい。
Therefore, a welding step of previously welding a metal piece to the inner surface of the bottom of the metal outer can and a step of applying an inner protective film to the surface of the metal piece welded to the inner surface of the bottom are performed in advance. Are provided before the plating step. Thereby, after the protective film adhered to the surface of the metal piece is peeled off, if the current collecting tab extending from the negative electrode of the electrode group is welded to the metal piece, the conductivity of the metal piece is good. Therefore, it is possible to prevent welding defects from occurring. In addition, before the plating step, if an external protective film applying step of applying a protective film to the bottom outer surface of the metal outer can in advance is provided, the outer portion of the bottom of the metal outer can which will later become a negative terminal is provided. Since a composite plating layer composed of nickel metal and fluororesin fine powder particles is not formed on the surface, the bottom outer surface of the metal outer can becomes a negative electrode terminal having excellent conductivity. Further, it is desirable to separately apply nickel plating only to a portion that is not composite-plated in order to prevent rust, since the corrosion resistance of the portion is improved.

【0010】[0010]

【発明の実施の形態】ついで、本発明の実施の形態を以
下に説明する。 1.試料片の作製 (1)実施例1 スルファミン酸ニッケル水溶液に粒径が約5μmのポリ
ビニリデンフルオライド(PVdF)微粉末粒子を分散
させた電解液(メッキ浴)を調製した後、この電解液を
メッキ槽内に充填した。ついで、電解液中に鉄片(厚み
が0.25mmで、幅が8mmで、長さが10mmのも
の)を浸漬して、この鉄片に10A/dm2の陰極電流
密度のメッキ電流を流して、鉄片の表面にニッケル金属
とPVdF微粉末粒子よりなる複合メッキ層を形成さ
せ、実施例1の試料片αとした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described below. 1. Preparation of Sample Piece (1) Example 1 After preparing an electrolytic solution (plating bath) in which fine particles of polyvinylidene fluoride (PVdF) having a particle size of about 5 μm were dispersed in an aqueous solution of nickel sulfamate, the electrolytic solution was prepared. It was filled in the plating tank. Then, an iron piece (having a thickness of 0.25 mm, a width of 8 mm, and a length of 10 mm) was immersed in the electrolytic solution, and a plating current having a cathode current density of 10 A / dm 2 was passed through the iron piece. A composite plating layer made of nickel metal and PVdF fine powder particles was formed on the surface of the iron piece to obtain a sample piece α of Example 1.

【0011】(2)実施例2 スルファミン酸ニッケル水溶液に粒径が約5μmのポリ
テトラフルオロエチレン(PTFE)微粉末粒子を分散
させた電解液(メッキ浴)を調製した後、この電解液を
メッキ槽内に充填した。ついで、電解液中に鉄片(厚み
が0.25mmで、幅が8mmで、長さが10mmのも
の)を浸漬して、この鉄片に10A/dm2の陰極電流
密度のメッキ電流を流して、鉄片の表面にニッケル金属
とPTFE微粉末粒子よりなる複合メッキ層を形成さ
せ、実施例2の試料片βとした。
(2) Example 2 After preparing an electrolytic solution (plating bath) in which fine particles of polytetrafluoroethylene (PTFE) having a particle size of about 5 μm are dispersed in an aqueous solution of nickel sulfamate, the electrolytic solution is plated. The tank was filled. Then, an iron piece (having a thickness of 0.25 mm, a width of 8 mm, and a length of 10 mm) was immersed in the electrolytic solution, and a plating current having a cathode current density of 10 A / dm 2 was passed through the iron piece. A composite plating layer composed of nickel metal and PTFE fine powder particles was formed on the surface of the iron piece to obtain a sample piece β of Example 2.

【0012】(3)比較例1 スルファミン酸ニッケル水溶液よりなる電解液(メッキ
浴)をメッキ槽内に充填した後、この電解液中に鉄片
(厚みが0.25mmで、幅が8mmで、長さが10m
mのもの)を浸漬して、この鉄片に10A/dm2の陰
極電流密度のメッキ電流を流して、鉄片の表面にニッケ
ル金属層を形成させ、比較例1の試料片γとした。
(3) Comparative Example 1 After an electrolytic solution (plating bath) composed of an aqueous solution of nickel sulfamate was filled in a plating tank, iron pieces (thickness 0.25 mm, width 8 mm, long Saga 10m
m), and a plating current having a cathode current density of 10 A / dm 2 was passed through the iron piece to form a nickel metal layer on the surface of the iron piece.

【0013】(4)比較例2 鉄片(厚みが0.25mmで、幅が8mmで、長さが1
0mmのもの)を用意し、この鉄片の両表面にポリプロ
ピレンシートを接着して、比較例2の試料片δとした。
(4) Comparative Example 2 An iron piece (having a thickness of 0.25 mm, a width of 8 mm, and a length of 1
0 mm) was prepared, and a polypropylene sheet was adhered to both surfaces of the iron piece to obtain a sample piece δ of Comparative Example 2.

【0014】(5)比較例3 鉄片(厚みが0.25mmで、幅が8mmで、長さが1
0mmのもの)を用意し、この鉄片の両表面にポリビニ
リデンフルオライド(PVdF)を溶解させたN−メチ
ル−2−ピロリドン(NMP)溶液を塗布した後、乾燥
させてNMPを蒸発させて、鉄片の表面にPVdF層を
形成させ、比較例3の試料片εとした。
(5) Comparative Example 3 Iron piece (thickness 0.25 mm, width 8 mm, length 1
0 mm) is prepared, an N-methyl-2-pyrrolidone (NMP) solution in which polyvinylidene fluoride (PVdF) is dissolved is applied to both surfaces of the iron piece, and then dried to evaporate NMP. A PVdF layer was formed on the surface of the iron piece to obtain a sample piece ε of Comparative Example 3.

【0015】2.三極式電気化学セルの作製 ついで、図1(なお、図1は三極式電気化学セルの概略
構成を模式的に示す図である)に示すように、これらの
各試料片α,β,γ,δ,εを作用極1として用い、リ
チウム金属板を作用極1の対極2および参照極3として
用いて、以下のように三極式電気化学セルΑ,Β,Γ,
Δ,Εをそれぞれ作製した。即ち、エチレンカーボネー
ト(EC)とジエチルカーボネート(DEC)を体積比
が1対1となるように混合した混合溶媒に六フッ化リン
酸リチウム(LiPF6)を1モル/リットル溶解した
溶液をそれぞれ有機電解液として用い、これらの有機電
解液と、作用極1、対極2および参照極3をガラスセル
容器7内に収納して、三極式電気化学セルΑ,Β,Γ,
Δ,Εをそれぞれ作製した。ついで、各作用極1、対極
2および参照極3をそれぞれ作用極リード4、対極リー
ド5および参照極リード6を介してそれぞれ電流計付き
電源8に接続した。
2. Fabrication of Triode Electrochemical Cell Next, as shown in FIG. 1 (FIG. 1 is a diagram schematically showing a schematic configuration of the trielectrode electrochemical cell), these sample pieces α, β, Using γ, δ, ε as the working electrode 1 and using a lithium metal plate as the counter electrode 2 and the reference electrode 3 of the working electrode 1, the three-electrode electrochemical cells Α, Β, Γ,
Δ and Ε were prepared respectively. That is, a solution prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a concentration of 1 mol / liter in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) mixed at a volume ratio of 1: 1 is used as an organic solvent. These organic electrolytes, the working electrode 1, the counter electrode 2 and the reference electrode 3 were housed in a glass cell container 7 to form a three-electrode electrochemical cell Α, Β, Γ,
Δ and Ε were prepared respectively. Then, each working electrode 1, counter electrode 2 and reference electrode 3 were connected to a power supply 8 with an ammeter via a working electrode lead 4, a counter electrode lead 5 and a reference electrode lead 6, respectively.

【0016】3.腐食電流の測定 ついで、室温(約25℃)にて、上述のように作製した
各三極式電気化学セルΑ,Β,Γ,Δ,Εの各作用極1
に、各参照極3のリチウム金属基準で3.2Vの電位を
与えた状態で10分間保持した後、電流計に流れる電流
(μA)を測定するとともに、各作用極1に流れた総電
気量(μC)を求めると下記の表1に示すような結果と
なった。なお、各作用極1に各参照極3のリチウム金属
基準で3.2Vの電位を与えることは、上述した図4の
過放電状態の電池の負極電位がリチウム金属基準で約
3.2Vとなっていることから、非水電解質二次電池の
過放電状態を再現しているということができる。
3. Measurement of Corrosion Current Next, at room temperature (about 25 ° C.), each working electrode 1 of each of the three-electrode electrochemical cells Α, Β, Γ, Δ, Ε prepared as described above.
After holding for 10 minutes while applying a potential of 3.2 V with respect to the lithium metal of each reference electrode 3, the current (μA) flowing through the ammeter was measured, and the total amount of electricity flowing through each working electrode 1 was measured. (ΜC) yielded the results shown in Table 1 below. Applying a potential of 3.2 V to each working electrode 1 based on the lithium metal of each reference electrode 3 means that the negative electrode potential of the overdischarged battery of FIG. Therefore, it can be said that the overdischarge state of the nonaqueous electrolyte secondary battery is reproduced.

【0017】[0017]

【表1】 [Table 1]

【0018】上記表1の結果から明らかなように、試料
片α(ニッケル金属とPVdF微粉末粒子からなる複合
メッキ層を形成させたもの)を用いたセルΑの電流値お
よび総電気量が格段に小さく、ついで、試料片β(ニッ
ケル金属とPTFE微粉末粒子よりなる複合メッキ層を
形成させたもの)を用いたセルΒの電流値および総電気
量が小さいことが分かる。一方、試料片ε(PVdF層
を形成させたもの)を用いたセルΕ、試料片γ(ニッケ
ル金属層を形成させたもの)を用いたセルΓ、試料片δ
(ポリプロピレンシートを接着したもの)を用いたセル
Δの順で電流値および総電気量が大きくなっていること
が分かる。
As is evident from the results shown in Table 1, the current value and the total amount of electricity of the cell 用 い using the sample α (formed with a composite plating layer composed of nickel metal and PVdF fine powder particles) are remarkably large. It can be seen that the current value and the total amount of electricity of the cell 用 い using the specimen β (the composite plating layer formed of nickel metal and PTFE fine powder particles) were small. On the other hand, a cell を using a sample ε (with a PVdF layer formed), a cell 試 料 using a sample γ (with a nickel metal layer formed), and a sample δ
It can be seen that the current value and the total amount of electricity increase in the order of the cells Δ using (adhered polypropylene sheet).

【0019】これは、鉄片にポリプロピレンシートを接
着した試料片δにおいては、鉄片の全表面をポリプロピ
レンシートで完全に覆うことができず、ポリプロピレン
シートで覆われていない部分や、鉄片とポリプロピレン
シートとの隙間を通して電流(腐食電流)が流れたため
である。また、鉄片にニッケル金属層を形成させた試料
片γにおいては、メッキにより形成されたニッケル金属
層は完全ではなくて、欠陥等が存在するため、この欠陥
等を通して電流(腐食電流)が流れたためである。さら
に、鉄片にPVdF層を形成させた試料片εにおいて
は、PVdFを溶解させたNMP溶液を鉄片に均一に塗
布することができず、不均一部分を通して電流(腐食電
流)が流れたためである。
This is because, in the sample piece δ in which the polypropylene sheet is adhered to the iron piece, the entire surface of the iron piece cannot be completely covered with the polypropylene sheet, and the portion not covered with the polypropylene sheet or the iron piece and the polypropylene sheet This is because current (corrosion current) flows through the gap. Further, in the sample piece γ in which the nickel metal layer was formed on the iron piece, the nickel metal layer formed by plating was not perfect, and there were defects and the like, and current (corrosion current) flowed through the defects and the like. It is. Furthermore, in the sample ε in which the PVdF layer was formed on the iron piece, the NMP solution in which PVdF was dissolved could not be uniformly applied to the iron piece, and a current (corrosion current) flowed through the non-uniform portion.

【0020】一方、ニッケル金属とPTFE微粉末粒子
よりなる複合メッキ層を形成させた試料片βにおいて
は、ニッケル金属に付着したPTFE微粉末粒子が鉄片
に均一に付着して複合メッキ層が均一に形成されるた
め、試料片βに流れる電流(腐食電流)が減少したと考
えられる。さらに、ニッケル金属とPVdF微粉末粒子
よりなる複合メッキ層を形成させた試料片αにおいて
は、ニッケル金属に付着したPVdF微粉末粒子が鉄片
に均一に付着して複合メッキ層が均一に形成されるとと
もに、理由は不明であるが、おそらくPTFEよりも良
好なメッキ層が形成されたため、試料片αに流れる電流
(腐食電流)が一層減少したと考えられる。
On the other hand, in the sample piece β on which the composite plating layer composed of nickel metal and PTFE fine powder particles was formed, the PTFE fine powder particles adhering to the nickel metal uniformly adhered to the iron pieces, and the composite plating layer was uniformly formed. It is considered that the current (corrosion current) flowing through the specimen β was reduced due to the formation. Furthermore, in the sample piece α on which the composite plating layer composed of nickel metal and PVdF fine powder particles was formed, the PVdF fine powder particles adhered to the nickel metal uniformly adhered to the iron piece, and the composite plating layer was formed uniformly. At the same time, although the reason is unknown, it is considered that the current (corrosion current) flowing through the sample α was further reduced because a plating layer better than PTFE was formed.

【0021】ついで、リチウム二次電池を構成した場合
の耐食性の差異を調べるために、以下のような手順でリ
チウム二次電池を作製して、耐食性の差異を検討した。
Next, in order to examine the difference in corrosion resistance when a lithium secondary battery was formed, a lithium secondary battery was manufactured in the following procedure, and the difference in corrosion resistance was examined.

【0022】4.金属製外装缶の作製 (1)実施例1 所定の厚みの鉄板を用いて、この鉄板を塑性加工(プレ
ス加工)して、図2(a)に示すような所定寸法の円筒
状外装缶10を作製した後、この円筒状外装缶10の缶
底の内面中央部に所定形状のニッケル板(厚みが0.1
mmで、縦、横の長さがそれぞれ5mmのもの)17を
抵抗溶接した。この後、このニッケル板17の表面にポ
リプロピレン製の保護膜18を貼着するとともに、円筒
状外装缶10の缶底の外面にポリプロピレン製の円形状
保護膜19を貼着した。
4. Production of Metallic Outer Can (1) Example 1 Using an iron plate having a predetermined thickness, this iron plate was subjected to plastic working (press processing) to obtain a cylindrical outer can 10 having a predetermined size as shown in FIG. Is prepared, a nickel plate having a predetermined shape (having a thickness of 0.1 mm) is formed at the center of the inner surface of the bottom of the cylindrical outer can 10.
17 mm in length and 5 mm in length and width, respectively, were resistance welded. Thereafter, a polypropylene protective film 18 was adhered to the surface of the nickel plate 17 and a polypropylene circular protective film 19 was adhered to the outer surface of the bottom of the cylindrical outer can 10.

【0023】この後、スルファミン酸ニッケル水溶液に
粒径が約5μmのポリビニリデンフルオライド(PVd
F)微粉末粒子を分散させた電解液(メッキ浴)が充填
されたメッキ槽内に、上記のように作製された円筒状外
装缶10を浸漬した。ついで、この円筒状外装缶10に
10A/dm2の陰極電流密度のメッキ電流を流して、
円筒状外装缶10の全表面にニッケル金属とPVdF微
粉末粒子よりなる複合メッキ層10aを形成した。この
後、保護膜18および円形状保護膜19を剥離して、実
施例1の外装缶aを作製した。
Thereafter, polyvinylidene fluoride (PVd) having a particle size of about 5 μm is added to an aqueous nickel sulfamate solution.
F) The cylindrical outer can 10 produced as described above was immersed in a plating tank filled with an electrolytic solution (plating bath) in which fine powder particles were dispersed. Then, a plating current having a cathode current density of 10 A / dm 2 was passed through the cylindrical outer can 10,
A composite plating layer 10a made of nickel metal and PVdF fine powder particles was formed on the entire surface of the cylindrical outer can 10. Thereafter, the protective film 18 and the circular protective film 19 were peeled off, and the outer can a of Example 1 was manufactured.

【0024】(2)実施例2 同様に、図2(a)に示すように、円筒状外装缶10を
作製して、この円筒状外装缶10の缶底の内面中央部に
ニッケル板(厚みが0.1mmで、縦、横の長さがそれ
ぞれ5mmのもの)17溶接した後、ニッケル板17の
表面にポリプロピレン製の保護膜18を貼着するととも
に、円筒状外装缶10の缶底の外面にポリプロピレン製
の円形状保護膜19を貼着した。ついで、スルファミン
酸ニッケル水溶液に粒径が約5μmのポリテトラフルオ
ロエチレン(PTFE)微粉末粒子を分散させた電解液
(メッキ浴)を充填したメッキ槽内に円筒状外装缶10
を浸漬した。この後、この円筒状外装缶10に10A/
dm2の陰極電流密度のメッキ電流を流して、円筒状外
装缶10の全表面にニッケル金属とPTFE微粉末粒子
よりなる複合メッキ層10bを形成した。ついで、保護
膜18および円形状保護膜19を剥離して、実施例2の
外装缶bを作製した。
(2) Embodiment 2 Similarly, as shown in FIG. 2 (a), a cylindrical outer can 10 was prepared, and a nickel plate (thickness) was formed at the center of the inner surface of the bottom of the cylindrical outer can 10. Is 0.1 mm, and the vertical and horizontal lengths are each 5 mm.) 17 After welding, a protective film 18 made of polypropylene is stuck on the surface of the nickel plate 17 and the bottom of the cylindrical outer can 10 is A circular protective film 19 made of polypropylene was adhered to the outer surface. Next, the cylindrical outer can 10 is placed in a plating tank filled with an electrolytic solution (plating bath) in which fine particles of polytetrafluoroethylene (PTFE) having a particle size of about 5 μm are dispersed in an aqueous nickel sulfamate solution.
Was immersed. Then, 10 A /
By passing a plating current having a cathode current density of dm 2, a composite plating layer 10 b composed of nickel metal and PTFE fine powder particles was formed on the entire surface of the cylindrical outer can 10. Next, the protective film 18 and the circular protective film 19 were peeled off, and an outer can b of Example 2 was produced.

【0025】(3)比較例1 所定の厚みの鉄板を用いて、この鉄板を塑性加工(プレ
ス加工)して、図2(b)に示すような所定寸法の円筒
状外装缶10を作製した後、この円筒状外装缶10の缶
底の内面中央部に所定形状のニッケル板(厚みが0.1
mmで、縦、横の長さがそれぞれ5mmのもの)17を
抵抗溶接した。ついで、スルファミン酸ニッケル水溶液
よりなる電解液が充填されたメッキ槽内に円筒状外装缶
10を浸漬した後、この円筒状外装缶10に10A/d
2の陰極電流密度のメッキ電流を流して、この円筒状
外装缶10の表面にニッケル金属層10cを形成して、
比較例1の外装缶cを作製した。
(3) Comparative Example 1 Using an iron plate having a predetermined thickness, this iron plate was subjected to plastic working (press processing) to produce a cylindrical outer can 10 having predetermined dimensions as shown in FIG. 2B. Thereafter, a nickel plate of a predetermined shape (having a thickness of 0.1 mm) is formed at the center of the inner surface of the bottom of the cylindrical outer can 10.
17 mm in length and 5 mm in length and width, respectively, were resistance welded. Next, the cylindrical outer can 10 is immersed in a plating tank filled with an electrolytic solution composed of an aqueous solution of nickel sulfamate, and the cylindrical outer can 10 is filled with 10 A / d.
A plating current having a cathode current density of m 2 is passed to form a nickel metal layer 10 c on the surface of the cylindrical outer can 10.
An outer can c of Comparative Example 1 was produced.

【0026】(4)比較例2 所定の厚みの鉄板を用いて、この鉄板を塑性加工(プレ
ス加工)して、図2(c)に示すような所定寸法の円筒
状外装缶10を作製した後、この円筒状外装缶10の缶
底の内面中央部に所定形状のニッケル板(厚みが0.1
mmで、縦、横の長さがそれぞれ5mmのもの)17を
抵抗溶接した。ついで、この円筒状外装缶10の缶底内
面中央部に溶接されたニッケル板17を除く全内表面に
ポリプロピレンシート10dを接着して、比較例2の外
装缶dを作製した。
(4) Comparative Example 2 Using an iron plate having a predetermined thickness, this iron plate was subjected to plastic working (press processing) to produce a cylindrical outer can 10 having predetermined dimensions as shown in FIG. 2 (c). Thereafter, a nickel plate of a predetermined shape (having a thickness of 0.1 mm) is formed at the center of the inner surface of the bottom of the cylindrical outer can 10.
17 mm in length and 5 mm in length and width, respectively, were resistance welded. Next, a polypropylene sheet 10d was bonded to the entire inner surface of the cylindrical outer can 10 except for the nickel plate 17 welded to the center of the inner surface of the bottom of the can to produce an outer can d of Comparative Example 2.

【0027】(5)比較例3 所定の厚みの鉄板を用いて、この鉄板を塑性加工(プレ
ス加工)して、図2(c)に示すような所定寸法の円筒
状外装缶10を作製した後、この円筒状外装缶10の缶
底の内面中央部に所定形状のニッケル板(厚みが0.1
mmで、縦、横の長さがそれぞれ5mmのもの)17を
抵抗溶接した。ついで、この円筒状外装缶10の缶底内
面中央部に溶接されたニッケル板17を除く全内表面
に、ポリビニリデンフルオライド(PVdF)を溶解さ
せたN−メチル−2−ピロリドン(NMP)液を塗布し
た。ついで、塗布した容器を乾燥させてNMPを蒸発さ
せて、円筒状外装缶10の内表面にPVdF層10eを
形成させ、比較例3の外装缶eを作製した。
(5) Comparative Example 3 Using an iron plate having a predetermined thickness, this iron plate was subjected to plastic working (press processing) to produce a cylindrical outer can 10 having predetermined dimensions as shown in FIG. 2 (c). Thereafter, a nickel plate of a predetermined shape (having a thickness of 0.1 mm) is formed at the center of the inner surface of the bottom of the cylindrical outer can 10.
17 mm in length and 5 mm in length and width, respectively, were resistance welded. Next, an N-methyl-2-pyrrolidone (NMP) solution in which polyvinylidene fluoride (PVdF) is dissolved on the entire inner surface of the cylindrical outer can 10 except for the nickel plate 17 welded to the center of the inner surface of the can bottom. Was applied. Next, the applied container was dried to evaporate the NMP to form a PVdF layer 10e on the inner surface of the cylindrical outer can 10, thereby producing an outer can e of Comparative Example 3.

【0028】5.非水電解液二次電池の作製 (1)正極の作製 LiCoO2からなる正極活物質と、アセチレンブラッ
ク、グラファイト等の炭素系導電剤と、ポリビニリデン
フルオライド(PVdF)よりなる結着剤等とを、N−
メチル−2−ピロリドン(NMP)からなる有機溶剤等
に溶解したものを混合して、スラリーを作製した。この
スラリーをダイコーターあるいはドクターブレードを用
いて、正極集電体(例えば、アルミニウム箔あるいはア
ルミニウム合金箔)の両面に均一に塗布して、活物質層
を塗布した正極板を形成した。この後、乾燥機中を通過
させて、スラリー作製時に必要であった有機溶剤(NM
P)を除去した。乾燥後、この乾燥正極板をロールプレ
ス機により所定の厚みに圧延した後、所定寸法に切断し
て帯状正極11を作製した。
5. Preparation of Nonaqueous Electrolyte Secondary Battery (1) Preparation of Positive Electrode A positive electrode active material made of LiCoO 2 , a carbon-based conductive agent such as acetylene black and graphite, a binder made of polyvinylidene fluoride (PVdF), and the like To N-
Slurries were prepared by mixing those dissolved in an organic solvent such as methyl-2-pyrrolidone (NMP). The slurry was uniformly applied to both surfaces of a positive electrode current collector (for example, an aluminum foil or an aluminum alloy foil) using a die coater or a doctor blade to form a positive electrode plate coated with an active material layer. Thereafter, the slurry is passed through a dryer, and the organic solvent (NM
P) was removed. After drying, the dried positive electrode plate was rolled to a predetermined thickness by a roll press machine, and then cut to a predetermined size to produce a belt-shaped positive electrode 11.

【0029】(2)負極の作製 一方、天然黒鉛(d=3.36Å)よりなる負極活物質
とポリビニリデンフルオライド(PVdF)よりなる結
着剤等とを、N−メチル−2−ピロリドン(NMP)か
らなる有機溶剤等に溶解したものを混合して、スラリー
を作製した。これらのスラリーをダイコーターあるいは
ドクターブレードを用いて、負極集電体(例えば、銅
箔)に塗着し、乾燥後、所定の厚みに圧延した後、所定
寸法に切断して帯状負極12を作製した。
(2) Preparation of Negative Electrode On the other hand, a negative electrode active material made of natural graphite (d = 3.36 °) and a binder made of polyvinylidene fluoride (PVdF) are mixed with N-methyl-2-pyrrolidone ( NMP) was dissolved in an organic solvent or the like to prepare a slurry. These slurries are applied to a negative electrode current collector (for example, copper foil) using a die coater or a doctor blade, dried, rolled to a predetermined thickness, and then cut to a predetermined size to produce a band-shaped negative electrode 12. did.

【0030】(3)非水電解液二次電池の作製 ついで、図3に示すように、上述のようにして作製した
帯状正極11と帯状負極12とを、有機溶媒との反応性
が低く、かつ微多孔のポリオレフィン系樹脂からなるセ
パレータ13を間にして重ね合わせた。この後、図示し
ない巻き取り機により卷回し、最外周をテープ止めして
電極群とした。ついで、電極群の上下にそれぞれ絶縁板
14を配置した後、この電極群を上述のようにして作製
した各外装缶10(a,b,c,d,e)の開口部より
挿入した。ついで、電極群の負極12より延出する負極
集電タブ12aを各外装缶10の内底部に抵抗溶接され
たニッケル板17に抵抗溶接した。
(3) Fabrication of Non-Aqueous Electrolyte Secondary Battery Next, as shown in FIG. 3, the band-shaped positive electrode 11 and the band-shaped negative electrode 12 prepared as described above were reacted with an organic solvent with low reactivity. They were superposed with a separator 13 made of a microporous polyolefin resin therebetween. Thereafter, it was wound by a winder (not shown), and the outermost periphery was taped to form an electrode group. Next, after the insulating plates 14 were arranged above and below the electrode group, the electrode group was inserted through the opening of each of the outer cans 10 (a, b, c, d, and e) manufactured as described above. Next, a negative electrode current collecting tab 12a extending from the negative electrode 12 of the electrode group was resistance-welded to a nickel plate 17 that was resistance-welded to the inner bottom of each outer can 10.

【0031】ついで、各外装缶10の上部に溝入れ加工
を施して環状溝10xをそれぞれ形成した後、この環状
溝10x上に絶縁ガスケット16を装着した。その後、
電極群の正極11より延出する正極集電タブ11aを封
口体15の底板の底部とを溶接した。ついで、各外装缶
10の開口部に非水電解液(エチレンカーボネート(E
C)とジエチルカーボネート(DEC)を等体積比で混
合した溶媒に、六フッ化リン酸リチウム(LiPF6
を1モル/リットル溶解した溶液)をそれぞれ注入し
た。
Next, a groove was formed on the upper portion of each outer can 10 to form an annular groove 10x, and an insulating gasket 16 was mounted on the annular groove 10x. afterwards,
The positive electrode current collecting tab 11a extending from the positive electrode 11 of the electrode group was welded to the bottom of the bottom plate of the sealing body 15. Then, a nonaqueous electrolyte (ethylene carbonate (E)
C) and a mixture of diethyl carbonate (DEC) at an equal volume ratio to a mixture of lithium hexafluorophosphate (LiPF 6 )
Was dissolved at 1 mol / liter).

【0032】この後、外装缶10の開口部に絶縁ガスケ
ット16を介して封口体15を載置し、外装缶10の開
口部の上端部を封口体15側にカシメて液密に封口し
て、リチウム二次電池A,B,C,D,Eをそれぞれ作
製した。なお、このようにして作製した各リチウム二次
電池A(外装缶aを用いたもの),B(外装缶bを用い
たもの),C(外装缶cを用いたもの),D(外装缶d
を用いたもの),E(外装缶eを用いたもの)の高さは
65mmで、直径は18mmで、公称容量は1600m
Ahであった。
Thereafter, the sealing body 15 is placed on the opening of the outer can 10 via the insulating gasket 16, and the upper end of the opening of the outer can 10 is caulked toward the sealing body 15 and sealed in a liquid-tight manner. And lithium secondary batteries A, B, C, D and E, respectively. The lithium secondary batteries A (using the outer can a), B (using the outer can b), C (using the outer can c), and D (using the outer can) prepared in this manner. d
), E (using the outer can e) are 65 mm in height, 18 mm in diameter and 1600 m in nominal capacity.
Ah.

【0033】6.非水電解液二次電池の過放電試験 ついで、上述のように作製し、所定の充放電検査を終え
た各電池A,B,C,D,Eの電池電圧(放置前の電
圧)を測定した後、これらの各電池A,B,C,D,E
をそれぞれ、室温(約25℃)で、10mAの定電流で
電池電圧が2.10Vになるまで放電させた。ついで、
電池の開路電圧が安定した後、これらの各電池A,B,
C,D,Eを60℃に保持された恒温槽内に放置した。
放置後、20日間経過後および30日間経過後の電池電
圧をそれぞれ測定して、これらの各電池A,B,C,
D,Eの過放電特性を求めると、下記の表2に示すよう
な結果となった。なお、60℃の恒温槽に20日間放置
した状態の電池は、室温(約25℃)で1年間放置した
状態に相当し、30日間放置した状態の電池は、室温
(約25℃)で1.5年間放置した状態に相当する。
6. Overdischarge test of non-aqueous electrolyte secondary battery Next, the battery voltage (voltage before standing) of each of the batteries A, B, C, D, and E prepared as described above and subjected to a predetermined charge / discharge test was measured. After that, each of these batteries A, B, C, D, E
Was discharged at room temperature (about 25 ° C.) at a constant current of 10 mA until the battery voltage reached 2.10 V. Then
After the open circuit voltage of the batteries has stabilized, each of these batteries A, B,
C, D, and E were left in a thermostat kept at 60 ° C.
After standing, the battery voltages after 20 days and 30 days have been measured, respectively, and these batteries A, B, C,
When the overdischarge characteristics of D and E were determined, the results were as shown in Table 2 below. A battery left in a thermostat at 60 ° C. for 20 days corresponds to a state left at room temperature (about 25 ° C.) for one year, and a battery left in a state left for 30 days at room temperature (about 25 ° C.). Equivalent to standing for 5 years.

【0034】[0034]

【表2】 [Table 2]

【0035】上記表2の結果から明らかなように、外装
缶a(内表面にニッケル金属とPVdF微粉末粒子より
なる複合メッキ層を形成させたもの)を用いた電池Aの
低下電圧が格段に小さく、ついで、外装缶b(内表面に
ニッケル金属とPTFE微粉末粒子よりなる複合メッキ
層を形成させたもの)を用いた電池Bの低下電圧が小さ
いことが分かる。一方、外装缶e(PVdF層を形成さ
せたもの)を用いた電池E、外装缶d(ポリプロピレン
シートを接着したもの)を用いた電池D、外装缶c(ニ
ッケル金属層を形成させたもの)を用いた電池Cの順で
低下電圧が大きくなっていることが分かる。
As is evident from the results in Table 2, the voltage drop of the battery A using the outer can a (in which a composite plating layer composed of nickel metal and PVdF fine powder particles is formed on the inner surface) is remarkably reduced. It can be seen that the voltage drop of the battery B using the battery case B, which is small and then the outer can b (having a composite plating layer made of nickel metal and PTFE fine powder particles formed on the inner surface), is small. On the other hand, a battery E using an outer can e (having a PVdF layer formed thereon), a battery D using an outer can d (having a polypropylene sheet bonded thereto), and an outer can c (having a nickel metal layer formed thereon) It can be seen that the voltage drop increases in the order of the battery C using.

【0036】これは、メッキにより外装缶の表面にニッ
ケル金属層を形成させた外装缶cにおいては、メッキに
より形成されたニッケル金属層は完全ではなくて、欠陥
等が存在するとともに、電池組立時に外装缶に封口体を
かしめるための溝入れ加工を行った際に、溝入れ加工さ
れた部分のニッケル金属層にひび割れが生じて、これら
の欠陥やひび割れ等を介して腐食電流が流れるようにな
ったためと考えられる。また、内表面にポリプロピレン
シートを接着した外装缶dにおいては、外装缶dの内表
面をポリプロピレンシートで完全に覆うことができず、
ポリプロピレンシートで覆われていない部分や外装缶と
ポリプロピレンシートとの隙間を通して腐食電流が流れ
たためと考えられる。さらに、内表面にPVdF層を形
成させた外装缶eにおいては、PVdFを溶解させたN
MP溶液を外装缶の内表面に均一に塗布することができ
ず、不均一部分を通して電流(腐食電流)が流れたため
と考えられる。
This is because, in the outer can c in which the nickel metal layer is formed on the surface of the outer can by plating, the nickel metal layer formed by plating is not perfect, and there are defects and the like. When grooving is performed on the outer can to caulk the sealing body, cracks occur in the nickel metal layer in the grooved portion, and corrosion current flows through these defects and cracks. It is thought that it became. Further, in the outer can d in which the polypropylene sheet is adhered to the inner surface, the inner surface of the outer can d cannot be completely covered with the polypropylene sheet,
It is considered that the corrosion current flowed through a portion not covered with the polypropylene sheet or a gap between the outer can and the polypropylene sheet. Further, in the outer can e having a PVdF layer formed on the inner surface, Nd in which PVdF is dissolved is used.
This is probably because the MP solution could not be uniformly applied to the inner surface of the outer can and current (corrosion current) flowed through the non-uniform portion.

【0037】一方、外装缶にニッケル金属とPTFE微
粉末粒子よりなる複合メッキ層を形成させた外装缶bに
おいては、PTFE微粉末粒子がニッケル金属とともに
外装缶の表面に均一に付着して複合メッキ層が均一に形
成されるため、耐食性が向上して腐食電位の上昇が抑制
されたと考えられる。さらに、外装缶にニッケル金属と
PVdF微粉末粒子よりなる複合メッキ層を形成させた
外装缶aにおいては、PVdF微粉末粒子がニッケル金
属とともに外装缶の表面に均一に付着して複合メッキ層
が均一に形成されており、理由は不明であるが、おそら
くPTFEよりも良好なメッキ層が形成されたため、外
装缶aに流れる電流(腐食電流)が一層減少したと考え
られる。
On the other hand, in the outer can b in which a composite plating layer made of nickel metal and PTFE fine powder particles is formed on the outer can, the PTFE fine powder particles are uniformly adhered to the surface of the outer can together with the nickel metal to form a composite plating layer. It is considered that the uniform formation of the layer improved the corrosion resistance and suppressed the increase in the corrosion potential. Further, in the outer can a in which a composite plating layer composed of nickel metal and PVdF fine powder particles is formed on the outer can, the PVdF fine powder particles uniformly adhere to the surface of the outer can together with the nickel metal, and the composite plating layer becomes uniform. Although the reason is unknown, it is considered that the current (corrosion current) flowing through the outer can a was further reduced, probably because a plating layer better than PTFE was formed.

【0038】上述したように、本発明においては、金属
製外装缶10の表面にニッケル金属と、耐食性に優れた
PVdF微粉末あるいはPTFE微粉末などのフッ素樹
脂微粉末粒子よりなる複合メッキ層10a,10bを備
えるようにしているので、金属製外装缶10の耐食性が
向上するとともに、このような金属製外装缶10を用い
た非水電解質二次電池が過放電状態となっても、金属製
外装缶10に流れる腐食電流を抑制することが可能とな
って、長期保存特性が向上する。
As described above, in the present invention, the composite plating layer 10a made of nickel metal and fluororesin fine powder particles such as PVdF fine powder or PTFE fine powder having excellent corrosion resistance is formed on the surface of the metal outer can 10. 10b, the corrosion resistance of the metal outer can 10 is improved, and even if the non-aqueous electrolyte secondary battery using such a metal outer can 10 is in an overdischarged state, the metal outer can 10 Corrosion current flowing through the can 10 can be suppressed, and long-term storage characteristics are improved.

【0039】また、金属製外装缶10の底部内表面に金
属片(ニッケル板)17を溶接し、このニッケル板17
の表面に保護膜18を被着させてメッキを施し、保護膜
18を剥がした後に、電極群の負極12から延出する負
極集電タブ12aをニッケル板17に溶接するようにし
ているので、ニッケル板17と負極集電タブ12aとの
溶接箇所に溶接不良が発生することを未然に防止するこ
とが可能となって、内部抵抗が低減した非水電解質二次
電池を得ることが可能となる。さらに、金属製外装缶1
0の底部外表面にも保護膜19を被着させた後、メッキ
を施すようにしているので、負端子となる金属製外装缶
10の底部外表面に複合メッキ層が形成されることを防
止でき、導電性に優れた負極端子を形成することが可能
となる。
A metal piece (nickel plate) 17 is welded to the inner surface of the bottom of the metal outer can 10, and the nickel plate 17
The negative electrode current collecting tab 12a extending from the negative electrode 12 of the electrode group is welded to the nickel plate 17 after the protective film 18 is applied and plated on the surface of the negative electrode 12 and the protective film 18 is peeled off. It is possible to prevent the occurrence of poor welding at the welding portion between the nickel plate 17 and the negative electrode current collecting tab 12a, and to obtain a nonaqueous electrolyte secondary battery with reduced internal resistance. . Further, a metal outer can 1
Since the plating is performed after the protective film 19 is also applied to the bottom outer surface of the metal outer can 10, the formation of a composite plating layer on the bottom outer surface of the metal outer can 10 serving as a negative terminal is prevented. Thus, a negative electrode terminal having excellent conductivity can be formed.

【0040】なお、上述した実施の形態においては、金
属製外装缶10の表面をニッケル金属とともに被覆する
フッ素樹脂として、ポリビニリデンフルオライド(PV
dF)あるいはポリテトラフルオロエチレン(PTF
E)を用いる例について説明したが、これらの他に、ポ
リクロロトリフルオロエチレン(PCTFE)、ポリビ
ニルフルオライド(PVF)、テトラフルオロエチレン
−パーフルオロアルキルビニルエーテル共重合体(PF
A)、テトラフルオロエチレン−ヘキサフルオロプロピ
レン共重合体(FEP)、テトラフルオロエチレン−エ
チレン共重合体(E/TFE)、クロロトリフルオロエ
チレン−エチレン共重合体(E/CTFE)、テトラフ
ルオロエチレン−パーフロロジメチルジオキソール共重
合体(TFE/PDD)などのフッ素系樹脂を用いるよ
うにしても、ほぼ同様な効果が得られる。
In the above-described embodiment, polyvinylidene fluoride (PV) is used as the fluororesin that coats the surface of the metal outer can 10 with nickel metal.
dF) or polytetrafluoroethylene (PTF)
Examples using E) have been described, but in addition to these, polychlorotrifluoroethylene (PCTFE), polyvinyl fluoride (PVF), tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PF)
A), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer (E / TFE), chlorotrifluoroethylene-ethylene copolymer (E / CTFE), tetrafluoroethylene- Even if a fluororesin such as perfluorodimethyldioxol copolymer (TFE / PDD) is used, almost the same effect can be obtained.

【0041】また、上述した実施の形態においては、金
属製外装缶として鉄製外装缶を用いる例について説明し
たが、金属製外装缶として鉄以外に、ニッケルメッキが
可能であれば、電気的に接続される電極の電位に影響を
受けて外装缶が溶解し、リチウムと合金化しない金属、
合金(例えば、ステンレスなど)でも本発明の効果を奏
することができるが、経済性、加工性等を考慮すると鉄
製外装缶を用いるのが望ましい。
Further, in the above-described embodiment, an example in which an iron outer can is used as the metal outer can has been described. Metal that does not alloy with lithium, due to the effect of the potential of the
Although the effects of the present invention can be achieved by using an alloy (for example, stainless steel), it is preferable to use an iron outer can in consideration of economy, workability, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 三極式電気化学セルの概略構成を模式的に示
す図である。
FIG. 1 is a diagram schematically showing a schematic configuration of a three-electrode electrochemical cell.

【図2】 金属製外装缶の要部を模式的に示す図であ
り、図2(a)は実施例1の金属製外装缶aおよび実施
例2の金属製外装缶bを示す断面図であり、図2(b)
は比較例1の金属製外装缶cを示す断面図であり、図2
(c)は比較例2の金属製外装缶dおよび比較例3の金
属製外装缶eを示す断面図である。
FIG. 2 is a view schematically showing a main part of a metal outer can; FIG. 2A is a cross-sectional view showing a metal outer can a of Example 1 and a metal outer can b of Example 2; Yes, FIG. 2 (b)
FIG. 2 is a sectional view showing a metal outer can c of Comparative Example 1, and FIG.
(C) is a sectional view showing a metal outer can d of Comparative Example 2 and a metal outer can e of Comparative Example 3.

【図3】 本発明の非水電解質電池の概略構成を模式的
に示す図である。
FIG. 3 is a diagram schematically showing a schematic configuration of a nonaqueous electrolyte battery of the present invention.

【図4】 非水電解質電池を過放電させたときの、負極
電位と正極電位と電池電圧の変化の状態を模式的に示す
図である。
FIG. 4 is a diagram schematically showing changes in negative electrode potential, positive electrode potential, and battery voltage when a nonaqueous electrolyte battery is overdischarged.

【符号の説明】[Explanation of symbols]

1…作用極、2…対極、3…参照極、4…作用極リー
ド、5…対極リード、6…参照極リード、7…ガラスセ
ル容器、8…電流計付き電源、10…外装缶、10a,
10b…複合メッキ層、10x…環状溝、11…帯状正
極、11a…正極集電タブ、12…帯状負極、12a…
負極集電タブ、13…セパレータ(微多孔膜)、14…
絶縁板、15…封口体、16…絶縁ガスケット、17…
ニッケル板(金属片)
DESCRIPTION OF SYMBOLS 1 ... working electrode, 2 ... counter electrode, 3 ... reference electrode, 4 ... working electrode lead, 5 ... counter electrode lead, 6 ... reference electrode lead, 7 ... glass cell container, 8 ... power supply with ammeter, 10 ... outer can, 10a ,
10b: composite plating layer, 10x: annular groove, 11: band-shaped positive electrode, 11a: positive electrode current collecting tab, 12: band-shaped negative electrode, 12a ...
Negative electrode current collecting tab, 13 ... separator (microporous film), 14 ...
Insulating plate, 15 ... sealing body, 16 ... insulating gasket, 17 ...
Nickel plate (metal piece)

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/40 H01M 10/40 Z Fターム(参考) 4K024 AA03 AB01 AB12 BA03 BB28 BC04 CA02 CA05 GA04 5H011 AA02 AA09 CC06 CC08 DD13 DD18 EE04 KK00 5H022 AA09 BB11 BB22 CC19 CC30 EE03 EE06 KK07 5H029 AJ13 AJ14 AK03 AL07 AM03 AM05 AM07 BJ02 CJ05 CJ24 DJ02 DJ05 EJ01 EJ12 HJ12Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (reference) H01M 10/40 H01M 10/40 Z F term (reference) 4K024 AA03 AB01 AB12 BA03 BB28 BC04 CA02 CA05 GA04 5H011 AA02 AA09 CC06 CC08 DD13 DD18 EE04 KK00 5H022 AA09 BB11 BB22 CC19 CC30 EE03 EE06 KK07 5H029 AJ13 AJ14 AK03 AL07 AM03 AM05 AM07 BJ02 CJ05 CJ24 DJ02 DJ05 EJ01 EJ12 HJ12

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵・放出することが
可能な負極とリチウムイオンを吸蔵・放出することが可
能な正極とをセパレータを介して対向させた電極群およ
び有機溶媒に溶質としてリチウム塩を溶解した非水電解
質を収容する金属製外装缶を備えた非水電解質二次電池
であって、 前記金属製外装缶の表面にニッケル金属とフッ素樹脂微
粉末粒子とからなる複合メッキ層を備えるようにしたこ
とを特徴とする非水電解質二次電池。
An electrode group comprising a negative electrode capable of inserting and extracting lithium ions and a positive electrode capable of inserting and extracting lithium ions via a separator, and a lithium salt as a solute in an organic solvent. A non-aqueous electrolyte secondary battery including a metal outer can containing a dissolved non-aqueous electrolyte, comprising a composite plating layer made of nickel metal and fluororesin fine powder particles on a surface of the metal outer can. A non-aqueous electrolyte secondary battery characterized in that:
【請求項2】 前記金属製外装缶の底部内面の一部は前
記複合メッキ層を備えないとともに、 前記複合メッキ層を備えない部分に金属片が固着されて
いて、該金属片に前記電極群の負極から延出する集電タ
ブが固着されていることを特徴とする請求項1に記載の
非水電解質二次電池。
2. A part of an inner surface of a bottom of the metal outer can does not include the composite plating layer, and a metal piece is fixed to a part not including the composite plating layer, and the electrode group is attached to the metal piece. The non-aqueous electrolyte secondary battery according to claim 1, wherein a current collection tab extending from the negative electrode is fixed.
【請求項3】 前記フッ素樹脂はポリビニリデンフルオ
ライド(PVdF)であることを特徴とする請求項1ま
たは請求項2に記載の非水電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the fluororesin is polyvinylidene fluoride (PVdF).
【請求項4】 前記金属製外装缶は鉄製外装缶であるこ
とを特徴とする請求項1から請求項3のいずれかに記載
の非水電解質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the metal outer can is an iron outer can.
【請求項5】 リチウムイオンを吸蔵・放出することが
可能な負極とリチウムイオンを吸蔵・放出することが可
能な正極とをセパレータを介して対向させた電極群およ
び有機溶媒に溶質としてリチウム塩を溶解した非水電解
質を収容する金属製外装缶を備えた非水電解質二次電池
の製造方法であって、 ニッケル金属が溶解した水溶液にフッ素樹脂微粉末粒子
を溶解させたメッキ浴中に前記金属製外装缶を浸漬して
電解メッキを施して該金属製外装缶の表面にニッケル金
属とフッ素樹脂微粉末粒子とからなる複合メッキ層を形
成するメッキ工程を備えるようにしたことを特徴とする
非水電解質二次電池の製造方法。
5. A lithium salt as a solute in an electrode group in which a negative electrode capable of occluding and releasing lithium ions and a positive electrode capable of occluding and releasing lithium ions are opposed via a separator, and an organic solvent. A method for manufacturing a non-aqueous electrolyte secondary battery including a metal outer can containing a dissolved non-aqueous electrolyte, wherein the metal is placed in a plating bath in which fine particles of fluororesin are dissolved in an aqueous solution in which nickel metal is dissolved. A plating step of forming a composite plating layer composed of nickel metal and fine particles of fluororesin on the surface of the metal outer can by immersing the outer can made by electroplating and forming a composite plating layer on the surface of the metal outer can. A method for producing a water electrolyte secondary battery.
【請求項6】 前記メッキ工程の前に、前記金属製外装
缶の底部内表面に予め金属片を溶接する溶接工程と、 前記金属製外装缶の底部内表面に溶接された金属片の表
面に保護膜を被着させる内部保護膜被着工程とを備える
ようにしたことを特徴とする請求項5に記載の非水電解
質二次電池の製造方法。
6. A welding step in which a metal piece is previously welded to a bottom inner surface of the metal outer can before the plating step, and a metal piece welded to the bottom inner surface of the metal outer can is The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 5, further comprising a step of applying an internal protective film for applying a protective film.
【請求項7】 前記金属片の表面に被着した前記保護膜
を剥がした後、該金属片に前記電極群の負極から延出す
る集電タブを溶接する溶接工程を備えるようにしたこと
を特徴とする請求項6に記載の非水電解質二次電池の製
造方法。
7. The method according to claim 1, further comprising the step of: after peeling off the protective film adhered to the surface of the metal piece, welding a current collecting tab extending from a negative electrode of the electrode group to the metal piece. The method for producing a non-aqueous electrolyte secondary battery according to claim 6.
【請求項8】 前記メッキ工程の前に、前記金属製外装
缶の底部外表面に予め保護膜を被着させる外部保護膜被
着工程を備えるようにしたことを特徴とする請求項5か
ら請求項7のいずれかに記載の非水電解質二次電池の製
造方法。
8. The method according to claim 5, further comprising, before the plating step, an external protective film applying step of applying a protective film on a bottom outer surface of the metal outer can in advance. Item 8. The method for producing a nonaqueous electrolyte secondary battery according to any one of Items 7.
JP2001029462A 2001-02-06 2001-02-06 Non-aqueous electrolyte secondary battery and method of manufacturing the same Withdrawn JP2002231195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001029462A JP2002231195A (en) 2001-02-06 2001-02-06 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001029462A JP2002231195A (en) 2001-02-06 2001-02-06 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002231195A true JP2002231195A (en) 2002-08-16

Family

ID=18893810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001029462A Withdrawn JP2002231195A (en) 2001-02-06 2001-02-06 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002231195A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087704A (en) * 2005-09-21 2007-04-05 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
JP2007207639A (en) * 2006-02-03 2007-08-16 Hitachi Maxell Ltd Cylindrical non-aqueous electrolytic solution primary battery
JP2007277634A (en) * 2006-04-06 2007-10-25 Fuji Hatsujo Kk Plating method, plating apparatus and electroplated battery can
JP2009146752A (en) * 2007-12-14 2009-07-02 Nissan Motor Co Ltd Current collector for lithium ion secondary battery
WO2010113502A1 (en) 2009-03-31 2010-10-07 新日本製鐵株式会社 Material for metallic outer case for secondary battery utilizing non-aqueous electrolyte, metallic outer case, secondary battery, and process for production of material for metallic outer case
US11217845B2 (en) 2017-08-25 2022-01-04 Murata Manufacturing Co., Ltd. Battery, battery pack, electronic device, electric vehicle, power storage device, and electric power system
JP7485264B2 (en) 2020-10-27 2024-05-16 エルジー エナジー ソリューション リミテッド A secondary battery in which a corrosion prevention layer is formed on the inner surface of the battery case

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087704A (en) * 2005-09-21 2007-04-05 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
JP2007207639A (en) * 2006-02-03 2007-08-16 Hitachi Maxell Ltd Cylindrical non-aqueous electrolytic solution primary battery
JP2007277634A (en) * 2006-04-06 2007-10-25 Fuji Hatsujo Kk Plating method, plating apparatus and electroplated battery can
JP2009146752A (en) * 2007-12-14 2009-07-02 Nissan Motor Co Ltd Current collector for lithium ion secondary battery
WO2010113502A1 (en) 2009-03-31 2010-10-07 新日本製鐵株式会社 Material for metallic outer case for secondary battery utilizing non-aqueous electrolyte, metallic outer case, secondary battery, and process for production of material for metallic outer case
US11217845B2 (en) 2017-08-25 2022-01-04 Murata Manufacturing Co., Ltd. Battery, battery pack, electronic device, electric vehicle, power storage device, and electric power system
JP7485264B2 (en) 2020-10-27 2024-05-16 エルジー エナジー ソリューション リミテッド A secondary battery in which a corrosion prevention layer is formed on the inner surface of the battery case

Similar Documents

Publication Publication Date Title
TW504854B (en) Flat non-aqueous electrolyte secondary cell
JP4433329B2 (en) Positive electrode of lithium secondary battery and method for producing the same
JP2000164259A (en) Flat nonaqueous electrolyte battery and its manufacture
US20210343995A1 (en) Electrochemical plating of additives on metallic electrodes for energy dense batteries
JP3821434B2 (en) Battery electrode group and non-aqueous electrolyte secondary battery using the same
CN101325255A (en) Zinc cathode, preparation method thereof and zinc secondary battery using zinc cathode
JP2001357855A (en) Nonaqueous electrolyte secondary battery
US20220069286A1 (en) Polymer embedded electrodes for batteries
CN111987379A (en) Lithium ion battery with reference electrode and preparation method thereof
JP2002231195A (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH06310126A (en) Nonaquous electrolytic secondary battery
US20210399305A1 (en) A protective barrier layer for alkaline batteries
KR101996543B1 (en) Lithium primary battery with improved output property and method of manufacturing the same
JPH0676860A (en) Secondary battery and manufacture thereof
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JPH11126600A (en) Lithium ion secondary battery
JP3219928B2 (en) Non-aqueous electrolyte secondary battery
US11670755B2 (en) Modified electrolyte-anode interface for solid-state lithium batteries
JP2007087704A (en) Nonaqueous electrolyte secondary battery
JP4069988B2 (en) Lithium ion secondary battery
JP3414729B1 (en) Lithium ion secondary battery
KR101916145B1 (en) Secondary battery and manufacturing method thereof
JP4316461B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP2004103554A (en) Nonaqueous electrolyte liquid secondary battery
JPH10302841A (en) Secondary lithium battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513