JP2002222963A - Optical integrated circuit board - Google Patents

Optical integrated circuit board

Info

Publication number
JP2002222963A
JP2002222963A JP2001020622A JP2001020622A JP2002222963A JP 2002222963 A JP2002222963 A JP 2002222963A JP 2001020622 A JP2001020622 A JP 2001020622A JP 2001020622 A JP2001020622 A JP 2001020622A JP 2002222963 A JP2002222963 A JP 2002222963A
Authority
JP
Japan
Prior art keywords
light receiving
refractive index
receiving element
semiconductor light
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001020622A
Other languages
Japanese (ja)
Other versions
JP3898448B2 (en
Inventor
Yuriko Ueno
由里子 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001020622A priority Critical patent/JP3898448B2/en
Publication of JP2002222963A publication Critical patent/JP2002222963A/en
Application granted granted Critical
Publication of JP3898448B2 publication Critical patent/JP3898448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical integrated circuit board having an enhanced photodetecting efficiency by a semiconductor photodetector for a light to be propagated through an optical waveguide. SOLUTION: The optical integrated circuit board comprises a surface photodetecting type semiconductor photodetector 2 arranged on a substrate 1, the optical waveguide having at least a lower clad part 3 and a core part 4 and formed parallel to a photodetecting surface in a light transmission direction near the element 2, and an intermediate refractive index element 6 disposed at an input side of the element 2 in a light transmission direction by the waveguide and disposed oppositely to the end face of the photodetecting surface of the element 2 and the core part 4 of the waveguide so that a refractive index is larger than that of the core part 4 and smaller than that of the photodetecting surface. Since a large refractive index change at the end face of the element 2 is alleviated, a reflection of an incident light at the end face of the photodetecting surface can be suppressed, and a propagated light of the waveguide can be efficiently optically coupled to the element 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光導波路と半導体
受光素子とを同一基板に集積する光集積回路基板に関
し、例えばWDM(Wavelength Division Multiplex:
波長分割多重伝送方式)用受光回路基板のように同一基
板上に複数の半導体受光素子およびその他のデバイスを
搭載するような場合に好適に利用され、光導波路と半導
体受光素子とを同一基板に集積して基板サイズの小型化
と受光効率の増加を実現できる光集積回路基板に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical integrated circuit board in which an optical waveguide and a semiconductor light receiving element are integrated on the same substrate, for example, a WDM (Wavelength Division Multiplex: WDM).
It is suitably used when a plurality of semiconductor light-receiving elements and other devices are mounted on the same substrate, such as a light-receiving circuit substrate for wavelength division multiplex transmission, and the optical waveguide and the semiconductor light-receiving element are integrated on the same substrate. In addition, the present invention relates to an optical integrated circuit substrate capable of realizing a reduction in substrate size and an increase in light receiving efficiency.

【0002】[0002]

【従来の技術】従来、WDM用受光回路基板等のような
光集積回路基板における半導体受光素子と光導波路との
接続は、光導波路層の上方に半導体受光素子を実装し、
光導波路からの光は、光導波路に作り込んだミラーやグ
レーティングを通して光路変更することによって半導体
受光素子の受光部に入力させるのが一般的であった。
2. Description of the Related Art Conventionally, the connection between a semiconductor light receiving element and an optical waveguide in an optical integrated circuit board such as a light receiving circuit board for WDM is performed by mounting the semiconductor light receiving element above the optical waveguide layer.
In general, light from an optical waveguide is input to a light receiving section of a semiconductor light receiving element by changing an optical path through a mirror or a grating formed in the optical waveguide.

【0003】この方法では、半導体受光素子を実装する
際の光導波路と半導体受光素子の受光部との光学的な結
合を行なうための位置合わせが半導体受光素子の相対的
な位置を直交する3軸方向において最適に設定する必要
があった。また、光導波路に作り込むミラーやグレーテ
ィングの作製プロセスも煩雑であった。
In this method, when mounting a semiconductor light receiving element, positioning for optically coupling an optical waveguide and a light receiving portion of the semiconductor light receiving element is performed by three axes in which relative positions of the semiconductor light receiving element are orthogonal to each other. It was necessary to set the direction optimally. Also, the process of manufacturing mirrors and gratings to be built in the optical waveguide is complicated.

【0004】そこで、特開平7−128531号公報では、光
結合を用いて高分子導波路から光半導体素子へ高効率に
結合を行なう構造が提案されている。図4に特開平7−
128531号公報に提案された光集積回路基板の例の断面図
を示す。これによれば、光導波路が高分子導波路で形成
され、クラッド部33中に形成された光導波路のコア部34
が半導体層35と光吸収層32とから成る半導体受光素子の
上面に乗り上げるように屈曲し、半導体受光素子の端面
とコア部34との間は下部のクラッド部33で埋め込まれて
いる構造を有している。この構造は、屈曲部において屈
曲部の外側、即ち半導体受光素子側へ伝搬光の電界分布
が偏ることによって、半導体受光素子の光吸収層32に取
り込まれやすくなり、光導波路と半導体受光素子との結
合効率を高くしている。
Japanese Patent Laid-Open Publication No. Hei 7-128531 proposes a structure in which a polymer waveguide is coupled to an optical semiconductor device with high efficiency by using optical coupling. FIG.
1 shows a cross-sectional view of an example of an optical integrated circuit board proposed in Japanese Patent No. 128531. According to this, the optical waveguide is formed of a polymer waveguide, and the core portion 34 of the optical waveguide formed in the clad portion 33 is formed.
Is bent so as to ride on the upper surface of the semiconductor light receiving element composed of the semiconductor layer 35 and the light absorbing layer 32, and the gap between the end face of the semiconductor light receiving element and the core part 34 is buried with the lower clad part 33. are doing. In this structure, the electric field distribution of the propagating light is biased toward the outside of the bent portion, that is, toward the semiconductor light receiving element side at the bent portion, so that the light is easily taken into the light absorbing layer 32 of the semiconductor light receiving element, and the optical waveguide and the semiconductor light receiving element The coupling efficiency is increased.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
7−128531号公報に提案された光集積回路基板に関して
は、図4に示すように高分子導波路が半導体受光素子の
上面に乗り上げるように屈曲しているため、屈曲部の曲
率半径が小さい場合において、光が放射することによっ
て高分子導波路を伝搬してきた光は半導体受光素子と結
合せずに、一部が基板や上部クラッド層33へ散乱してし
まうという問題点があった。
However, with respect to the optical integrated circuit board proposed in Japanese Patent Application Laid-Open No. Hei 7-128531, the polymer waveguide is bent so as to ride on the upper surface of the semiconductor light receiving element as shown in FIG. Therefore, when the radius of curvature of the bent portion is small, the light that has propagated through the polymer waveguide by radiating light is not coupled to the semiconductor light receiving element, and a part of the light is transmitted to the substrate or the upper cladding layer 33. There was a problem of scattering.

【0006】また、この例においても、半導体受光素子
の受光部である光吸収層32と半導体受光素子の入力側の
端面の境界部に位置する下部クラッド33との屈折率差が
大きいため、光吸収層32に端面側から入射する伝搬光が
高分子導波路の伝搬方向に対して垂直な半導体受光素子
の端面で反射されてしまうという問題点があった。
Also in this example, since the difference in the refractive index between the light absorbing layer 32, which is the light receiving portion of the semiconductor light receiving element, and the lower cladding 33 located at the boundary between the input side end face of the semiconductor light receiving element is large, the light There is a problem that the propagating light incident on the absorption layer 32 from the end face side is reflected on the end face of the semiconductor light receiving element perpendicular to the propagation direction of the polymer waveguide.

【0007】本発明は上記従来技術における問題点に鑑
みてなされたものであり、その目的は、光導波路を伝搬
する光に対する半導体受光素子による受光効率を高めた
光集積回路基板を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and it is an object of the present invention to provide an optical integrated circuit board in which the light receiving efficiency of a semiconductor light receiving element for light propagating through an optical waveguide is improved. is there.

【0008】[0008]

【課題を解決するための手段】本発明の光集積回路基板
は、基板上に配設された半導体受光素子と、少なくとも
下部クラッド部およびコア部を有し、前記半導体受光素
子の近傍に光伝搬方向をその受光面に平行として形成さ
れた光導波路と、前記半導体受光素子の前記光導波路に
よる前記光伝搬方向の入力側に位置して前記半導体受光
素子の前記受光面の端面および前記光導波路の前記コア
部に対向するように配置された、屈折率が前記コア部よ
り大きく前記受光面より小さい中間屈折率体とを具備し
て成ることを特徴とするものである。
An optical integrated circuit substrate according to the present invention has a semiconductor light receiving element disposed on a substrate, at least a lower clad part and a core part, and has a light propagating near the semiconductor light receiving element. An optical waveguide formed so that the direction is parallel to the light receiving surface thereof, and an end face of the light receiving surface of the semiconductor light receiving element positioned on the input side of the semiconductor light receiving element in the light propagation direction by the optical waveguide and the optical waveguide. An intermediate refractive index member having a refractive index larger than that of the core portion and smaller than the light receiving surface, which is arranged to face the core portion.

【0009】[0009]

【発明の実施の形態】本発明の光集積回路基板によれ
ば、基板上に例えば実装されあるいは形成されて配設さ
れた面受光型の半導体受光素子に対して、その上に光導
波路を積層するように形成していることから、半導体受
光素子と光導波路とを同一基板に効率的に集積すること
ができ、従来のように基板上に光導波路を形成した後で
半導体受光素子を実装した光集積回路基板と比較して小
型化・低背化できるとともに、この光導波路上にさらに
別の光電子デバイス等を搭載実装することができるの
で、特に基板上に半導体受光素子および光電子デバイス
をそれぞれ複数個搭載するような光集積回路基板につい
ても、光集積回路基板の小型化を実現することができる
ものとなる。
According to the optical integrated circuit substrate of the present invention, an optical waveguide is laminated on a surface light receiving type semiconductor light receiving element mounted or formed on a substrate, for example. As a result, the semiconductor light receiving element and the optical waveguide can be efficiently integrated on the same substrate, and the semiconductor light receiving element is mounted after forming the optical waveguide on the substrate as in the related art. Compared to the optical integrated circuit board, the size and height can be reduced, and further another optoelectronic device or the like can be mounted and mounted on this optical waveguide. Also for an optical integrated circuit board on which a single optical integrated circuit board is mounted, the size of the optical integrated circuit board can be reduced.

【0010】また、本発明の光集積回路基板によれば、
基板には半導体受光素子を形成することができる基板や
半導体受光素子を搭載実装することができる基板であれ
ば各種の基板を用いることができ、電気的特性の良いセ
ラミック基板等、信号処理の高速化および光電子デバイ
スの高集積化に対してより好適な基板を使用することが
できる。
Further, according to the optical integrated circuit board of the present invention,
As the substrate, various substrates can be used as long as a substrate on which a semiconductor light receiving element can be formed or a substrate on which a semiconductor light receiving element can be mounted and mounted. More suitable substrates can be used for integration and high integration of optoelectronic devices.

【0011】また、本発明の光集積回路基板によれば、
半導体受光素子の光導波路による光伝搬方向の入力側の
端面の手前に、この端面と光導波路のコア部とに対向さ
せて、屈折率が光導波路のコア部より大きく半導体受光
素子の受光面より小さい中間屈折率体を配置したことに
よって、受光面の端面に入射するコア部からの漏れ出し
た伝搬光に対して、半導体受光素子の端面における例え
ばクラッド部と受光面との間の大きな屈折率変化が緩和
されるため、受光面の端面における入射光の反射を抑制
することができ、光導波路による伝搬光を効率的に半導
体受光素子へ光結合することができる。
Further, according to the optical integrated circuit board of the present invention,
Before the end face on the input side in the light propagation direction by the optical waveguide of the semiconductor light receiving element, facing this end face and the core part of the optical waveguide, the refractive index is larger than the core part of the optical waveguide and is higher than the light receiving surface of the semiconductor light receiving element. By arranging a small intermediate refractive index body, for the propagating light leaked from the core portion incident on the end face of the light receiving surface, a large refractive index between the light receiving surface and the clad portion at the end face of the semiconductor light receiving element, for example. Since the change is reduced, the reflection of the incident light on the end face of the light receiving surface can be suppressed, and the light propagated by the optical waveguide can be efficiently optically coupled to the semiconductor light receiving element.

【0012】さらに、中間屈折率体を第2の光導波路と
してとらえた場合、光結合の原理から、光導波路を伝搬
する光が中間屈折率体に結合して、この中間屈折率体か
ら出力された光が半導体受光素子の端面から受光部へ結
合することができ、従来の光導波路と半導体受光素子と
の関係に比較して結合効率を高めることができる。
Further, when the intermediate refractive index body is regarded as the second optical waveguide, light propagating through the optical waveguide is coupled to the intermediate refractive index body and output from the intermediate refractive index body due to the principle of optical coupling. The reflected light can be coupled from the end face of the semiconductor light receiving element to the light receiving portion, and the coupling efficiency can be increased as compared with the conventional relationship between the optical waveguide and the semiconductor light receiving element.

【0013】以下、本発明の光集積回路基板について図
面を参照しつつ説明する。
Hereinafter, an optical integrated circuit substrate according to the present invention will be described with reference to the drawings.

【0014】図1は、本発明の光集積回路基板の実施の
形態の一例を示す光集積回路基板の断面図である。
FIG. 1 is a sectional view of an optical integrated circuit board showing an example of an embodiment of the optical integrated circuit board of the present invention.

【0015】本発明の光集積回路基板は、図1に示すよ
うに、基板1上に配設された面受光型の半導体受光素子
2と、この基板1上の半導体受光素子2上に形成され
た、下部クラッド部3・コア部4・上部クラッド部5か
ら成る光導波路と、半導体受光素子2の光導波路による
光伝搬方向の入力側に位置する受光面の端面、通常は光
伝搬方向に垂直に配置される端面の手前に、半導体受光
素子2の受光面の端面および光導波路のコア部4の下面
に対向するように配置された、屈折率がコア部4より大
きく半導体受光素子2の受光面より小さい中間屈折率体
6とを具備して成るものである。なお、上部クラッド部
5は必ずしも必要なものではなく、上部クラッド部5を
形成せず、コア部4の上部を空気(屈折率は約1)とし
ておくことによっても、光導波路による良好な光伝送お
よび半導体受光素子2への良好な光接続を行なうことが
できる。
As shown in FIG. 1, an optical integrated circuit board according to the present invention is formed on a surface light receiving type semiconductor light receiving element 2 provided on a substrate 1 and on the semiconductor light receiving element 2 on the substrate 1. Further, an end face of an optical waveguide composed of the lower clad part 3, the core part 4, and the upper clad part 5 and an end face of a light receiving surface located on the input side in the light propagation direction by the optical waveguide of the semiconductor light receiving element 2, usually perpendicular to the light propagation direction. The light receiving surface of the semiconductor light receiving element 2 having a refractive index larger than that of the core part 4 and disposed so as to face the end surface of the light receiving surface of the semiconductor light receiving element 2 and the lower surface of the core part 4 of the optical waveguide before the end face arranged at And an intermediate refractive index member 6 smaller than the surface. It is to be noted that the upper clad portion 5 is not always necessary, and that the upper clad portion 5 is not formed, and the upper portion of the core portion 4 is made to be air (having a refractive index of about 1). In addition, good optical connection to the semiconductor light receiving element 2 can be performed.

【0016】本発明の光集積回路基板において、半導体
受光素子2および中間屈折率体6が配設され、その上に
光導波路が形成される基板1には、光集積回路基板や光
電子混在基板の光信号を扱う基板として使用される種々
の基板、例えば、シリコン基板やアルミナ基板・ガラス
セラミック基板・多層セラミック基板等が使用できる。
In the optical integrated circuit board of the present invention, the semiconductor light receiving element 2 and the intermediate refractive index body 6 are provided, and the optical waveguide is formed thereon. Various substrates used as substrates for handling optical signals, for example, a silicon substrate, an alumina substrate, a glass ceramic substrate, a multilayer ceramic substrate, and the like can be used.

【0017】基板1上に配設される面受光型の半導体受
光素子2には、例えば、フォトダイオード(PNフォト
ダイオード・PINフォトダイオードあるいはアバラン
シェフォトダイオード・MSM(Metal-Semiconductor-
Metal)フォトダイオード等が用いられ、これらが基板
1上に搭載実装されあるいは形成されて配設される。半
導体受光素子2の受光面は、基本的には基板1の上面と
ほぼ平行にその素子2の上部に位置するものであるが、
このような位置に限定されるものではなく、半導体受光
素子2のどこに位置していてもよい。ただし、受光面の
位置によっては、最大受光効率を得ることができる最適
設計を行ない、その最適設計に見合った光導波路および
中間屈折率体6を形成する必要がある。
The surface light receiving type semiconductor light receiving element 2 disposed on the substrate 1 includes, for example, a photodiode (PN photodiode / PIN photodiode or avalanche photodiode / MSM (Metal-Semiconductor-
Metal) photodiodes and the like are used, and these are mounted or mounted on the substrate 1 or disposed. The light receiving surface of the semiconductor light receiving element 2 is basically located on the upper part of the element 2 almost in parallel with the upper surface of the substrate 1,
The position is not limited to such a position, and may be located anywhere on the semiconductor light receiving element 2. However, depending on the position of the light receiving surface, it is necessary to perform an optimal design that can obtain the maximum light receiving efficiency, and to form an optical waveguide and an intermediate refractive index body 6 that match the optimal design.

【0018】基板1および半導体受光素子2上に形成さ
れる光導波路は、少なくとも下部クラッド部3とコア部
4とを有しており、好ましくはこれに上部クラッド部5
を有する3層から成る3次元導波路形状の光導波路であ
る。その形成材料としては基板1上に3次元導波路形状
の光導波路を形成できる光学材料であれば種々のものが
使用できるが、中でも有機系の光学材料、特にシロキサ
ン系ポリマを用いることが望ましい。シロキサン系ポリ
マによる光導波路とすれば、例えばコア部4のみあるい
はコア部4および下部および上部クラッド部3・5にチ
タン(Ti)等の金属を含有したシロキサン系ポリマを
用いることにより、チタン含有量の制御によってコア部
4と下部および上部クラッド部3・5とで所望の屈折率
差を有する光導波路を容易に作製することができ、半導
体受光素子2との受光効率が最大となる構造のものを設
計することが容易となる。
The optical waveguide formed on the substrate 1 and the semiconductor light receiving element 2 has at least a lower clad part 3 and a core part 4, and preferably has an upper clad part 5.
Is a three-dimensional waveguide shape optical waveguide composed of three layers having the following. As a material for forming the optical waveguide, various optical materials can be used as long as they can form an optical waveguide having a three-dimensional waveguide shape on the substrate 1. Among them, an organic optical material, in particular, a siloxane polymer is preferably used. If the optical waveguide is made of a siloxane-based polymer, for example, by using a siloxane-based polymer containing a metal such as titanium (Ti) only in the core portion 4 or in the core portion 4 and the lower and upper clad portions 3 and 5, the titanium content can be reduced. The optical waveguide having a desired refractive index difference between the core portion 4 and the lower and upper clad portions 3 and 5 can be easily manufactured by controlling the core portion 4, and the light receiving efficiency with the semiconductor light receiving element 2 is maximized. Becomes easier to design.

【0019】このようなシロキサン系ポリマとしては、
ポリマの骨格にシロキサン結合が含まれている樹脂であ
ればよく、例えばポリフェニルシルセスキオキサン・ポ
リメチルフェニルシルセスキオキサン・ポリジフェニル
シルセスキオキサン等がある。
As such a siloxane-based polymer,
Any resin may be used as long as it has a siloxane bond in the polymer skeleton. Examples thereof include polyphenylsilsesquioxane, polymethylphenylsilsesquioxane, and polydiphenylsilsesquioxane.

【0020】また、コア部4およびクラッド部3・5に
含有させる金属としてはチタンに限られるものではな
く、ゲルマニウム(Ge)・アルミニウム(Al)・エ
ルビウム(Er)等も使用できる。これらの金属を含有
したコア部4を形成するには、その金属アルコキシドを
添加したシロキサン系ポリマ層を形成し、これを所望の
形状・寸法に加工すればよい。
The metal contained in the core portion 4 and the cladding portions 3 and 5 is not limited to titanium, but may be germanium (Ge), aluminum (Al), erbium (Er), or the like. In order to form the core portion 4 containing these metals, a siloxane-based polymer layer to which the metal alkoxide is added may be formed and processed into desired shapes and dimensions.

【0021】また、光導波路の材料としては、この他に
も低損失で光を伝搬させることができる透明性があり、
また所望の屈折率差を得ることができるコア部材とクラ
ッド部材との組合せであれば各種の材料を用いることが
できる。有機系の光学材料としては、シロキサン系ポリ
マ以外に、例えばフッ素化ポリイミド・ポリメチルメタ
クリレート(PMMA)・ポリカーボネート(PC)等
の溶液状態で塗布可能な光学材料が好適に用いられる。
In addition, as a material of the optical waveguide, there is transparency that can transmit light with low loss.
In addition, various materials can be used as long as a combination of a core member and a clad member that can obtain a desired difference in refractive index. As the organic optical material, in addition to the siloxane-based polymer, an optical material that can be applied in a solution state, such as fluorinated polyimide, polymethyl methacrylate (PMMA), and polycarbonate (PC), is preferably used.

【0022】半導体受光素子2の受光面の端面に対し、
光導波路による光伝搬方向の入力側に位置して、受光面
の端面および光導波路のコア部4の下面に対向するよう
にして半導体受光素子2の端面の手前に配置される中間
屈折率体6は、光集積回路を構成する光導波路および半
導体受光素子2の屈折率および形状に応じて適切な屈折
率および形状を有するものすればよく、好適には下部お
よび上部クラッド部3・5とコア部4との3層で構成さ
れる光導波路の実効屈折率と等しい実効屈折率を有する
屈折率と形状との組合せとするとよい。例えば、中間屈
折率体6の屈折率が大きい場合はその厚みを薄くし、中
間屈折率体6の屈折率が小さい場合はその厚みを厚くす
ると良い。
With respect to the end face of the light receiving surface of the semiconductor light receiving element 2,
An intermediate refractive index body 6 located on the input side in the light propagation direction of the optical waveguide and disposed in front of the end face of the semiconductor light receiving element 2 so as to face the end face of the light receiving surface and the lower face of the core portion 4 of the optical waveguide. Should have an appropriate refractive index and shape according to the refractive index and shape of the optical waveguide and the semiconductor light receiving element 2 constituting the optical integrated circuit. Preferably, the lower and upper clad portions 3 and 5 and the core portion A combination of the refractive index and the shape having an effective refractive index equal to the effective refractive index of the optical waveguide composed of the three layers 4 and 4 is preferable. For example, when the refractive index of the intermediate refractive index body 6 is large, its thickness is reduced, and when the refractive index of the intermediate refractive index body 6 is small, its thickness is increased.

【0023】その形成材料としては、例えば、シロキサ
ン系ポリマから成る光導波路に対しては、PMMAのよ
うに光集積回路を構成する光導波路のコア部4の屈折率
より大きく、かつ半導体受光素子2の受光面の屈折率よ
り小さい屈折率を有し、さらに光吸収等の光損失が少な
い材料であればよい。従って、金属を含有した樹脂材料
および金属等は光の吸収損失があるため、中間屈折率体
6を形成する材料としては必ずしも好適ではないが、こ
の場合はその形状を最適設計することによって、効果的
に半導体受光素子2の受光面に伝搬光を結合することが
できる。そのような形状としては、例えば金属を含有し
た樹脂材料を使用して、光導波路に平行に配置した中間
屈折率体6の光導波路側と反対側に金属の含有率を高く
した構造を有する形状とするとよい。
As a material for the formation, for example, for an optical waveguide made of a siloxane-based polymer, the refractive index of the core portion 4 of the optical waveguide constituting an optical integrated circuit such as PMMA is larger than that of the semiconductor light receiving element 2. Any material may be used as long as it has a refractive index smaller than the refractive index of the light-receiving surface of the above (1) and further has a small light loss such as light absorption. Therefore, a resin material containing a metal, a metal, and the like are not necessarily suitable as a material for forming the intermediate refractive index body 6 because of a light absorption loss, but in this case, an effect is obtained by optimally designing the shape. Propagating light can be coupled to the light receiving surface of the semiconductor light receiving element 2. As such a shape, for example, a shape having a structure in which the metal content is increased on the side opposite to the optical waveguide side of the intermediate refractive index body 6 arranged in parallel with the optical waveguide using a resin material containing metal. It is good to

【0024】半導体受光素子2が配設された基板1上に
光伝搬方向を半導体受光素子の受光面に平行として形成
される光導波路は、下部クラッド部3の厚み、つまり基
板1からこの基板1にほぼ平行に形成されたコア部4ま
での厚みは、形成材料について基板1との相互作用によ
り放射損失が発生しないような厚みをあらかじめ実験で
調べた結果等に基づいて、その厚み以上に形成する。
The optical waveguide formed on the substrate 1 on which the semiconductor light receiving element 2 is disposed with the light propagation direction being parallel to the light receiving surface of the semiconductor light receiving element is formed by the thickness of the lower clad portion 3, that is, the substrate 1 The thickness up to the core portion 4 formed substantially in parallel with the substrate is formed to be greater than the thickness based on the result of an experiment conducted beforehand on a thickness of the material to prevent radiation loss due to the interaction with the substrate 1. I do.

【0025】そのように設計した光集積回路基板の構造
を実現するためには、例えば、基板1上にまず下部クラ
ッド部3の材料となるシロキサン系ポリマの溶液を光学
材料溶液を基板1上に滴下・塗布することが可能なスピ
ンコーターやバーコーター等の装置を使用して下部クラ
ッド部3を成膜し、その上に中間屈折率体6を形成する
材料をスピンコーターやバーコーター等で塗布して、エ
ッチングによって中間屈折率体6をパターニング加工す
る。このエッチングに使用する装置には、例えばECR
(電子サイクロトロン共鳴)・RIE(反応性イオンエ
ッチング)・レーザ等を採用でき、それぞれエッチング
条件を最適化することによって、設計したパターン形状
を加工することができる。
In order to realize the structure of the optical integrated circuit board designed as described above, for example, first, a solution of a siloxane-based polymer as a material of the lower clad portion 3 is applied to the substrate 1 by applying an optical material solution to the substrate 1. The lower clad portion 3 is formed using a device such as a spin coater or a bar coater that can be dropped and applied, and a material for forming the intermediate refractive index body 6 is applied thereon using a spin coater or a bar coater. Then, the intermediate refractive index body 6 is patterned by etching. Equipment used for this etching includes, for example, ECR
(Electron Cyclotron Resonance), RIE (Reactive Ion Etching), laser, etc. can be employed, and the designed pattern shape can be processed by optimizing the etching conditions.

【0026】この際、光導波路による光伝搬方向に沿っ
た中間屈折率体6の断面形状としては、図1に示すよう
な略四角形状の他に、図2に図1と同様の断面図で示す
ような、半導体受光素子2の受光面の端面および光導波
路のコア部4の下面に対向する面を直交する2辺としこ
れらを結ぶ斜辺を有する、略三角形状としてもよい。図
2に示すように中間屈折率体6の断面形状を略三角形状
とすることにより、中間屈折率体6とそれを取り巻くク
ラッド部3とからなる第2の光導波路として考えた場合
の実効屈折率が、半導体受光素子2が有する実効屈折率
に徐々に近くなるために、結合の効果をさらに大きくす
ることができる。
At this time, the sectional shape of the intermediate refractive index body 6 along the light propagation direction of the optical waveguide is not only a substantially square shape as shown in FIG. 1 but also a sectional view similar to FIG. As shown, the surface facing the end surface of the light receiving surface of the semiconductor light receiving element 2 and the lower surface of the core portion 4 of the optical waveguide may be formed into a substantially triangular shape having two orthogonal sides and an oblique side connecting these sides. By making the cross-sectional shape of the intermediate refractive index body 6 substantially triangular as shown in FIG. 2, the effective refraction when considered as a second optical waveguide composed of the intermediate refractive index body 6 and the clad portion 3 surrounding it. Since the index gradually approaches the effective refractive index of the semiconductor light receiving element 2, the effect of the coupling can be further increased.

【0027】さらに、半導体受光素子2が実装される部
分を同様にエッチングによって加工する。その後、半導
体受光素子2を基板1上に実装し、再び下部クラッド部
3を成膜して光導波路のコア部4と半導体受光素子2と
の間に所定のギャップを設ける。そして、この上にコア
部4を成膜し、同様にエッチングによって所望の形状に
パターニング加工して光導波路を形成する。
Further, the portion on which the semiconductor light receiving element 2 is mounted is processed by etching in the same manner. After that, the semiconductor light receiving element 2 is mounted on the substrate 1 and the lower clad part 3 is formed again to provide a predetermined gap between the core part 4 of the optical waveguide and the semiconductor light receiving element 2. Then, a core portion 4 is formed thereon, and is similarly patterned by etching into a desired shape to form an optical waveguide.

【0028】以上の図1および図2に示すような本発明
の光集積回路基板は、例えば図3に斜視図で示すよう
な、基板11上に多数の半導体受光素子14が配設されると
ともにその上にそれぞれの半導体受光素子14と光結合さ
れる光導波路のコア部13が形成され、さらに多数の光増
幅器15等の光電子デバイスが搭載された光集積回路モジ
ュール等に使用され、それにより、この光集積回路モジ
ュールは、光導波路13と半導体受光素子14とを高い受光
効率で光結合させつつ、そのモジュールのサイズの小型
化を図ることができるものとなる。
The optical integrated circuit board of the present invention as shown in FIGS. 1 and 2 has a large number of semiconductor light receiving elements 14 disposed on a substrate 11 as shown in, for example, a perspective view in FIG. A core portion 13 of an optical waveguide optically coupled with each semiconductor light receiving element 14 is formed thereon, and further used for an optical integrated circuit module or the like in which a large number of optoelectronic devices such as an optical amplifier 15 are mounted. In the optical integrated circuit module, the size of the module can be reduced while the optical waveguide 13 and the semiconductor light receiving element 14 are optically coupled with high light receiving efficiency.

【0029】なお、図3において、12は外部との光信号
のやりとりを行なうための光ファイバであり、16は光増
幅器15を駆動するために基板11上に形成された電極部で
ある。また、半導体受光素子14の光導波路13による光伝
搬方向の入力側(光ファイバ12側)の光導波路13の部分
に4本の平行な直線で示した部分は、中間屈折率体が設
けられている場所であることを示している。
In FIG. 3, reference numeral 12 denotes an optical fiber for exchanging optical signals with the outside, and reference numeral 16 denotes an electrode portion formed on the substrate 11 for driving the optical amplifier 15. Further, a portion indicated by four parallel straight lines at a portion of the optical waveguide 13 on the input side (optical fiber 12 side) of the semiconductor light receiving element 14 in the light propagation direction by the optical waveguide 13 is provided with an intermediate refractive index body. It is a place that is.

【0030】[0030]

【実施例】次に、本発明の光集積回路基板について具体
例を説明する。
Next, a specific example of the optical integrated circuit board of the present invention will be described.

【0031】[例1]まず、アルミナ基板1上に、下部
クラッド部3を形成し、その一部を加工して中間屈折率
体6を形成した。その後、面受光型の半導体受光素子2
を実装し、下部および上部クラッド部3・5がシロキサ
ン系ポリマ、コア部4がチタン含有シロキサン系ポリマ
から成るステップインデックス型光導波路を具備した、
図1に示した例と同様な構成の光集積回路基板を作製し
た。このときコア部4およびクラッド部3・5の屈折率
をそれぞれ1.450および1.445として、コア部4の幅を6
μm、高さを6μmとし、下部クラッド部3の厚み(基
板1から基板1上面に平行に形成されたコア部4までの
厚み)を10μm、上部クラッド部5の厚みを10μmとし
た。なお、半導体受光素子2には、厚みが1μmで、受
光面の面積が200μm径のものを用いた。中間屈折率体
6には、屈折率1.492を有するフッ素化ポリイミドを用
いて、幅を200μm、高さを1μm、光伝搬方向への長
さを60μmに加工した。この中間屈折率体6の端面と半
導体受光素子2の受光面の端面とは、接しているものと
した。
Example 1 First, a lower clad portion 3 was formed on an alumina substrate 1, and a part thereof was processed to form an intermediate refractive index member 6. Then, the surface light receiving type semiconductor light receiving element 2
And a step index type optical waveguide in which the lower and upper cladding portions 3 and 5 are made of a siloxane-based polymer, and the core portion 4 is made of a titanium-containing siloxane-based polymer.
An optical integrated circuit substrate having the same configuration as that of the example shown in FIG. 1 was manufactured. At this time, the refractive index of the core portion 4 and the cladding portions 3 and 5 are set to 1.450 and 1.445, respectively, and the width of the core portion 4 is set to 6
μm, the height was 6 μm, the thickness of the lower cladding portion 3 (the thickness from the substrate 1 to the core portion 4 formed parallel to the upper surface of the substrate 1) was 10 μm, and the thickness of the upper cladding portion 5 was 10 μm. The semiconductor light receiving element 2 used had a thickness of 1 μm and a light receiving surface area of 200 μm in diameter. The intermediate refractive index body 6 was processed to have a width of 200 μm, a height of 1 μm, and a length in the light propagation direction of 60 μm using fluorinated polyimide having a refractive index of 1.492. The end face of the intermediate refractive index member 6 and the end face of the light receiving surface of the semiconductor light receiving element 2 are in contact with each other.

【0032】さらに、コア部4の上には、下部クラッド
部3と同様の材料を用いて上部クラッド部5を形成し
た。
Further, an upper clad portion 5 was formed on the core portion 4 using the same material as the lower clad portion 3.

【0033】このようにして作製した本発明の光集積回
路基板において、光導波路と半導体受光素子2との結合
効率を測定したところ、従来技術による光集積回路基板
の約2倍である約17%の結合効率を有していることが確
認できた。
When the coupling efficiency between the optical waveguide and the semiconductor light receiving element 2 of the optical integrated circuit substrate of the present invention thus manufactured was measured, it was about 17% which was about twice that of the optical integrated circuit substrate according to the prior art. It was confirmed that the coupling efficiency was as follows.

【0034】なお、この実施例では基板1にアルミナ基
板を使用したが、この他に窒化アルミニウム基板やシリ
コン基板・ガラスセラミックス基板等を用いても、同様
に良好な結合効率を有していた。
Although an alumina substrate was used as the substrate 1 in this embodiment, an aluminum nitride substrate, a silicon substrate, a glass-ceramic substrate, or the like may also have a good coupling efficiency.

【0035】[例2]まず、アルミナ基板1上に、下部
クラッド部3を形成し、一部を加工して中間屈折率体6
を形成した。その後、面受光型の半導体受光素子2を実
装し、下部および上部クラッド部3・5がシロキサン系
ポリマ、コア部4がチタン含有シロキサン系ポリマから
成るステップインデックス型光導波路を具備した、図2
に示した例と同様な構成の光集積回路基板を作製した。
このときコア部4およびクラッド部3・5の屈折率をそ
れぞれ1.450および1.445として、コア部4の幅を6μ
m、高さを6μmとし、下部クラッド部3の厚み(基板
1から基板1上面に平行に形成されたコア部4までの厚
み)を10μm、上部クラッド部5の厚みを10μmとし
た。なお、半導体受光素子2には、厚みが1μmで、受
光面の面積が200μm径のものを用いた。中間屈折率体
6には屈折率1.504を有するフッ素化ポリイミドに金属
を添加した材料を用いて、幅を200μm、高さを1μ
m、光伝搬方向への長さを540μmとした、図2に示す
ような断面が略三角形状のものに加工した。この中間屈
折率体6の端面と半導体受光素子2の受光面の端面と
は、接しているものとした。
Example 2 First, a lower clad portion 3 is formed on an alumina substrate 1 and a part thereof is processed to form an intermediate refractive index member 6.
Was formed. Thereafter, the surface light receiving type semiconductor light receiving element 2 was mounted, and the lower and upper cladding portions 3 and 5 were provided with a step index type optical waveguide composed of a siloxane-based polymer and the core portion 4 composed of a titanium-containing siloxane-based polymer.
An optical integrated circuit board having the same configuration as that of the example shown in FIG.
At this time, the refractive index of the core portion 4 and the cladding portions 3 and 5 are 1.450 and 1.445, respectively, and the width of the core portion 4 is 6 μm.
m, the height was 6 μm, the thickness of the lower cladding portion 3 (the thickness from the substrate 1 to the core portion 4 formed parallel to the upper surface of the substrate 1) was 10 μm, and the thickness of the upper cladding portion 5 was 10 μm. The semiconductor light receiving element 2 used had a thickness of 1 μm and a light receiving surface area of 200 μm in diameter. The intermediate refractive index member 6 is made of a material obtained by adding a metal to a fluorinated polyimide having a refractive index of 1.504, and has a width of 200 μm and a height of 1 μm.
m, and the length in the light propagation direction was 540 μm. The end face of the intermediate refractive index member 6 and the end face of the light receiving surface of the semiconductor light receiving element 2 are in contact with each other.

【0036】さらに、コア部4の上には、下部クラッド
部3と同様の材料を用いて上部クラッド部5を形成し
た。
Further, an upper clad portion 5 was formed on the core portion 4 using the same material as the lower clad portion 3.

【0037】このようにして作製した本発明の光集積回
路基板において、光導波路と半導体受光素子2との結合
効率を測定したところ、従来技術による光集積回路基板
の約50%も高い結合効率を有していることが確認でき
た。
When the coupling efficiency between the optical waveguide and the semiconductor light receiving element 2 of the optical integrated circuit board of the present invention thus manufactured was measured, the coupling efficiency was about 50% higher than that of the conventional optical integrated circuit board. It was confirmed that it had.

【0038】半導体受光素子2への結合効率は、中間屈
折率体6の屈折率および形状を変化させることによっ
て、任意に設計することができる。
The coupling efficiency to the semiconductor light receiving element 2 can be arbitrarily designed by changing the refractive index and the shape of the intermediate refractive index member 6.

【0039】光導波路と半導体受光素子2を2つの平行
した導波路と考えた場合の、中間屈折率体6の屈折率を
変化させた場合の結合効率の変化と中間屈折率体6の光
伝搬方向の長さを変化させた場合の結合効率の変化を、
図5および図6にそれぞれ線図で示す。図5の横軸は中
間屈折率体6の屈折率nを、図6の横軸は中間屈折率体
6の光伝搬方向の長さL(μm)を表わし、両図の縦軸
は結合効率Coupling efficiencyを表わし、両図の凡例
の「square」は例1の光集積回路基板における挙動を示
し、「taper」は例2の光集積回路基板における挙動を
示している。
When the optical waveguide and the semiconductor light receiving element 2 are considered as two parallel waveguides, the change in the coupling efficiency when the refractive index of the intermediate refractive index body 6 is changed and the light propagation of the intermediate refractive index body 6 The change in coupling efficiency when the length in the direction is changed,
5 and 6 are diagrammatically shown. The horizontal axis of FIG. 5 represents the refractive index n of the intermediate refractive index body 6, the horizontal axis of FIG. 6 represents the length L (μm) of the intermediate refractive index body 6 in the light propagation direction, and the vertical axes of both figures represent the coupling efficiency. Coupling efficiency is shown. In the legends in both figures, “square” indicates the behavior on the optical integrated circuit substrate of Example 1, and “taper” indicates the behavior on the optical integrated circuit substrate of Example 2.

【0040】図5および図6に示す結果から、屈折率は
最適値を有し、最適値を有する場合にコア部4と下部お
よび上部クラッド部3・5とから構成される光導波路の
実効屈折率と、中間屈折率体6および下部クラッド部3
から構成される第2の光導波路の実効屈折率とがほぼ等
しくなることが分かる。また、中間屈折率体6の光伝搬
方向の長さLについては、中間屈折率体6の断面形状が
略四角形状を示している場合は、長さLに対して結合効
率は周期的に変化し、最大結合効率を有する長さLが存
在することから、加工精度に合わせて長さを選択するこ
とができる。一方、中間屈折率体6の断面形状が略三角
形状を示している場合は、長さLに対して結合効率は周
期的に変化しながら増加する傾向にあり、用途に合わせ
て必要な結合効率を調整することができることが分か
る。
From the results shown in FIGS. 5 and 6, the refractive index has an optimum value. When the refractive index has the optimum value, the effective refractive index of the optical waveguide composed of the core portion 4 and the lower and upper cladding portions 3 and 5 is obtained. Index, intermediate refractive index body 6 and lower cladding 3
It can be seen that the effective refractive index of the second optical waveguide composed of As for the length L of the intermediate refractive index body 6 in the light propagation direction, when the cross-sectional shape of the intermediate refractive index body 6 shows a substantially square shape, the coupling efficiency changes periodically with respect to the length L. However, since there is a length L having the maximum coupling efficiency, the length can be selected according to the processing accuracy. On the other hand, when the cross-sectional shape of the intermediate refractive index body 6 is substantially triangular, the coupling efficiency tends to increase while periodically changing with the length L. It can be seen that can be adjusted.

【0041】なお、この実施例でも基板1にアルミナ基
板を使用したが、この他に窒化アルミニウム基板やシリ
コン基板・ガラスセラミックス基板等を用いても、同様
に良好な結合効率を有していた。
Although an alumina substrate was used as the substrate 1 in this embodiment, an aluminum nitride substrate, a silicon substrate, a glass-ceramic substrate, or the like also provided good coupling efficiency.

【0042】なお、以上はあくまで本発明の実施の形態
の例示であって、本発明はこれらに限定されるものでは
なく、本発明の要旨を逸脱しない範囲で種々の変更や改
良を加えることは何ら差し支えない。例えば、中間屈折
率体6の断面が略三角形状を示す場合の実効屈折率の変
化と同様の効果を有するように、光導波路の入力側から
半導体受光素子2へ徐々に屈折率を変化させてもよい。
この場合の屈折率変化は、例えば、中間屈折率体6のフ
ッ素化ポリイミドのフッ素含有量を、光導波路の入力側
から半導体受光素子2側へ徐々に屈折率が高くなるよう
に調整してもよい。また、中間屈折率体6の加工におい
て、中間屈折率体6を別の基板上で作製した後に、これ
を下部クラッド部3上に貼り付けて形成してもよい。
It should be noted that the above is only an example of the embodiment of the present invention, and the present invention is not limited to the embodiment. Various changes and improvements may be made without departing from the gist of the present invention. No problem. For example, the refractive index is gradually changed from the input side of the optical waveguide to the semiconductor light receiving element 2 so as to have the same effect as the change in the effective refractive index when the cross section of the intermediate refractive index body 6 has a substantially triangular shape. Is also good.
The change in the refractive index in this case can be achieved, for example, by adjusting the fluorine content of the fluorinated polyimide of the intermediate refractive index body 6 so that the refractive index gradually increases from the input side of the optical waveguide to the semiconductor light receiving element 2 side. Good. In the processing of the intermediate refractive index member 6, the intermediate refractive index member 6 may be formed on another substrate and then attached to the lower clad portion 3 to form the intermediate refractive index member.

【0043】また、図1およひ図2は半導体受光素子が
光導波路の下に位置する場合について示しているが、以
下に述べるような構造としてもよい。
Although FIGS. 1 and 2 show a case where the semiconductor light receiving element is located below the optical waveguide, the following structure may be adopted.

【0044】まず、基板上に下部クラッド部を形成しそ
の上にコア部を形成する。その上に薄いクラッド部を形
成し、中間屈折率体を加工した後に、光導波路に受光面
が平行になるように受光面を下向きにして半導体受光素
子を実装する。この中間屈折率体は、半導体受光素子の
光導波路による伝搬方向の入力側に位置して、半導体受
光素子の受光面の端面および光導波路のコア部の上面に
対向するように配置される。そして、中間屈折率体と半
導体受光素子とを覆うようにして上部クラッド部を形成
する。なお、上部クラッド部は必ずしも形成する必要は
なく、中間屈折率体と半導体受光素子を上部クラッド部
で覆うことなく空気にさらされた構造をとってもよい。
First, a lower clad portion is formed on a substrate, and a core portion is formed thereon. After forming a thin clad portion thereon and processing the intermediate refractive index body, the semiconductor light receiving element is mounted with the light receiving surface facing downward so that the light receiving surface is parallel to the optical waveguide. The intermediate refractive index member is located on the input side of the semiconductor light receiving element in the propagation direction of the optical waveguide, and is disposed so as to face the end face of the light receiving surface of the semiconductor light receiving element and the upper surface of the core portion of the optical waveguide. Then, an upper clad portion is formed so as to cover the intermediate refractive index body and the semiconductor light receiving element. Note that the upper cladding portion is not necessarily formed, and a structure in which the intermediate refractive index member and the semiconductor light receiving element are exposed to air without being covered with the upper cladding portion may be adopted.

【0045】また、光導波路と半導体受光素子と中間屈
折率体とが基板に対して平面的に配置されている構造と
してもよい。まず、基板上に下部クラッド部を形成し、
その上にコア部を形成する。中間屈折率体は、半導体受
光素子の光導波路による伝搬方向の入力側に位置して、
半導体受光素子の受光面の端面および光導波路のコア部
の側面に対向するように配置される。中間屈折率体は、
コア部の側に任意の形状にフォトリソグラフィ技術を用
いて形成してもよいし、別の基板上で作製したものを貼
り付けてもよい。コア部および中間屈折率体を覆うよう
にして上部クラッド部を形成する。半導体受光素子は、
前述した実装位置にRIE等のエッチングにより実装穴
を形成し、受光面が光導波路側へ向くように基板に垂直
に実装する。半導体受光素子の電極部は基板上に露出し
た部分をワイヤボンディング等で電気配線に接続できる
ようにするとよい。
Further, the structure may be such that the optical waveguide, the semiconductor light receiving element, and the intermediate refractive index body are arranged in a plane with respect to the substrate. First, form the lower cladding on the substrate,
A core part is formed thereon. The intermediate refractive index body is located on the input side in the direction of propagation by the optical waveguide of the semiconductor light receiving element,
The semiconductor light receiving element is arranged so as to face an end face of a light receiving surface of the semiconductor light receiving element and a side face of a core portion of the optical waveguide. The intermediate refractive index body is
An arbitrary shape may be formed on the side of the core portion by using photolithography technology, or a product manufactured on another substrate may be attached. An upper clad portion is formed so as to cover the core portion and the intermediate refractive index body. The semiconductor light receiving element is
A mounting hole is formed at the mounting position by etching such as RIE, and is mounted vertically on the substrate so that the light receiving surface faces the optical waveguide. The electrode portion of the semiconductor light receiving element is preferably configured such that the portion exposed on the substrate can be connected to electric wiring by wire bonding or the like.

【0046】[0046]

【発明の効果】以上のように、本発明の光集積回路基板
によれば、基板上に配設された面受光型の半導体受光素
子に対して、その上に光導波路を積層するように形成し
ていることから、半導体受光素子と光導波路とを同一基
板に効率的に集積することができ、従来のように基板上
に光導波路を形成した後で半導体受光素子を実装した光
集積回路基板と比較して小型化・低背化できるととも
に、この光導波路上にさらに別の光電子デバイス等を搭
載実装することができるので、特に基板上に半導体受光
素子および光電子デバイスをそれぞれ複数個搭載するよ
うな光集積回路基板についても、光集積回路基板の小型
化を実現することができるものとなる。
As described above, according to the optical integrated circuit substrate of the present invention, an optical waveguide is formed so as to be stacked on a surface light receiving type semiconductor light receiving element provided on the substrate. Therefore, the semiconductor light receiving element and the optical waveguide can be efficiently integrated on the same substrate, and the optical integrated circuit substrate on which the semiconductor light receiving element is mounted after the optical waveguide is formed on the substrate as in the related art. It is possible to reduce the size and height of the optical waveguide and to mount another optoelectronic device or the like on the optical waveguide. Therefore, it is particularly preferable to mount a plurality of semiconductor light receiving elements and optoelectronic devices on the substrate. Such an optical integrated circuit board can also realize a reduction in the size of the optical integrated circuit board.

【0047】また、本発明の光集積回路基板によれば、
基板には半導体受光素子を形成することができる基板や
半導体受光素子を搭載実装することができる基板であれ
ば各種の基板を用いることができ、電気的特性の良いセ
ラミック基板等、信号処理の高速化および光電子デバイ
スの高集積化に対してより好適な基板を使用することが
できる。
According to the optical integrated circuit board of the present invention,
As the substrate, various substrates can be used as long as a substrate on which a semiconductor light receiving element can be formed or a substrate on which a semiconductor light receiving element can be mounted and mounted. More suitable substrates can be used for integration and high integration of optoelectronic devices.

【0048】また、本発明の光集積回路基板によれば、
半導体受光素子の光導波路による光伝搬方向の入力側の
端面の手前に、この端面と光導波路のコア部とに対向さ
せて、屈折率が光導波路のコア部より大きく半導体受光
素子の受光面より小さい中間屈折率体を配置したことに
よって、受光面の端面に入射するコア部からの漏れ出し
た伝搬光に対して、半導体受光素子の端面における例え
ばクラッド部と受光面との間の大きな屈折率変化が緩和
されるため、受光面の端面における入射光の反射を抑制
することができ、光導波路による伝搬光を効率的に半導
体受光素子へ光結合することができる、光導波路と半導
体受光素子との光結合の結合効率が高い光集積回路基板
を得ることができる。
According to the optical integrated circuit board of the present invention,
Before the end face on the input side in the light propagation direction by the optical waveguide of the semiconductor light receiving element, facing this end face and the core part of the optical waveguide, the refractive index is larger than the core part of the optical waveguide and is higher than the light receiving surface of the semiconductor light receiving element. By arranging a small intermediate refractive index body, for the propagating light leaked from the core portion incident on the end face of the light receiving surface, a large refractive index between the light receiving surface and the clad portion at the end face of the semiconductor light receiving element, for example. Since the change is reduced, the reflection of the incident light on the end face of the light receiving surface can be suppressed, and the light propagated by the optical waveguide can be efficiently optically coupled to the semiconductor light receiving element. An optical integrated circuit substrate having high optical coupling efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光集積回路基板の実施の形態の一例を
示す断面図である。
FIG. 1 is a sectional view showing an example of an embodiment of an optical integrated circuit substrate according to the present invention.

【図2】本発明の光集積回路基板の実施の形態の他の例
を示す断面図である。
FIG. 2 is a sectional view showing another example of the embodiment of the optical integrated circuit substrate of the present invention.

【図3】本発明の光集積回路基板を使用した光集積回路
モジュールの例を示す斜視図である。
FIG. 3 is a perspective view showing an example of an optical integrated circuit module using the optical integrated circuit substrate of the present invention.

【図4】従来の光集積回路基板の例を示す断面図であ
る。
FIG. 4 is a cross-sectional view illustrating an example of a conventional optical integrated circuit substrate.

【図5】本発明の光集積回路基板の実施例における中間
屈折率体の屈折率に対する結合効率の変化を示す線図で
ある。
FIG. 5 is a diagram showing a change in coupling efficiency with respect to a refractive index of an intermediate refractive index body in an embodiment of the optical integrated circuit substrate of the present invention.

【図6】本発明の光集積回路基板の実施例における中間
屈折率体の光伝搬方向の長さ中間屈折率体の光伝搬方向
の長さに対する結合効率の変化を示す線図である。
FIG. 6 is a diagram showing a change in coupling efficiency with respect to the length of the intermediate refractive index body in the light propagation direction in the embodiment of the optical integrated circuit substrate of the present invention;

【符号の説明】[Explanation of symbols]

1・・・・・基板 2・・・・・半導体受光素子 3・・・・・光導波路の下部クラッド部 4・・・・・光導波路のコア部 5・・・・・光導波路の上部クラッド部 6・・・・・中間屈折率体 1 ... substrate 2 ... semiconductor light receiving element 3 ... lower cladding part of optical waveguide 4 ... core part of optical waveguide 5 ... upper cladding of optical waveguide Part 6 ... intermediate refractive index body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に配設された半導体受光素子と、
少なくとも下部クラッド部およびコア部を有し、前記半
導体受光素子の近傍に光伝搬方向をその受光面に平行と
して形成された光導波路と、前記半導体受光素子の前記
光導波路による前記光伝搬方向の入力側に位置して前記
半導体受光素子の前記受光面の端面および前記光導波路
の前記コア部に対向するように配置された、屈折率が前
記コア部より大きく前記受光面より小さい中間屈折率体
とを具備して成ることを特徴とする光集積回路基板。
A semiconductor light-receiving element disposed on a substrate;
An optical waveguide having at least a lower cladding part and a core part, and formed in the vicinity of the semiconductor light receiving element with a light propagation direction parallel to the light receiving surface thereof; and an input of the light propagation direction by the optical waveguide of the semiconductor light receiving element An intermediate refractive index body which is located on the side and is arranged to face the end face of the light receiving surface of the semiconductor light receiving element and the core portion of the optical waveguide, the refractive index of which is larger than the core portion and smaller than the light receiving surface. An optical integrated circuit substrate, comprising:
JP2001020622A 2001-01-29 2001-01-29 Optical integrated circuit board Expired - Fee Related JP3898448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020622A JP3898448B2 (en) 2001-01-29 2001-01-29 Optical integrated circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020622A JP3898448B2 (en) 2001-01-29 2001-01-29 Optical integrated circuit board

Publications (2)

Publication Number Publication Date
JP2002222963A true JP2002222963A (en) 2002-08-09
JP3898448B2 JP3898448B2 (en) 2007-03-28

Family

ID=18886304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020622A Expired - Fee Related JP3898448B2 (en) 2001-01-29 2001-01-29 Optical integrated circuit board

Country Status (1)

Country Link
JP (1) JP3898448B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366428B2 (en) 2003-09-16 2008-04-29 Sumitomo Electric Indutries, Ltd. Optical receiver
CN114205990B (en) * 2020-09-17 2024-03-22 深南电路股份有限公司 Circuit board and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366428B2 (en) 2003-09-16 2008-04-29 Sumitomo Electric Indutries, Ltd. Optical receiver
CN114205990B (en) * 2020-09-17 2024-03-22 深南电路股份有限公司 Circuit board and preparation method thereof

Also Published As

Publication number Publication date
JP3898448B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP3062884B2 (en) Method of manufacturing substrate for hybrid optical integrated circuit using SOI optical waveguide
US7801397B2 (en) Efficient light coupler from off-chip to on-chip waveguides
US9057844B2 (en) Grating edge coupler and method of forming same
US10488596B2 (en) Optical fiber mounted photonic integrated circuit device
US20150316723A1 (en) Fiber Optic Coupler Array
EP3296783A1 (en) Integrated photonics waveguide grating coupler
CN104350403A (en) Optical interposer
WO2021175072A1 (en) Semiconductor optical coupling structure and silicon-optical integrated chip
US6477296B1 (en) Optical waveguide device, optical transmitting and receiving device, method of manufacturing optical waveguide device and method of manufacturing optical transmitting and receiving device
JP2011523714A (en) Optical splitter device
US10649147B2 (en) Optical module
JP3748528B2 (en) Optical path conversion device and manufacturing method thereof
JP2008102283A (en) Optical waveguide, optical module and method of manufacturing optical waveguide
JP2017173710A (en) Optical fiber mounted optical integrated circuit device
JP2001242331A (en) Semiconductor device
JPH1152198A (en) Optical connecting structure
JP3898448B2 (en) Optical integrated circuit board
JP2011053717A (en) Optical path changing connector
JP3552592B2 (en) Manufacturing method of optical waveguide
JP4607063B2 (en) Manufacturing method of optical path conversion connector
JP4277840B2 (en) Manufacturing method of optical waveguide device
JP3898457B2 (en) Optical integrated circuit board
JP2002107559A (en) Substrate for optical integrated circuit
KR102616266B1 (en) Optical fiber to waveguide coupler and optical integrated circuit including the same
JP5772436B2 (en) Optical coupler and optical device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees