JP2002228763A - Multi-optical-axis photoelectric sensor - Google Patents

Multi-optical-axis photoelectric sensor

Info

Publication number
JP2002228763A
JP2002228763A JP2001024160A JP2001024160A JP2002228763A JP 2002228763 A JP2002228763 A JP 2002228763A JP 2001024160 A JP2001024160 A JP 2001024160A JP 2001024160 A JP2001024160 A JP 2001024160A JP 2002228763 A JP2002228763 A JP 2002228763A
Authority
JP
Japan
Prior art keywords
light
reflector
light receiving
light emitting
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001024160A
Other languages
Japanese (ja)
Inventor
Masatoshi Kawai
正寿 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2001024160A priority Critical patent/JP2002228763A/en
Publication of JP2002228763A publication Critical patent/JP2002228763A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a multi-optical-axis photoelectric sensor capable of detecting at a high S/N ratio and reducing cost by cutting down the number of elements. SOLUTION: In this multi-optical-axis photoelectric sensor, light projected to a reflector 20 from a plurality of light projecting elements 11 provided at a sensor body 10 enters one end of each reflector constituent body 21 arranged with level difference. The light is offset by a prescribed quantity, returned to the sensor body 10 side from the other end of the reflector constituent body 21 and received by one light receiving element 12. When the light is shielded by a detection object, the light receiving quantity of the light receiving element 12 is reduced, and the detection object is thereby detected. Sine the light emitted from the light projecting element thus makes only one round trip between the sensor body 10 and the reflector 20, the number of round trips is small, and the decay of light is little compared with a conventional one. Cost can be reduced by cutting down the number of elements.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リフレクタ反射型
の多光軸光電センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflector reflection type multi-optical axis photoelectric sensor.

【0002】[0002]

【従来の技術】多光軸光電センサの第1の従来例とし
て、実開昭63−27798号に掲載されたものは、リ
フレクタに対向配置されたセンサ本体の複数位置に、投
光素子及び受光素子の複数のペアを配置してなり、その
投受光素子のペアと同数の光軸が、センサ本体とリフレ
クタとの間に形成されるようにしたものである。そし
て、検出物が、センサ本体とリフレクタとの間に位置し
て光を遮ると、受光素子の受光量が低下するから、これ
により、検出物が検出される。
2. Description of the Related Art A first conventional example of a multi-optical axis photoelectric sensor disclosed in Japanese Utility Model Laid-Open Publication No. 63-27798 is disclosed in Japanese Patent Application Laid-Open No. 63-27798. A plurality of pairs of elements are arranged, and the same number of optical axes as the pairs of light emitting and receiving elements are formed between the sensor body and the reflector. Then, when the detected object is located between the sensor main body and the reflector and blocks light, the amount of light received by the light receiving element is reduced, whereby the detected object is detected.

【0003】また、第2の従来例として、特開平6−1
60545号に掲載されたものは、一対のリフレクタを
対向配置し、一方のリフレクタの両端に投光素子と受光
素子とを1つずつ配置してなる。そして、投光素子から
の光が、両リフレクタの間で複数回、往復反射してから
受光素子に受光され、もって、両リフレクタ間に複数の
光軸が形成される構成になっている。
As a second conventional example, Japanese Patent Application Laid-Open No.
Japanese Patent No. 60545 has a pair of reflectors arranged opposite to each other, and one light emitting element and one light receiving element are arranged at both ends of one reflector. The light from the light projecting element is reflected back and forth a plurality of times between the two reflectors and then received by the light receiving element, so that a plurality of optical axes are formed between the two reflectors.

【0004】さらに、第3の従来例として、特公平7−
61591号に掲載されたものは、図8に示されてお
り、このものでは、リフレクタ1に対向配置したパラボ
ラミラー2の焦点付近に回転ミラー3を配置し、パラボ
ラミラー2寄りの位置に設けた投光素子4から、前記回
転ミラー3に向けて光(例えば、レーザー光)を投光す
る。すると、回転ミラー3の回転により、パラボラミラ
ー2全体に光が振り分けて照射され、これが並行光にな
って、リフレクタ1に向かい、これにより複数の光軸が
形成される。そして、逆の順序を辿って戻ってきた光
は、投光素子4の手前に設けたハーフミラー5で向きが
変えられ、受光素子6に受光される構成になっている。
Further, as a third conventional example, Japanese Patent Publication No.
FIG. 8 shows an example disclosed in U.S. Pat. No. 6,1591, in which a rotating mirror 3 is arranged near a focal point of a parabolic mirror 2 arranged opposite to a reflector 1 and provided near a parabolic mirror 2. Light (for example, laser light) is projected from the light projecting element 4 toward the rotating mirror 3. Then, the rotation of the rotating mirror 3 causes the light to be distributed and radiated to the entire parabolic mirror 2, becomes parallel light, and travels toward the reflector 1, thereby forming a plurality of optical axes. The light returning in the reverse order is changed in direction by a half mirror 5 provided in front of the light projecting element 4 and received by the light receiving element 6.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述した第
1の従来例のものでは、光軸の数に対応して投光素子及
び受光素子からなる複数のペアが必要となるので、素子
数を減らしてコストダウンを図る要請に応えることがで
きない。これに対し、第2の従来例では、素子数を減ら
してコストダウンを図ることはできるが、広い検出領域
を確保する場合には、両リフレクタの間における光の往
復回数が多くなり、その分、光が減衰して十分な受光量
が得られず、S/N比が低下して安定した検出を行えな
い。
However, in the above-mentioned first conventional example, a plurality of pairs of a light projecting element and a light receiving element are required in correspondence with the number of optical axes. It cannot meet the demand for cost reduction by reducing the cost. On the other hand, in the second conventional example, the cost can be reduced by reducing the number of elements. However, when a wide detection area is secured, the number of round trips of light between the two reflectors increases, and the number of round trips increases accordingly. As a result, the light is attenuated and a sufficient amount of received light cannot be obtained, so that the S / N ratio is lowered and stable detection cannot be performed.

【0006】また、第3の従来例では、素子数を減らし
てコストダウンを図ることはできるが、パラボラミラー
2及び回転ミラー3等が必要となり、素子数削減以上の
コストアップを招くことになる。さらに、回転ミラー3
による機械的なスキャン動作のため、スキャン速度が遅
く、ひいては検出速度が遅くなるという問題が生じる。
その上、ハーフミラーを介して反射光を受光するので、
やはり受光量が減衰し、S/N比が低下して安定した検
出を行えない。
In the third conventional example, the cost can be reduced by reducing the number of elements, but the parabolic mirror 2 and the rotating mirror 3 are required, which leads to an increase in cost more than the reduction in the number of elements. . Furthermore, the rotating mirror 3
, There is a problem that the scanning speed is low and the detection speed is low.
In addition, since it receives reflected light via a half mirror,
Again, the amount of received light is attenuated, the S / N ratio is reduced, and stable detection cannot be performed.

【0007】本発明は、上記事情に鑑みてなされたもの
で、素子数を削減してコストダウンを図り、かつ、高い
S/N比で検出を行うことが可能な多光軸光電センサの
提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a multi-optical axis photoelectric sensor capable of reducing the number of elements to reduce costs and performing detection at a high S / N ratio. With the goal.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
になされた請求項1の発明に係る多光軸光電センサは、
投光素子及び受光素子を備えたセンサ本体にリフレクタ
を対向配置して、リフレクタが投光素子から受けた光を
受光素子に向けて反射することで、センサ本体とリフレ
クタとの間に複数の光軸を形成し、受光素子の受光量に
基づいて光軸の遮光状態を検出する多光軸光電センサに
おいて、投光素子の1つに対して複数の受光素子を設
け、複数の受光素子を一列に並べた延長線上に投光素子
を配し、リフレクタは、複数の受光素子に対応した複数
のリフレクタ構成体を、投受光素子が並ぶ素子配列方向
と直交する方向に並べて構成され、各リフレクタ構成体
は、対応した各受光素子から投光素子までの距離に応じ
た長さをなして、素子配列方向に延び、かつ、その両端
に、互いの向きが90度異なる一対の反射面を備え、さ
らに、反射面のいずれか一方は、互いの向きが90度異
なる小反射面を、交互に複数連ねた波形構造をなしてお
り、各リフレクタ構成体の一方の反射面を、横並びにし
て、投光素子から出射した拡散光が、全てのリフレクタ
構成体の一方の反射面に照射されて、他方の反射面から
各受光素子に向かうようにしたところに特徴を有する。
According to a first aspect of the present invention, there is provided a multi-optical axis photoelectric sensor.
A reflector is arranged opposite to a sensor body having a light emitting element and a light receiving element, and the reflector reflects light received from the light emitting element toward the light receiving element, so that a plurality of light beams are generated between the sensor body and the reflector. In a multi-optical axis photoelectric sensor that forms an axis and detects a light blocking state of an optical axis based on the amount of light received by a light receiving element, a plurality of light receiving elements are provided for one of the light projecting elements, and the plurality of light receiving elements are arranged in a line. A light-emitting element is arranged on an extension line arranged in a row, and the reflector is configured by arranging a plurality of reflector structures corresponding to a plurality of light-receiving elements in a direction orthogonal to the element arrangement direction in which the light-emitting and light-receiving elements are arranged. The body has a length corresponding to the distance from each corresponding light receiving element to the light emitting element, extends in the element arrangement direction, and has, at both ends thereof, a pair of reflecting surfaces whose directions are different from each other by 90 degrees, In addition, no reflective surface One of them has a wavy structure in which a plurality of small reflecting surfaces whose directions are different from each other by 90 degrees are alternately connected in series, and one reflecting surface of each reflector structure is arranged side by side, and the diffused light emitted from the light emitting element is formed. It is characterized in that light is applied to one of the reflecting surfaces of all the reflector structures, and travels from the other reflecting surface to each light receiving element.

【0009】請求項2の発明に係る多光軸光電センサ
は、投光素子及び受光素子を備えたセンサ本体にリフレ
クタを対向配置して、リフレクタが投光素子から受けた
光を受光素子に向けて反射することで、センサ本体とリ
フレクタとの間に複数の光軸を形成し、受光素子の受光
量に基づいて光軸の遮光状態を検出する多光軸光電セン
サにおいて、受光素子の1つに対して複数の投光素子を
設け、複数の投光素子を一列に並べた延長線上に受光素
子を配し、リフレクタは、複数の投光素子に対応した複
数のリフレクタ構成体を、投受光素子が並ぶ素子配列方
向と直交する方向に並べて構成され、各リフレクタ構成
体は、対応した各投光素子から受光素子までの距離に応
じた長さをなして、素子配列方向に延び、かつ、その両
端に、互いの向きが90度異なる一対の反射面を備え、
さらに、反射面のいずれか一方は、互いの向きが90度
異なる小反射面を、交互に複数連ねた波形構造をなして
おり、各リフレクタ構成体の一方の反射面を、横並びに
配する一方で、段違いに配された他方の反射面に、各投
光素子から出射された光を照射して、その光が、各リフ
レクタ構成体の他方の反射面から、受光素子に向かうよ
うにしたところに特徴を有する。
In the multi-optical axis photoelectric sensor according to a second aspect of the present invention, a reflector is disposed to face a sensor body having a light emitting element and a light receiving element, and the light received by the reflector from the light emitting element is directed to the light receiving element. One of the light receiving elements in a multi-optical axis photoelectric sensor that forms a plurality of optical axes between the sensor body and the reflector by reflecting the light, and detects a light blocking state of the optical axis based on the amount of light received by the light receiving elements. A plurality of light emitting elements are provided, and a plurality of light emitting elements are arranged in a line. A light receiving element is arranged on an extension line, and the reflector emits and receives a plurality of reflector structures corresponding to the plurality of light emitting elements. The elements are arranged side by side in a direction orthogonal to the element arrangement direction in which the elements are arranged, and each reflector structure has a length corresponding to the distance from each corresponding light emitting element to the light receiving element, and extends in the element arrangement direction, and At both ends, the orientation of each other Comprising a 0 ° from the pair of reflecting surfaces,
Further, any one of the reflection surfaces has a wave structure in which a plurality of small reflection surfaces having directions different from each other by 90 degrees are alternately arranged in a row, and one reflection surface of each reflector structure is arranged side by side. Then, the light emitted from each light emitting element is irradiated on the other reflecting surface arranged in a step, and the light is directed from the other reflecting surface of each reflector structure to the light receiving element. It has features.

【0010】[0010]

【発明の作用】請求項1及び請求項2の構成では、各リ
フレクタ構成体に設けた他方の反射面(図2の符号23
参照)と、隣り合った一対の小反射面(図2の符号2
4,24参照)とは、図3に示すように、互いの向きが
90度異なる3つ面(図3の符号23,24,24参
照)を構成しており、このような3つの面は、受けた光
を、その光と並行した光にして返す。そして、受けた光
と返した光とのオフセット量は、各リフレクタ構成体の
長さに応じた量となり、本発明では、その長さを、投光
素子と受光素子との間の距離に対応させてある。
According to the first and second aspects of the present invention, the other reflecting surface (reference numeral 23 in FIG. 2) provided on each reflector structure is provided.
2) and a pair of adjacent small reflecting surfaces (reference numeral 2 in FIG. 2).
As shown in FIG. 3, the three directions are different from each other by 90 degrees (see reference numerals 23, 24, and 24 in FIG. 3). And converts the received light into light parallel to the light. The amount of offset between the received light and the returned light is an amount corresponding to the length of each reflector structure. In the present invention, the length corresponds to the distance between the light emitting element and the light receiving element. Let me do it.

【0011】そして、請求項1の発明では、センサ本体
に設けた1つの投光素子から投光された光は、拡がって
各リフレクタ構成体の一端に入射し、所定量だけオフセ
ットして、各リフレクタ構成体の他端からセンサ本体側
に戻される。このとき、各リフレクタ構成体の長さの相
違により、複数の光軸を有した光に分けられて、各光が
受光素子に受光される。そして、センサ本体とリフレク
タとの間に、検出物が位置することで、光が遮られたと
きに、受光素子の受光量が減り、これにより検出物が検
出される。
According to the first aspect of the present invention, the light projected from one light projecting element provided in the sensor main body spreads and enters one end of each reflector structure, and is offset by a predetermined amount, so that each of the reflector structures is offset. It is returned to the sensor body from the other end of the reflector structure. At this time, the light is divided into light having a plurality of optical axes, and each light is received by the light receiving element, depending on the difference in the length of each reflector constituent body. And since the detection object is located between the sensor main body and the reflector, when the light is blocked, the amount of light received by the light receiving element is reduced, whereby the detection object is detected.

【0012】また、請求項2の発明では、センサ本体に
設けた複数の投光素子からリフレクタへと投光された光
は、段違いに配された各リフレクタ構成体の一端に入射
し、所定量だけオフセットして、リフレクタ構成体の他
端からセンサ本体側に戻され、1つの受光素子に受光さ
れる。そして、センサ本体とリフレクタとの間に、検出
物が位置することで、光が遮られたときに、受光素子の
受光量が減り、これにより検出物が検出される。
According to the second aspect of the present invention, the light projected from the plurality of light projecting elements provided on the sensor main body to the reflector is incident on one end of each of the reflector constituents arranged stepwise, and has a predetermined amount. And the light is returned to the sensor body from the other end of the reflector structure, and is received by one light receiving element. And since the detection object is located between the sensor main body and the reflector, when the light is blocked, the amount of light received by the light receiving element is reduced, whereby the detection object is detected.

【0013】[0013]

【発明の効果】このように請求項1及び請求項2の多光
軸光電センサによれば、投光素子から出射された光は、
センサ本体及びリフレクタの間で1往復するだけである
から、従来のものに比べて往復回数が少なく、従来のも
ののようにハーフミラーを介すこともないから、光の減
衰が少ない。従って、受光素子への十分な受光量が確保
され、S/N比が高い検出を行うことができる。しか
も、請求項1の発明では、投光素子の1つに対して複数
の受光素子を設け、請求項2の発明では、受光素子の1
つに対して複数の投光素子を設けている。即ち、本発明
によれば、投受光素子の一方を、光軸の数より少なくす
ることができ、投受光素子の両方を光軸と同じ数だけ設
けた従来のものよりも、素子数削減によるコストダウン
を図ることができる。
As described above, according to the multi-optical axis photoelectric sensor of the first and second aspects, the light emitted from the light projecting element is
Since only one reciprocation is made between the sensor main body and the reflector, the number of reciprocations is smaller than that of the conventional one, and there is no interposition of a half mirror unlike the conventional one, so that light attenuation is small. Therefore, a sufficient amount of light received by the light receiving element is secured, and detection with a high S / N ratio can be performed. Moreover, in the first aspect of the present invention, a plurality of light receiving elements are provided for one of the light emitting elements.
A plurality of light emitting elements are provided for each. That is, according to the present invention, one of the light emitting and receiving elements can be made smaller than the number of optical axes, and the number of light emitting and receiving elements is reduced by the number of elements as compared with the conventional one in which both of the light emitting and receiving elements are provided by the same number as the optical axes Cost can be reduced.

【0014】[0014]

【発明の実施の形態】<第1実施形態>以下、本発明の
実施形態を図1〜図6に基づいて説明する。本実施形態
の多光軸光電センサは、別々に設けたセンサ本体10
と、リフレクタ20とを対向配置して備える。センサ本
体10は、図1の上下方向に延びた柱状をなし、そのセ
ンサ本体10のうちリフレクタ20との対向面には、複
数の投受光素子が一列に並べて設けられている。これら
投受光素子は、例えば、列の上端に配置した1つの受光
素子12と、その受光素子12の下方に配列した複数
(例えば、本実施形態では3つ)の投光素子11とから
なり、各素子11,12に連なる配線が、図示しない信
号処理回部に接続されている。また、投光素子11は、
例えば、拡散光を投光するLEDで構成されている。一
方、受光素子12は、受けた光の受光量に応じたレベル
の受光信号を前記信号処理部に出力する。さらに、信号
処理部は、受光信号が予め設定した所定の基準値を下回
った場合に、検出信号を出力する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS <First Embodiment> An embodiment of the present invention will be described below with reference to FIGS. The multi-optical axis photoelectric sensor according to the present embodiment includes a sensor body 10 provided separately.
And a reflector 20 are provided so as to face each other. The sensor main body 10 has a columnar shape extending in the vertical direction in FIG. 1, and a plurality of light emitting and receiving elements are arranged in a line on a surface of the sensor main body 10 facing the reflector 20. These light emitting and receiving elements include, for example, one light receiving element 12 arranged at the upper end of a row, and a plurality (for example, three in this embodiment) of light emitting elements 11 arranged below the light receiving element 12. Wirings connected to the elements 11 and 12 are connected to a signal processing circuit (not shown). The light emitting element 11 is
For example, it is configured by an LED that emits diffused light. On the other hand, the light receiving element 12 outputs a light receiving signal of a level corresponding to the amount of received light to the signal processing unit. Further, the signal processing unit outputs a detection signal when the light receiving signal falls below a predetermined reference value set in advance.

【0015】さて、リフレクタ20は、各投光素子11
に対応させた複数(本実施形態では3つ)のリフレクタ
構成体21を、水平方向(投受光素子11,12が並ぶ
素子配列方向と直交する方向)に連ねた構成になってい
る。
Now, the reflector 20 is provided for each of the light projecting elements 11.
(In this embodiment, three) in a horizontal direction (a direction orthogonal to the element arrangement direction in which the light emitting and receiving elements 11 and 12 are arranged).

【0016】ここで、図2には、1つのリフレクタ構成
体21を、他のリフレクタ構成体21から分離して示し
てある。同図に示すように、リフレクタ構成体21は、
角柱体の両端に、互いの向きが90度異なる一対の反射
面22,23を形成し、それらのうち図2において上側
に示した第1の反射面22は、水平方向に沿って、複数
の小反射面24を連ねた波形構造をなしている。また、
それら隣り合った小反射面24,24同士は、互いの向
きが90度異なっている。
Here, FIG. 2 shows one reflector component 21 separately from the other reflector components 21. As shown in FIG.
At each end of the prism, a pair of reflecting surfaces 22 and 23 whose directions are different from each other by 90 degrees are formed, and among them, the first reflecting surface 22 shown on the upper side in FIG. It has a wavy structure in which small reflecting surfaces 24 are connected. Also,
The directions of the adjacent small reflection surfaces 24 are different from each other by 90 degrees.

【0017】従って、図2において下側に示した第2の
反射面23と、第1の反射面22の隣合った一対の小反
射面24,24とは、図3(A)に模式化して示すよう
に、互いの向きが90度異なった直交三面を構成する。
ここで、図3(A)と図3(B)に比較して示すよう
に、前記直交三面に向けて投光された光は、その直交三
面を構成する各面23,24,24で1回ずつ反射して
戻ってきたときには、投光された光の光軸J1(図3参
照)と、戻ってきた光の光軸J2(図3参照)とが、必
ず並行する関係を有する。
Accordingly, the second reflecting surface 23 shown on the lower side in FIG. 2 and a pair of small reflecting surfaces 24 adjacent to the first reflecting surface 22 are schematically shown in FIG. As shown, three orthogonal planes having directions mutually different by 90 degrees are formed.
Here, as shown in comparison with FIG. 3A and FIG. 3B, the light projected toward the three orthogonal planes is one on each of the planes 23, 24, and 24 constituting the three orthogonal planes. When reflected and returned each time, the optical axis J1 of the projected light (see FIG. 3) and the optical axis J2 of the returned light (see FIG. 3) always have a parallel relationship.

【0018】これをリフレクタ構成体21で説明する
と、図4に示すように、垂直方向に対して斜め向きにな
ってリフレクタ構成体21の第2の反射面23に向かっ
た光軸J1の光は、その第2の反射面23と一対の小反
射面24,24とで反射することで、前記光軸J1に対
して所定量だけオフセットして並行した光軸J2の光に
なって戻ってくる。又は、図5に示すように、水平方向
に対して斜め向きになってリフレクタ構成体21の第2
の反射面23に向かった光軸J1の光も同様に、前記光
軸J1に対して所定量だけオフセットして並行した光軸
J2の光になって戻ってくる。
This will be described with reference to the reflector structure 21. As shown in FIG. 4, the light of the optical axis J1 which is oblique to the vertical direction and travels toward the second reflection surface 23 of the reflector structure 21 is shown in FIG. The light is reflected by the second reflecting surface 23 and the pair of small reflecting surfaces 24, 24, and is returned as light of the optical axis J2 parallel to the optical axis J1 offset by a predetermined amount. . Alternatively, as shown in FIG. 5, the second
Similarly, the light of the optical axis J1 toward the reflection surface 23 returns as the light of the optical axis J2 parallel to the optical axis J1 offset by a predetermined amount.

【0019】ここで、前記両光軸J1,J2のオフセッ
ト量は、各リフレクタ構成体21の長さに対応してお
り、本実施形態では、各リフレクタ構成体21の長さ
を、対応した各投光素子11から受光素子12までの距
離に基づいて設定してある。そして、図1において右側
から、リフレクタ構成体21を長いもの順に、横並びに
並べてリフレクタ20が構成されている。
Here, the offset amount between the two optical axes J1 and J2 corresponds to the length of each reflector structure 21, and in the present embodiment, the length of each reflector structure 21 corresponds to the corresponding length. It is set based on the distance from the light projecting element 11 to the light receiving element 12. Then, the reflector 20 is configured by arranging the reflector components 21 side by side in the order of length from the right side in FIG.

【0020】なお、リフレクタ20は、図6に示すよう
に、ケース50に収容されて用いられ、そのケース50
は、各リフレクタ構成体21の長手方向の中間部分を覆
い、かつ、リフレクタ構成体21の端部寄り位置との対
向部に窓51を形成した構造をなしている。これによ
り、投光素子11からの光が、リフレクタ20の外面で
反射することを防いである。
The reflector 20 is used by being housed in a case 50 as shown in FIG.
Has a structure in which an intermediate portion in the longitudinal direction of each reflector component 21 is covered, and a window 51 is formed in a portion facing a position near an end of the reflector component 21. This prevents light from the light emitting element 11 from being reflected on the outer surface of the reflector 20.

【0021】次に、本実施形態の多光軸光電センサの作
用・効果を説明する。多光軸光電センサの起動スイッチ
をオンすると、各投光素子11から拡散光が投光され
て、図1に示すように、各リフレクタ構成体21の下端
部に入光する。そして、各リフレクタ構成体21の第2
の反射面23で図1の上方に反射され、所定量だけオフ
セットした位置にある第1の反射面22において、隣合
った一対の小反射面24,24で反射して、各リフレク
タ構成体21の上端部から出光する。
Next, the operation and effect of the multi-optical axis photoelectric sensor of this embodiment will be described. When the start switch of the multi-optical axis photoelectric sensor is turned on, diffused light is emitted from each light emitting element 11 and enters the lower end of each reflector structure 21 as shown in FIG. Then, the second of each reflector structure 21
1 is reflected upward in FIG. 1 by the first reflecting surface 22 at a position offset by a predetermined amount, and reflected by a pair of adjacent small reflecting surfaces 24, 24 so that each of the reflector structures 21 Light is emitted from the upper end of the.

【0022】ここで、各リフレクタ構成体21に入光し
た光の光軸J1と、出光した光の光軸J2とは、リフレ
クタ構成体21の長さに応じた量だけオフセットして並
行した関係になる。これにより、各リフレクタ構成体2
1が、対応した投光素子11から下端部に受けた光は、
仮に、センサ本体10と各リフレクタ構成体21とが、
ずれた配置になっていても、各リフレクタ構成体21の
上端部から必ず受光素子12に向かう。これにより、セ
ンサ本体10とリフレクタ20との間に、投受光素子を
繋ぐ並行した複数の光軸が形成される。そして、この多
光軸光電センサのうちセンサ本体10とリフレクタ20
との間に、検出物が位置すると、光が遮られて、受光素
子12の受光量が減るから、これにより、検出物が検出
される。
Here, the optical axis J1 of the light entering each reflector component 21 and the optical axis J2 of the emitted light are offset in parallel by an amount corresponding to the length of the reflector component 21 and are parallel. become. Thereby, each reflector structure 2
1 receives light from the corresponding light emitting element 11 at the lower end,
Assuming that the sensor body 10 and each of the reflector components 21 are
Even if it is shifted, it always goes to the light receiving element 12 from the upper end of each reflector structure 21. Thereby, a plurality of parallel optical axes connecting the light emitting and receiving elements are formed between the sensor body 10 and the reflector 20. The sensor body 10 and the reflector 20 of the multi-optical axis photoelectric sensor
When the detected object is located between the positions, the light is blocked, and the amount of light received by the light receiving element 12 is reduced. Thus, the detected object is detected.

【0023】なお、各リフレクタ20が、対応していな
い投光素子11から一端に受けて他端から出光した光
は、受光素子12とは異なる方向へ反射する。
The light received by one end of each reflector 20 from the uncorresponding light projecting element 11 and emitted from the other end is reflected in a direction different from that of the light receiving element 12.

【0024】このように本実施形態の多光軸光電センサ
によれば、投光素子11から出射された光は、センサ本
体10及びリフレクタ20の間で1往復するだけである
から、従来のものに比べて往復回数が少なく、従来のも
ののようにハーフミラーを介すこともないから、光の減
衰が少ない。従って、受光素子12への十分な受光量が
確保され、S/N比が高い検出を行うことができる。し
かも、本実施形態の多光軸光電センサは、複数の受光素
子12に対して1つの投光素子11を設けた構成にした
から、受光素子と同じ数の投光素子を備えた従来のもの
よりも、素子数削減によるコストダウンを図ることがで
きる。
As described above, according to the multi-optical axis photoelectric sensor of the present embodiment, the light emitted from the light projecting element 11 travels only one round trip between the sensor body 10 and the reflector 20. The number of reciprocations is smaller than that of the prior art, and the light does not pass through a half mirror unlike the conventional one, so that light attenuation is small. Therefore, a sufficient amount of light received by the light receiving element 12 is secured, and detection with a high S / N ratio can be performed. Moreover, the multi-optical axis photoelectric sensor of the present embodiment has a configuration in which one light projecting element 11 is provided for a plurality of light receiving elements 12, so that the conventional one having the same number of light projecting elements as the light receiving elements. Rather, the cost can be reduced by reducing the number of elements.

【0025】<第2実施形態>本実施形態は、図7に示
されており、前記第1実施形態の投光素子と受光素子と
を入れ替えた構成をなしている。即ち、センサ本体10
に一列に設けた複数の投受光素子は、上端に配置した1
つの投光素子11と、その下側に配列した複数の受光素
子12とからなる。その他の構成については上記第1実
施形態と同じであるため、同じ構成については、同一符
号を付し、重複する説明は省略する。
<Second Embodiment> This embodiment is shown in FIG. 7 and has a configuration in which the light emitting element and the light receiving element of the first embodiment are interchanged. That is, the sensor body 10
The plurality of light emitting and receiving elements arranged in a row
It comprises one light emitting element 11 and a plurality of light receiving elements 12 arranged below the light emitting element 11. Other configurations are the same as those of the first embodiment, and thus the same configurations are denoted by the same reference numerals and overlapping description will be omitted.

【0026】本実施形態の多光軸光電センサによれば、
前記第1実施形態に対して、光が逆向きとなり、複数の
投光素子11からの光が、リフレクタ20にて集光され
て、受光素子12に受光される。これにより、前記第1
実施形態と同様の効果を奏する。
According to the multi-optical axis photoelectric sensor of this embodiment,
With respect to the first embodiment, the light is turned in the opposite direction, and the light from the plurality of light projecting elements 11 is collected by the reflector 20 and received by the light receiving element 12. Thereby, the first
An effect similar to that of the embodiment is obtained.

【0027】なお、本発明は、前記実施形態に限定され
るものではなく、上記第1及び第2実施形態以外にも要
旨を逸脱しない範囲内で種々変更して実施することがで
きる。
It should be noted that the present invention is not limited to the above-described embodiment, and can be implemented with various modifications other than the first and second embodiments without departing from the scope of the invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る多光軸光電センサ
の斜視図
FIG. 1 is a perspective view of a multi-optical axis photoelectric sensor according to a first embodiment of the present invention.

【図2】1つのリフレクタ構成体を示した斜視図FIG. 2 is a perspective view showing one reflector structure.

【図3】直交三面を示した斜視図FIG. 3 is a perspective view showing three orthogonal surfaces.

【図4】リフレクタ構成体の側面図FIG. 4 is a side view of a reflector structure.

【図5】リフレクタ構成体を斜め上方から見た斜視図FIG. 5 is a perspective view of the reflector assembly viewed from obliquely above.

【図6】カバーを示した側断面図FIG. 6 is a side sectional view showing a cover;

【図7】第2実施形態に係る多光軸光電センサの斜視図FIG. 7 is a perspective view of a multi-optical axis photoelectric sensor according to a second embodiment.

【図8】従来の多光軸光電センサの側面図FIG. 8 is a side view of a conventional multi-optical axis photoelectric sensor.

【符号の説明】[Explanation of symbols]

10…センサ本体 11…投光素子 12…受光素子 20…リフレクタ 21…リフレクタ構成体 22,23…反射面 24…小反射面 DESCRIPTION OF SYMBOLS 10 ... Sensor main body 11 ... Light projection element 12 ... Light receiving element 20 ... Reflector 21 ... Reflector structure 22, 23 ... Reflection surface 24 ... Small reflection surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 投光素子及び受光素子を備えたセンサ本
体にリフレクタを対向配置して、前記リフレクタが前記
投光素子から受けた光を前記受光素子に向けて反射する
ことで、前記センサ本体と前記リフレクタとの間に複数
の光軸を形成し、前記受光素子の受光量に基づいて前記
光軸の遮光状態を検出する多光軸光電センサにおいて、 前記投光素子の1つに対して複数の前記受光素子を設
け、前記複数の受光素子を一列に並べた延長線上に前記
投光素子を配し、 前記リフレクタは、前記複数の受光素子に対応した複数
のリフレクタ構成体を、前記投受光素子が並ぶ素子配列
方向と直交する方向に並べて構成され、 前記各リフレクタ構成体は、対応した前記各受光素子か
ら前記投光素子までの距離に応じた長さをなして、前記
素子配列方向に延び、かつ、その両端に、互いの向きが
90度異なる一対の反射面を備え、さらに、前記反射面
のいずれか一方は、互いの向きが90度異なる小反射面
を、交互に複数連ねた波形構造をなしており、 前記各リフレクタ構成体の一方の反射面を、横並びにし
て、前記投光素子から出射した拡散光が、全ての前記リ
フレクタ構成体の一方の反射面に照射されて、他方の反
射面から前記各受光素子に向かうようにしたことを特徴
とする多光軸光電センサ。
1. A sensor body having a light emitting element and a light receiving element, wherein a reflector is disposed to face the sensor body, and the reflector reflects light received from the light emitting element toward the light receiving element, whereby the sensor body is provided. And a plurality of optical axes formed between the reflector and the light-receiving element, a multi-optical axis photoelectric sensor for detecting a light-shielded state of the optical axis based on the amount of light received by the light-receiving element; A plurality of the light receiving elements are provided, and the light emitting element is arranged on an extension line in which the plurality of the light receiving elements are arranged in a line. The reflector includes a plurality of reflector structures corresponding to the plurality of the light receiving elements. The light-receiving elements are arranged side by side in a direction orthogonal to the element arrangement direction, and each of the reflector structures has a length corresponding to a distance from each of the corresponding light-receiving elements to the light-projecting element, and is arranged in the element arrangement direction. In And at both ends thereof, a pair of reflecting surfaces whose directions are different from each other by 90 degrees, and one of the reflecting surfaces is a plurality of small reflecting surfaces whose directions are different from each other by 90 degrees. It has a waveform structure, one reflective surface of each of the reflector components, side-by-side, diffused light emitted from the light emitting element is irradiated to one reflective surface of all the reflector components, A multi-optical axis photoelectric sensor, wherein the other reflection surface is directed toward each of the light receiving elements.
【請求項2】 投光素子及び受光素子を備えたセンサ本
体にリフレクタを対向配置して、前記リフレクタが前記
投光素子から受けた光を前記受光素子に向けて反射する
ことで、前記センサ本体と前記リフレクタとの間に複数
の光軸を形成し、前記受光素子の受光量に基づいて前記
光軸の遮光状態を検出する多光軸光電センサにおいて、 前記受光素子の1つに対して複数の前記投光素子を設
け、前記複数の投光素子を一列に並べた延長線上に前記
受光素子を配し、 前記リフレクタは、前記複数の投光素子に対応した複数
のリフレクタ構成体を、前記投受光素子が並ぶ素子配列
方向と直交する方向に並べて構成され、 前記各リフレクタ構成体は、対応した前記各投光素子か
ら前記受光素子までの距離に応じた長さをなして、前記
素子配列方向に延び、かつ、その両端に、互いの向きが
90度異なる一対の反射面を備え、さらに、前記反射面
のいずれか一方は、互いの向きが90度異なる小反射面
を、交互に複数連ねた波形構造をなしており、 前記各リフレクタ構成体の一方の反射面を、横並びに配
する一方で、段違いに配された他方の反射面に、各投光
素子から出射された光を照射して、その光が、前記各リ
フレクタ構成体の他方の反射面から、前記受光素子に向
かうようにしたことを特徴とする多光軸光電センサ。
2. A sensor body having a light emitting element and a light receiving element, wherein a reflector is disposed to face the sensor body, and the reflector reflects the light received from the light emitting element toward the light receiving element, whereby the sensor body is provided. A plurality of optical axes formed between the light receiving element and the reflector, and detecting a light blocking state of the optical axis based on the amount of light received by the light receiving element; The light emitting element is provided, and the light receiving element is arranged on an extension line in which the plurality of light emitting elements are arranged in a line.The reflector includes a plurality of reflector structures corresponding to the plurality of light emitting elements. The light emitting and receiving elements are arranged side by side in a direction orthogonal to the element array direction, and each of the reflector structures has a length corresponding to a distance from each of the corresponding light emitting elements to the light receiving element, and the element array is formed. Extend in the direction And at both ends thereof, a pair of reflecting surfaces whose directions are different from each other by 90 degrees, and one of the reflecting surfaces is a plurality of small reflecting surfaces whose directions are different from each other by 90 degrees. It has a waveform structure, while irradiating the light emitted from each light-emitting element to the other reflecting surface arranged stepwise, while arranging one reflecting surface of each reflector structure side by side Wherein the light is directed from the other reflection surface of each of the reflector structures to the light receiving element.
JP2001024160A 2001-01-31 2001-01-31 Multi-optical-axis photoelectric sensor Pending JP2002228763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001024160A JP2002228763A (en) 2001-01-31 2001-01-31 Multi-optical-axis photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001024160A JP2002228763A (en) 2001-01-31 2001-01-31 Multi-optical-axis photoelectric sensor

Publications (1)

Publication Number Publication Date
JP2002228763A true JP2002228763A (en) 2002-08-14

Family

ID=18889341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001024160A Pending JP2002228763A (en) 2001-01-31 2001-01-31 Multi-optical-axis photoelectric sensor

Country Status (1)

Country Link
JP (1) JP2002228763A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103969A (en) * 2006-10-19 2008-05-01 Takenaka Electronic Industrial Co Ltd Reflection sensor
JP2008172072A (en) * 2007-01-12 2008-07-24 Yamaha Motor Co Ltd Nozzle exchanger and surface mounting equipment
JP2008294072A (en) * 2007-05-22 2008-12-04 Yamaha Motor Co Ltd Component recognizing device, surface mounting machine, and component testing apparatus
JP2010501861A (en) * 2006-08-22 2010-01-21 エムイーアイ インコーポレーテッド Photodetector device for document acceptor
CN103033850A (en) * 2011-09-29 2013-04-10 克朗斯股份公司 Triggering light grid and method for determining the position of containers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501861A (en) * 2006-08-22 2010-01-21 エムイーアイ インコーポレーテッド Photodetector device for document acceptor
JP2008103969A (en) * 2006-10-19 2008-05-01 Takenaka Electronic Industrial Co Ltd Reflection sensor
JP2008172072A (en) * 2007-01-12 2008-07-24 Yamaha Motor Co Ltd Nozzle exchanger and surface mounting equipment
JP2008294072A (en) * 2007-05-22 2008-12-04 Yamaha Motor Co Ltd Component recognizing device, surface mounting machine, and component testing apparatus
CN103033850A (en) * 2011-09-29 2013-04-10 克朗斯股份公司 Triggering light grid and method for determining the position of containers

Similar Documents

Publication Publication Date Title
JP4043128B2 (en) Optical scanning touch panel
ES2959509T3 (en) Automatically movable cleaning device
JP6032416B2 (en) Laser radar
JPH0815413A (en) Distance measuring apparatus
JP6737296B2 (en) Object detection device
JP6907947B2 (en) Optical scanning type object detection device
JP2690680B2 (en) Photoelectric encoder
JP5336029B2 (en) Retroreflective photoelectric switch
CN115267738A (en) Laser radar
JP2002228763A (en) Multi-optical-axis photoelectric sensor
JPH09212303A (en) Photoconductor and optical position detector
JP5251641B2 (en) Photoelectric sensor
US5867263A (en) Laser survey instrument having a reflection light blocking means
JP4114771B2 (en) Reflector and reflector reflective photoelectric switch
JP2002228762A (en) Multi-optical-axis photoelectric sensor
JP4531081B2 (en) Optical scanning touch panel
JPH10255611A (en) Recurrent reflex type photoelectric sensor
KR100976299B1 (en) Bi-directional optical module and laser range finder using the same
JP6036116B2 (en) Laser radar equipment
JPWO2017065048A1 (en) Optical scanning type object detection device
WO2022190704A1 (en) Light detecting device
WO2017065049A1 (en) Optical-scanning-type object detection device
CN219085135U (en) Laser radar module and application light reflecting assembly, cleaning device and self-moving device thereof
JPH10255612A (en) Recurrent reflex type photoelectric sensor
CN218978799U (en) Cleaning device, light-transmitting cover and self-moving device applied to same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710