JP2002226209A - Lb film consisting of carbon nanotube - Google Patents

Lb film consisting of carbon nanotube

Info

Publication number
JP2002226209A
JP2002226209A JP2001020060A JP2001020060A JP2002226209A JP 2002226209 A JP2002226209 A JP 2002226209A JP 2001020060 A JP2001020060 A JP 2001020060A JP 2001020060 A JP2001020060 A JP 2001020060A JP 2002226209 A JP2002226209 A JP 2002226209A
Authority
JP
Japan
Prior art keywords
film
carbon nanotube
solubilized
thin film
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001020060A
Other languages
Japanese (ja)
Other versions
JP3579714B2 (en
Inventor
Ginchu Kaku
銀忠 郭
Shinji Minami
信次 南
Said Kazaoui
カザウィ・サイ
Masaru Yoshida
勝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001020060A priority Critical patent/JP3579714B2/en
Publication of JP2002226209A publication Critical patent/JP2002226209A/en
Application granted granted Critical
Publication of JP3579714B2 publication Critical patent/JP3579714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare a thin film of a carbon nanotube which is homogeneous, and whose film thickness is controlled precisely. SOLUTION: The LB film consists of a solubilizing carbon nanotube.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、均質でかつ膜厚が
精密に制御されたカーボンナノチューブからなる薄膜
(LB膜)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film (LB film) made of carbon nanotubes having a uniform thickness and a precisely controlled thickness.

【0002】[0002]

【従来の技術】カーボンナノチューブの薄膜としては、
これまでにスプレー膜が知られている。スプレー膜は、
カーボンナノチュープをエタノールなどの溶媒中で超音
波を用いて分散させたものを、スプレー器具を用いて基
板上に噴霧させ、素早く溶媒を蒸発させることにより薄
膜としたものである。スプレー膜は凹凸が多く、均質な
膜を作ることは困難であり、また膜厚を制御することは
不可能であった。この他の方法として、界面活性剤の中
にカーボンナノチューブを分散させて、水面上に展開
し、それを基板上に移し取ることによって薄膜を作製し
たことが報告されている。この方法では、分散できるカ
ーボンナノチューブの濃度は7重量%程度以下と極めて
希薄であり、また、単層膜しか作製できないため、膜厚
を任意に制御することは不可能であった。一般に、薄膜
作製方法として真空蒸着法やスピンコーティング法等用
いられるが、カーボンナノチューブは加熱しても蒸発せ
ず、また溶媒にも溶けないことから、これらの方法を用
いて薄膜を製造することは不可能であった。
2. Description of the Related Art As a thin film of carbon nanotube,
So far, spray films have been known. The spray film is
Carbon nanotubes dispersed in a solvent such as ethanol using ultrasonic waves are sprayed on a substrate using a spray device, and the solvent is quickly evaporated to form a thin film. The spray film has many irregularities, it is difficult to form a uniform film, and it is impossible to control the film thickness. As another method, it has been reported that carbon nanotubes are dispersed in a surfactant, developed on a water surface, and transferred to a substrate to form a thin film. In this method, the concentration of the dispersible carbon nanotubes is extremely low, about 7% by weight or less, and only a single-layer film can be formed. Therefore, it is impossible to arbitrarily control the film thickness. In general, a vacuum deposition method, a spin coating method, or the like is used as a method for producing a thin film. However, since carbon nanotubes do not evaporate even when heated and do not dissolve in a solvent, it is not possible to produce a thin film using these methods. It was impossible.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、均質
で、膜厚が精密に制御されたカーボンナノチューブの薄
膜を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a carbon nanotube thin film having a uniform thickness and a precisely controlled film thickness.

【0004】[0004]

【課題を解決するための手段】本発明者らは、可溶化し
たカーポンナノチューブを、ラングミユァープロジェッ
ト(LB)法によって基板上に積層することにより、本
発明を完成させたものである。すなわち、本発明によれ
ば、可溶化カーボンナノチューブからなるLB膜が提供
される。
Means for Solving the Problems The present inventors have completed the present invention by laminating solubilized carbon nanotubes on a substrate by the Langmuir Project (LB) method. . That is, according to the present invention, an LB film made of a solubilized carbon nanotube is provided.

【0005】[0005]

【発明の実施の形態】本発明で用いられる可溶化カーボ
ンナノチューブは、下記一般式(1)で表されるアミド
基を含有する。 −CONHR (1) 前記式中、Rは炭素数14〜20の脂肪族基(アルキル
基又はアルケニル基を示す)を示す。可溶化カーボンナ
ノチューブのうち、脂肪族基Rの炭素数が18のものは
既知化合物であり、例えば文献1)[Chen,J.et al.Sci
ence 282,95-98(1998)]に記された方法によって製造
される。また、カーボンナノチューブは、単層のもので
も、それが同心円上に多重となった多層のものでも良
い。カーボンナノチューブの直径は、単層のものでは
0.4〜2.0ナノメートル、多層のものではこれより
も更に太いものでも良い。カーボンナノチューブの長さ
に制限はないが、良好な溶解性を得るためには、1ミク
ロン程度以下のものが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The solubilized carbon nanotube used in the present invention contains an amide group represented by the following general formula (1). -CONHR (1) In the above formula, R represents an aliphatic group having 14 to 20 carbon atoms (indicating an alkyl group or an alkenyl group). Among the solubilized carbon nanotubes, those having 18 carbon atoms in the aliphatic group R are known compounds, for example, literature 1) [Chen, J. et al. Sci.
282, 95-98 (1998)]. Further, the carbon nanotube may be a single-walled carbon nanotube or a multi-walled carbon nanotube in which the carbon nanotubes are multiplexed concentrically. The diameter of the carbon nanotube may be 0.4 to 2.0 nm for a single-walled carbon nanotube, and may be larger for a multi-walled carbon nanotube. The length of the carbon nanotube is not limited, but is preferably about 1 micron or less in order to obtain good solubility.

【0006】本発明では、可溶化ナノチューブを簿膜と
するために、LB法を用いる。可溶化ナノチュープをク
ロロホルムに溶解し、市販のラングミュアトラフの水面
上に履開する。この場合、可溶化ナノチューブを単独で
用いても良いし、可溶化ナノチューブをポリ(N−ドデ
シルアクリルアミド)(PDDA)等のポリマーと混合
して用いても良い。混合する場合は、可溶化カーボンナ
ノテユーブの濃度が0重量%超から100重量%未満ま
での、任意の混合比率を用いることが可能である。水面
上に展開した時の表面圧対膜面積(π−A)曲線は、鋭
い立ち上がりと高い崩壊圧を示すことから、可溶化カー
ボンナノチューブ、あるいは可溶化カーボンナノチュー
ブとPDDAとの混合物は、水面上で安定な単分子膜を
形成することが分かる。また、可溶化カーボンナノチュ
ーブの濃度を変化させた場合、π−A曲線から求めた凝
縮膜の専有面積は、カーボンナノチューブの濃度に比例
して増大することから、可溶化ナノチューブは単分子膜
中で、均質に混ざり合っていることが分かる。
In the present invention, the LB method is used to make the solubilized nanotube into a thin film. The solubilized nanotubes are dissolved in chloroform and placed on the surface of a commercially available Langmuir trough. In this case, the solubilized nanotube may be used alone, or the solubilized nanotube may be used as a mixture with a polymer such as poly (N-dodecylacrylamide) (PDDA). In the case of mixing, any mixing ratio in which the concentration of the solubilized carbon nanotube is more than 0% by weight and less than 100% by weight can be used. Since the surface pressure versus membrane area (π-A) curve when developed on the water surface shows a sharp rise and a high collapse pressure, the solubilized carbon nanotube or the mixture of the solubilized carbon nanotube and PDDA is It turns out that a stable monomolecular film is formed. When the concentration of the solubilized carbon nanotubes is changed, the occupied area of the condensed film obtained from the π-A curve increases in proportion to the concentration of the carbon nanotubes. It can be seen that they are homogeneously mixed.

【0007】単分子膜を水面上に展開し、水面に垂直方
向に、基板を浸漬させ、また引き上げることを繰り返す
ことにより、累積比1で、均質な薄膜を成長させること
ができる。この場合、単分子膜の表面圧は、20〜45
mN/m程度に保つ。基板としては、疎水処理、あるい
は親水処理を施した、ガラス、石英、導電性ガラス、シ
リコン等が用いられる。膜厚は、基板の上下回数を変化
させることにより精密に制御することが可能である。可
溶化カーボンナノチューブをPDDAと混合した方が、
より安定な単分子膜が形成され、より積層回数を増やす
ことができる。積層回数は、通常、2〜150回、好ま
しくは10〜100回である。また、このように製造さ
れた薄膜中では、カーボンナノチューブは、基板の上下
方向に配向していることが判明した。
A uniform thin film can be grown at a cumulative ratio of 1 by repeatedly developing a monomolecular film on a water surface, immersing the substrate in a direction perpendicular to the water surface, and lifting the substrate. In this case, the surface pressure of the monomolecular film is 20 to 45
It is kept at about mN / m. As the substrate, glass, quartz, conductive glass, silicon, or the like that has been subjected to a hydrophobic treatment or a hydrophilic treatment is used. The film thickness can be precisely controlled by changing the number of times the substrate is moved up and down. Mixing solubilized carbon nanotubes with PDDA
A more stable monomolecular film is formed, and the number of laminations can be increased. The number of laminations is usually 2 to 150 times, preferably 10 to 100 times. Further, in the thin film thus manufactured, it was found that the carbon nanotubes were oriented in the vertical direction of the substrate.

【0008】[0008]

【実施例】次に本発明を実施例により更に詳細に説明す
る。
Next, the present invention will be described in more detail by way of examples.

【0009】実施例1 可溶化カーボンナノチューブをPDDAとともにクロロ
ホルムに溶解し(可溶化カーボンナノチューブが37重
量%)、水面上に単分子膜として展開する。この単分子
膜のπ−A曲線は、図1のように良好な形状となり、水
面上で安定な単分子膜が形成されていることが分かる。
あらかじめ疎水処理を施した石英基板を、水面と垂直方
向に浸漬させ、また引き上げることを10回から50回
繰り返すことにより、膜厚の異なる5種類のカーボンナ
ノチューブ薄膜を作製した。これらの簿膜は、濁りがな
く透明であり、極めて均質な外観を呈する。図2は、こ
れら5種類のLB膜の光吸収スペクトルである。182
0nmにおける光吸収強度が、積層回数に正確に比例し
て増加していることから、膜厚が精密に制御された薄膜
が形成されていることが示される。図3は、50回積層
したLB膜のX線回折図である。2.37度に回折ピー
クが観測されることから、このLB膜は3.72nmの
周期構造を持つことが分かる。図4は、90層積層した
LB膜:について、励起レーザーの偏光方向を、基板の
上下方向とそれに垂直な方向にした場合の、ラマンスペ
クトルの変化を示す。前者の方が強いラマンピークを与
えることから、ナノチューブは基板の上下方向に配向し
ていることが分かる。
Example 1 Solubilized carbon nanotubes are dissolved in chloroform together with PDDA (37% by weight of solubilized carbon nanotubes) and developed as a monomolecular film on the water surface. The π-A curve of this monomolecular film has a favorable shape as shown in FIG. 1, and it can be seen that a stable monomolecular film is formed on the water surface.
The quartz substrate that had been subjected to the hydrophobic treatment in advance was immersed in the direction perpendicular to the water surface and pulled up repeatedly 10 to 50 times to produce five types of carbon nanotube thin films having different film thicknesses. These films are transparent without turbidity and have a very homogeneous appearance. FIG. 2 shows light absorption spectra of these five types of LB films. 182
Since the light absorption intensity at 0 nm increases in direct proportion to the number of laminations, it indicates that a thin film whose thickness is precisely controlled is formed. FIG. 3 is an X-ray diffraction diagram of the LB film stacked 50 times. A diffraction peak is observed at 2.37 degrees, which indicates that the LB film has a periodic structure of 3.72 nm. FIG. 4 shows a change in Raman spectrum when the polarization direction of the excitation laser is set to the vertical direction of the substrate and the direction perpendicular to the direction of the LB film having 90 stacked layers. The former gives a stronger Raman peak, indicating that the nanotubes are oriented in the vertical direction of the substrate.

【0010】実施例2(PDDAを含まない、可溶化カ
ーボンナノチューブだけから成るLB膜) 可溶化カーボンナノチューブをクロロホルムに溶解し、
水面上に単分子膜として展開する。この単分子膜のπ−
A曲線は、図5のような良好な形状となり、水面上で安
定な単分子膜が形成されていることが分かる。あらかじ
め親水処理したガラス基板を、水面と垂直方向に浸漬さ
せ、また引き上げることを9回までに繰り返すことによ
り、均質なカーボンナノチューブ薄膜を作製できた。図
6のように、1820nmにおける光吸収強度が積層回
数に正確に比例して増大していることから、膜厚が精密
に制御された薄膜が形成されていることが分かる。
Example 2 (LB film made of only solubilized carbon nanotubes without PDDA) The solubilized carbon nanotubes were dissolved in chloroform,
It develops as a monolayer on the water surface. Π- of this monolayer
The curve A has a favorable shape as shown in FIG. 5, and it can be seen that a stable monomolecular film is formed on the water surface. A glass substrate that had been subjected to hydrophilic treatment in advance was immersed in a direction perpendicular to the water surface, and was repeatedly pulled up to nine times, whereby a uniform carbon nanotube thin film could be produced. As shown in FIG. 6, since the light absorption intensity at 1820 nm increases in direct proportion to the number of laminations, it can be seen that a thin film whose thickness is precisely controlled is formed.

【0011】[0011]

【発明の効果】本発明により得られるカーボンナノチュ
ーブ薄膜は、極めて均質で、膜厚を精密に制御すること
ができる。本薄膜を用いれば、太陽電池、光電変換素
子、発光素子、電界効果トランジスタ、化学センサー等
の素子を製作することが可能であり、その応用範囲は極
めて広い。
The carbon nanotube thin film obtained according to the present invention is extremely uniform, and the film thickness can be precisely controlled. If this thin film is used, elements such as a solar cell, a photoelectric conversion element, a light emitting element, a field effect transistor, and a chemical sensor can be manufactured, and its application range is extremely wide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ポリ(N−ドデシルアクリルアミド)を含む可
溶化カーボンナノチューブを水面上に単分子膜として展
開したときの該膜の面積(Area)(cm2)と表面
圧(mN/m)との関係を示す曲線(π−A曲線)であ
る。
FIG. 1 shows the relationship between the area (Area) (cm 2 ) and the surface pressure (mN / m) of a solubilized carbon nanotube containing poly (N-dodecylacrylamide) as a monomolecular film developed on a water surface. It is a curve ((pi) -A curve) which shows a relationship.

【図2】ポリ(N−ドデシルアクリルアミド)を含む可
溶化カーボンナノチューブ薄膜(LB膜)の光吸収スペ
クトル及び1820nmにおける吸光度と積層数の関係
を示す。
FIG. 2 shows a light absorption spectrum of a solubilized carbon nanotube thin film (LB film) containing poly (N-dodecylacrylamide) and a relationship between absorbance at 1820 nm and the number of layers.

【図3】可溶化カーボンナノチューブ薄膜を50回積層
したときの積層膜のX線回折図を示す。
FIG. 3 shows an X-ray diffraction diagram of a laminated film when a solubilized carbon nanotube thin film is laminated 50 times.

【図4】可溶化カーボンナノチューブ薄膜を90回積層
したときの積層膜について、励起レーザーの偏光方向
を、基板の上下方向とそれに垂直な方向にした場合のラ
マンスペクトルの変化を示す。
FIG. 4 shows the change in Raman spectrum when the polarization direction of the excitation laser is set to the vertical direction of the substrate and the direction perpendicular to the direction of the laminated film when the solubilized carbon nanotube thin films are laminated 90 times.

【図5】ポリ(N−ドデシルアクリルアミド)を含まな
い可溶化カーボンナノチューブを水面上に単分子膜とし
て展開したときの該膜のπ−A曲線を示す。
FIG. 5 shows a π-A curve of a solubilized carbon nanotube containing no poly (N-dodecylacrylamide) when the film is developed as a monomolecular film on a water surface.

【図6】可溶化カーボンナノチューブだけから成るLB
膜の光吸収スペクトル、及び1820nmにおける吸光
度と積層数の関係を示す。
FIG. 6: LB consisting only of solubilized carbon nanotubes
The light absorption spectrum of the film and the relationship between the absorbance at 1820 nm and the number of layers are shown.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 勝 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所内 Fターム(参考) 4D075 AB24 BB63X CA48 DA06 DB13 DC21 EA07 EB20 4G046 CB03 CB08 CC05  ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Masaru Yoshida 1-1 Higashi, Tsukuba, Ibaraki Pref. F-term (Reference) 4M035 AB24 BB63X CA48 DA06 DB13 DC21 EA07 EB20 4G046 CB03 CB08 CC05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可溶化カーボンナノチューブからなるL
B膜。
1. An L made of a solubilized carbon nanotube.
B film.
【請求項2】 該カーボンナノチューブが一定方向に配
向していることを特徴とする請求項1のLB膜。
2. The LB film according to claim 1, wherein said carbon nanotubes are oriented in a certain direction.
JP2001020060A 2001-01-29 2001-01-29 LB film made of carbon nanotube Expired - Lifetime JP3579714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020060A JP3579714B2 (en) 2001-01-29 2001-01-29 LB film made of carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020060A JP3579714B2 (en) 2001-01-29 2001-01-29 LB film made of carbon nanotube

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004003004A Division JP3783059B2 (en) 2004-01-08 2004-01-08 LB film made of carbon nanotube and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002226209A true JP2002226209A (en) 2002-08-14
JP3579714B2 JP3579714B2 (en) 2004-10-20

Family

ID=18885829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020060A Expired - Lifetime JP3579714B2 (en) 2001-01-29 2001-01-29 LB film made of carbon nanotube

Country Status (1)

Country Link
JP (1) JP3579714B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145054A (en) * 2002-10-25 2004-05-20 Dainippon Toryo Co Ltd Membrane material for optical filter and optical filter using same
JP2004235618A (en) * 2003-01-10 2004-08-19 Sanyo Electric Co Ltd Wiring, single electron transistor, and capacitor using carbon nanotube
JP2006064693A (en) * 2004-07-27 2006-03-09 Horiba Ltd Carbon nanotube analysis method and sample analysis method
KR100597280B1 (en) * 2004-07-01 2006-07-06 한국기계연구원 The attaching method of nano materials using Langmuir-Blodgett
WO2007011076A1 (en) * 2005-07-15 2007-01-25 Korea Institute Of Machinery And Materials Attaching method of nano materials using langmuir-blodgett
JP2007071669A (en) * 2005-09-06 2007-03-22 Horiba Ltd Carbon nanotube sorting apparatus, computer program and carbon nanotube sorting method
US7411085B2 (en) 2006-09-29 2008-08-12 Fuji Xerox Co., Ltd. Carbon nanotube dispersion, production method of carbon nanotube structure and carbon nanotube structure
JP2008201635A (en) * 2007-02-21 2008-09-04 Hokkaido Univ Method for forming micro-carbon monomolecular film, surface coating method and coated object
CN100427388C (en) * 2005-11-25 2008-10-22 清华大学 Large-area ultra-thin carbon nanotube film and its preparation process
US7592050B2 (en) 2004-12-22 2009-09-22 Fuji Xerox Co., Ltd. Method for forming carbon nanotube thin film
JP2009292664A (en) * 2008-06-03 2009-12-17 Sony Corp Method and apparatus for producing thin film and method for manufacturing electronic device
KR20160122196A (en) * 2014-02-11 2016-10-21 위스콘신 얼럼나이 리서어치 화운데이션 Floating evaporative assembly of aligned carbon nanotubes
JP2018532246A (en) * 2016-03-21 2018-11-01 エルジー・ケム・リミテッド Method for producing electrode current collector for secondary battery and electrode including electrode current collector produced by the method
US10873026B2 (en) 2017-03-10 2020-12-22 Wisconsin Alumni Research Foundation Alignment of carbon nanotubes in confined channels

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145054A (en) * 2002-10-25 2004-05-20 Dainippon Toryo Co Ltd Membrane material for optical filter and optical filter using same
JP2004235618A (en) * 2003-01-10 2004-08-19 Sanyo Electric Co Ltd Wiring, single electron transistor, and capacitor using carbon nanotube
KR100597280B1 (en) * 2004-07-01 2006-07-06 한국기계연구원 The attaching method of nano materials using Langmuir-Blodgett
JP4484780B2 (en) * 2004-07-27 2010-06-16 株式会社堀場製作所 Carbon nanotube analysis method
JP2006064693A (en) * 2004-07-27 2006-03-09 Horiba Ltd Carbon nanotube analysis method and sample analysis method
US7592050B2 (en) 2004-12-22 2009-09-22 Fuji Xerox Co., Ltd. Method for forming carbon nanotube thin film
WO2007011076A1 (en) * 2005-07-15 2007-01-25 Korea Institute Of Machinery And Materials Attaching method of nano materials using langmuir-blodgett
JP2007071669A (en) * 2005-09-06 2007-03-22 Horiba Ltd Carbon nanotube sorting apparatus, computer program and carbon nanotube sorting method
CN100427388C (en) * 2005-11-25 2008-10-22 清华大学 Large-area ultra-thin carbon nanotube film and its preparation process
US7411085B2 (en) 2006-09-29 2008-08-12 Fuji Xerox Co., Ltd. Carbon nanotube dispersion, production method of carbon nanotube structure and carbon nanotube structure
JP2008201635A (en) * 2007-02-21 2008-09-04 Hokkaido Univ Method for forming micro-carbon monomolecular film, surface coating method and coated object
JP2009292664A (en) * 2008-06-03 2009-12-17 Sony Corp Method and apparatus for producing thin film and method for manufacturing electronic device
KR20160122196A (en) * 2014-02-11 2016-10-21 위스콘신 얼럼나이 리서어치 화운데이션 Floating evaporative assembly of aligned carbon nanotubes
JP2017512179A (en) * 2014-02-11 2017-05-18 ウィスコンシン アルムニ リサーチ ファンデイション Floating evaporative organization of aligned carbon nanotubes
KR102032264B1 (en) * 2014-02-11 2019-10-15 위스콘신 얼럼나이 리서어치 화운데이션 Floating evaporative assembly of aligned carbon nanotubes
KR20190117808A (en) * 2014-02-11 2019-10-16 위스콘신 얼럼나이 리서어치 화운데이션 Floating evaporative assembly of aligned carbon nanotubes
JP2020073426A (en) * 2014-02-11 2020-05-14 ウィスコンシン アルムニ リサーチ ファンデイション Floating evaporative self-assembly of aligned carbon nanotubes
KR102299779B1 (en) * 2014-02-11 2021-09-08 위스콘신 얼럼나이 리서어치 화운데이션 Floating evaporative assembly of aligned carbon nanotubes
JP2018532246A (en) * 2016-03-21 2018-11-01 エルジー・ケム・リミテッド Method for producing electrode current collector for secondary battery and electrode including electrode current collector produced by the method
US10483549B2 (en) 2016-03-21 2019-11-19 Lg Chem, Ltd. Method of manufacturing electrode current collector for secondary battery and electrode including electrode current collector manufactured using the method
US10873026B2 (en) 2017-03-10 2020-12-22 Wisconsin Alumni Research Foundation Alignment of carbon nanotubes in confined channels

Also Published As

Publication number Publication date
JP3579714B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
JP2002226209A (en) Lb film consisting of carbon nanotube
Benedict et al. Up‐conversion luminescence in dye‐doped crystals of potassium hydrogen phthalate
Roy et al. Supramolecular assembly of melamine and its derivatives: nanostructures to functional materials
US20150321149A1 (en) Selective membranes formed by alignment of porous materials
Pan et al. Direct optical lithography of CsPbX3 nanocrystals via photoinduced ligand cleavage with postpatterning chemical modification and electronic coupling
Xie et al. A dual thermal and photo-switchable shrinking–swelling supramolecular peptide dendron gel
Wang et al. Aggregates of fullerene C60 and C70 formed at the gas-water interface and in DMSO/water mixed solvents. a spectral study
JP2020073426A (en) Floating evaporative self-assembly of aligned carbon nanotubes
Kashif et al. Effect of different seed solutions on the morphology and electrooptical properties of ZnO nanorods
Kevin et al. A novel maskless approach towards aligned, density modulated and multi-junction ZnO nanowires for enhanced surface area and light trapping solar cells
Zhang et al. Tunable organic solvent nanofiltration in self-assembled membranes at the sub–1 nm scale
Ahmad Makinudin et al. Metal phthalocyanine: fullerene composite nanotubes via templating method for enhanced properties
Fang et al. Conducting polymer films by UV-photo processing
Zwawi et al. Polypyrrole/functionalized multi-walled carbon nanotube composite for optoelectronic device application
Arobi et al. A holistic framework towards understanding the optical and dielectric behaviors of CH3NH3PbCl3 perovskites/graphene oxide hybrid films for light absorbing active layer
Hou et al. Photochemical reactivity of aqueous fullerene clusters: C60 versus C70
EP2708492B1 (en) Mesoporous layer comprising J-aggregates and production method
Zhang et al. Photoluminescent Honeycomb Structures from Polyoxometalates and an Imidazolium‐Based Ionic Liquid Bearing a π‐Conjugated Moiety and a Branched Aliphatic Chain
Dutta et al. A spectral study of aggregates of chrysene in an ethanol-water mixture and in Langmuir-Blodgett films
RU2705082C1 (en) METHOD OF MAKING INORGANIC PEROVSKITE NANOWHISKERS OF CsPbBr3 TYPE
JP3783059B2 (en) LB film made of carbon nanotube and method for producing the same
Leigh et al. Second harmonic generation from Langmuir-Blodgett films of fullerene-aza-crown ethers and their potassium ion complexes
JP5030057B2 (en) Fabrication of conductive carbon nanotube honeycomb film
Bahnmüller et al. On the Shape-Selected, Ligand-Free Preparation of Hybrid Perovskite (CH3NH3PbBr3) Microcrystals and Their Suitability as Model-System for Single-Crystal Studies of Optoelectronic Properties
JP2008224854A (en) Polarizing light emitting element and polarizing element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040312

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

R150 Certificate of patent or registration of utility model

Ref document number: 3579714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term