JP2002228414A - Method and apparatus for measuring three-dimensional position - Google Patents

Method and apparatus for measuring three-dimensional position

Info

Publication number
JP2002228414A
JP2002228414A JP2001023975A JP2001023975A JP2002228414A JP 2002228414 A JP2002228414 A JP 2002228414A JP 2001023975 A JP2001023975 A JP 2001023975A JP 2001023975 A JP2001023975 A JP 2001023975A JP 2002228414 A JP2002228414 A JP 2002228414A
Authority
JP
Japan
Prior art keywords
measurement
measuring
light
line
line image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001023975A
Other languages
Japanese (ja)
Inventor
Masaru Yokoyama
大 横山
Yoshihiro Noguchi
良広 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2001023975A priority Critical patent/JP2002228414A/en
Publication of JP2002228414A publication Critical patent/JP2002228414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus wherein, when the working drawing of a measuring site is created, a measurement in a high place and an operation for installing a measuring point are not required, labor for creating the working drawing is reduced and the operation can be rationalized. SOLUTION: A measuring device 10 is installed on the center line 20 of a pipe corridor (Step 10). A line laser is radiated from a laser oscillator 11. An optical plane which is crossed perpendicularly with the center line 20 of the pipe corridor is created. In succession, a staff 40 is installed in such a way that a reference point 50 is situated on the optical plane (Step 12). Then, the reference point 50 and a line image on the surface of the pipe corridor are photographed by a digital camera 60 (Step 14). After photographed image data has been acquired, a laser range finder 14 is moved in the direction of the center line 20 of the pipe corridor (Step 22), and the movement amount of the measuring device 10 is calculated (Step 24). On the basis of the photographed image data, the position in the measuring point of the pipe corridor is calculated by a photographic measuring method (Step 20).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は3次元位置計測方法
及び装置に係り、特にデジタル画像から施工図を作成す
るために用いる3次元位置計測方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a three-dimensional position, and more particularly to a method and an apparatus for measuring a three-dimensional position used for creating a construction drawing from a digital image.

【0002】[0002]

【従来の技術】従来、管廊部のような大きな既設物の3
次元位置を計測する方法として次のような方法が用いら
れている。
2. Description of the Related Art Conventionally, a large existing structure such as a corridor is used.
The following method is used as a method of measuring a dimensional position.

【0003】管廊部は下水処理場の水槽側面に位置し、
長手方向の長さが約50mの直方体の形状をしている。
この管廊部の3次元位置を計測する方法は、配管やダク
ト等の床面からの高さ、壁面からの出入り長さ等をコン
ベックスによる手計測によって測定し、記録していた。
その後、現場のメモ等といっしょにして事務所に持ち帰
り、計測結果を参考に施工図を作成していた。
[0003] The corridor is located on the side of the tank of the sewage treatment plant,
It has a rectangular parallelepiped shape with a length in the longitudinal direction of about 50 m.
In the method of measuring the three-dimensional position of the pipe corridor, the height of a pipe or a duct from the floor surface, the length of access from a wall surface, and the like are measured and recorded by hand measurement using a convex.
After that, he took it back to the office together with notes on site, and created a construction drawing with reference to the measurement results.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来のコン
ベックスによる手計測では、配管の床面からの高さ等を
計測するのみで管廊部全体を一つの座標系で計測できな
いという問題があった。また、コンベックスによる手計
測は労力を要し、高所で計測を行うため危険を伴ってい
た。
However, in the conventional hand measurement using a convex, there is a problem that the entire pipe section cannot be measured in one coordinate system only by measuring the height of the pipe from the floor. . In addition, hand measurement using a convex is labor intensive and involves danger because measurement is performed at a high place.

【0005】この解決策として、測定用3次元計測機
(トータルステーション)を用いる方法が考えられる
が、この方法は計測点を設置するのに高所にターゲット
を取り付ける必要があり危険を伴う。
As a solution to this problem, a method using a three-dimensional measuring machine for measurement (total station) is conceivable. However, this method requires a target to be mounted at a high place to set a measuring point, and involves a danger.

【0006】本発明はこのような事情に鑑みてなされた
もので、測定現場の施工図を作成する際に、高所での計
測や計測点設置の作業が不要となり、施工図を作成する
労力を削減し、作業を合理化することができる3次元位
置計測方法及び装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and when creating a construction drawing at a measurement site, the work of measuring at a high place and installing measurement points is not required, and the labor for creating the construction drawing is eliminated. It is an object of the present invention to provide a three-dimensional position measurement method and apparatus capable of reducing the number of operations and streamlining work.

【0007】[0007]

【課題を解決するための手段】本発明は、前記目的を達
成するために、(a)所定の測定面を形成する光を既設
物に照射し、(b)前記光によって既設物の表面上に描
かれたライン画像を撮像手段によって撮像し、(c)前
記撮像手段によって得られたライン画像の前記測定面上
の平面座標を写真計測法によって算出し、(d)前記所
定の測定面を形成する光を、前記測定面と直交する方向
に移動させるとともに、その移動位置を測定し、前記
(a)〜(d)の処理を繰り返して前記既設物の3次元
位置を計測することを特徴としている。
In order to achieve the above object, the present invention provides (a) irradiating a light which forms a predetermined measurement surface on an existing object, and (b) applying the light to the surface of the existing object. (C) calculating the plane coordinates on the measurement surface of the line image obtained by the imaging device by a photographic measurement method, and (d) calculating the predetermined measurement surface. The light to be formed is moved in a direction orthogonal to the measurement surface, the movement position is measured, and the processing of (a) to (d) is repeated to measure the three-dimensional position of the existing object. And

【0008】本発明によれば、所定の測定面を形成する
光を既設物に照射し、測定面に対して撮像して前記所定
の測定面を形成する光によって前記既設物の表面にライ
ン状に現れる光をライン画像として取り込む。そして、
照明手段を測定面に対して移動させ、照明手段が所定間
隔移動する毎に上記ライン画像を取り込み、これによっ
て得たライン画像に基づいて前記測定面上における各ラ
イン画像の平面座標を写真計測法により算出する。ま
た、前記ライン画像の取り込みを行ったときの照明手段
の移動位置を検出し、この移動位置に基づいて各ライン
画像に奥行き方向の座標情報を付加し、既設物の表面の
3次元座標を算出する。これにより、管廊部全体のデー
タを計測する作業の容易化、合理化を図ることができ
る。
According to the present invention, an existing object is irradiated with light forming a predetermined measurement surface, and an image is formed on the measurement surface to form a line on the surface of the existing object by the light forming the predetermined measurement surface. Is captured as a line image. And
The illuminating means is moved with respect to the measurement surface, and the line image is fetched every time the illuminating means moves at a predetermined interval, and the planar coordinates of each line image on the measurement surface are determined based on the obtained line image by a photometric method. It is calculated by: Further, the moving position of the lighting means when the line image is captured is detected, and coordinate information in the depth direction is added to each line image based on the moving position to calculate three-dimensional coordinates of the surface of the existing object. I do. Thereby, the work of measuring the data of the entire corridor can be facilitated and rationalized.

【0009】[0009]

【発明の実施の形態】以下添付図面に従って本発明に係
る3次元位置計測装置の好ましい実施の形態について詳
説する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a three-dimensional position measuring apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.

【0010】図1は本発明に係る3次元位置計測装置の
実施の形態を示す構成図である。図1に示すように、本
発明に係る3次元位置計測装置は、主として計測装置1
0と、標尺40と、デジタルカメラ60から構成され
る。
FIG. 1 is a block diagram showing an embodiment of a three-dimensional position measuring apparatus according to the present invention. As shown in FIG. 1, a three-dimensional position measuring device according to the present invention mainly includes a measuring device 1.
0, a staff 40, and a digital camera 60.

【0011】図2に示すように計測装置10は、レーザ
発振機11、デジタルカメラ用のデータ読み取り器1
2、制御用PC13、及びレーザ式距離計14が運搬用
台15上に設置されて構成されている。
As shown in FIG. 2, a measuring device 10 comprises a laser oscillator 11, a data reader 1 for a digital camera.
2. A control PC 13 and a laser type distance meter 14 are installed on a transport table 15.

【0012】計測対象物は、この実施の形態では下水処
理場の管廊のような横長構造物の内部全体であるが、こ
れに限らず、移動不能な大型の既設物が対象となる。
In this embodiment, the object to be measured is the entire inside of a horizontally long structure such as a pipe in a sewage treatment plant. However, the present invention is not limited to this.

【0013】上記管廊の計測時には、管廊の床の長手方
向に墨だし線(管廊中心線)20を引き、また管廊中心
線20上にターゲット(基準計測点)70を設置する。
計測装置10は、前記管廊中心線20上に設置され、管
廊中心線20に沿って移動させられる。
At the time of measurement of the above-mentioned corridor, an ink mark line (corridor center line) 20 is drawn in the longitudinal direction of the corridor floor, and a target (reference measurement point) 70 is set on the corridor center line 20.
The measuring device 10 is installed on the gallery centerline 20 and is moved along the gallery centerline 20.

【0014】レーザ発振機11は、ラインレーザを照射
し、計測装置10の移動する管廊中心線20の方向(Y
方向)と垂直に交わる光面(X−Z面)を作成する。こ
のラインレーザの光面は、管廊の表面に照射され、管廊
の表面にライン状の輝線を描く。
The laser oscillator 11 irradiates a line laser, and the direction of the center line 20 (Y
A light plane (XZ plane) that intersects perpendicularly with the direction is created. The light surface of the line laser is applied to the surface of the gallery, and draws a line-shaped bright line on the surface of the gallery.

【0015】標尺40には互いの位置関係を明確に設定
した基準点50が配置されている。標尺40上の基準点
50はラインレーザが構成する光面上に設置され、測定
面における管廊の平面座標を写真計測する際の長さの基
準となる。
On the staff 40, there are arranged reference points 50 whose positional relationship is clearly set. The reference point 50 on the staff 40 is set on the optical surface formed by the line laser, and serves as a reference for the length when the plane coordinates of the tube on the measurement surface are photographed.

【0016】レーザ式距離計14は、計測装置10の移
動方向、即ちラインレーザが作成する光面と垂直にレー
ザ光を発振するように計測装置10に組みこまれ、基準
計測点70からの距離を計測し、計測装置10の移動量
を算出する。
The laser type distance meter 14 is incorporated in the measuring device 10 so as to oscillate a laser beam in the direction of movement of the measuring device 10, that is, perpendicular to the light plane created by the line laser, and has a distance from the reference measuring point 70. Is measured, and the movement amount of the measuring device 10 is calculated.

【0017】ラインレーザは光面を構成し、その光面は
管廊表面で反射し、デジタルカメラ60において、ライ
ン状の反射光は反射位置に対応する画素によって受光さ
れる。
The line laser forms a light surface, and the light surface is reflected on the surface of the tube. In the digital camera 60, the linearly reflected light is received by a pixel corresponding to the reflection position.

【0018】上記デジタルカメラ60によって得られる
撮影画像データは、データ読み取り器12によって読み
取られ、制御用PC13へ転送される。制御用PC13
は、転送された画像データと標尺40を撮影したときの
各基準点50の結像面上の位置データ等に基づいて、測
定面上の管廊の2次元座標を写真計測法によって算出す
る。
The photographed image data obtained by the digital camera 60 is read by the data reader 12 and transferred to the control PC 13. Control PC 13
Calculates the two-dimensional coordinates of the gallery on the measurement surface based on the transferred image data and the position data of the respective reference points 50 on the imaging surface when the staff 40 is photographed, by a photographic measurement method.

【0019】図3に示すように、本発明に係る3次元位
置計測装置は、写真計測法で管廊の各断面(X、Z座
標)を、レーザ式距離計14で各断面間の移動量(Y座
標)を計測し、各計測結果を統合し管廊の3次元座標
(X、Y、Z座標)を算出する。
As shown in FIG. 3, in the three-dimensional position measuring apparatus according to the present invention, each section (X, Z coordinates) of the corridor is measured by the photometric method, and the distance between the sections is measured by the laser range finder 14. (Y coordinate) is measured, and the measurement results are integrated to calculate three-dimensional coordinates (X, Y, Z coordinates) of the duct.

【0020】図4は本発明に係る3次元位置計測装置に
よる計測の処理手順を示すフローチャートである。
FIG. 4 is a flowchart showing the procedure of measurement by the three-dimensional position measuring apparatus according to the present invention.

【0021】管廊部を計測する際に、まず管廊の床の長
手方向に管廊中心線20を引き、基準計測点70と計測
装置10を管廊中心線20上に設置する(ステップ1
0)。
When measuring the gallery, first, the gallery centerline 20 is drawn in the longitudinal direction of the gallery floor, and the reference measurement point 70 and the measuring device 10 are set on the gallery centerline 20 (step 1).
0).

【0022】続いて、レーザ発振機11からラインレー
ザを照射し、管廊中心線20の方向(Y方向)と垂直に
交わる光面(X−Z面)を作成する。
Subsequently, a line laser is irradiated from the laser oscillator 11 to create a light plane (XZ plane) perpendicular to the direction of the tube centerline 20 (Y direction).

【0023】次に、標尺40上の基準点50がラインレ
ーザの構成する光面上に位置するように、標尺40を設
置する(ステップ12)。
Next, the staff 40 is set so that the reference point 50 on the staff 40 is positioned on the optical surface of the line laser (step 12).

【0024】ラインレーザが構成する光面上で、標尺4
0に配置された基準点50及び管廊表面に現れるライン
画像をデジタルカメラ60で撮影する(ステップ1
4)。
On the optical surface formed by the line laser, the staff 4
The digital camera 60 captures a line image appearing on the reference point 50 located at 0 and the surface of the gallery (step 1).
4).

【0025】デジタルカメラ60によって得られた管廊
部の各断面における撮影画像データは、データ読み取り
器12によって制御用PC13へ転送される。
The photographed image data in each section of the tube section obtained by the digital camera 60 is transferred to the control PC 13 by the data reader 12.

【0026】図5に示すように、デジタルカメラ60に
よって得られた撮影画像データと、レーザ式距離計14
により得られた移動量は、制御用PC13へ転送され、
対応付けて保存される(ステップ16)。
As shown in FIG. 5, the image data obtained by the digital camera 60 is
Is transferred to the control PC 13,
It is stored in association (step 16).

【0027】管廊部の計測を終了するか否かを判断し
(ステップ18)、終了しない場合には計測装置10を
管廊中心線20方向に向けて移動させ、配管が曲がって
いるような場所で止める(ステップ22)。レーザ式距
離計14により基準計測点70からの移動前後の距離を
計測することで、計測装置10の移動量を算出する(ス
テップ24)。
It is determined whether or not to end the measurement in the corridor (step 18). If not, the measuring device 10 is moved toward the center line 20 of the corridor, and the pipe is bent. Stop at the location (step 22). The amount of movement of the measuring device 10 is calculated by measuring the distance before and after the movement from the reference measurement point 70 with the laser distance meter 14 (step 24).

【0028】管廊部の計測が終了するまで、デジタルカ
メラ60による撮影画像データの取得と、計測装置10
の移動量の算出を繰り返す(ステップ14、16、2
2、24)。
Until the measurement of the corridor is completed, acquisition of photographed image data by the digital camera 60 and the measurement device 10
(Steps 14, 16, 2)
2, 24).

【0029】管廊部の計測を終了する場合は(ステップ
18)、各基準点50間の長さや結像面上の位置を示す
データや、デジタルカメラ60の画素等に基づき、写真
計測法によって管廊の計測点の位置(X、Z座標)を算
出する(ステップ20)。
When the measurement of the corridor is completed (step 18), the photograph measurement method is used based on the data indicating the length between the reference points 50 and the position on the image plane, the pixels of the digital camera 60, and the like. The position (X, Z coordinates) of the measurement point in the canal is calculated (step 20).

【0030】なお、基準点50や管廊部の計測点は、図
6に示すように基準点50等の大まかな位置が画像上で
指示される。その後画像処理によって詳細な位置が自動
で判断される。
As for the reference point 50 and the measurement point of the corridor, a rough position such as the reference point 50 is indicated on the image as shown in FIG. Thereafter, a detailed position is automatically determined by image processing.

【0031】続いて、写真計測法とレーザ式距離計14
による計測によって得られた計測結果(Y座標)を統合
し管廊の3次元座標を算出する。
Subsequently, the photographic measurement method and the laser distance meter 14
The three-dimensional coordinates of the gallery are calculated by integrating the measurement results (Y coordinates) obtained by the measurement by the.

【0032】算出された3次元座標から管廊部全体のデ
ータ検出し、施工図面を作成する。例えば、撮影画像に
寸法の記入や、計測シートの作成等をしてCAD作図で
利用することができる。
From the calculated three-dimensional coordinates, data of the entire pipe gallery is detected, and a construction drawing is created. For example, dimensions can be entered in a captured image, a measurement sheet can be created, and the like can be used in CAD drawing.

【0033】本発明では、管廊部を輪切りにした各断面
を写真計測法によって算出し、各断面の距離をレーザ式
距離計14で計測する。そして、写真計測法により管廊
表面の各断面における計測点のX、Zの平面座標を得
て、計測装置10の位置(基準計測点70からの移動
量)からY方向の座標を得る。このように得られた管廊
表面の各断面における3次元座標から、管廊表面の全体
の3次元座標を算出することができる。
In the present invention, each section obtained by sectioning the gallery is calculated by a photographic measurement method, and the distance of each section is measured by the laser range finder 14. Then, the X and Z plane coordinates of the measurement point in each cross section of the tube wall surface are obtained by the photographic measurement method, and the Y-direction coordinates are obtained from the position of the measurement device 10 (movement amount from the reference measurement point 70). From the three-dimensional coordinates of each section of the gallery surface obtained in this way, the entire three-dimensional coordinates of the gallery surface can be calculated.

【0034】なお、本装置の性能は以下のようになる。
300万画素のデジタルカメラ60を使用して5mの範
囲を撮影した場合の分解能(1画素あたりの実長)は、
1画素あたり約2.5mmである。そこで、計測点の誤
差は5画素程度のずれがあると考えると、約12. 5m
mの計測精度となる。また、レーザ式距離計14の計測
誤差は約±2mmなので、レーザ式距離計14の移動量
については5mm以内の計測精度となる。さらに、レー
ザ発振機11は5mの距離で約2mmの線幅が生じるの
で、距離が5m以上の写真計測は十分な計測精度が得ら
れない。このような場合は、現場の画像とレーザ式距離
計14の計測結果等を5m以内の計測結果にまとめて添
付する方法がある。
The performance of the present apparatus is as follows.
The resolution (actual length per pixel) when shooting a range of 5 m using the digital camera 60 of 3 million pixels is
It is about 2.5 mm per pixel. Therefore, assuming that the error of the measurement point has a deviation of about 5 pixels, about 12.5 m
m measurement accuracy. In addition, since the measurement error of the laser distance meter 14 is about ± 2 mm, the measurement accuracy of the movement amount of the laser distance meter 14 is within 5 mm. Furthermore, since the laser oscillator 11 has a line width of about 2 mm at a distance of 5 m, sufficient measurement accuracy cannot be obtained for photograph measurement at a distance of 5 m or more. In such a case, there is a method of attaching the image of the site, the measurement result of the laser rangefinder 14 and the like to the measurement result within 5 m together.

【0035】図7に、本発明の他の実施の形態を示す。
本例はデジタルカメラ60等の撮影手段を用いた計測で
はなく、モータでレーザ式距離計14を回転させ、各角
度でのレーザ式距離計14と管廊と間の距離と、レーザ
式距離計14の回転量を用いて管廊部の計測を行う。こ
れにより、計測作業の自動化を図ることができる。
FIG. 7 shows another embodiment of the present invention.
In this example, the laser type distance meter 14 is rotated by a motor, instead of using a photographing means such as a digital camera 60, and the distance between the laser type distance meter 14 and the gallery at each angle is determined. The tube section is measured using the rotation amount of No. 14. This makes it possible to automate the measurement operation.

【0036】[0036]

【発明の効果】以上説明したように本発明に係る3次元
位置計測方法及び装置によれば、測定面を形成する光を
既設物に照射し、そのライン状の画像を撮像することに
より既設物の各光切断面上の平面座標を写真計測法によ
って算出し、また、測定面を形成する光を測定面と直交
する方向に移動させるとともに、その移動量を測定する
ことにより、既設物全体の3次元座標を算出することが
できる。これにより、高所での計測作業が不要となり、
計測作業の危険回避、作業の容易化、合理化を図ること
ができる。
As described above, according to the three-dimensional position measuring method and apparatus according to the present invention, the existing object is irradiated with the light forming the measurement surface and the linear image is taken. The plane coordinates on each light-section plane are calculated by a photographic measurement method, and the light forming the measurement plane is moved in a direction orthogonal to the measurement plane, and the amount of movement is measured. Three-dimensional coordinates can be calculated. This eliminates the need for measurement work at high altitudes,
Risk of measurement work can be avoided, work can be facilitated and rationalized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る3次元位置計測装置の実施の形態
を示す構成図
FIG. 1 is a configuration diagram showing an embodiment of a three-dimensional position measuring device according to the present invention.

【図2】計測装置の詳細な構成を示した図FIG. 2 is a diagram showing a detailed configuration of a measuring device.

【図3】本発明に係る3次元位置計測装置を用いた計測
方法の図
FIG. 3 is a diagram of a measuring method using the three-dimensional position measuring device according to the present invention.

【図4】本発明に係る3次元位置計測装置による計測の
処理手順を示すフローチャート
FIG. 4 is a flowchart showing a processing procedure of measurement by the three-dimensional position measuring device according to the present invention.

【図5】撮影画像データと移動量の管理方法のイメージ
FIG. 5 is a conceptual diagram of a method of managing photographed image data and a moving amount.

【図6】画像処理により基準点等の位置を判断する方法
を示した図
FIG. 6 is a diagram illustrating a method of determining a position of a reference point or the like by image processing.

【図7】本発明の他の実施の形態を示す図FIG. 7 is a diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…計測装置、11…レーザ発振機、12…データ読
み取り器、13…制御用PC、14…レーザ式距離計、
15…運搬用台、20…墨だし線(管廊中心線)、40
…標尺、50…基準点(マーク)、60…デジタルカメ
ラ、70…ターゲット(基準計測点)
10 measuring device, 11 laser oscillator, 12 data reader, 13 control PC, 14 laser rangefinder,
15 ... Transportation stand, 20 ... Ink line (center line of the gallery), 40
... Staff, 50 ... Reference point (mark), 60 ... Digital camera, 70 ... Target (reference measurement point)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a)所定の測定面を形成する光を既設
物に照射し、 (b)前記光によって既設物の表面上に描かれたライン
画像を撮像手段によって撮像し、 (c)前記撮像手段によって得られたライン画像の前記
測定面上の平面座標を写真計測法によって算出し、 (d)前記所定の測定面を形成する光を、前記測定面と
直交する方向に移動させるとともに、その移動位置を測
定し、 前記(a)〜(d)の処理を繰り返して前記既設物の3
次元位置を計測することを特徴とする3次元位置計測方
法。
(A) irradiating an existing object with light that forms a predetermined measurement surface; (b) taking an image of a line image drawn on the surface of the existing object by the light; (c) Calculating plane coordinates of the line image obtained by the imaging means on the measurement surface by a photographic measurement method; and (d) moving light forming the predetermined measurement surface in a direction orthogonal to the measurement surface. , The movement position is measured, and the above-mentioned processes (a) to (d) are repeated so that 3
A three-dimensional position measurement method characterized by measuring a three-dimensional position.
【請求項2】 所定の測定面を形成する光を既設物に照
射する照明手段と、 前記照明手段を移動させる移動手段と、 前記照明手段の移動位置を検出する位置検出手段と、 前記測定面を形成する光によって前記既設物の表面にラ
イン状に現れる光をライン画像として取り込む撮像手段
と、 前記照明手段が前記移動手段によって移動する毎に前記
撮像手段によって得た各ライン画像に基づいて前記測定
面上における各ライン画像の平面座標を写真計測法によ
り算出し、前記位置検出手段によって検出した前記照明
手段の各移動位置及び各ライン画像毎に算出した前記平
面座標に基づいて前記既設物の表面の3次元データを算
出する3次元データ算出手段と、 からなることを特徴とする3次元位置計測装置。
2. Illumination means for irradiating an existing object with light forming a predetermined measuring surface; moving means for moving the illuminating means; position detecting means for detecting a moving position of the illuminating means; Imaging means for capturing, as a line image, light that appears in a line on the surface of the existing object by light forming the light source, and each time the illuminating means moves by the moving means, based on each line image obtained by the imaging means, The plane coordinates of each line image on the measurement surface are calculated by a photographic measurement method, and based on the plane coordinates calculated for each movement position of the illumination unit and each line image detected by the position detection unit, the existing object is calculated based on the plane coordinates. And a three-dimensional data calculating means for calculating three-dimensional data of the surface.
JP2001023975A 2001-01-31 2001-01-31 Method and apparatus for measuring three-dimensional position Pending JP2002228414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001023975A JP2002228414A (en) 2001-01-31 2001-01-31 Method and apparatus for measuring three-dimensional position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001023975A JP2002228414A (en) 2001-01-31 2001-01-31 Method and apparatus for measuring three-dimensional position

Publications (1)

Publication Number Publication Date
JP2002228414A true JP2002228414A (en) 2002-08-14

Family

ID=18889182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001023975A Pending JP2002228414A (en) 2001-01-31 2001-01-31 Method and apparatus for measuring three-dimensional position

Country Status (1)

Country Link
JP (1) JP2002228414A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069747A (en) * 2009-09-26 2011-04-07 Sohatsu System Kenkyusho:Kk Tunnel data processing system and tunnel data processing method
CN111314671B (en) * 2020-03-19 2021-11-02 哈工大(张家口)工业技术研究院 Underground pipe gallery personnel positioning method
CN113887508A (en) * 2021-10-25 2022-01-04 上海品览数据科技有限公司 Method for accurately identifying center line of public corridor space in building professional residential plan

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069747A (en) * 2009-09-26 2011-04-07 Sohatsu System Kenkyusho:Kk Tunnel data processing system and tunnel data processing method
CN111314671B (en) * 2020-03-19 2021-11-02 哈工大(张家口)工业技术研究院 Underground pipe gallery personnel positioning method
CN113887508A (en) * 2021-10-25 2022-01-04 上海品览数据科技有限公司 Method for accurately identifying center line of public corridor space in building professional residential plan
CN113887508B (en) * 2021-10-25 2024-05-14 上海品览数据科技有限公司 Accurate identification method for central line of public corridor space in building professional residence plan

Similar Documents

Publication Publication Date Title
JP3624353B2 (en) Three-dimensional shape measuring method and apparatus
US7015473B2 (en) Method and apparatus for internal feature reconstruction
US6377298B1 (en) Method and device for geometric calibration of CCD cameras
US20150070468A1 (en) Use of a three-dimensional imager's point cloud data to set the scale for photogrammetry
US7602505B2 (en) Method for the automatic parameterization of measuring systems
CN108802043A (en) Tunnel detector, detecting system and tunnel defect information extracting method
JP2004163292A (en) Survey system and electronic storage medium
JP3867955B2 (en) Load volume measuring method and apparatus
JPH11166818A (en) Calibrating method and device for three-dimensional shape measuring device
CN112254680B (en) Multi freedom's intelligent vision 3D information acquisition equipment
JP2005283440A (en) Vibration measuring device and measuring method thereof
JP6325834B2 (en) Maintenance support system and maintenance support method
JP2021039013A (en) Wall crack measuring machine and measuring method
Antinozzi et al. Optimized configurations for micro-photogrammetric surveying adaptable to macro optics and digital microscope
JP6941899B1 (en) Clearance measurement system and clearance measurement method
JPH1019562A (en) Surveying equipment and surveying method
JPH06186036A (en) Three-dimensional location measuring system
JP2002228414A (en) Method and apparatus for measuring three-dimensional position
JP3324809B2 (en) Measurement point indicator for 3D measurement
JP2006317418A (en) Image measuring device, image measurement method, measurement processing program, and recording medium
US7117047B1 (en) High accuracy inspection system and method for using same
JP3519296B2 (en) Automatic measurement method and automatic measurement device for thermal image
JP2014149303A (en) Three-dimensional shape measuring device, calibration block, and calibration method for the three-dimensional shape measuring device
JPH06186035A (en) Three-dimenisonal position measuring system
JP2006258760A (en) Displacement measuring system and displacement measuring method for long object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325