JP2002227689A - Air fuel ratio controller for internal combustion engine - Google Patents

Air fuel ratio controller for internal combustion engine

Info

Publication number
JP2002227689A
JP2002227689A JP2001027810A JP2001027810A JP2002227689A JP 2002227689 A JP2002227689 A JP 2002227689A JP 2001027810 A JP2001027810 A JP 2001027810A JP 2001027810 A JP2001027810 A JP 2001027810A JP 2002227689 A JP2002227689 A JP 2002227689A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust gas
control
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001027810A
Other languages
Japanese (ja)
Other versions
JP3826997B2 (en
Inventor
Nobuaki Ikemoto
池本  宣昭
Yosuke Ishikawa
洋祐 石川
Koichi Shimizu
幸一 清水
Hisashi Iida
飯田  寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001027810A priority Critical patent/JP3826997B2/en
Priority to US09/998,641 priority patent/US6530214B2/en
Publication of JP2002227689A publication Critical patent/JP2002227689A/en
Application granted granted Critical
Publication of JP3826997B2 publication Critical patent/JP3826997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute a sub-feedback control for making response and stability compatible by correctly changing the control to a proper control condition corresponding to the operating state of an internal combustion engine or the change of the catalyst condition in a system executing a main/sub-feedback control using an intermediate target value. SOLUTION: Exhaust gas sensors 24, 25 are provided on an upstream side and a downstream side of the catalyst 23 respectively to set the intermediate target value based on the output of the exhaust gas sensor 25 on the downstream side at the last calculation time and the final target value (final downstream side target air fuel ratio). The correction amount for the upstream side target air fuel ratio is calculated based on the deviation between the output of the current downstream side exhaust gas sensor 25 and the intermediate target value. In this case at least one of the updated amount of the intermediate target value, an updated speed, a control gain of the sub-feedback control, a control cycle and a control range is changed corresponding to a parameter related to the exhaust gas flow amount or catalyst reaction speed, thus executing the highly responsive sub-feedback control faithfully following the change of the operational condition and the change of the catalyst 23 condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス浄化用の触
媒の上流側と下流側にそれぞれ空燃比センサ(リニアA
/Fセンサ)又は酸素センサを設置して内燃機関の空燃
比をフィードバック制御する内燃機関の空燃比制御装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio sensor (linear A) provided upstream and downstream of an exhaust gas purifying catalyst.
/ F sensor) or an air-fuel ratio control device for an internal combustion engine that performs feedback control of the air-fuel ratio of the internal combustion engine by installing an oxygen sensor.

【0002】[0002]

【従来の技術】今日の自動車は、排気管に三元触媒を設
置して排ガスを浄化するようにしているが、触媒の排ガ
ス浄化率を高めるためには、排ガスの空燃比を触媒の浄
化ウインド内(理論空燃比付近)に制御する必要があ
る。そこで、触媒の上流側と下流側にそれぞれ排ガスセ
ンサ(空燃比センサ又は酸素センサ)を設置し、上流側
排ガスセンサで検出される排ガスの空燃比が上流側目標
空燃比となるように燃料噴射量をフィードバック制御す
ると共に、下流側排ガスセンサで検出される排ガスの空
燃比が下流側目標空燃比となるように上流側目標空燃比
を補正するサブフィードバック制御を実施するようにし
たものがある。
2. Description of the Related Art In today's automobiles, a three-way catalyst is installed in an exhaust pipe to purify exhaust gas. However, in order to increase the exhaust gas purification rate of the catalyst, the air-fuel ratio of the exhaust gas must be reduced by using a catalyst purification window. It is necessary to control within (around the stoichiometric air-fuel ratio). Therefore, an exhaust gas sensor (air-fuel ratio sensor or oxygen sensor) is installed on each of the upstream and downstream sides of the catalyst, and the fuel injection amount is adjusted so that the air-fuel ratio of the exhaust gas detected by the upstream exhaust gas sensor becomes the upstream target air-fuel ratio. And performs a sub-feedback control to correct the upstream target air-fuel ratio so that the air-fuel ratio of the exhaust gas detected by the downstream exhaust gas sensor becomes the downstream target air-fuel ratio.

【0003】このようなメイン/サブフィードバックシ
ステムでは、特許第2518247号公報に示すよう
に、下流側排ガスセンサの検出空燃比と下流側目標空燃
比との偏差が大きくなるほど、空燃比フィードバック制
御定数(例えばスキップ量)の更新量を大きくすること
が提案されている。
In such a main / sub feedback system, as shown in Japanese Patent No. 2518247, as the deviation between the detected air-fuel ratio of the downstream exhaust gas sensor and the downstream target air-fuel ratio increases, the air-fuel ratio feedback control constant ( It has been proposed to increase the update amount (eg, skip amount).

【0004】[0004]

【発明が解決しようとする課題】ところで、触媒の動特
性は、触媒の劣化度合、触媒内のリーン/リッチ成分吸
着状態、エンジン運転状態によって変化するが、上記従
来のメイン/サブフィードバックシステムでは、触媒の
動特性の変化に対するサブフィードバック制御の応答性
が十分とは言えない。このため、触媒の動特性の変化に
対してサブフィードバック制御の応答遅れが発生して触
媒下流側の空燃比(下流側排ガスセンサの出力)が不安
定となり、ハンチングが発生する可能性がある。
The dynamic characteristics of the catalyst vary depending on the degree of deterioration of the catalyst, the state of adsorbing lean / rich components in the catalyst, and the operating state of the engine. The responsiveness of the sub-feedback control to the change in the dynamic characteristics of the catalyst is not sufficient. Therefore, a response delay of the sub-feedback control with respect to the change in the dynamic characteristics of the catalyst occurs, and the air-fuel ratio on the downstream side of the catalyst (output of the downstream side exhaust gas sensor) becomes unstable, and hunting may occur.

【0005】そこで、本発明者らは、この欠点を解消す
るために、特願2000−404671号の明細書に記
載されているように、下流側排ガスセンサの過去の検出
空燃比と最終的な下流側目標空燃比とに基づいてサブフ
ィードバック制御の中間目標値を設定し、下流側排ガス
センサの検出空燃比と前記中間目標値との偏差に基づい
て上流側目標空燃比を補正するサブフィードバック制御
を行うシステムを実用化に向けて開発中である。
[0005] In order to solve this drawback, the inventors of the present invention, as described in Japanese Patent Application No. 2000-404671, describe the past detected air-fuel ratio of the downstream exhaust gas sensor and the final air-fuel ratio. A sub-feedback control that sets an intermediate target value of the sub feedback control based on the downstream target air-fuel ratio and corrects the upstream target air-fuel ratio based on a deviation between the detected air-fuel ratio of the downstream exhaust gas sensor and the intermediate target value. Is under development for practical use.

【0006】このシステムを実用化にするに当たって、
次のような新たな技術的課題が判明している。すなわ
ち、触媒は大きな遅れ系(むだ時間と時定数)を持って
おり、それが排ガス流量や触媒反応速度により大きく変
化する。その場合、サブフィードバック制御に用いる中
間目標値の更新(サブフィードバック制御の応答性)
を、ハンチングを防ぐために遅い条件で適合すると、排
ガス流量が少ない場合や触媒反応速度が遅い場合(触媒
の浄化性能が低下している場合)には、中間目標値の更
新が適度になるが、排ガス流量が多い場合や触媒反応速
度が速い場合には、中間目標値の更新(サブフィードバ
ック制御の応答性)が遅くなり過ぎ、十分な排ガス浄化
性能を確保することができない。
In putting this system into practical use,
The following new technical issues have been identified. That is, the catalyst has a large delay system (dead time and time constant), which greatly changes depending on the exhaust gas flow rate and the catalytic reaction speed. In that case, update of the intermediate target value used for sub feedback control (responsiveness of sub feedback control)
If the exhaust gas flow rate is low or the catalytic reaction speed is low (when the purification performance of the catalyst is low), the update of the intermediate target value will be appropriate, If the exhaust gas flow rate is large or the catalytic reaction speed is high, the update of the intermediate target value (responsiveness of the sub-feedback control) becomes too slow, and sufficient exhaust gas purification performance cannot be secured.

【0007】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、中間目標値を用いて
メイン/サブフィードバック制御を行うシステムにおい
て、内燃機関の運転状態や触媒の状態の変化に応じて適
正な制御条件に変更しながら応答性と安定性とを両立さ
せたサブフィードバック制御を行うことができ、内燃機
関の運転状態や触媒の状態に左右されない安定した排ガ
ス浄化性能を確保することができる内燃機関の空燃比制
御装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and accordingly, it is an object of the present invention to provide a system for performing main / sub feedback control using an intermediate target value in an operating state of an internal combustion engine and a state of a catalyst. Sub-feedback control that achieves both responsiveness and stability while changing to appropriate control conditions in accordance with changes in the exhaust gas, and achieves stable exhaust gas purification performance independent of the operating state of the internal combustion engine and the state of the catalyst. An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that can be ensured.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の内燃機関の空燃比制御装置は、
下流側排ガスセンサの過去の検出空燃比と最終的な下流
側目標空燃比とに基づいてサブフィードバック制御の中
間目標値を設定し、下流側排ガスセンサの検出空燃比と
前記中間目標値との偏差に基づいて上流側目標空燃比を
補正するサブフィードバック制御を行うものにおいて、
内燃機関の運転状態又は前記触媒の状態に関連するパラ
メータに応じて、前記中間目標値の更新量、更新速度、
前記サブフィードバック制御の制御ゲイン、制御周期、
制御範囲のうちの少なくとも1つを制御補正手段によっ
て変更するようにしたものである。このようにすれば、
内燃機関の運転状態や触媒の状態の変化に応じて適正な
制御条件に変更しながら応答性と安定性とを両立させた
サブフィードバック制御を行うことができ、内燃機関の
運転状態や触媒の状態に左右されない安定した排ガス浄
化性能を確保することができる。
In order to achieve the above object, an air-fuel ratio control apparatus for an internal combustion engine according to a first aspect of the present invention is provided.
An intermediate target value of the sub feedback control is set based on the past detected air-fuel ratio of the downstream exhaust gas sensor and the final downstream target air-fuel ratio, and the deviation between the detected air-fuel ratio of the downstream exhaust gas sensor and the intermediate target value is set. Performing sub-feedback control to correct the upstream target air-fuel ratio based on
Depending on the operating state of the internal combustion engine or parameters related to the state of the catalyst, the update amount of the intermediate target value, update speed,
Control gain of the sub-feedback control, control cycle,
At least one of the control ranges is changed by control correction means. If you do this,
Sub feedback control that achieves both responsiveness and stability can be performed while changing to appropriate control conditions in accordance with changes in the operating state of the internal combustion engine and the state of the catalyst. Stable exhaust gas purification performance that is not affected by such conditions.

【0009】ここで、内燃機関の運転状態に関連するパ
ラメータとしては、例えば、排ガス流量、吸入空気量、
エンジン回転速度、吸気管圧力、スロットル開度、車
速、冷却水温、排気温度、アイドルスイッチ信号、始動
後経過時間等の中からいずれか1つ又は複数のパラメー
タを用いれば良く、また、触媒の状態に関連するパラメ
ータとしては、触媒反応速度、触媒温度(排気温度や始
動後経過時間等で代替可能)、触媒劣化度合、触媒のO
2 ストレージ量(リーン/リッチ成分吸着量)等の中か
らいずれか1つ又は複数のパラメータを用いれば良い。
Here, parameters relating to the operating state of the internal combustion engine include, for example, an exhaust gas flow rate, an intake air amount,
Any one or more of engine rotation speed, intake pipe pressure, throttle opening, vehicle speed, cooling water temperature, exhaust temperature, idle switch signal, elapsed time after starting, etc. may be used. The parameters related to are: catalyst reaction speed, catalyst temperature (can be replaced by exhaust temperature, elapsed time after start, etc.), catalyst deterioration degree, catalyst O
Any one or a plurality of parameters from two storage amounts (lean / rich component adsorption amounts) and the like may be used.

【0010】この場合、触媒による遅れ系(むだ時間と
時定数)が排ガス流量や触媒反応速度により大きく変化
することを考慮して、請求項2のように、排ガス流量又
は触媒反応速度に関連するパラメータに応じて、前記中
間目標値の更新量、更新速度、前記サブフィードバック
制御の制御ゲイン、制御周期、制御範囲のうちの少なく
とも1つを変更するようにすると良い。このようにすれ
ば、触媒による遅れ系(むだ時間と時定数)の変化に応
答良く追従した高応答のサブフィードバック制御を安定
して行うことができる。
In this case, in consideration of the fact that the delay system (dead time and time constant) by the catalyst greatly changes depending on the flow rate of the exhaust gas and the reaction speed of the catalyst, the present invention relates to the flow rate of the exhaust gas or the reaction speed of the catalyst. It is preferable that at least one of the update amount of the intermediate target value, the update speed, the control gain of the sub-feedback control, the control cycle, and the control range is changed according to the parameter. This makes it possible to stably perform the high-response sub-feedback control that follows the change in the delay system (dead time and time constant) caused by the catalyst with good response.

【0011】また、請求項3のように、下流側排ガスセ
ンサの過去の検出空燃比と最終的な下流側目標空燃比と
の偏差に減衰率を乗算した値と、最終的な下流側目標空
燃比とを加算して中間目標値を求め、内燃機関の運転状
態又は触媒の状態に関連するパラメータに応じて減衰率
を変更するようにしても良い。このようにすれば、中間
目標値を簡単な演算処理で設定できると共に、内燃機関
の運転状態や触媒の状態の変化に追従した制御条件の変
更を、簡単な演算処理で行うことができる。
According to a third aspect of the present invention, a value obtained by multiplying a difference between a past detected air-fuel ratio of the downstream exhaust gas sensor and a final downstream target air-fuel ratio by an attenuation rate, and a final downstream target air-fuel ratio are used. An intermediate target value may be obtained by adding the fuel ratio, and the damping rate may be changed according to a parameter related to the operating state of the internal combustion engine or the state of the catalyst. With this configuration, the intermediate target value can be set by a simple calculation process, and the control condition can be changed according to a change in the operating state of the internal combustion engine or the state of the catalyst by a simple calculation process.

【0012】また、請求項4のように、下流側排ガスセ
ンサの検出空燃比と中間目標値との偏差に対する比例積
分動作で演算した値を所定の制御範囲内に制限すること
で、上流側目標空燃比の補正量を求め、内燃機関の運転
状態又は触媒の状態に関連するパラメータ応じて比例積
分動作のゲイン(制御ゲイン)及び/又は制御範囲を変
更するようにしても良い。このようにすれば、触媒の動
特性の変化を上流側目標空燃比の補正量に応答良く反映
させることができると共に、内燃機関の運転状態や触媒
の状態の変化に追従した制御条件の変更を、簡単な演算
処理で行うことができる。
Further, the value calculated by the proportional integral operation with respect to the deviation between the detected air-fuel ratio of the downstream side exhaust gas sensor and the intermediate target value is limited within a predetermined control range, so that the upstream side target is controlled. The correction amount of the air-fuel ratio may be obtained, and the gain (control gain) and / or the control range of the proportional-integral operation may be changed according to the parameters related to the operating state of the internal combustion engine or the state of the catalyst. In this manner, the change in the dynamic characteristics of the catalyst can be reflected in the correction amount of the upstream target air-fuel ratio in a good response, and the change in the control condition following the change in the operating state of the internal combustion engine or the state of the catalyst can be achieved. , Can be performed by simple arithmetic processing.

【0013】[0013]

【発明の実施の形態】[実施形態(1)]以下、本発明
の実施形態(1)を図1乃至図6に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略
構成を説明する。内燃機関であるエンジン11の吸気管
12の最上流部には、エアクリーナ13が設けられ、こ
のエアクリーナ13の下流側には、吸入空気量を検出す
るエアフローメータ14が設けられている。このエアフ
ローメータ14の下流側には、スロットルバルブ15が
設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Embodiment (1)] An embodiment (1) of the present invention will be described below with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of an intake pipe 12 of an engine 11 which is an internal combustion engine, and an air flow meter 14 for detecting an intake air amount is provided downstream of the air cleaner 13. A throttle valve 15 is provided downstream of the air flow meter 14.

【0014】更に、スロットルバルブ15の下流側には
サージタンク17が設けられ、このサージタンク17
に、エンジン11の各気筒に空気を導入する吸気マニホ
ールド19が設けられている。各気筒の吸気マニホール
ド19の吸気ポート近傍には、それぞれ燃料を噴射する
燃料噴射弁20が取り付けられている。また、エンジン
11のシリンダヘッドには、気筒毎に点火プラグ21が
取り付けられている。
Further, a surge tank 17 is provided downstream of the throttle valve 15.
Further, an intake manifold 19 for introducing air into each cylinder of the engine 11 is provided. A fuel injection valve 20 for injecting fuel is attached near each intake port of the intake manifold 19 of each cylinder. An ignition plug 21 is attached to a cylinder head of the engine 11 for each cylinder.

【0015】一方、エンジン11の排気管22の途中に
は、排ガス中のCO,HC,NOx等を浄化する三元触
媒等の触媒23が設置されている。この触媒23の上流
側と下流側には、それぞれ排ガス空燃比又はリッチ/リ
ーンを検出する排ガスセンサ24,25が設置されてい
る。本実施形態では、上流側排ガスセンサ24は、排ガ
ス空燃比に応じたリニアな空燃比信号を出力する空燃比
センサ(リニアA/Fセンサ)が用いられ、下流側排ガ
スセンサ25は、排ガスの空燃比が理論空燃比に対して
リッチかリーンかによって出力電圧が反転する酸素セン
サが用いられている。従って、下流側排ガスセンサ25
は、空燃比がリーンの時には0.1V程度の出力電圧を
発生し、空燃比がリッチの時には0.9V程度の出力電
圧を発生する。尚、エンジン11のシリンダブロックに
は、冷却水温を検出する水温センサ26や、エンジン回
転速度を検出する回転速度センサ27が取り付けられて
いる。
On the other hand, a catalyst 23 such as a three-way catalyst for purifying CO, HC, NOx and the like in exhaust gas is provided in the exhaust pipe 22 of the engine 11. Exhaust gas sensors 24 and 25 for detecting an exhaust gas air-fuel ratio or rich / lean are installed upstream and downstream of the catalyst 23, respectively. In the present embodiment, an air-fuel ratio sensor (linear A / F sensor) that outputs a linear air-fuel ratio signal according to the exhaust gas air-fuel ratio is used as the upstream exhaust gas sensor 24, and the downstream exhaust gas sensor 25 is an exhaust gas air-fuel sensor. An oxygen sensor whose output voltage is inverted depending on whether the fuel ratio is rich or lean with respect to the stoichiometric air-fuel ratio is used. Therefore, the downstream side exhaust gas sensor 25
Generates an output voltage of about 0.1 V when the air-fuel ratio is lean, and generates an output voltage of about 0.9 V when the air-fuel ratio is rich. The cylinder block of the engine 11 is provided with a water temperature sensor 26 for detecting a cooling water temperature and a rotation speed sensor 27 for detecting an engine rotation speed.

【0016】エンジン制御回路(以下「ECU」と表記
する)28は、ROM29、RAM30、CPU31、
バッテリ32でバックアップされたバックアップRAM
33、入力ポート34、出力ポート35等からなるマイ
クロコンピュータを主体として構成されている。入力ポ
ート34には、回転速度センサ27の出力信号が入力さ
れると共に、エアフローメータ14、上流側及び下流側
排ガスセンサ24,25、水温センサ26の出力信号
が、それぞれA/D変換器36を介して入力される。ま
た、出力ポート35には、駆動回路39を介して燃料噴
射弁20、点火プラグ21等が接続されている。
An engine control circuit (hereinafter referred to as "ECU") 28 includes a ROM 29, a RAM 30, a CPU 31,
Backup RAM backed up by battery 32
The microcomputer is mainly composed of a microcomputer including an input port 33, an input port 34, an output port 35, and the like. The output signal of the rotation speed sensor 27 is input to the input port 34, and the output signals of the air flow meter 14, the upstream and downstream exhaust gas sensors 24 and 25, and the water temperature sensor 26 are respectively supplied to the A / D converter 36. Is entered via The output port 35 is connected to the fuel injection valve 20, the ignition plug 21 and the like via a drive circuit 39.

【0017】ECU28は、ROM29に記憶された燃
料噴射制御プログラムや点火制御プログラムをCPU3
1で実行することで、燃料噴射弁20や点火プラグ21
の動作を制御すると共に、空燃比制御プログラムを実行
することで、排ガスの空燃比が目標空燃比となるように
空燃比(燃料噴射量)をフィードバック制御する。
The ECU 28 stores the fuel injection control program and the ignition control program stored in the ROM 29 into the CPU 3.
1, the fuel injection valve 20 and the spark plug 21
By executing the air-fuel ratio control program, the air-fuel ratio (fuel injection amount) is feedback-controlled so that the air-fuel ratio of the exhaust gas becomes the target air-fuel ratio.

【0018】以下、本実施形態(1)の空燃比フィード
バック制御システムについて図2及び図3に基づいて説
明する。ここで、図2はCPU31の演算処理機能で実
現する空燃比制御手段40の機能を示すブロック図、図
3は空燃比フィードバック制御システム全体の機能を示
すブロック図である。
Hereinafter, the air-fuel ratio feedback control system of the embodiment (1) will be described with reference to FIGS. Here, FIG. 2 is a block diagram showing the function of the air-fuel ratio control means 40 realized by the arithmetic processing function of the CPU 31, and FIG. 3 is a block diagram showing the function of the entire air-fuel ratio feedback control system.

【0019】空燃比制御手段40は、燃料噴射量フィー
ドバック制御部41と目標空燃比計算部42とから構成
され、目標空燃比計算部42は、負荷目標空燃比計算部
43と目標空燃比補正部44とから構成されている。
The air-fuel ratio control means 40 comprises a fuel injection amount feedback control unit 41 and a target air-fuel ratio calculation unit 42. The target air-fuel ratio calculation unit 42 includes a load target air-fuel ratio calculation unit 43 and a target air-fuel ratio correction unit. 44.

【0020】燃料噴射量フィードバック制御部41は、
上流側排ガスセンサ24の検出空燃比AFが上流側目標
空燃比AFref に収束するように、燃料噴射弁20の燃
料噴射時間Tinj を算出する。この燃料噴射時間Tinj
の算出は、制御対象のモデルの線形方程式に対して構築
された最適レギュレータにより行われる。この燃料噴射
量フィードバック制御部41が、特許請求の範囲でいう
空燃比フィードバック制御手段に相当する役割を果た
す。
The fuel injection amount feedback control unit 41 includes:
The fuel injection time Tinj of the fuel injection valve 20 is calculated so that the detected air-fuel ratio AF of the upstream side exhaust gas sensor 24 converges on the upstream side target air-fuel ratio AFref. This fuel injection time Tinj
Is calculated by the optimal regulator constructed for the linear equation of the model to be controlled. The fuel injection amount feedback control unit 41 plays a role corresponding to an air-fuel ratio feedback control unit described in claims.

【0021】一方、負荷目標空燃比計算部43は、RO
M29に記憶された関数式又はマップにより吸入空気量
(又は吸気管圧力)とエンジン回転速度に応じた負荷目
標空燃比AFbaseを算出する。この負荷目標空燃比AF
baseを算出するための関数式又はマップは、下流側排ガ
スセンサ25の出力O2out(検出空燃比)が定常的にほ
ぼ最終目標値O2targ (最終的な下流側目標空燃比)と
等しいときに、上流側目標空燃比AFref を負荷目標空
燃比AFbaseに維持すれば、下流側排ガスセンサ25の
出力O2outが最終目標値O2targ 付近に維持されるよう
に予め試験等によって設定されている。
On the other hand, the load target air-fuel ratio calculation unit 43
The load target air-fuel ratio AFbase according to the intake air amount (or the intake pipe pressure) and the engine speed is calculated from the function formula or map stored in M29. This load target air-fuel ratio AF
The function formula or map for calculating the base is such that when the output O2out (detected air-fuel ratio) of the downstream exhaust gas sensor 25 is constantly substantially equal to the final target value O2targ (final downstream target air-fuel ratio), If the side target air-fuel ratio AFref is maintained at the load target air-fuel ratio AFbase, the output O2out of the downstream side exhaust gas sensor 25 is set in advance by a test or the like so as to be maintained near the final target value O2targ.

【0022】また、目標空燃比補正部44は、下流側排
ガスセンサ25の出力O2outに基づいて、後述する中間
目標値O2midtargを用いて上流側目標空燃比AFref の
補正量AFcompを算出する。そして、この補正量AFco
mpを負荷目標空燃比AFbaseに加算することにより、上
流側目標空燃比AFref を求め、この上流側目標空燃比
AFref を燃料噴射量フィードバック制御部41に入力
する。 AFref =AFbase+AFcomp 尚、上式に代えて、次式により上流側目標空燃比AFre
f を算出しても良い。 AFref =(1+AFcomp)×AFbase
The target air-fuel ratio corrector 44 calculates a correction amount AFcomp of the upstream target air-fuel ratio AFref based on the output O2out of the downstream exhaust gas sensor 25 using an intermediate target value O2midtarg described later. Then, this correction amount AFco
By adding mp to the load target air-fuel ratio AFbase, an upstream target air-fuel ratio AFref is obtained, and this upstream target air-fuel ratio AFref is input to the fuel injection amount feedback control unit 41. AFref = AFbase + AFcomp Note that instead of the above equation, the upstream target air-fuel ratio AFre is calculated by the following equation.
f may be calculated. AFref = (1 + AFcomp) × AFbase

【0023】この場合、目標空燃比計算部42(負荷目
標空燃比計算部43と目標空燃比補正部44)が、特許
請求の範囲でいうサブフィードバック制御手段に相当す
る役割を果たす。
In this case, the target air-fuel ratio calculation unit 42 (the load target air-fuel ratio calculation unit 43 and the target air-fuel ratio correction unit 44) plays a role corresponding to the sub-feedback control means in the claims.

【0024】次に、目標空燃比補正部44で中間目標値
O2midtargを設定して上流側目標空燃比AFref の補正
量AFcompを算出する方法を図3に基づいて説明する。
制御対象を燃料噴射量フィードバック制御部41、燃料
噴射弁20、エンジン11、触媒23、下流側排ガスセ
ンサ25等からなる系とする。目標空燃比補正部44
は、時間遅れ要素(1/z)45、中間目標値計算部4
6、減衰率設定部47及び補正量計算部48から構成さ
れ、時間遅れ要素45は、前回演算時の下流側排ガスセ
ンサ25の出力O2out(i-1) を中間目標値計算部46に
入力する。
Next, a method of calculating the correction amount AFcomp of the upstream target air-fuel ratio AFref by setting the intermediate target value O2midtarg in the target air-fuel ratio correction unit 44 will be described with reference to FIG.
The control object is a system including the fuel injection amount feedback control unit 41, the fuel injection valve 20, the engine 11, the catalyst 23, the downstream exhaust gas sensor 25, and the like. Target air-fuel ratio correction unit 44
Is the time delay element (1 / z) 45, the intermediate target value calculation unit 4
6. An attenuation rate setting unit 47 and a correction amount calculation unit 48. The time delay element 45 inputs the output O2out (i-1) of the downstream exhaust gas sensor 25 at the time of the previous calculation to the intermediate target value calculation unit 46. .

【0025】一方、中間目標値計算部46は、特許請求
の範囲でいう中間目標値設定手段に相当する役割を果た
し、前回演算時の下流側排ガスセンサ25の出力O2out
(i-1) と最終目標値O2targ(i)(最終的な下流側目標空
燃比)とに基づいて中間目標値O2midtarg(i) を下記の
(1)式を用いて計算する。これにより、前回演算時の
下流側排ガスセンサ25の出力O2out(i-1) と最終目標
値O2targ(i)との間に中間目標値O2midtarg(i) が設定
される。 O2midtarg(i) =O2targ(i)+Kdec ×{O2out(i-1) −O2targ(i)} ……(1)
On the other hand, the intermediate target value calculating section 46 plays a role corresponding to an intermediate target value setting means described in the claims, and the output O2out of the downstream side exhaust gas sensor 25 at the time of the previous calculation.
Based on (i-1) and the final target value O2targ (i) (final downstream target air-fuel ratio), an intermediate target value O2midtarg (i) is calculated using the following equation (1). Thus, the intermediate target value O2midtarg (i) is set between the output O2out (i-1) of the downstream exhaust gas sensor 25 at the time of the previous calculation and the final target value O2targ (i). O2midtarg (i) = O2targ (i) + Kdec × {O2out (i-1) -O2targ (i)} (1)

【0026】上式において、O2targ(i)は今回の最終目
標値、O2out(i-1) は前回演算時の下流側排ガスセンサ
25の出力である。また、Kdec は減衰率であり、減衰
率設定部47で、エンジン運転状態又は触媒23の状態
に関連するパラメータに応じて0<Kdec <1の範囲内
で設定される。ここで、エンジン運転状態に関連するパ
ラメータとしては、例えば、排ガス流量、吸入空気量、
エンジン回転速度、吸気管圧力、スロットル開度、車
速、冷却水温、排気温度、アイドルスイッチ信号、始動
後経過時間等の中からいずれか1つ又は複数のパラメー
タを用いれば良く、また、触媒23の状態に関連するパ
ラメータパラメータとしては、触媒反応速度、触媒温度
(排気温度や始動後経過時間等で代替可能)、触媒23
の劣化度合、触媒23のO2 ストレージ量(リーン/リ
ッチ成分吸着量)等の中からいずれか1つ又は複数のパ
ラメータを用いれば良い。
In the above equation, O2targ (i) is the current final target value, and O2out (i-1) is the output of the downstream exhaust gas sensor 25 at the time of the previous calculation. Kdec is a damping rate, and is set in the range of 0 <Kdec <1 by the damping rate setting unit 47 in accordance with parameters related to the engine operating state or the state of the catalyst 23. Here, the parameters related to the engine operating state include, for example, an exhaust gas flow rate, an intake air amount,
Any one or a plurality of parameters may be used from among the engine rotation speed, intake pipe pressure, throttle opening, vehicle speed, cooling water temperature, exhaust temperature, idle switch signal, elapsed time after starting, and the like. The parameters related to the state include the catalyst reaction speed, the catalyst temperature (the temperature can be replaced by the exhaust gas temperature, the elapsed time after the start, etc.), the catalyst 23
Any one or a plurality of parameters may be used from among the degree of deterioration of the catalyst, the O 2 storage amount of the catalyst 23 (lean / rich component adsorption amount), and the like.

【0027】本実施形態(1)では、触媒23による遅
れ系(むだ時間と時定数)が排ガス流量や触媒反応速度
により大きく変化することを考慮して、減衰率設定部4
7は排ガス流量又は触媒反応速度に関連するパラメータ
に応じて図4のマップ又は数式によって減衰率Kdec を
設定する。ここで、排ガス流量に関連するパラメータと
しては、吸入空気量、エンジン回転速度、吸気管圧力、
スロットル開度等の中からいずれか1つ又は複数のパラ
メータを用いれば良く、勿論、これらのパラメータから
排ガス流量を算出するようしても良い。また、触媒反応
速度に関連するパラメータとしては、触媒温度(排気温
度や始動後経過時間等で代替可能)、触媒23の劣化度
合、触媒23のO2 ストレージ量(リーン/リッチ成分
吸着量)等の中からいずれか1つ又は複数のパラメータ
を用いれば良く、勿論、これらのパラメータから触媒反
応速度を算出するようにしても良い。
In the present embodiment (1), the attenuation rate setting unit 4 takes into account that the delay system (dead time and time constant) by the catalyst 23 greatly changes depending on the exhaust gas flow rate and the catalytic reaction speed.
Numeral 7 sets the damping rate Kdec by the map of FIG. 4 or an equation according to parameters related to the exhaust gas flow rate or the catalytic reaction speed. Here, the parameters related to the exhaust gas flow rate include an intake air amount, an engine rotation speed, an intake pipe pressure,
Any one or a plurality of parameters may be used from among the throttle opening and the like, and, of course, the exhaust gas flow rate may be calculated from these parameters. As the parameters associated with the catalytic rate, catalyst temperature (can substitute the like exhaust temperature and the after-start elapsed time), the deterioration degree of the catalyst 23, O 2 storage amount of the catalyst 23 (lean / rich component adsorption), etc. Any one or a plurality of parameters may be used from among the parameters. Of course, the catalytic reaction rate may be calculated from these parameters.

【0028】図4の減衰率設定マップの特性は、排ガス
流量が少なく(触媒反応速度が遅く)なるほど、減衰率
Kdec が大きくなって、中間目標値O2midtarg(i) の更
新量が大きくなり、排ガス流量が多く(触媒反応速度が
速く)なるほど、ハンチングを防ぐために、減衰率Kde
c が小さくなって、中間目標値O2midtarg(i) の更新量
が小さくなるように設定されている。尚、減衰率設定部
47は、特許請求の範囲でいう制御補正手段に相当する
役割を果たす。
The characteristic of the attenuation rate setting map shown in FIG. 4 is that the lower the exhaust gas flow rate (the lower the catalytic reaction speed), the greater the attenuation rate Kdec, the larger the update amount of the intermediate target value O2midtarg (i), The higher the flow rate (the faster the catalytic reaction speed), the more the decay rate Kde
It is set so that c becomes smaller and the update amount of the intermediate target value O2midtarg (i) becomes smaller. Note that the attenuation rate setting unit 47 plays a role corresponding to a control correction unit described in the claims.

【0029】以上のようにして、減衰率設定部47で設
定した減衰率Kdec を用いて中間目標値計算部46で中
間目標値O2midtarg(i) を計算した後、この中間目標値
O2midtarg(i) を用いて次式により上流側目標空燃比A
Fref の補正量AFcomp(i)を算出する。 AFcomp(i) =Fsat {K1 ×(O2midtarg(i) −O2o
ut(i) )+K2 ×Σ(O2midtarg(i) −O2out(i) )} =Fsat (K1 ×ΔO2(i)+K2 ×ΣΔO2(i)) 但し、ΔO2(i)=O2midtarg(i) −O2out(i)
As described above, after the intermediate target value O2midtarg (i) is calculated by the intermediate target value calculation unit 46 using the attenuation rate Kdec set by the attenuation rate setting unit 47, the intermediate target value O2midtarg (i) is calculated. And the upstream target air-fuel ratio A
The correction amount AFcomp (i) of Fref is calculated. AFcomp (i) = Fsat {K1 × (O2midtarg (i) −O2o
ut (i)) + K2 × {(O2midtarg (i) −O2out (i))} = Fsat (K1 × ΔO2 (i) + K2 × ΔΔO2 (i)) where ΔO2 (i) = O2midtarg (i) −O2out ( i)

【0030】上式において、Fsat は図5に示すような
特性の飽和関数であり、補正量AFcomp(i) は、K1 ×
ΔO2(i)+K2 ×Σ(ΔO2(i))の演算値を上限ガード
値と下限ガード値でガード処理して求められる。上式に
おいて、K1 は比例ゲイン、K2 は積分ゲインである。
K1 ×ΔO2(i)は比例項であり、中間目標値O2midtarg
(i) と下流側排ガスセンサ25の出力O2out(i) との偏
差ΔO2(i)が大きくなるほど、大きくなる。また、K2
×ΣΔO2(i)は積分項であり、中間目標値O2midtarg
(i) と下流側排ガスセンサ25の出力O2out(i) との偏
差ΔO2(i)の積算値が大きくなるほど、大きくなる。補
正量AFcomp(i) は、比例項と積分項を加算して求めた
値を上限ガード値と下限ガード値でガード処理して求め
られる。
In the above equation, Fsat is a saturation function having a characteristic as shown in FIG. 5, and the correction amount AFcomp (i) is represented by K1 ×
The calculated value of ΔO2 (i) + K2 × Σ (ΔO2 (i)) is obtained by performing a guard process with an upper guard value and a lower guard value. In the above equation, K1 is a proportional gain, and K2 is an integral gain.
K1 × ΔO2 (i) is a proportional term, and an intermediate target value O2midtarg
The larger the deviation ΔO2 (i) between (i) and the output O2out (i) of the downstream exhaust gas sensor 25 becomes, the larger it becomes. Also, K2
× ΣΔO2 (i) is the integral term and the intermediate target value O2midtarg
The larger the integrated value of the difference ΔO2 (i) between (i) and the output O2out (i) of the downstream side exhaust gas sensor 25, the larger the value. The correction amount AFcomp (i) is obtained by performing a guard process on a value obtained by adding the proportional term and the integral term with an upper guard value and a lower guard value.

【0031】以上説明した目標空燃比補正部44による
補正量AFcomp(i) の算出は、図6の補正量算出プログ
ラムに従って行われる。本プログラムは、所定時間毎又
は所定クランク角毎に実行される。本プログラムが起動
されると、まずステップ101で、現在の下流側排ガス
センサ25の出力O2out(i) を読み込み、次のステップ
102で、排ガス流量又は触媒反応速度に関連するパラ
メータを読み込む。
The calculation of the correction amount AFcomp (i) by the target air-fuel ratio correction unit 44 described above is performed according to the correction amount calculation program of FIG. This program is executed every predetermined time or every predetermined crank angle. When the program is started, first, in step 101, the current output O2out (i) of the downstream exhaust gas sensor 25 is read, and in the next step 102, parameters related to the exhaust gas flow rate or the catalytic reaction speed are read.

【0032】ここで、排ガス流量に関連するパラメータ
としては、吸入空気量、エンジン回転速度、吸気管圧
力、スロットル開度等の中からいずれか1つ又は複数の
パラメータを用いれば良く、勿論、これらのパラメータ
から排ガス流量を算出するようしても良い。また、触媒
反応速度に関連するパラメータとしては、触媒温度(排
気温度や始動後経過時間等で代替可能)、触媒23の劣
化度合、触媒23のO2ストレージ量(リーン/リッチ
成分吸着量)等の中からいずれか1つ又は複数のパラメ
ータを用いれば良く、勿論、これらのパラメータから触
媒反応速度を算出するようにしても良い。
Here, as the parameters related to the exhaust gas flow rate, any one or a plurality of parameters from among the intake air amount, the engine rotation speed, the intake pipe pressure, the throttle opening, etc. may be used. The exhaust gas flow rate may be calculated from the above parameters. As the parameters associated with the catalytic rate, catalyst temperature (can substitute the like exhaust temperature and the after-start elapsed time), the deterioration degree of the catalyst 23, O 2 storage amount of the catalyst 23 (lean / rich component adsorption), etc. Any one or a plurality of parameters may be used from among the parameters. Of course, the catalytic reaction rate may be calculated from these parameters.

【0033】この後、ステップ103で、排ガス流量又
は触媒反応速度に関連するパラメータに応じて図4のマ
ップ又は数式によって減衰率Kdec を設定する。そし
て、次のステップ104で、この減衰率Kdec を用い
て、前回演算時の下流側排ガスセンサ25の出力O2out
(i-1) と最終目標値O2targ(i)(最終的な下流側目標空
燃比)とに基づいて中間目標値O2midtarg(i) を前記
(1)式を用いて算出する。これにより、前回演算時の
下流側排ガスセンサ25の出力O2out(i-1) と最終目標
値O2targ(i)との間に中間目標値O2midtarg(i) が設定
される。
Thereafter, at step 103, the damping rate Kdec is set by the map or the mathematical formula of FIG. 4 according to the parameters related to the exhaust gas flow rate or the catalytic reaction speed. Then, in the next step 104, the output O2out of the downstream side exhaust gas sensor 25 at the time of the previous calculation is used by using this attenuation rate Kdec.
Based on (i-1) and the final target value O2targ (i) (final downstream target air-fuel ratio), the intermediate target value O2midtarg (i) is calculated using the above equation (1). Thus, the intermediate target value O2midtarg (i) is set between the output O2out (i-1) of the downstream exhaust gas sensor 25 at the time of the previous calculation and the final target value O2targ (i).

【0034】この後、ステップ105に進み、中間目標
値O2midtarg(i) と下流側排ガスセンサ25の出力O2o
ut(i) との偏差ΔO2(i)を算出する。 ΔO2(i)=O2midtarg(i) −O2out(i) そして、次のステップ106で、前回までの偏差ΔO2
の積算値ΣΔO2(i-1)に今回の偏差ΔO2(i)を積算し
て、今回までの偏差ΔO2 の積算値ΣΔO2(i)を求め
る。 ΣΔO2(i)=ΣΔO2(i-1)+ΔO2(i)
Thereafter, the routine proceeds to step 105, where the intermediate target value O2midtarg (i) and the output O2o of the downstream side exhaust gas sensor 25 are output.
The deviation ΔO2 (i) from ut (i) is calculated. ΔO2 (i) = O2midtarg (i) −O2out (i) Then, in the next step 106, the deviation ΔO2
The current deviation ΔO2 (i) is integrated with the integrated value ΣΔO2 (i-1) to obtain the integrated value ΣΔO2 (i) of the deviation ΔO2 up to this time. ΣΔO2 (i) = ΣΔO2 (i-1) + ΔO2 (i)

【0035】この後、ステップ107に進み、上流側目
標空燃比AFref の補正量AFcomp(i) を次式により算
出する。 AFcomp(i) =Fsat (K1 ×ΔO2(i)+K2 ×ΣΔO
2(i)) これにより、上流側目標空燃比AFref の補正量AFco
mp(i) は比例項(K1×ΔO2(i))と積分項(K2 ×Σ
ΔO2(i))を加算して求めた値を上限ガード値と下限ガ
ード値でガード処理して求められる。そして、次のステ
ップ108で、今回のΔO2(i)とΣΔO2(i)をそれぞれ
前回のΔO2(i-1)とΣΔO2(i-1)として記憶して本プロ
グラムを終了する。
Thereafter, the routine proceeds to step 107, where a correction amount AFcomp (i) of the upstream target air-fuel ratio AFref is calculated by the following equation. AFcomp (i) = Fsat (K1 × ΔO2 (i) + K2 × ΣΔO
2 (i)) Thus, the correction amount AFco of the upstream target air-fuel ratio AFref
mp (i) has a proportional term (K1 × ΔO2 (i)) and an integral term (K2 × Σ
ΔO2 (i)) is obtained by performing guard processing on the value obtained by adding the upper guard value and the lower guard value. Then, in the next step 108, the current ΔO2 (i) and ΣΔO2 (i) are stored as the previous ΔO2 (i-1) and ΣΔO2 (i-1), respectively, and the program ends.

【0036】エンジン運転中は、吸入空気量(又は吸気
管圧力)とエンジン回転速度に応じた負荷目標空燃比A
Fbaseを算出し、上記図6の補正量算出プログラムで算
出した補正量AFcompを負荷目標空燃比AFbaseに加算
することで、上流側目標空燃比AFref を求め、上流側
排ガスセンサ24の検出空燃比AFが上流側目標空燃比
AFref に収束するように燃料噴射時間Tinj (燃料噴
射量)を算出する。
During the operation of the engine, the load target air-fuel ratio A according to the intake air amount (or intake pipe pressure) and the engine speed is determined.
Fbase is calculated, and the correction amount AFcomp calculated by the correction amount calculation program in FIG. 6 is added to the load target air-fuel ratio AFbase, thereby obtaining the upstream target air-fuel ratio AFref. The fuel injection time Tinj (fuel injection amount) is calculated so that the target value converges to the upstream target air-fuel ratio AFref.

【0037】以上説明した本実施形態(1)によれば、
触媒23による遅れ系(むだ時間と時定数)が排ガス流
量や触媒反応速度により大きく変化することを考慮し
て、排ガス流量又は触媒反応速度に関連するパラメータ
に応じて減衰率Kdec を変更して中間目標値O2midtarg
(i) の更新量を変更するようにしたので、触媒23によ
る遅れ系(むだ時間と時定数)の変化に応答良く追従し
た高応答のサブフィードバック制御を安定して行うこと
ができ、エンジン運転状態や触媒23の状態に左右され
ない安定した排ガス浄化性能を確保することができる。
According to the embodiment (1) described above,
In consideration of the fact that the delay system (dead time and time constant) by the catalyst 23 largely changes depending on the exhaust gas flow rate and the catalytic reaction speed, the damping rate Kdec is changed according to the parameter related to the exhaust gas flow rate or the catalytic reaction speed to change the intermediate value. Target value O2midtarg
Since the update amount of (i) is changed, high-response sub-feedback control that follows the change of the delay system (dead time and time constant) by the catalyst 23 with good response can be performed stably, and the engine operation can be performed. Stable exhaust gas purification performance that is not affected by the state or the state of the catalyst 23 can be ensured.

【0038】尚、本実施形態(1)では、減衰率Kdec
を変更することで、中間目標値O2midtarg(i) の更新量
を変更するようにしたが、これ以外の方法で中間目標値
O2midtarg(i) の更新量を変更するようにしても良い。
或は、排ガス流量又は触媒反応速度に関連するパラメー
タに応じて中間目標値O2midtarg(i) の更新周期(更新
速度)を変更するようにしても良い。
In this embodiment (1), the attenuation rate Kdec
Is changed to change the update amount of the intermediate target value O2midtarg (i), but the update amount of the intermediate target value O2midtarg (i) may be changed by other methods.
Alternatively, the update cycle (update rate) of the intermediate target value O2midtarg (i) may be changed according to a parameter related to the exhaust gas flow rate or the catalytic reaction speed.

【0039】[実施形態(2)]上記実施形態(1)で
は、排ガス流量又は触媒反応速度に関連するパラメータ
に応じて減衰率Kdec を変更することで、触媒23によ
る遅れ系(むだ時間と時定数)の変化にサブフィードバ
ック制御を応答良く追従させるようにしたが、図7乃至
図9に示す本発明の実施形態(2)では、排ガス流量又
は触媒反応速度に関連するパラメータに応じて、図7及
び図8に示すように比例・積分ゲインK1,K2 と制御
範囲(上限ガード値と下限ガード値)を変更すること
で、触媒23による遅れ系(むだ時間と時定数)の変化
にサブフィードバック制御を応答良く追従させるように
している。
[Embodiment (2)] In the above-described embodiment (1), the delay system (dead time and time) by the catalyst 23 is changed by changing the attenuation rate Kdec in accordance with the parameters related to the exhaust gas flow rate or the catalytic reaction speed. Although the sub-feedback control is made to follow the change of the (constant) with good response, in the embodiment (2) of the present invention shown in FIGS. 7 to 9, according to the parameters related to the exhaust gas flow rate or the catalytic reaction speed, By changing the proportional / integral gains K1 and K2 and the control range (upper guard value and lower guard value) as shown in FIG. 7 and FIG. 8, sub feedback is provided for the change of the delay system (dead time and time constant) by the catalyst 23. The control is followed with good response.

【0040】図7の比例ゲインK1 (積分ゲインK2 )
を変更するマップの特性は、排ガス流量が少なく(触媒
反応速度が遅く)なるほど、比例ゲインK1 (積分ゲイ
ンK2 )が大きくなって、制御速度が速くなり、排ガス
流量が多く(触媒反応速度が速く)なるほど、ハンチン
グを防ぐために比例ゲインK1 (積分ゲインK2 )が小
さくなって、制御速度が遅くなるように設定されてい
る。
The proportional gain K1 (integral gain K2) in FIG.
The characteristic of the map for changing the characteristic is that as the exhaust gas flow rate decreases (catalytic reaction speed decreases), the proportional gain K1 (integral gain K2) increases, the control speed increases, and the exhaust gas flow rate increases (catalytic reaction speed increases). In order to prevent hunting, the proportional gain K1 (integral gain K2) is set to be small, and the control speed is set to be slow.

【0041】また、図8の制御範囲(上限ガード値と下
限ガード値)を変更するマップの特性は、排ガス流量が
少なく(触媒反応速度が遅く)なるほど、制御範囲が狭
くなり、排ガス流量が多く(触媒反応速度が速く)なる
ほど、制御範囲が広くなるように設定されている。
The characteristics of the map for changing the control range (upper guard value and lower guard value) shown in FIG. 8 are such that as the exhaust gas flow rate decreases (catalytic reaction speed decreases), the control range becomes narrower and the exhaust gas flow rate increases. The control range is set to be wider as the (catalytic reaction speed becomes faster).

【0042】本実施形態(2)で用いる図9の補正量算
出プログラムは、前記実施形態(1)で説明した図6の
補正量算出プログラムのステップ103の処理をステッ
プ103aの処理に変更したものであり、それ以外の各
ステップの処理は同じである。図9の補正量算出プログ
ラムでは、ステップ102で、排ガス流量又は触媒反応
速度に関連するパラメータを読み込んだ後、ステップ1
03aに進み、排ガス流量又は触媒反応速度に関連する
パラメータに応じて、図7及び図8のマップにより、比
例・積分ゲインK1 ,K2 と制御範囲(上限ガード値と
下限ガード値)を変更する。そして、前回演算時の下流
側排ガスセンサ25の出力O2out(i-1)と最終目標値O2
targ(i)とに基づいて中間目標値O2midtarg(i) を算出
した後、上記ステップ103aで設定した比例・積分ゲ
インK1 ,K2 と制御範囲(上限ガード値と下限ガード
値)を用いて、上流側目標空燃比AFref の補正量AF
comp(i) を算出する(ステップ105〜107)。
The correction amount calculation program of FIG. 9 used in the present embodiment (2) is obtained by changing the processing of step 103 of the correction amount calculation program of FIG. 6 described in the above embodiment (1) to the processing of step 103a. And the other steps are the same. In the correction amount calculation program of FIG. 9, after reading parameters related to the exhaust gas flow rate or the catalytic reaction speed in step 102, the program proceeds to step 1
Proceeding to 03a, the proportional / integral gains K1, K2 and the control range (upper guard value and lower guard value) are changed according to the parameters related to the exhaust gas flow rate or the catalytic reaction speed by using the maps of FIGS. Then, the output O2out (i-1) of the downstream side exhaust gas sensor 25 at the time of the previous calculation and the final target value O2
After calculating an intermediate target value O2midtarg (i) based on targ (i), using the proportional / integral gains K1 and K2 set in step 103a and the control range (upper guard value and lower guard value), the upstream target value O2midtarg (i) is calculated. Of target side air-fuel ratio AFref
Comp (i) is calculated (steps 105 to 107).

【0043】尚、本実施形態(2)では、減衰率Kdec
は、演算処理の簡略化のために、固定値としても良い。
また、中間目標値O2midtarg(i) を、前回演算時の下流
側排ガスセンサ25の出力O2out(i-1) と最終目標値O
2targ(i)とをパラメータとする二次元マップにより算出
するようにしても良い。
In this embodiment (2), the attenuation rate Kdec
May be a fixed value for simplification of arithmetic processing.
Further, the intermediate target value O2midtarg (i) is calculated by comparing the output O2out (i-1) of the downstream exhaust gas sensor 25 in the previous calculation with the final target value O2.
It may be calculated by a two-dimensional map using 2targ (i) as a parameter.

【0044】以上説明した本実施形態(2)のように、
排ガス流量又は触媒反応速度に関連するパラメータに応
じて、比例・積分ゲインK1 ,K2 と制御範囲(上限ガ
ード値と下限ガード値)を変更するようにしても、前記
実施形態(1)と同じように触媒23による遅れ系(む
だ時間と時定数)の変化に応答良く追従した高応答のサ
ブフィードバック制御を安定して行うことができ、エン
ジン運転状態や触媒23の状態に左右されない安定した
排ガス浄化性能を確保することができる。
As in the embodiment (2) described above,
Even when the proportional / integral gains K1 and K2 and the control range (upper guard value and lower guard value) are changed according to the parameters related to the exhaust gas flow rate or the catalytic reaction speed, the same as in the first embodiment. High-response sub-feedback control, which responds well to changes in the delay system (dead time and time constant) caused by the catalyst 23, can be performed stably, and is stable regardless of the engine operating state and the state of the catalyst 23. Performance can be ensured.

【0045】尚、排ガス流量又は触媒反応速度に関連す
るパラメータに応じて、サブフィードバック制御の制御
周期(補正量AFcomp(i) の演算周期)を変更するよう
にしても良い。
Incidentally, the control cycle of the sub-feedback control (the calculation cycle of the correction amount AFcomp (i)) may be changed in accordance with parameters relating to the exhaust gas flow rate or the catalytic reaction speed.

【0046】また、排ガス流量や触媒反応速度に関連し
ないパラメータ(但しエンジン運転状態に関連するパラ
メータ)を用いて、中間目標値の更新量、更新速度、サ
ブフィードバック制御の制御ゲイン、制御周期、制御範
囲のうちの少なくとも1つを変更するようにしても良
い。
Further, using parameters not related to the exhaust gas flow rate or the catalytic reaction speed (however, parameters related to the engine operating state), the update amount of the intermediate target value, the update speed, the control gain of the sub-feedback control, the control cycle, the control At least one of the ranges may be changed.

【0047】また、下流側排ガスセンサ25は、酸素セ
ンサに代えて、空燃比センサ(リニアA/Fセンサ)を
用いても良く、また、上流側排ガスセンサ24は、空燃
比センサ(リニアA/Fセンサ)に代えて、酸素センサ
を用いても良い。
The downstream exhaust gas sensor 25 may use an air-fuel ratio sensor (linear A / F sensor) instead of the oxygen sensor, and the upstream exhaust gas sensor 24 may use an air-fuel ratio sensor (linear A / F sensor). An oxygen sensor may be used instead of the (F sensor).

【0048】また、前記各実施形態では、中間目標値O
2midtarg(i) を算出する際に前回演算時の下流側排ガス
センサ25の出力O2out(i-1) を用いたが、所定演算回
数前の下流側排ガスセンサ25の出力O2out(i-n) を用
いても良い。
In each of the above embodiments, the intermediate target value O
When calculating 2midtarg (i), the output O2out (i-1) of the downstream exhaust gas sensor 25 at the time of the previous calculation was used, but the output O2out (in) of the downstream exhaust gas sensor 25 before the predetermined number of calculations was used. Is also good.

【0049】その他、本発明は、中間目標値O2midtarg
(i) の算出式や補正量AFcomp(i)の算出式を適宜変更
しても良い等、種々変更して実施できることは言うまで
もない。
In addition, according to the present invention, the intermediate target value O2midtarg
It goes without saying that the present invention can be carried out with various changes, for example, the calculation formula of (i) and the calculation formula of the correction amount AFcomp (i) may be appropriately changed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態(1)を示すエンジン制御シ
ステム全体の概略構成図
FIG. 1 is a schematic configuration diagram of an entire engine control system showing an embodiment (1) of the present invention.

【図2】ECUのCPUの演算処理機能で実現する空燃
比制御手段の機能を示すブロック図
FIG. 2 is a block diagram showing a function of an air-fuel ratio control unit realized by an arithmetic processing function of a CPU of an ECU;

【図3】空燃比フィードバック制御システム全体の機能
を示す機能ブロック図
FIG. 3 is a functional block diagram showing functions of the entire air-fuel ratio feedback control system.

【図4】排ガス流量(又は触媒反応速度)に応じて減衰
率Kdec を設定するマップを概念的に示す図
FIG. 4 is a diagram conceptually showing a map for setting an attenuation rate Kdec according to an exhaust gas flow rate (or a catalytic reaction speed).

【図5】補正量AFcomp(i) を算出する飽和関数を説明
する図
FIG. 5 is a diagram illustrating a saturation function for calculating a correction amount AFcomp (i).

【図6】実施形態(1)の補正量算出プログラムの処理
の流れを示すフローチャート
FIG. 6 is a flowchart showing the flow of processing of a correction amount calculation program according to the embodiment (1).

【図7】排ガス流量(又は触媒反応速度)に応じて比例
ゲインK1 (積分ゲインK2 )を設定するマップを概念
的に示す図
FIG. 7 is a diagram conceptually showing a map for setting a proportional gain K1 (integral gain K2) according to an exhaust gas flow rate (or a catalytic reaction speed).

【図8】排ガス流量(又は触媒反応速度)に応じて制御
範囲を設定するマップを概念的に示す図
FIG. 8 is a diagram conceptually showing a map for setting a control range according to an exhaust gas flow rate (or a catalytic reaction speed).

【図9】実施形態(2)の補正量算出プログラムの処理
の流れを示すフローチャート
FIG. 9 is a flowchart showing the flow of processing of a correction amount calculation program according to the embodiment (2).

【符号の説明】[Explanation of symbols]

11…エンジン(内燃機関)、20…燃料噴射弁、22
…排気管、23…触媒、24…上流側排ガスセンサ、2
5…下流側排ガスセンサ、28…ECU(空燃比フィー
ドバック制御手段,サブフィードバック制御手段,中間
目標値設定手段)、31…CPU、40…空燃比制御手
段、41…燃料噴射量フィードバック制御部(空燃比フ
ィードバック制御手段)、42…目標空燃比計算部(サ
ブフィードバック制御手段)、43…負荷目標空燃比計
算部、44…目標空燃比補正部、45…時間遅れ要素
(1/z)、46…中間目標値計算部(中間目標値設定
手段)、47…減衰率設定部(制御補正手段)、47…
補正量計算部。
11 ... engine (internal combustion engine), 20 ... fuel injection valve, 22
... exhaust pipe, 23 ... catalyst, 24 ... upstream exhaust gas sensor, 2
5 downstream exhaust gas sensor, 28 ECU (air-fuel ratio feedback control means, sub-feedback control means, intermediate target value setting means), 31 CPU, 40 air-fuel ratio control means, 41 fuel injection amount feedback control unit (air (Fuel ratio feedback control means), 42: target air-fuel ratio calculation section (sub feedback control means), 43: load target air-fuel ratio calculation section, 44: target air-fuel ratio correction section, 45: time delay element (1 / z), 46 ... Intermediate target value calculation unit (intermediate target value setting means), 47 ... Attenuation rate setting unit (control correction means), 47 ...
Correction amount calculation unit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 45/00 368 F02D 45/00 368G (72)発明者 清水 幸一 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 飯田 寿 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 3G084 BA09 BA13 DA10 DA12 EB14 EB15 EB18 EB20 FA00 FA07 FA11 FA20 FA30 FA33 3G091 AA17 AA28 AB03 BA01 BA14 BA15 BA19 CB02 DA01 DA02 DA03 DA05 DA10 DB04 DB05 DB06 DB07 DB08 DB10 DC01 DC03 EA01 EA05 EA07 EA16 EA21 EA26 EA34 EA39 FA05 FA07 FA11 FA16 FB10 FB11 FB12 HA36 HA37 HA42 3G301 HA01 JA21 MA01 MA12 NA03 NA04 ND03 ND05 ND25 ND27 NE17 NE19 PA01Z PA07Z PD09A PD09Z PD12Z PD16Z PE01Z PE08Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) F02D 45/00368 F02D 45/00 368G (72) Inventor Koichi Shimizu 1-1-1 Showa-cho, Kariya City, Aichi Prefecture In Denso Co., Ltd. (72) Inventor Hisashi Hisa 1-1-1 Showa-cho, Kariya-shi, Aichi F-term in Denso Co., Ltd. 3G084 BA09 BA13 DA10 DA12 EB14 EB15 EB18 EB20 FA00 FA07 FA11 FA20 FA30 FA33 3G091 AA17 AA28 AB03 BA01 BA14 BA15 BA19 CB02 DA01 DA02 DA03 DA05 DA10 DB04 DB05 DB06 DB07 DB08 DB10 DC01 DC03 EA01 EA05 EA07 EA16 EA21 EA26 EA34 EA39 EA39 FA05 FA07 FA11 FA16 FB10 FB11 FB12 HA36 HA37 HA42 3G301 HA03 JA03 MA01 ND11 PA01Z PA07Z PD09A PD09Z PD12Z PD16Z PE01Z PE08Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 排ガス浄化用の触媒の上流側と下流側で
それぞれ排ガスの空燃比又はリッチ/リーンを検出する
上流側排ガスセンサ及び下流側排ガスセンサと、 前記上流側排ガスセンサの検出空燃比が上流側目標空燃
比となるように燃料噴射量をフィードバック制御する空
燃比フィードバック制御手段と、 前記下流側排ガスセンサの過去の検出空燃比と最終的な
下流側目標空燃比とに基づいて中間目標値を設定する中
間目標値設定手段と、 前記下流側排ガスセンサの検出空燃比と前記中間目標値
とに基づいて前記上流側目標空燃比を補正するサブフィ
ードバック制御を行うサブフィードバック制御手段とを
備えた内燃機関の空燃比制御装置において、 内燃機関の運転状態又は前記触媒の状態に関連するパラ
メータに応じて、前記中間目標値の更新量、更新速度、
前記サブフィードバック制御の制御ゲイン、制御周期、
制御範囲のうちの少なくとも1つを変更する制御補正手
段を備えていることを特徴とする内燃機関の空燃比制御
装置。
1. An upstream exhaust gas sensor and a downstream exhaust gas sensor for detecting an air-fuel ratio or rich / lean of exhaust gas on an upstream side and a downstream side of an exhaust gas purifying catalyst, respectively. Air-fuel ratio feedback control means for feedback-controlling the fuel injection amount so as to attain the upstream target air-fuel ratio; and an intermediate target value based on the past detected air-fuel ratio of the downstream exhaust gas sensor and the final downstream target air-fuel ratio. And a sub-feedback control means for performing sub-feedback control for correcting the upstream target air-fuel ratio based on the detected air-fuel ratio of the downstream exhaust gas sensor and the intermediate target value. An air-fuel ratio control device for an internal combustion engine, wherein the intermediate target value is set according to a parameter related to an operation state of the internal combustion engine or a state of the catalyst. Update amount, update speed,
Control gain of the sub feedback control, control cycle,
An air-fuel ratio control device for an internal combustion engine, comprising: control correction means for changing at least one of the control ranges.
【請求項2】 前記制御補正手段は、排ガス流量又は触
媒反応速度に関連するパラメータに応じて、前記中間目
標値の更新量、更新速度、前記サブフィードバック制御
の制御ゲイン、制御周期、制御範囲のうちの少なくとも
1つを変更することを特徴とする請求項1に記載の内燃
機関の空燃比制御装置。
2. The control correction means according to a parameter related to an exhaust gas flow rate or a catalytic reaction speed, an update amount of the intermediate target value, an update speed, a control gain of the sub feedback control, a control cycle, and a control range. 2. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein at least one of them is changed.
【請求項3】 前記中間目標値設定手段は、前記下流側
排ガスセンサの過去の検出空燃比と最終的な下流側目標
空燃比との偏差に減衰率を乗算した値と、最終的な下流
側目標空燃比とを加算して前記中間目標値を求め、 前記制御補正手段は、前記内燃機関の運転状態又は前記
触媒の状態に関連するパラメータに応じて前記減衰率を
変更することを特徴とする請求項1又は2に記載の内燃
機関の空燃比制御装置。
3. An intermediate target value setting means, comprising: a value obtained by multiplying a deviation between a past detected air-fuel ratio of the downstream exhaust gas sensor and a final downstream target air-fuel ratio by an attenuation rate; Adding the target air-fuel ratio to obtain the intermediate target value, wherein the control correction means changes the attenuation rate according to a parameter related to an operation state of the internal combustion engine or a state of the catalyst. An air-fuel ratio control device for an internal combustion engine according to claim 1 or 2.
【請求項4】 前記サブフィードバック制御手段は、前
記下流側排ガスセンサの検出空燃比と前記中間目標値と
の偏差に対する比例積分動作で演算した値を所定の制御
範囲内に制限することで前記上流側目標空燃比の補正量
を求め、 前記制御補正手段は、前記内燃機関の運転状態又は前記
触媒の状態に関連するパラメータに応じて前記比例積分
動作のゲイン及び/又は前記制御範囲を変更することを
特徴とする請求項1乃至3のいずれかに記載の内燃機関
の空燃比制御装置。
4. The sub-feedback control means restricts a value calculated by a proportional integral operation with respect to a deviation between an air-fuel ratio detected by the downstream exhaust gas sensor and the intermediate target value to a predetermined control range, thereby limiting the upstream control. Calculating a correction amount of the side target air-fuel ratio, wherein the control correction means changes a gain of the proportional integration operation and / or the control range according to a parameter related to an operation state of the internal combustion engine or a state of the catalyst. The air-fuel ratio control device for an internal combustion engine according to any one of claims 1 to 3, wherein:
JP2001027810A 2001-02-05 2001-02-05 Air-fuel ratio control device for internal combustion engine Expired - Lifetime JP3826997B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001027810A JP3826997B2 (en) 2001-02-05 2001-02-05 Air-fuel ratio control device for internal combustion engine
US09/998,641 US6530214B2 (en) 2001-02-05 2001-12-03 Air-fuel ratio control apparatus having sub-feedback control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001027810A JP3826997B2 (en) 2001-02-05 2001-02-05 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002227689A true JP2002227689A (en) 2002-08-14
JP3826997B2 JP3826997B2 (en) 2006-09-27

Family

ID=18892407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001027810A Expired - Lifetime JP3826997B2 (en) 2001-02-05 2001-02-05 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3826997B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004094800A1 (en) * 2003-04-22 2004-11-04 Toyota Jidosha Kabushiki Kaisha Air/fuel ratio control device for internal combustion engine
JP2007321620A (en) * 2006-05-31 2007-12-13 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2008298044A (en) * 2007-06-04 2008-12-11 Mitsubishi Electric Corp Air-fuel ratio control device of internal-combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102036817B1 (en) * 2018-01-29 2019-10-25 엘지전자 주식회사 Cogeneration unit and system having the same
KR102333763B1 (en) * 2018-01-29 2021-11-30 엘지전자 주식회사 Cogeneration unit and system having the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004094800A1 (en) * 2003-04-22 2004-11-04 Toyota Jidosha Kabushiki Kaisha Air/fuel ratio control device for internal combustion engine
US7270119B2 (en) 2003-04-22 2007-09-18 Toyota Jidosha Kabushiki Kaisha Air/fuel ratio control device for internal combustion engine
JP2007321620A (en) * 2006-05-31 2007-12-13 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP4661691B2 (en) * 2006-05-31 2011-03-30 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
JP2008298044A (en) * 2007-06-04 2008-12-11 Mitsubishi Electric Corp Air-fuel ratio control device of internal-combustion engine
DE102008005873A1 (en) 2007-06-04 2008-12-24 Mitsubishi Electric Corp. Air-fuel ratio control device for an internal combustion engine
DE102008005873B4 (en) * 2007-06-04 2010-07-15 Mitsubishi Electric Corp. Air-fuel ratio control device for an internal combustion engine
US7895826B2 (en) 2007-06-04 2011-03-01 Mitsubishi Electric Corporation Air fuel ratio control apparatus for an internal combustion engine

Also Published As

Publication number Publication date
JP3826997B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
JP4366701B2 (en) Air-fuel ratio control device for internal combustion engine
JP4314636B2 (en) Air-fuel ratio control device for internal combustion engine
JP2001152928A (en) Air-fuel ratio control device for internal combustion engine
JP2005113877A (en) Control device for internal combustion engine
US20130184973A1 (en) Fuel injection amount control apparatus for an internal combustion engine
JP2001193521A (en) Exhaust emission control device for internal combustion engine
JP2008128080A (en) Control device for internal combustion engine
US6530214B2 (en) Air-fuel ratio control apparatus having sub-feedback control
US6792928B2 (en) Degradation determining system and method for exhaust gas sensor, and engine control unit
JPH0914022A (en) Air-fuel ratio control device for internal combustion engine
JP2002227689A (en) Air fuel ratio controller for internal combustion engine
JP2001304018A (en) Air/fuel ratio control device for internal combustion engine
JP4314551B2 (en) Air-fuel ratio control device for internal combustion engine
JP2947065B2 (en) Lean burn control device for internal combustion engine
JP2002130010A (en) Controller for internal combustion engine
JP3826996B2 (en) Air-fuel ratio control device for internal combustion engine
US6901920B2 (en) Engine control apparatus having cylinder-by-cylinder feedback control
JP4269281B2 (en) Air-fuel ratio control device for internal combustion engine
JP2002227691A (en) Air fuel ratio controller for internal combustion engine
JP3031164B2 (en) Method of detecting rotation fluctuation of internal combustion engine
JP2000205032A (en) Anomaly diagnostic system of internal combustion engine
JP2780451B2 (en) Catalyst deterioration detection device
JP3446606B2 (en) Air-fuel ratio control device for internal combustion engine
JP3966177B2 (en) Air-fuel ratio control device for internal combustion engine
JP2000097081A (en) Air-fuel ratio control device of internal-combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3826997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term