JP2002221411A - Method for securing measurement accuracy of non- contact type device for measuring three-dimensional shape - Google Patents

Method for securing measurement accuracy of non- contact type device for measuring three-dimensional shape

Info

Publication number
JP2002221411A
JP2002221411A JP2001016742A JP2001016742A JP2002221411A JP 2002221411 A JP2002221411 A JP 2002221411A JP 2001016742 A JP2001016742 A JP 2001016742A JP 2001016742 A JP2001016742 A JP 2001016742A JP 2002221411 A JP2002221411 A JP 2002221411A
Authority
JP
Japan
Prior art keywords
accuracy
standard gauge
measurement
dimensional shape
measurement accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001016742A
Other languages
Japanese (ja)
Other versions
JP4345235B2 (en
Inventor
Masaharu Suzu
正晴 鈴
Hisashi Iga
久 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001016742A priority Critical patent/JP4345235B2/en
Publication of JP2002221411A publication Critical patent/JP2002221411A/en
Application granted granted Critical
Publication of JP4345235B2 publication Critical patent/JP4345235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for securing measurement accuracy, by which factors of fluctuation in accuracy are considered in overall, and the accuracy is secured with high reliability in plural kinds of non-contact type device for measuring three-dimensional shapes, and the measurement accuracy can be easily secured for the plural kinds of non-contact type device for measuring the three-dimensional shapes. SOLUTION: First, the resolution of a CCD camera (sensor) in the longitudinal, lateral and vertical directions is ascertained by the verification using a first standard gauge 36. Furthermore, the measurement accuracy of the sensor in the longitudinal and lateral directions is ascertained using a second standard gauge 42. The measurement accuracy of a third standard gauge 44 measuring the circular arc of a cylinder can be secured as a determined value by the verification using the first standard gauge 36 and the second standard gauge 42. In addition, the degree of errors in the object recognition of the sensor due to the different colors and the measurement accuracy for curved surface are ascertained by the verification using the third standard gauge 44. Then, the general measurement accuracy of the sensor is calculated using the result from the verification, and the accuracy of the non-contact type device for measuring the three-dimensional shape is secured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非接触式三次元形
状測定器の計測精度保証方法、特に、各種非接触式三次
元形状測定器において、容易に計測精度保証を行うこと
のできる計測精度保証方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for assuring the measurement accuracy of a non-contact type three-dimensional shape measuring instrument, and more particularly to a method of measuring the accuracy of various non-contact type three-dimensional shape measuring instruments. Regarding the guarantee method.

【0002】[0002]

【従来の技術】従来、被測定物(以下、ワークという)
の三次元形状を測定する装置として三次元形状測定器が
ある。この三次元形状測定器には、大別して接触式と非
接触式とがある。接触式の三次元形状測定器は、先端細
径のプローブをワークの表面に直接接触させ、ワーク形
状に沿ってトレースすることにより、ワークの三次元座
標データを順次取得し、ワークの三次元形状を認識する
ものである。また、非接触式の三次元形状測定器は、ワ
ークに対してレーザ光等の光を投射し、ワークから反射
してくる反射光によりワークまでの距離を測定し、ワー
クの三次元座標データを取得するタイプのものや、ステ
レオ撮影法により三次元座標を順次算出するタイプのも
のやワークにパターン縞を投射し、その縞をカメラ等で
撮影し、撮影されたワーク表面における縞の歪みに基づ
きワークの三次元座標データを取得するタイプや特殊な
光を投影せず、ワークをカメラ等で撮影し、その撮影し
た画像の特徴部分に関して画像処理手法を用いて、三次
元座標データを取得するタイプのものがある。この他に
も、様々な方式が提案されている。
2. Description of the Related Art Conventionally, an object to be measured (hereinafter referred to as a work).
There is a three-dimensional shape measuring instrument as a device for measuring the three-dimensional shape of the object. The three-dimensional shape measuring instruments are roughly classified into a contact type and a non-contact type. The contact-type three-dimensional shape measuring instrument makes the tip of a small diameter probe directly contact the surface of the work and traces it along the shape of the work, thereby sequentially acquiring the three-dimensional coordinate data of the work and obtaining the three-dimensional shape of the work. It recognizes. The non-contact type three-dimensional shape measuring instrument projects light such as laser light onto the work, measures the distance to the work by the reflected light reflected from the work, and converts the three-dimensional coordinate data of the work. Projecting pattern stripes on a workpiece or a workpiece that calculates three-dimensional coordinates sequentially by a stereo photography method, capturing the fringes with a camera, etc., based on the distortion of the stripes on the surface of the captured workpiece A type that acquires the three-dimensional coordinate data of the work or a type that acquires the three-dimensional coordinate data by using an image processing method with respect to the characteristic portion of the photographed image by photographing the work with a camera or the like without projecting special light. There are things. Various other schemes have been proposed.

【0003】これらの三次元形状測定器は、任意の物質
の研究やそのデータ収集を目的としたり、工業製品の仕
上がり精度の検査等、様々な分野で利用されている。な
お、非接触式は接触式に比べ取得できるデータ量が多い
ため最近では、非接触式への移行が盛んに行われるよう
になっている。
[0003] These three-dimensional shape measuring instruments are used in various fields such as for the purpose of researching arbitrary substances and collecting data thereof, and inspecting the finishing accuracy of industrial products. Since the non-contact type has a larger amount of data than the contact type, recently, the shift to the non-contact type has been actively performed.

【0004】[0004]

【発明が解決しようとする課題】ところで、測定を行う
場合、その測定データには必ず測定誤差が含まれる。従
って、信頼度の高い測定を行うためには、測定誤差に対
する考慮、すなわち測定精度の保証を行わなければなら
ない。例えば、接触式三次元形状測定器の場合、その精
度保証方法は、JIS等により定義されており、長さ標
準器を活用し、測定距離(2次元)に対する保証を95
%信頼限界にて定義している。
When measurement is performed, the measurement data always includes a measurement error. Therefore, in order to perform highly reliable measurement, it is necessary to consider the measurement error, that is, to guarantee the measurement accuracy. For example, in the case of a contact type three-dimensional shape measuring instrument, the accuracy assurance method is defined by JIS and the like.
Defined in% confidence limits.

【0005】しかし、非接触式三次元測定の場合、その
測定エリア(例えば、約A4サイズ)内の三次元形状が
例えば30万点以上測定され、接触式のように測定距離
(二次元)に基づいた精度保証を行うことはできないと
いう問題を有する。また、非接触式三次元測定の場合、
その精度は、長さ、粗さ、材質、角度、真円度、ワーク
の色等による影響を受ける。従って、一つの測定精度の
みで非接触式三次元形状測定器の精度を表すことができ
ず、様々な精度が絡み合い、容易に測定精度保証を行う
ことができないという問題を有する。
However, in the case of the non-contact type three-dimensional measurement, a three-dimensional shape within the measurement area (for example, about A4 size) is measured at, for example, 300,000 points or more, and the measurement distance (two-dimensional) is measured like a contact type. There is a problem that the accuracy cannot be guaranteed based on the above. In the case of non-contact three-dimensional measurement,
The accuracy is affected by length, roughness, material, angle, roundness, work color, and the like. Therefore, there is a problem that the accuracy of the non-contact type three-dimensional shape measuring instrument cannot be expressed by only one measurement accuracy, and various accuracy is entangled, so that the measurement accuracy cannot be easily guaranteed.

【0006】さらに、現状の非接触式三次元形状測定器
の精度保証は、各三次元形状測定器の製造メーカが表示
する精度保証値をそのまま使用していることが多い。通
常、精度保証値はセンサやカメラ単体の解像度のみの精
度を用いて三次元形状測定器全体の精度保証を行った
り、長さに関する測定精度のみを用いて三次元形状測定
器全体の精度保証を行う場合が多く、前述したような様
々な精度変動要因を複合的に考慮した三次元形状測定器
全体の精度保証は行われていないのが現状であり、精度
保証の信頼性が十分でないという問題がある。また、各
三次元形状測定器毎に精度保証方法が統一されておら
ず、同じ機能の非接触式三次元形状測定器であっても、
三次元形状測定器毎に異なる基準に基づく測定精度の保
証が行われているのが現状であり、三次元形状測定器間
の互換的信頼度が低下すると共に、異なる基準で測定精
度の保証が行われると三次元形状測定器毎のデータ管理
が煩雑になるという問題を有する。
Furthermore, the accuracy assurance of current non-contact type three-dimensional shape measuring instruments often uses the accuracy assurance value displayed by the manufacturer of each three-dimensional shape measuring instrument. Normally, the accuracy assurance value guarantees the accuracy of the entire 3D shape measuring instrument using the accuracy of only the resolution of the sensor or camera alone, or the accuracy assurance of the entire 3D shape measuring instrument using only the measuring accuracy related to length. In many cases, accuracy assurance of the entire 3D shape measuring instrument that considers various accuracy variation factors as described above is not performed at present, and the reliability of accuracy assurance is not sufficient. There is. In addition, accuracy assurance methods are not unified for each three-dimensional shape measuring instrument, and even for non-contact three-dimensional shape measuring instruments having the same function,
At present, measurement accuracy is guaranteed based on different standards for each 3D shape measuring instrument, and the reliability of interchangeability between 3D shape measuring devices is reduced, and the measurement accuracy is guaranteed based on different standards. If performed, there is a problem that data management for each three-dimensional shape measuring instrument becomes complicated.

【0007】本発明は、上記課題に鑑みなされたもので
あり、各種非接触式三次元形状測定器において、精度変
動要因を複合的に考慮し信頼性の高い精度保証を行うと
共に、各種非接触式三次元形状測定器に対し容易に計測
精度保証を統一された状態で行うことのできる計測精度
保証方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and in various non-contact type three-dimensional shape measuring instruments, a highly reliable accuracy assurance has been performed by taking into account accuracy fluctuation factors in a complex manner. An object of the present invention is to provide a measurement accuracy assurance method that can easily perform measurement accuracy assurance for a three-dimensional shape measuring instrument in a unified state.

【0008】[0008]

【課題を解決するための手段】上記のような目的を達成
するために、本発明は、被測定物表面の画像を複数の測
定素子を有するセンサで取得して、前記被測定物の表面
三次元形状を測定する非接触式三次元形状測定器におけ
る計測精度保証方法であって、平坦な斜面部を有する第
一標準ゲージの斜面部画像を取得して、フォーカスが合
ったときの各測定素子が取得する測定点群データの間隔
に基づいて、前記センサの縦横高さ方向の測定分解能を
検定するステップと、平坦な複数の平面部を階段状に配
列した第二標準ゲージの平面部画像を複数回取得して、
各測定素子が取得する測定毎の測定点群データの前記平
面部の垂直方向の座標ばらつきに基づいて、前記センサ
の同一平面ばらつき精度及び、異なる2平面部の高さ方
向の測定精度を検定するステップと、円筒表面に少なく
とも膨張色から収縮色まで段階的に変化する色彩を有す
る第三標準ゲージの円筒表面画像を取得して、各測定素
子が取得する色の異なる位置における測定点群データが
形成する円筒外形に基づいて形状膨縮精度及び曲面測定
精度を検定するステップと、前記各ステップの結果に基
づいて、センサの総合測定精度を算出するステップと、
を含み、前記センサの総合測定精度に基づいて非接触式
三次元形状測定器の計測精度保証を行うことを特徴とす
る。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method for acquiring an image of a surface of an object by a sensor having a plurality of measuring elements, thereby obtaining a tertiary surface of the object. A measurement accuracy assurance method in a non-contact type three-dimensional shape measuring instrument for measuring an original shape, wherein a slope portion image of a first standard gauge having a flat slope portion is obtained, and each measuring element is focused. Based on the interval of the measurement point group data to be obtained, the step of testing the measurement resolution in the vertical and horizontal height direction of the sensor, and a flat part image of a second standard gauge in which a plurality of flat flat parts are arranged in a stepwise manner. Get multiple times,
Based on the vertical coordinate variation of the plane portion of the measurement point group data for each measurement obtained by each measurement element, the same plane variation accuracy of the sensor and the height measurement accuracy of two different plane portions are tested. Step and obtain a cylindrical surface image of the third standard gauge having a color that changes stepwise from at least the expanding color to the contracting color on the cylindrical surface, and the measurement point group data at different positions of the colors obtained by each measuring element is obtained. Testing the shape expansion / contraction accuracy and the curved surface measurement accuracy based on the cylindrical outer shape to be formed, and calculating the total measurement accuracy of the sensor based on the result of each of the steps;
Wherein the measurement accuracy of the non-contact type three-dimensional shape measuring instrument is guaranteed based on the total measurement accuracy of the sensor.

【0009】ここで、画像を取得するセンサとは、例え
ばCCD撮像装置(例えばCCDカメラ)等であり、第
一標準ゲージの縦横方向とは、センサの測定素子配列面
と平行な面の縦横方向であり、高さとは、測定素子配列
面と直交する方向である。また、第一標準ゲージ、第二
標準ゲージ、第三標準ゲージは、例えば金属やセラミッ
クス等で形成され、所定部分の平面度や真円度、角度等
の寸法精度は、任意の計測装置により正確に測定され既
知の値とされている。また、第三標準ゲージに付される
色彩は、膨張色から収縮色が順に配列されたものであ
り、例えば、白、青緑、青紫、灰、青、緑、赤、黒等の
順に配列されている。
Here, the sensor for acquiring an image is, for example, a CCD image pickup device (for example, a CCD camera) or the like, and the vertical and horizontal directions of the first standard gauge are the vertical and horizontal directions of a plane parallel to the measuring element array surface of the sensor. And the height is a direction orthogonal to the measurement element arrangement plane. In addition, the first standard gauge, the second standard gauge, and the third standard gauge are formed of, for example, metal or ceramics, and the dimensional accuracy of a predetermined portion such as flatness, roundness, and angle can be accurately measured by any measuring device. Measured as a known value. The colors assigned to the third standard gauge are arranged in the order of expansion color to contraction color, for example, white, bluish green, bluish violet, gray, blue, green, red, black, etc. ing.

【0010】この構成によれば、第一標準ゲージを用い
た検定によりセンサの縦横高さ方向の分解能をまず確認
し、さらに、第二標準ゲージを用いた検定を行うことに
より、センサが高さ方向に関しどのくらいの精度で測定
を行っているかを確認することができる。この第一標準
ゲージ、第二標準ゲージによる検定を行うことにより、
第三標準ゲージの円筒の円弧を所定精度で測定している
ことを保証すると共に、実際の曲面測定精度の保証を行
うことができる。さらに、第三標準ゲージを用いた検定
により、色の違いによるセンサの形状認識誤りの程度を
確認している。そして、各検定のステップの結果を用い
て、センサの総合測定精度を算出し、非接触式三次元形
状測定器の精度保証を行っているので、容易に精度保証
の信頼度を向上することができる。
According to this configuration, the resolution in the vertical and horizontal height directions of the sensor is first confirmed by the verification using the first standard gauge, and further the verification is performed using the second standard gauge, so that the height of the sensor is increased. It is possible to check how accurate the measurement is in the direction. By performing the test using the first standard gauge and the second standard gauge,
It is possible to ensure that the circular arc of the cylinder of the third standard gauge is measured with a predetermined accuracy, and also to guarantee the actual accuracy of the curved surface measurement. In addition, the degree of the shape recognition error of the sensor due to the difference in color is confirmed by the test using the third standard gauge. Then, using the result of each test step, the total measurement accuracy of the sensor is calculated, and the accuracy of the non-contact three-dimensional shape measuring instrument is assured, so that the reliability of the accuracy assurance can be easily improved. it can.

【0011】上記のような目的を達成するために、本発
明は、上記構成において、さらに、平面上に同一連続パ
ターンが等ピッチで配列された第四標準ゲージの全体画
像を前記センサで分割取得して、その取得した分割デー
タを前記第四標準ゲージの全体画像を合成するように貼
り合わせしたときの貼り合わせ画像と第四標準ゲージと
の一致度に基づいてデータ貼り合わせ精度を検定するス
テップと、を含み、前記データ貼り合わせ検定を含めて
非接触式三次元形状測定器の計測精度保証を行うことを
特徴とする。
In order to achieve the above object, according to the present invention, in the above-mentioned structure, furthermore, the whole image of the fourth standard gauge in which the same continuous patterns are arranged at equal pitches on a plane is divided and acquired by the sensor. Testing the data combining accuracy based on the degree of coincidence between the combined image and the fourth standard gauge when the obtained divided data is combined so as to synthesize the entire image of the fourth standard gauge. And guaranteeing the measurement accuracy of the non-contact type three-dimensional shape measuring instrument including the data bonding test.

【0012】ここで、第四標準ゲージは、例えば、広い
面積を有する板状部材で構成され、同一連続パターンと
は、任意形状でよいが、パターン同士が相互に関連づけ
られるものが好ましく、例えば、方形のパターンを配列
したり、所定角度(例えば90°)で交わる平行な複数
の溝を板状部材の表面に形成し、残った部分を同一連続
パターンとしてもよい。また、第四標準ゲージの全体画
像を前記センサで分割取得するときには、例えば、第四
標準ゲージを四分割し順次同一のセンサで画像取得を行
う。この時、分割される画像は全体から欠落した部分が
無ければよく、個々に重複部分が存在してもよい。
Here, the fourth standard gauge is composed of, for example, a plate-like member having a large area, and the same continuous pattern may have any shape. However, it is preferable that the patterns are associated with each other. A rectangular pattern may be arranged, or a plurality of parallel grooves intersecting at a predetermined angle (for example, 90 °) may be formed on the surface of the plate member, and the remaining portion may be the same continuous pattern. When the entire image of the fourth standard gauge is divided and acquired by the sensor, for example, the fourth standard gauge is divided into four and the image is sequentially acquired by the same sensor. At this time, the image to be divided may have no portion missing from the whole, and may have an overlapping portion individually.

【0013】この構成によれば、計測対象(被測定物)
が大きな面積を有する場合で、センサにより分割して形
状データを取得しなければならないような場合に、実際
の全体画像と張り合わせた合成画像との比較に基づい
て、データ貼り合わせ処理時の精度を確認することがで
きる。従って、データ貼り合わせ検定を含めて非接触式
三次元形状測定器の計測精度保証を行うことにより、大
きな被測定物を非接触式三次元形状測定器で測定する場
合の精度保証の信頼度を容易に向上することができる。
According to this configuration, the measurement object (measured object)
If the data has a large area and it is necessary to divide the shape data by the sensor and obtain the shape data, the accuracy at the time of the data bonding process is determined based on the comparison between the actual whole image and the combined image. You can check. Therefore, by guaranteeing the measurement accuracy of the non-contact type three-dimensional shape measuring instrument including the data bonding test, the reliability of the accuracy assurance when measuring a large object with the non-contact type three-dimensional shape measuring instrument is improved. It can be easily improved.

【0014】上記のような目的を達成するために、本発
明は、上記構成において、さらに、長尺部材上に同一連
続立体パターンを等ピッチでアレイ配置した第五標準ゲ
ージの全体画像を前記センサで分割取得して、前記セン
サで取得した分割データを用いて前記第五標準ゲージの
全体立体画像を合成するように貼り合わせしたときの貼
り合わせ立体画像と第五標準ゲージとの一致度に基づい
て空間貼り合わせ精度を検定するステップと、を含み、
前記空間貼り合わせ精度を含めて非接触式三次元形状測
定器の計測精度保証を行うことを特徴とする。
In order to achieve the above object, according to the present invention, in the above-mentioned structure, the same continuous three-dimensional pattern is arranged at an equal pitch on a long member. Based on the degree of coincidence between the combined three-dimensional image and the fifth standard gauge when combined so as to synthesize the entire three-dimensional image of the fifth standard gauge using the divided data acquired by the sensor. Testing the spatial bonding accuracy by using
The measurement accuracy of the non-contact type three-dimensional shape measuring instrument including the space bonding accuracy is guaranteed.

【0015】ここで、前記第五標準ゲージに形成される
同一連続立体パターンとは、例えば、個々の分離した球
体を配置してもよし、錐体や直方体等を配置してもよ
い。また、半球形状の凹部形状としてもよい。
Here, the same continuous three-dimensional pattern formed on the fifth standard gauge may be, for example, an arrangement of individual separated spheres, or an arrangement of cones or rectangular parallelepipeds. Further, it may be a hemispherical concave shape.

【0016】この構成によれば、計測対象(被測定物)
が大きく、センサによりその測定対象が存在する大きな
空間を分割して形状データを取得しなければならないよ
うな場合に、実際の全体立体画像と張り合わせた合成画
像との比較に基づいて、データ貼り合わせ処理時の貼り
合わせ空間精度を確認することができる。従って、デー
タの空間貼り合わせ検定を含めて非接触式三次元形状測
定器の計測精度保証を行うことにより、大きな被測定物
を非接触式三次元形状測定器で測定する場合の精度保証
の信頼度を容易に向上することができる。
According to this configuration, the measurement object (measured object)
Is large and it is necessary to divide the large space where the measurement object exists by the sensor and acquire the shape data, based on the comparison between the actual whole stereoscopic image and the combined image that is pasted together, It is possible to confirm the bonding space accuracy at the time of processing. Therefore, by guaranteeing the measurement accuracy of the non-contact three-dimensional shape measuring instrument, including the spatial bonding test of data, the reliability of the accuracy assurance when measuring a large object with the non-contact three-dimensional shape measuring instrument is high. The degree can be easily improved.

【0017】[0017]

【発明の実施の形態】以下、本発明の好適な実施の形態
(以下、実施形態という)を図面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.

【0018】図1には、本実施形態の非接触式三次元形
状測定器の計測精度保証方法の精度保証概念を説明する
説明図が示されている。
FIG. 1 is an explanatory diagram illustrating the concept of assurance of the accuracy of the measurement accuracy assurance method of the non-contact type three-dimensional shape measuring instrument according to the present embodiment.

【0019】本実施形態においては、日本工業規格(J
IS)や国際標準化機構(ISO)規格に従って精度保
証された接触式三次元形状測定器10により非接触式三
次元形状測定器12用の精度検定標準器(標準ゲージ)
14の検定を行い、精度保証が行われた前記標準ゲージ
14を用いて、非接触式三次元形状測定器12の精度保
証検定を行う。
In this embodiment, Japanese Industrial Standards (J
IS) and the accuracy verification standard (standard gauge) for the non-contact type three-dimensional shape measuring device 12 by the contact type three-dimensional shape measuring device 10 whose accuracy is guaranteed according to the International Standards Organization (ISO) standard.
Then, the non-contact type three-dimensional shape measuring instrument 12 is subjected to the accuracy assurance test using the standard gauge 14 whose accuracy is assured.

【0020】まず、本実施形態の計測精度保証方法を実
施する前準備として、前述したように、JISやISO
により国家標準として定義された原器により、接触式三
次元形状測定器10の検定(精度保証)を行う。前記原
器は、各メーカーよりJISやISOの規格に基づき基
準ブロックとして提供されている。基準ブロックには、
長さや表面粗さ、角度等の基準となるものがあり、接触
式三次元形状測定器10の基本精度の保証を行う。接触
式三次元形状測定器10は先端が細径のプローブを有
し、直接基準ブロックの表面をトレースすることにより
その測定を行う。そして、その測定結果と基準ブロック
の予め有する寸法との比較を行うことにより、接触式三
次元形状測定器10の精度を算出し、精度保証を行う。
First, as a preparation before implementing the measurement accuracy assurance method of the present embodiment, as described above, JIS or ISO
The verification (accuracy assurance) of the contact type three-dimensional shape measuring instrument 10 is performed by using a prototype defined as a national standard by. The prototype is provided by each manufacturer as a reference block based on JIS and ISO standards. In the reference block,
There is a reference for length, surface roughness, angle, and the like, which guarantees the basic accuracy of the contact type three-dimensional shape measuring instrument 10. The contact type three-dimensional shape measuring instrument 10 has a probe with a small diameter at the tip, and performs the measurement by directly tracing the surface of the reference block. Then, the accuracy of the contact type three-dimensional shape measuring instrument 10 is calculated by comparing the measurement result with the dimensions of the reference block in advance, and the accuracy is assured.

【0021】さらに、精度保証が行われた接触式三次元
形状測定器10により標準ゲージ14の精度保証を行
う。一般に、接触式三次元形状測定器10の測定精度は
10μm以下なので、標準ゲージ14の形状精度の検定
を良好に行うことができる。
Further, the accuracy of the standard gauge 14 is assured by the contact type three-dimensional shape measuring instrument 10 whose accuracy has been assured. In general, the measurement accuracy of the contact type three-dimensional shape measuring instrument 10 is 10 μm or less, so that the shape accuracy of the standard gauge 14 can be well verified.

【0022】本実施形態の特徴的事項は、非接触式三次
元形状測定器12の十分な精度保証を行うために、複数
種類の標準ゲージによる検定を行い、各検定の複合結果
を非接触式三次元形状測定器12の測定精度として保証
するところである。
The characteristic feature of the present embodiment is that in order to ensure sufficient accuracy of the non-contact type three-dimensional shape measuring instrument 12, a test using a plurality of types of standard gauges is performed, and a composite result of each test is referred to as a non-contact type. This is to guarantee the measurement accuracy of the three-dimensional shape measuring instrument 12.

【0023】なお、図2には、本実施形態で用いる非接
触式三次元形状測定器12の概略構成が示されている。
本実施形態で用いる非接触式三次元形状測定器12は、
例えば、縞パターン投光式の非接触式三次元形状測定器
であり、被測定物(以下、ワークという)16の表面に
縞状のパターン光を縞投光器18によって投光し、縞投
光器18とは異なる方向から複数の測定素子を有するセ
ンサ、例えばCCD撮像装置(例えばCCDカメラ)2
0で縞パターン18aを捉えている。縞パターン18a
を投光する位置とCCDカメラ20で投光された縞を捉
える位置が異なるため投光した縞パターン18aはワー
ク16の表面形状に沿って曲がって見えることになる。
そして、CCDカメラ20で捉えた縞パターン18aを
三角測量の原理を用いて定量化することにより、それぞ
れの縞の奥行き寸法が計算可能になり、ワーク16の立
体形状を計測することができる。すなわち、CCDカメ
ラ20の複数の測定素子で測定した測定点群のX,Y,
Z座標を算出し、その測定点群を解析することによりワ
ーク16の形状認識を行っている。
FIG. 2 shows a schematic configuration of the non-contact type three-dimensional shape measuring instrument 12 used in the present embodiment.
The non-contact type three-dimensional shape measuring device 12 used in the present embodiment includes:
For example, it is a non-contact type three-dimensional shape measuring device of a stripe pattern projection type, in which a stripe pattern light is projected on the surface of an object to be measured (hereinafter referred to as a work) 16 by a stripe projection device 18, and Is a sensor having a plurality of measuring elements from different directions, for example, a CCD imaging device (for example, a CCD camera) 2
At 0, the stripe pattern 18a is captured. Stripe pattern 18a
Is different from the position at which the stripe projected by the CCD camera 20 is captured, the projected stripe pattern 18a looks curved along the surface shape of the work 16.
Then, by quantifying the stripe pattern 18a captured by the CCD camera 20 using the principle of triangulation, the depth dimension of each stripe can be calculated, and the three-dimensional shape of the work 16 can be measured. That is, X, Y, and X of the measurement point group measured by the plurality of measurement elements of the CCD camera 20
The shape of the work 16 is recognized by calculating the Z coordinate and analyzing the measurement point group.

【0024】図2の構成の場合、CCDカメラ20で捉
えられた縞パターン18aは、三次元形状測定器本体2
2の画像処理部24のデータ処理部26に供給され、測
定点毎の座標計算等が行われる。そして、形状処理部2
8において、取得した測定点データに基づきワーク16
の詳細な形状が認識され、表示部30等に、例えば、三
次元形状データとして、測定点群データ表示、断面線デ
ータ表示、シェーディング表示、及び各寸法表示等を行
う。なお、ワーク16の立体データを取得するために
は、ワーク16に対し複数の方向からデータを取得する
必要がある。そのため、三次元形状測定器本体22に
は、縞投光器18やCCDカメラ20がワーク16の周
囲を移動する際の制御を行う機構制御部32や縞投光器
18やCCDカメラ20の移動量や表示部30の表示形
態、画像処理部28における処理形態を操作する操作部
34等も含んでいる。
In the case of the configuration shown in FIG. 2, the stripe pattern 18a captured by the CCD camera 20 is
The data is supplied to the data processing unit 26 of the second image processing unit 24, and the coordinates of each measurement point are calculated. And the shape processing unit 2
In step 8, based on the acquired measurement point data, the work 16
For example, the display unit 30 performs measurement point group data display, section line data display, shading display, and various dimension displays on the display unit 30 or the like, for example, as three-dimensional shape data. Note that in order to acquire the three-dimensional data of the work 16, it is necessary to acquire data from the work 16 in a plurality of directions. Therefore, the main body of the three-dimensional shape measuring device 22 includes a mechanism control unit 32 for controlling when the stripe projector 18 and the CCD camera 20 move around the work 16, a moving amount of the stripe projector 18 and the CCD camera 20, and a display unit. The display unit 30 also includes an operation unit 34 for operating a display mode, a processing mode in the image processing unit 28, and the like.

【0025】前述したように、非接触式三次元形状測定
器12でワーク16の三次元形状データを取得する場
合、その測定精度を保証する必要ある。本実施形態にお
いては、複数項目に関し精度保証を複合的に行うことに
より、非接触式三次元形状測定器12の精度保証の信頼
度を向上している。
As described above, when acquiring the three-dimensional shape data of the work 16 with the non-contact type three-dimensional shape measuring instrument 12, it is necessary to guarantee the measurement accuracy. In the present embodiment, reliability of accuracy assurance of the non-contact three-dimensional shape measuring instrument 12 is improved by performing accuracy assurance for a plurality of items in a complex manner.

【0026】図3以降には、本実施形態でより信頼度の
高い精度保証を行うために利用する標準ゲージの具体的
な例を示している。なお、以下に示す各標準ゲージを用
いて得たデータの処理は、図2における画像処理部24
等で行われる。
FIG. 3 et seq. Show specific examples of standard gauges used for assuring higher reliability in this embodiment. The processing of the data obtained using each of the standard gauges described below is performed by the image processing unit 24 shown in FIG.
And so on.

【0027】図3(a)には、非接触式三次元形状測定
器12で使用するCCDカメラ20の分解能に関する精
度保証を行う場合に使用する第一標準ゲージ36の一例
が示されている。第一標準ゲージ36は、平坦な斜面部
を有する立体、例えば三角柱で構成されている。図3
(a)の場合、異なる形状の三角柱36a,36bが底
面部(上面部)で接続された例を示している。三角柱3
6aは、図3(b)に示すように、水平面に対して例え
ば45°と30°の角度を有する斜面部38a,38b
を有し、三角柱36bは、水平面に対して例えば15°
と10°の角度を有する斜面部40a,40bを有して
いる。この第一標準ゲージ36の各長さや表面粗さ、角
度等は、前述したように、接触式三次元形状測定器10
により精度保証が行われているものとする。
FIG. 3A shows an example of the first standard gauge 36 used for guaranteeing the accuracy of the resolution of the CCD camera 20 used in the non-contact three-dimensional shape measuring instrument 12. The first standard gauge 36 is formed of a three-dimensional body having a flat slope, for example, a triangular prism. FIG.
In the case of (a), an example is shown in which triangular prisms 36a and 36b having different shapes are connected at the bottom surface (upper surface). Triangular prism 3
6a, as shown in FIG. 3 (b), slope portions 38a, 38b having angles of, for example, 45 ° and 30 ° with respect to a horizontal plane.
And the triangular prism 36b is, for example, 15 ° with respect to a horizontal plane.
And inclined surface portions 40a and 40b having an angle of 10 °. As described above, the length, surface roughness, angle, and the like of the first standard gauge 36 are determined by the contact type three-dimensional shape measuring instrument 10.
It is assumed that the accuracy is guaranteed by

【0028】このように精度保証が行われている第一標
準ゲージ36を用いて、非接触式三次元形状測定器12
の分解能に関する精度保証を行う。すなわち、通常の非
接触式三次元形状測定器12による形状測定手順と同様
に縞投光器18により第一標準ゲージ36に縞パターン
18aを投光し、CCDカメラ20によりその画像を様
々な方向から捉える。CCDカメラ20で縞パターン1
8aを捉える場合、縞パターン18aは、斜面部38
a,38b,40a,40bの角度に応じて、CCDカ
メラ20と第一標準ゲージ36の距離が変化するので、
フォーカス状態が異なり、見え方が異なる。そして、フ
ォーカスが合っている状態(縞パターン18aが鮮明に
捉えられている状態)におけるCCDカメラ20の測定
素子が取得した測定点群データ(X座標:横方向、Y座
標:縦方向、Z座標:高さ方向)は、例えば図3(c)
のようになる。この時の測定点群データの横方向の間隔
が、CCDカメラ20の横方向(X座標方向)の分解能
になり、測定点群データの縦方向の間隔が、CCDカメ
ラ20の縦方向(Y座標方向)の分解能になり、測定点
群データの高さ方向の間隔が、CCDカメラ20の高さ
方向(Z座標方向)の分解能になる。例えば、高さ方向
を例にとると、10°の斜面部40bでフォーカスが合
い、測定点群データの高さ方向の間隔が無い場合には、
CCDカメラ20の高さ方向の分解能は『0』というこ
とになる。また、測定点群データの高さ方向の間隔が1
0μmの場合、高さ方向の分解能は『10μm』である
と検定することができる。同様に、横方向、縦方向の分
解能を検定することができる(分解能の検定に関するス
テップ)。
The non-contact three-dimensional shape measuring device 12 is manufactured by using the first standard gauge 36 whose accuracy is assured as described above.
The accuracy is guaranteed for the resolution of. That is, the stripe pattern 18a is projected on the first standard gauge 36 by the stripe projector 18 in the same manner as the normal shape measurement procedure by the non-contact type three-dimensional shape measuring device 12, and the images are captured by the CCD camera 20 from various directions. . Stripe pattern 1 with CCD camera 20
8a, the stripe pattern 18a has a slope 38
The distance between the CCD camera 20 and the first standard gauge 36 changes according to the angles of a, 38b, 40a, and 40b.
The focus state is different and the appearance is different. Then, the measurement point group data (X coordinate: horizontal direction, Y coordinate: vertical direction, Z coordinate) acquired by the measuring element of the CCD camera 20 in a focused state (a state in which the stripe pattern 18a is clearly captured) : Height direction) is, for example, as shown in FIG.
become that way. The horizontal interval of the measurement point group data at this time becomes the resolution in the horizontal direction (X coordinate direction) of the CCD camera 20, and the vertical interval of the measurement point group data corresponds to the vertical direction (Y coordinate) of the CCD camera 20. Direction), and the interval in the height direction of the measurement point group data becomes the resolution in the height direction (Z coordinate direction) of the CCD camera 20. For example, taking the height direction as an example, if the focus is on the slope portion 40b of 10 ° and there is no interval in the height direction of the measurement point group data,
The resolution in the height direction of the CCD camera 20 is “0”. Also, the interval in the height direction of the measurement point group data is 1
In the case of 0 μm, it can be verified that the resolution in the height direction is “10 μm”. Similarly, the resolution in the horizontal direction and the vertical direction can be verified (steps related to the verification of the resolution).

【0029】次に、前述した分解能に関する検定で各の
測定素子がどのくらいのばらつきを有して測定を行って
いるかの検定を行う。図4(a)には、非接触式三次元
形状測定器12で使用するCCDカメラ20の測定ばら
つきに関する精度保証を行う場合に使用する第二標準ゲ
ージ42の一例が示されている。第二標準ゲージ42
は、平坦な複数の平面部42aを階段状に配列した形状
を呈している。図4(a)の場合、ベース部材42b上
に平面部42aが階段状に形成されている例を示してい
る。この第二標準ゲージ42の各長さや表面粗さ、角度
等も前述したように、接触式三次元形状測定器10によ
り精度保証が行われているものとする。
Next, in the above-described test regarding the resolution, a test is performed to determine how much variation each measurement element performs measurement. FIG. 4A shows an example of the second standard gauge 42 used for guaranteeing the accuracy of measurement variation of the CCD camera 20 used in the non-contact type three-dimensional shape measuring instrument 12. Second standard gauge 42
Has a shape in which a plurality of flat plane portions 42a are arranged in a stepwise manner. FIG. 4A shows an example in which the flat portion 42a is formed in a step shape on the base member 42b. As described above, it is assumed that the accuracy of the length, surface roughness, angle, and the like of the second standard gauge 42 is guaranteed by the contact type three-dimensional shape measuring instrument 10.

【0030】このように精度保証が行われている第二標
準ゲージ42を用いて、非接触式三次元形状測定器12
の同一平面ばらつき精度及び、異なる2つの平面部42
aの高さ方向の測定精度に関し、精度保証を行う。この
場合も、図4(b)に示すように、通常の非接触式三次
元形状測定器12による形状測定手順と同様に縞投光器
18により第二標準ゲージ42に縞パターン18aを投
光し、CCDカメラ20によりその画像を複数の方向か
ら捉える。この場合もCCDカメラ20で縞パターン1
8aを捉えることにより、測定点群データ(X座標:横
方向、Y座標:縦方向、Z座標:高さ方向)を得ること
ができる。この時得られる測定点群データは、例えば図
4(c)のようになる。本来、CCDカメラ20の各測
定素子に測定ばらつきが無い場合、いかなる方向から測
定を行っても測定点群データ(X,Y,Z座標)は同じ
である。しかし、各測定素子に測定ばらつきがある場
合、測定毎の測定点群データを重畳させると、図4
(c)のように同一の平面部42aの測定精度にばらつ
きmを生じたり、異なる2つの平面部42aの高さ方向
のばらつきnを生じたりする。この時のばらつきm,n
に応じて、CCDカメラ20は同一平面の測定精度が、
例えばm=3μmであるとか、高さ方向の測定精度が、
例えばn=5μmであると検定することができる(平面
に関する検定のステップ)。
The non-contact type three-dimensional shape measuring device 12 can be obtained by using the second standard gauge 42 whose accuracy is thus guaranteed.
And the two different plane portions 42.
Accuracy is guaranteed for the measurement accuracy in the height direction a. Also in this case, as shown in FIG. 4 (b), the stripe pattern 18a is projected on the second standard gauge 42 by the stripe projector 18 in the same manner as the normal shape measurement procedure using the non-contact type three-dimensional shape measuring device 12, The image is captured by the CCD camera 20 from a plurality of directions. Also in this case, the stripe pattern 1 is
By capturing 8a, measurement point group data (X coordinate: horizontal direction, Y coordinate: vertical direction, Z coordinate: height direction) can be obtained. The measurement point group data obtained at this time is, for example, as shown in FIG. Originally, when there is no measurement variation among the measurement elements of the CCD camera 20, the measurement point group data (X, Y, Z coordinates) is the same regardless of the measurement direction. However, when the measurement elements have measurement variations, when the measurement point group data for each measurement is superimposed, FIG.
As shown in (c), a variation m occurs in the measurement accuracy of the same plane portion 42a, and a variation n in the height direction of two different plane portions 42a occurs. The variation m, n at this time
, The CCD camera 20 has the same plane measurement accuracy,
For example, if m = 3 μm or the measurement accuracy in the height direction is
For example, it can be verified that n = 5 μm (a step of a test for a plane).

【0031】ところで、立体形状をCCDカメラ20で
捉える場合、その立体の表面が着色されている場合、そ
の色によって立体の形状が膨張して見えたり、収縮して
見えたりする。つまり、白等の光を反射する色が立体表
面に着色されている場合、立体は、実際より膨張して見
える。このような色を膨張色という。逆に黒等光を吸収
する色で立体表面が着色されている場合、立体は、実際
より収縮して見える。このような色を収縮色という。図
5(a)に示す第三標準ゲージ44は、CCDカメラ2
0の測定素子が色の違いに対してどのくらいばらつきを
有して測定を行うかを検定するために用いられる。
When the three-dimensional shape is captured by the CCD camera 20, if the three-dimensional surface is colored, the three-dimensional shape may appear to expand or contract depending on the color. That is, when a color that reflects light, such as white, is colored on the three-dimensional surface, the three-dimensional object appears to expand more than actual. Such a color is called an expanded color. Conversely, when the three-dimensional surface is colored with a color that absorbs light such as black, the three-dimensional object appears to contract more than it actually is. Such a color is called a contraction color. The third standard gauge 44 shown in FIG.
It is used to test how much the measurement element 0 performs measurement with respect to the difference in color.

【0032】第三標準ゲージ44は、真円度の高い(軸
に沿った径が全部分で同じ)円筒で形成され、その表面
に膨張色から収縮色まで段階的に変化する色彩が帯状に
着色されている。ここで、膨張色から収縮色までの段階
的変化とは、例えば、白、青緑、青紫、黄、灰、青、
緑、赤、黒等である。この第三標準ゲージ44の各長さ
や表面粗さ、真円度等も前述したように、接触式三次元
形状測定器10により精度保証が行われているものとす
る。
The third standard gauge 44 is formed of a cylinder having a high degree of roundness (the diameter along the axis is the same in all parts), and a color that changes stepwise from an expanded color to a contracted color is formed in a band shape on its surface. It is colored. Here, the gradual change from the expansion color to the contraction color means, for example, white, blue-green, blue-violet, yellow, gray, blue,
Green, red, black, etc. As described above, it is assumed that the accuracy of the length, surface roughness, roundness, and the like of the third standard gauge 44 is guaranteed by the contact type three-dimensional shape measuring instrument 10.

【0033】このように精度保証が行われている第三標
準ゲージ44を用いて、非接触式三次元形状測定器12
の表面色彩による形状膨縮精度を検定する。この場合
も、図5(b)に示すように、通常の非接触式三次元形
状測定器12による形状測定手順と同様に縞投光器18
により第三標準ゲージ44に縞パターン18aを投光
し、CCDカメラ20によりその画像を表面の色毎に捉
える。この場合もCCDカメラ20で縞パターン18a
を捉えることにより、測定点群データ(X座標:横方
向、Y座標:縦方向、Z座標:高さ方向)を得ることが
できる。この時得られる測定点群データは、例えば図5
(c)のようになる。この場合、各測定素子の色による
測定ばらつきが無い場合、表面の色が異なっても同じ形
状(径)の第三標準ゲージ44の測定を行っているの
で、測定点群データは同じであるはずである。しかし、
実際は、前述したように色彩による見かけ上の膨縮が起
こるため、図5(c)に示すように測定点群データは、
例えば黒、赤、緑で異なる径の円筒として認識される。
従って、各色彩における測定点群データを比較すること
により、CCDカメラ20の測定素子において色の違い
に対する測定精度がどのくらいまで有るかを検定するこ
とができる(色に関する検定のステップ)。例えば、測
定対象の表面色が黒、赤、緑等であれば、色の違いによ
る測定精度は、例えば3μmであると示すことができ
る。また、この時、CCDカメラ20の測定素子におい
て、所定の精度を有して測定できる色彩がどれであるか
の判定も行うことができる。また、この時、第三標準ゲ
ージ44の既知の寸法(特に真円度)と測定点群データ
比較を行うことにより、CCDカメラ20の測定素子の
曲面測定精度に関する保証も併せて行うことができる
(曲面測定精度に関する検定のステップ)。
The non-contact three-dimensional shape measuring device 12 is manufactured by using the third standard gauge 44 whose accuracy is thus guaranteed.
The accuracy of shape expansion / contraction by the surface color of the sample is examined. Also in this case, as shown in FIG. 5B, the fringe projector 18 is used in the same manner as the normal shape measurement procedure using the non-contact three-dimensional shape measuring device 12.
, The stripe pattern 18a is projected on the third standard gauge 44, and the image is captured by the CCD camera 20 for each surface color. Also in this case, the stripe pattern 18a is
, Measurement point group data (X coordinate: horizontal direction, Y coordinate: vertical direction, Z coordinate: height direction) can be obtained. The measurement point group data obtained at this time is, for example, as shown in FIG.
(C). In this case, if there is no measurement variation due to the color of each measuring element, the third standard gauge 44 having the same shape (diameter) is measured even if the surface color is different, so the measurement point group data should be the same. It is. But,
Actually, as described above, apparent expansion and contraction due to color occurs, and therefore, as shown in FIG.
For example, black, red, and green are recognized as cylinders having different diameters.
Therefore, by comparing the measurement point group data for each color, it is possible to test how much the measurement element of the CCD camera 20 has a measurement accuracy for a color difference (a color-related verification step). For example, if the surface color of the measurement target is black, red, green, or the like, the measurement accuracy due to the difference in color can be shown to be, for example, 3 μm. At this time, it is also possible to determine which color can be measured with predetermined accuracy in the measuring element of the CCD camera 20. At this time, by comparing the known dimension (especially roundness) of the third standard gauge 44 with the measurement point group data, it is possible to also guarantee the accuracy of measuring the curved surface of the measurement element of the CCD camera 20. (Step of testing for curved surface measurement accuracy).

【0034】上述したように、分解能に関する検定、平
面に関する検定、色に関する検定、曲面測定精度に関す
る検定を行うことにより、非接触式三次元形状測定器1
2において、測定精度の検定を複合的に行い、CCDカ
メラ20の総合測定精度を算出する(精度算出に関する
ステップ)。例えば、分解能検定、平面検定、色検定、
曲面測定精度検定の中で最も大きな値、精度10μm等
を算出し、非接触式三次元形状測定器12の精度として
表示する。この時、総合精度を一つ表示してもよし、各
分解能検定、平面検定、色検定、曲面測定精度検定の結
果を示し、さらに総合精度を示してもよい。各検定結果
を利用することにより、精度変動要因を複合的に考慮し
信頼性の高い精度保証を行うことが可能になる。また、
各検定を行うことにより、各種非接触式三次元形状測定
器毎の精度保証方法の統一を容易に行うことができる。
また、精度保証方法の統一が行われることにより取得し
た三次元データの管理を容易に行うことができる。
As described above, a non-contact type three-dimensional shape measuring instrument 1 is obtained by performing a test relating to the resolution, a test relating to the plane, a test relating to the color, and a test relating to the accuracy of measuring the curved surface.
In step 2, the test of the measurement accuracy is performed in a complex manner, and the total measurement accuracy of the CCD camera 20 is calculated (step related to accuracy calculation). For example, resolution test, plane test, color test,
The largest value in the curved surface measurement accuracy test, such as an accuracy of 10 μm, is calculated and displayed as the accuracy of the non-contact three-dimensional shape measuring instrument 12. At this time, one total accuracy may be displayed, or the results of each resolution test, plane test, color test, and curved surface measurement accuracy test may be shown, and further the total accuracy may be shown. By using each test result, it is possible to perform highly reliable accuracy guarantee by considering factors of accuracy variation in a complex manner. Also,
By performing each test, it is possible to easily unify the accuracy assurance methods for various non-contact three-dimensional shape measuring instruments.
In addition, it is possible to easily manage the acquired three-dimensional data by unifying the accuracy assurance methods.

【0035】ところで、非接触式三次元形状測定器12
の測定対象は、車両ボディ等のように大型である場合が
あるが、CCDカメラ20のワンショットで取得できる
データ領域には限界がある。このような場合、全体のデ
ータを取得するためには、CCDカメラ20で取得可能
な広さを順次分割して取得し、その分割して取得したデ
ータをつなぎ合わせるという作業が必要になる。非接触
式三次元形状測定器12の測定信頼度を向上させるため
には、このつなぎ合わせに関する検定も必要になる。
Incidentally, the non-contact type three-dimensional shape measuring device 12
May be large, such as a vehicle body, but there is a limit to the data area that can be obtained by one shot of the CCD camera 20. In such a case, in order to acquire the entire data, it is necessary to sequentially divide the area that can be acquired by the CCD camera 20 and acquire the divided areas, and then connect the divided and acquired data. In order to improve the measurement reliability of the non-contact type three-dimensional shape measuring instrument 12, a test concerning the joining is also required.

【0036】図6(a)には、貼り合わせ精度の検定に
用いる第四標準ゲージ46が示されている。本実施形態
の第四標準ゲージ46の場合、平面度の出ているベース
46aの平面上に同一連続パターンが等ピッチで配列さ
れている。図6(a)の場合、一部拡大して示している
ように、ベース46aの表面に等ピッチでV溝46bを
縦横方向に形成することにより、同一の連続パターン
(錐台)を形成している。もちろん、隣接するパターン
が関連つけられれば、丸や三角等の任意のパターンでよ
い。この第四標準ゲージ46の各長さや表面粗さ等も前
述したように、接触式三次元形状測定器10により精度
保証が行われているものとする。
FIG. 6A shows a fourth standard gauge 46 used for testing the bonding accuracy. In the case of the fourth standard gauge 46 of the present embodiment, the same continuous patterns are arranged at equal pitches on the plane of the base 46a having the flatness. In the case of FIG. 6A, as shown in a partially enlarged manner, the same continuous pattern (frustum) is formed by forming V grooves 46b in the vertical and horizontal directions at the same pitch on the surface of the base 46a. ing. Of course, any pattern such as a circle or a triangle may be used as long as adjacent patterns are associated with each other. As described above, it is assumed that the accuracy of each length, surface roughness, and the like of the fourth standard gauge 46 is guaranteed by the contact type three-dimensional shape measuring instrument 10.

【0037】このように精度保証が行われている第四標
準ゲージ46を用いて、非接触式三次元形状測定器12
の分割データ取得時のデータ貼り合わせを検定する。こ
の場合も、図6(b)に示すように、通常の非接触式三
次元形状測定器12による形状測定手順と同様に縞投光
器18により第四標準ゲージ46に縞パターン18aを
投光し、CCDカメラ20によりその画像を捉える。前
述したように、測定対象(被測定物)が大きい場合、C
CDカメラ20のワンショットにより全データを取得す
ることができないので、例えば、第四標準ゲージ46を
4つの領域に分割し、CCDカメラ20または第四標準
ゲージ46のいずれかを移動させて各領域の画像をCC
Dカメラ20の測定素子により捉える。この時、分割さ
れる画像は第四標準ゲージ46全体から欠落した部分が
無ければよく、個々に重複部分が存在してもよい。この
場合もCCDカメラ20で縞パターン18aを捉えるこ
とにより、測定点群データ(X座標:横方向、Y座標:
縦方向、Z座標:高さ方向)を得ることができる。この
時得られる測定点群データを例えば図6(c)に示すよ
うに、第四標準ゲージ46の全体画像を合成するように
貼り合わせる。そして、貼り合わせしてできた全体画像
で認識される全体寸法と第四標準ゲージ46の既知の全
体寸法との一致度を算出する。つまり、図6(c)に示
すようにデータの貼り合わせが完全に行われているか否
かの検定を行う(貼り合わせ検定に関するステップ)。
貼り合わせが完全に(ぴったりと)行われていない場
合、縦方向の貼り合わせ精度が例えば2μm、横方向の
貼り合わせ精度が例えば3μm等のように示される。
The non-contact type three-dimensional shape measuring instrument 12 is used by using the fourth standard gauge 46 for which the accuracy is guaranteed as described above.
Test the data bonding at the time of obtaining the divided data. Also in this case, as shown in FIG. 6B, the stripe pattern 18a is projected on the fourth standard gauge 46 by the stripe projector 18 in the same manner as the normal shape measurement procedure by the non-contact type three-dimensional shape measuring device 12, The image is captured by the CCD camera 20. As described above, when the measurement object (measured object) is large, C
Since all data cannot be acquired by one shot of the CD camera 20, for example, the fourth standard gauge 46 is divided into four areas, and either the CCD camera 20 or the fourth standard gauge 46 is moved to each area. CC image
It is captured by the measuring element of the D camera 20. At this time, the divided images need not have any portions missing from the entire fourth standard gauge 46, and may have individual overlapping portions. Also in this case, by capturing the stripe pattern 18a with the CCD camera 20, the measurement point group data (X coordinate: horizontal direction, Y coordinate:
(Vertical direction, Z coordinate: height direction). The measurement point group data obtained at this time is attached so as to synthesize the entire image of the fourth standard gauge 46, for example, as shown in FIG. Then, the degree of coincidence between the overall dimensions recognized in the overall image formed by bonding and the known overall dimensions of the fourth standard gauge 46 is calculated. That is, as shown in FIG. 6C, a test is performed to determine whether or not the data has been completely bonded (step relating to the bonding test).
When the bonding is not completely (fitted), the bonding accuracy in the vertical direction is, for example, 2 μm, and the bonding accuracy in the horizontal direction is, for example, 3 μm.

【0038】上述したように、分解能検定、平面検定、
色検定、曲面測定精度検定を行い、さらに、貼り合わせ
検定を行うことにより、計測対象が大きな面積を有する
場合でCCDカメラにより分割して形状データを取得し
なければならないような場合に、実際の全体画像と張り
合わせた合成画像との比較に基づいて、データ貼り合わ
せ処理時の精度を確認することができる。その結果、デ
ータ貼り合わせ検定を含めて非接触式三次元形状測定器
の計測精度保証を行うことにより、大きな被測定物を非
接触式三次元形状測定器で測定する場合の精度保証の信
頼度を容易に向上することができる。
As described above, the resolution test, the plane test,
By performing a color test, a curved surface measurement accuracy test, and a bonding test, when the measurement target has a large area and it is necessary to divide the shape data with a CCD camera and obtain the actual shape data, Accuracy at the time of the data joining process can be confirmed based on the comparison between the entire image and the combined image that has been attached. As a result, the measurement accuracy of non-contact type 3D shape measuring instruments, including data stitching test, is guaranteed, so the reliability of accuracy assurance when measuring large objects with non-contact type 3D shape measuring instruments Can be easily improved.

【0039】さらに、貼り合わせを行う場合、空間的な
貼り合わせ精度に関しても考慮する必要がある。
Further, when performing bonding, it is necessary to consider spatial bonding accuracy.

【0040】図7(a)には、貼り合わせ空間精度の検
定に用いる第五標準ゲージ48が示されている。本実施
形態の第五標準ゲージ48の場合、平面度の出ている長
尺部材48a上に同一連続立体パターンが等ピッチでア
レイ配置されている。図7(a)の場合、棒状のスタン
ド上に個々に固定された球体48bが複数配列されてい
る。この第五標準ゲージ48の長さや表面粗さ、球体4
8bの配列ピッチ等も前述したように、接触式三次元形
状測定器10により精度保証が行われているものとす
る。なお、この立体パターンも球体のみならず、錐体や
直方体等任意の形状でもよい。また、半球形状の凹部形
状としてもよい。
FIG. 7 (a) shows a fifth standard gauge 48 used for testing the spatial accuracy of bonding. In the case of the fifth standard gauge 48 of the present embodiment, the same continuous three-dimensional pattern is arranged at an equal pitch on a long member 48a having a flatness. In the case of FIG. 7A, a plurality of individually fixed spheres 48b are arranged on a rod-shaped stand. The length and surface roughness of the fifth standard gauge 48, the spherical body 4
As described above, it is assumed that the accuracy of the arrangement pitch of 8b is guaranteed by the contact type three-dimensional shape measuring instrument 10 as described above. Note that this three-dimensional pattern is not limited to a sphere, but may have any shape such as a cone or a rectangular parallelepiped. Further, it may be a hemispherical concave shape.

【0041】このように精度保証が行われている第五標
準ゲージ48を用いて、非接触式三次元形状測定器12
の分割データ取得時のデータ貼り合わせ空間精度を検定
する。この場合も、図7(a)に示すように、通常の非
接触式三次元形状測定器12による形状測定手順と同様
に縞投光器18により第五標準ゲージ48に縞パターン
18aを投光し、CCDカメラ20によりその画像を捉
える。前述したように、測定対象が大きい場合、CCD
カメラ20のワンショットにより全データを取得するこ
とができないので、例えば、第五標準ゲージ48を長尺
方向に2つの領域に分割し、CCDカメラ20または第
五標準ゲージ48のいずれかを移動させて各領域の画像
をCCDカメラ20の測定素子により捉える。この場合
もCCDカメラ20で縞パターン18aを捉えることに
より、測定点群データ(X座標:横方向、Y座標:縦方
向、Z座標:高さ方向)を得ることができる。この時得
られる測定点群データを例えば図7(b)に示すよう
に、第五標準ゲージ48の全体画像を合成するように貼
り合わせ、貼り合わせしてできた全体画像で認識される
全体寸法、球体48bのピッチ距離とを第五標準ゲージ
48の既知の全体寸法及びピッチ距離と比較し、一致度
を算出する。つまり、図7(b)に示すようにデータの
貼り合わせが空間的に完全に行われているか否かの検定
を行う(空間貼り合わせ検定に関するステップ)。この
場合、全体長さの貼り合わせ精度が例えば2μmのよう
に表示することができる。また、個々の球体48bのピ
ッチ比較も行うことができるので、長さ方向のデータを
累積加算した場合の精度の検定も行うことができる。さ
らに、高さ方向の貼り合わせ精度(貼り合わせ部の垂直
方向のずれ)の精度を例えば1μm等のように示すこと
ができる。
Using the fifth standard gauge 48 whose accuracy is assured in this way, the non-contact type three-dimensional shape measuring instrument 12 is used.
Test the spatial accuracy of data stitching at the time of obtaining the divided data. Also in this case, as shown in FIG. 7A, the stripe pattern 18a is projected on the fifth standard gauge 48 by the stripe projector 18 in the same manner as the ordinary shape measurement procedure using the non-contact three-dimensional shape measuring device 12, The image is captured by the CCD camera 20. As mentioned above, when the measurement target is large, CCD
Since all data cannot be acquired by one shot of the camera 20, for example, the fifth standard gauge 48 is divided into two areas in the longitudinal direction, and either the CCD camera 20 or the fifth standard gauge 48 is moved. The image of each area is captured by the measuring element of the CCD camera 20. Also in this case, by capturing the stripe pattern 18a with the CCD camera 20, measurement point group data (X coordinate: horizontal direction, Y coordinate: vertical direction, Z coordinate: height direction) can be obtained. The measurement point group data obtained at this time is pasted so as to combine the whole image of the fifth standard gauge 48 as shown in FIG. 7B, for example, and the overall dimensions recognized by the pasted whole image are combined. , And the pitch distance of the sphere 48b is compared with the known overall dimensions and pitch distance of the fifth standard gauge 48 to calculate the degree of coincidence. That is, as shown in FIG. 7B, a test is performed to determine whether or not the data has been completely combined spatially (step relating to the spatial combination test). In this case, it is possible to display such that the bonding accuracy of the entire length is, for example, 2 μm. In addition, since the pitch comparison of the individual spheres 48b can be performed, it is also possible to perform the accuracy test when the data in the length direction is cumulatively added. Further, the accuracy of the bonding accuracy in the height direction (vertical displacement of the bonded portion in the vertical direction) can be indicated as, for example, 1 μm.

【0042】上述したように、分解能検定、平面検定、
色検定、曲面測定精度検定を行い、さらに、空間貼り合
わせ検定を行うことにより、計測対象が大きな面積を有
する場合でCCDカメラにより分割して形状データを取
得しなければならないような場合に、実際の全体画像と
張り合わせた合成画像との比較に基づいて、データ貼り
合わせ処理時の空間精度を確認することができる。その
結果、データの空間貼り合わせ検定を含めて非接触式三
次元形状測定器の計測精度保証を行うことにより、大き
な被測定物を非接触式三次元形状測定器で測定する場合
の精度保証の信頼度を容易に向上することができる。も
ちろん、前述した第四標準ゲージ46による検定と併せ
て第五標準ゲージ48による検定を行うことにより、さ
らに精度保証の信頼度を向上することができる。
As described above, the resolution test, the plane test,
By performing color verification, curved surface measurement accuracy verification, and space bonding verification, if the measurement object has a large area and it is necessary to divide the shape data with a CCD camera and acquire the shape data, The spatial accuracy at the time of the data joining process can be confirmed based on the comparison between the whole image of the above and the combined image that has been joined. As a result, by guaranteeing the measurement accuracy of the non-contact three-dimensional shape measuring instrument including the spatial bonding test of data, the accuracy assurance when measuring a large workpiece with the non-contact three-dimensional shape measuring instrument is improved. Reliability can be easily improved. Of course, by performing the test using the fifth standard gauge 48 in addition to the test using the fourth standard gauge 46 described above, the reliability of the accuracy assurance can be further improved.

【0043】上述した、各種検定を行った後、その結果
を総合的に示す。この場合、第四標準ゲージ46または
第五標準ゲージ48の検定結果は、第一標準ゲージ36
から第三標準ゲージ44の検定の結果を含んでいるの
で、第四標準ゲージ46または第五標準ゲージ48の検
定の結果を非接触式三次元形状測定器12の精度として
表示する。この時、総合精度を一つ表示してもよし、各
分解能検定、平面検定、色検定、曲面測定精度検定、貼
り合わせ検定、空間貼り合わせ検定の結果を示し、さら
に総合精度を示してもよい。
After performing the various tests described above, the results are shown comprehensively. In this case, the test result of the fourth standard gauge 46 or the fifth standard gauge 48 is the first standard gauge 36
Since the results of the verification of the third standard gauge 44 are included in the results, the results of the verification of the fourth standard gauge 46 or the fifth standard gauge 48 are displayed as the accuracy of the non-contact three-dimensional shape measuring instrument 12. At this time, one total accuracy may be displayed, or the results of each resolution test, plane test, color test, curved surface measurement accuracy test, bonding test, space bonding test, and the total accuracy may be displayed. .

【0044】なお、上述した実施形態において、第1〜
第五標準ゲージ36,42,44,46,48の形状
は、一例であり、第1標準ゲージ36は、平坦な斜面部
を有していればよく、第二標準ゲージ42は、平坦な複
数の平面部を階段状に配列されていればよく、第三標準
ゲージ44は、円筒表面に少なくとも膨張色から収縮色
まで段階的に変化する色彩が着色されていればよく、第
四標準ゲージ46は、平面上に同一連続パターンが等ピ
ッチで配列されていればよく、第五標準ゲージ48は長
尺部材上に同一連続立体パターンが等ピッチでアレイ配
置されていればよく、他の部分を適宜任意に変更しても
本実施形態で説明した精度保証を行うことが可能であ
り、同様な効果を得ることができる。
It should be noted that in the above-described embodiment,
The shape of the fifth standard gauges 36, 42, 44, 46, 48 is an example, and the first standard gauge 36 may have a flat slope portion, and the second standard gauge 42 may have a plurality of flat standard gauges. The third standard gauge 44 only needs to be colored with a color that changes stepwise from at least an expanding color to a contracting color on the cylindrical surface. It is only necessary that the same continuous patterns are arranged at equal pitches on a plane, and the fifth standard gauge 48 is only required that the same continuous three-dimensional patterns are arrayed at equal pitches on a long member. Even if it is changed arbitrarily, the accuracy described in the present embodiment can be guaranteed, and the same effect can be obtained.

【0045】また、上述したような複合的な精度保証を
行っておくことにより、種々の非接触式三次元形状測定
器の中から所望の測定精度を有する非接触式三次元形状
測定器の選定をする必要が生じた場合でも、容易にその
選択を行うことが可能になる。
Further, by performing the above-described composite accuracy assurance, a non-contact type three-dimensional shape measuring instrument having a desired measuring accuracy can be selected from various non-contact type three-dimensional shape measuring instruments. If it becomes necessary to make the selection, it is possible to easily make the selection.

【0046】[0046]

【発明の効果】本発明によれば、精度変動要因を複合的
に検定することにより、容易に、信頼性の高い精度保証
を行うことができる。また、種々の非接触式三次元形状
測定器に対し、複合的検定を行うことで非接触式三次元
形状測定器の互換的信頼度の維持、相互の取得データの
管理も容易に行うことが可能になる。
According to the present invention, highly reliable accuracy can be easily assured by complexly examining accuracy variation factors. In addition, by performing complex verifications on various non-contact type three-dimensional shape measuring instruments, it is possible to maintain the interchangeable reliability of the non-contact type three-dimensional shape measuring instruments and easily manage mutual acquired data. Will be possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態に係る非接触式三次元形状
測定器の計測精度保証方法の精度保証概念を説明する説
明図である。
FIG. 1 is an explanatory diagram illustrating an accuracy assurance concept of a measurement accuracy assurance method of a non-contact type three-dimensional shape measuring instrument according to an embodiment of the present invention.

【図2】 本発明の実施形態に係る非接触式三次元形状
測定器の概略構成を説明する説明図である。
FIG. 2 is an explanatory diagram illustrating a schematic configuration of a non-contact type three-dimensional shape measuring instrument according to an embodiment of the present invention.

【図3】 本発明の実施形態に係る非接触式三次元形状
測定器の計測精度保証方法に用いる第一標準ゲージを説
明する説明図である。
FIG. 3 is an explanatory diagram illustrating a first standard gauge used in a measurement accuracy assurance method of the non-contact type three-dimensional shape measuring instrument according to the embodiment of the present invention.

【図4】 本発明の実施形態に係る非接触式三次元形状
測定器の計測精度保証方法に用いる第二標準ゲージを説
明する説明図である。
FIG. 4 is an explanatory diagram illustrating a second standard gauge used in a measurement accuracy assurance method of the non-contact three-dimensional shape measuring instrument according to the embodiment of the present invention.

【図5】 本発明の実施形態に係る非接触式三次元形状
測定器の計測精度保証方法に用いる第三標準ゲージを説
明する説明図である。
FIG. 5 is an explanatory diagram illustrating a third standard gauge used in a measurement accuracy assurance method of the non-contact type three-dimensional shape measuring instrument according to the embodiment of the present invention.

【図6】 本発明の実施形態に係る非接触式三次元形状
測定器の計測精度保証方法に用いる第四標準ゲージを説
明する説明図である。
FIG. 6 is an explanatory diagram illustrating a fourth standard gauge used in a method for assuring measurement accuracy of the non-contact type three-dimensional shape measuring instrument according to the embodiment of the present invention.

【図7】 本発明の実施形態に係る非接触式三次元形状
測定器の計測精度保証方法に用いる第五標準ゲージを説
明する説明図である。
FIG. 7 is an explanatory diagram illustrating a fifth standard gauge used in a measurement accuracy assurance method of the non-contact type three-dimensional shape measuring instrument according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 接触式三次元形状測定器、12 非接触式三次元
形状測定器、14 精度検定標準器、16 被測定物、
18 縞投光器、20 CCDカメラ、22三次元形状
測定器本体、24 画像処理部、26 データ処理部、
28 形状処理部、30 表示部、32 機構制御部、
34 操作部、36 第一標準ゲージ、42 第二標準
ゲージ、44 第三標準ゲージ、46 第四標準ゲー
ジ、48第五標準ゲージ。
10 contact type three-dimensional shape measuring device, 12 non-contact type three-dimensional shape measuring device, 14 accuracy verification standard device, 16 DUT,
18 fringe projector, 20 CCD camera, 22 three-dimensional shape measuring instrument main body, 24 image processing section, 26 data processing section,
28 shape processing unit, 30 display unit, 32 mechanism control unit,
34 operation unit, 36 first standard gauge, 42 second standard gauge, 44 third standard gauge, 46 fourth standard gauge, 48 fifth standard gauge.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定物表面の画像を複数の測定素子を
有するセンサで取得して、前記被測定物の表面三次元形
状を測定する非接触式三次元形状測定器における計測精
度保証方法であって、 平坦な斜面部を有する第一標準ゲージの斜面部画像を取
得して、フォーカスが合ったときの各測定素子が取得す
る測定点群データの間隔に基づいて、前記センサの縦横
高さ方向の測定分解能を検定するステップと、 平坦な複数の平面部を階段状に配列した第二標準ゲージ
の平面部画像を複数回取得して、各測定素子が取得する
測定毎の測定点群データの前記平面部の垂直方向の座標
ばらつきに基づいて、前記センサの同一平面ばらつき精
度及び、異なる2平面部の高さ方向の測定精度を検定す
るステップと、 円筒表面に少なくとも膨張色から収縮色まで段階的に変
化する色彩を有する第三標準ゲージの円筒表面画像を取
得して、各測定素子が取得する色の異なる位置における
測定点群データが形成する円筒外形に基づいて形状膨縮
精度及び曲面測定精度を検定するステップと、 前記各ステップの結果に基づいて、センサの総合測定精
度を算出するステップと、 を含み、 前記センサの総合測定精度に基づいて非接触式三次元形
状測定器の計測精度保証を行うことを特徴とする計測精
度保証方法。
An image of a surface of an object to be measured is acquired by a sensor having a plurality of measuring elements, and a measurement accuracy assurance method for a non-contact type three-dimensional shape measuring instrument for measuring a three-dimensional surface of the object to be measured is provided. There is obtained a slope portion image of the first standard gauge having a flat slope portion, and the height and width of the sensor based on the interval of the measurement point group data obtained by each measuring element when focused. A step of verifying the measurement resolution in the direction, and acquiring a plurality of plane images of the second standard gauge in which a plurality of flat planes are arranged in a stepwise manner, and measuring point group data for each measurement acquired by each measuring element Examining the same-plane variation accuracy of the sensor and the measurement accuracy in the height direction of the two different planar portions based on the vertical coordinate variation of the planar portion; Acquire a cylindrical surface image of the third standard gauge having a color that changes in a stepwise manner, and based on the cylindrical outer shape formed by the measurement point group data at different positions of the color acquired by each measuring element, the shape expansion / contraction accuracy and the curved surface Verifying the measurement accuracy, and calculating the total measurement accuracy of the sensor based on the result of each of the steps; and measuring the non-contact three-dimensional shape measuring instrument based on the total measurement accuracy of the sensor. A measurement accuracy assurance method characterized by performing accuracy assurance.
【請求項2】 請求項1記載の方法において、 さらに、 平面上に同一連続パターンが等ピッチで配列された第四
標準ゲージの全体画像を前記センサで分割取得して、そ
の取得した分割データを前記第四標準ゲージの全体画像
を合成するように貼り合わせしたときの貼り合わせ画像
と第四標準ゲージとの一致度に基づいてデータ貼り合わ
せ精度を検定するステップと、 を含み、 前記データ貼り合わせ検定を含めて非接触式三次元形状
測定器の計測精度保証を行うことを特徴とする計測精度
保証方法。
2. The method according to claim 1, further comprising: dividing and acquiring an entire image of a fourth standard gauge in which identical continuous patterns are arranged on a plane at an equal pitch by the sensor; Testing the data bonding accuracy based on the degree of coincidence between the bonded image and the fourth standard gauge when the entire image of the fourth standard gauge is bonded so as to be synthesized, and the data bonding is performed. A measurement accuracy assurance method characterized by performing measurement accuracy assurance of a non-contact type three-dimensional shape measuring instrument including verification.
【請求項3】 請求項1または請求項2記載の方法にお
いて、 さらに、 長尺部材上に同一連続立体パターンを等ピッチでアレイ
配置した第五標準ゲージの全体画像を前記センサで分割
取得して、前記センサで取得した分割データを用いて前
記第五標準ゲージの全体立体画像を合成するように貼り
合わせしたときの貼り合わせ立体画像と第五標準ゲージ
との一致度に基づいて空間貼り合わせ精度を検定するス
テップと、 を含み、 前記空間貼り合わせ精度を含めて非接触式三次元形状測
定器の計測精度保証を行うことを特徴とする計測精度保
証方法。
3. The method according to claim 1, further comprising the step of dividing and acquiring the whole image of the fifth standard gauge, in which the same continuous three-dimensional pattern is arranged at an equal pitch on the long member, by the sensor. Spatial bonding accuracy based on the degree of matching between the bonded three-dimensional image and the fifth standard gauge when the entire three-dimensional image of the fifth standard gauge is bonded so as to be synthesized using the divided data obtained by the sensor. And a step of verifying, and performing the measurement accuracy assurance of the non-contact type three-dimensional shape measuring instrument including the spatial bonding accuracy.
JP2001016742A 2001-01-25 2001-01-25 Measurement accuracy guarantee method for non-contact 3D shape measuring instrument Expired - Fee Related JP4345235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001016742A JP4345235B2 (en) 2001-01-25 2001-01-25 Measurement accuracy guarantee method for non-contact 3D shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001016742A JP4345235B2 (en) 2001-01-25 2001-01-25 Measurement accuracy guarantee method for non-contact 3D shape measuring instrument

Publications (2)

Publication Number Publication Date
JP2002221411A true JP2002221411A (en) 2002-08-09
JP4345235B2 JP4345235B2 (en) 2009-10-14

Family

ID=18883053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001016742A Expired - Fee Related JP4345235B2 (en) 2001-01-25 2001-01-25 Measurement accuracy guarantee method for non-contact 3D shape measuring instrument

Country Status (1)

Country Link
JP (1) JP4345235B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007075029A1 (en) * 2005-12-26 2007-07-05 Gwangju Institute Of Science And Technology 3-d shape measuring method for auto-grinding equipment of lcd color filter and 3-d shape measuring apparatus for the same
JP2007183181A (en) * 2006-01-06 2007-07-19 Nikon Corp Three-dimensional shape measuring apparatus
JP2008170279A (en) * 2007-01-11 2008-07-24 Omron Corp Three-dimensional shape measuring device, method for correction therefor, program, and computer-readable recording medium
JP2009036589A (en) * 2007-07-31 2009-02-19 Omron Corp Target for calibration and device, method and program for supporting calibration
KR100933715B1 (en) 2006-05-09 2009-12-24 주식회사 아이너스기술 System and method for modeling precision analysis of reverse engineering execution using 3D scan data
JP2011021970A (en) * 2009-07-15 2011-02-03 Nikon Corp Three-dimensional shape measuring device and three-dimensional shape measuring method
KR101515365B1 (en) * 2014-05-28 2015-05-04 주식회사 스페이스솔루션 Apparatus for Measuring Non-Contact and Method for Compensating Error Thereof
CN104655050A (en) * 2013-11-18 2015-05-27 精工爱普生株式会社 Calibration method and shape measuring apparatus
JP6280281B1 (en) * 2017-10-18 2018-02-14 株式会社浅沼技研 Inspection master, reference member for inspection master, and measurement method for measuring the traceability of optical CMM
KR20190137536A (en) * 2018-06-01 2019-12-11 주식회사 케이피에스 Reference plate for controling the optical axis of up-look review camera with z-axis stage in the tension mask assembly

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7796246B2 (en) 2005-12-26 2010-09-14 Gwangju Institute Of Science And Technology 3-D shape measuring method for auto-grinding equipment of LCD color filter and 3-D shape measuring apparatus for the same
WO2007075029A1 (en) * 2005-12-26 2007-07-05 Gwangju Institute Of Science And Technology 3-d shape measuring method for auto-grinding equipment of lcd color filter and 3-d shape measuring apparatus for the same
JP2007183181A (en) * 2006-01-06 2007-07-19 Nikon Corp Three-dimensional shape measuring apparatus
USRE48498E1 (en) * 2006-05-09 2021-03-30 3D Systems, Inc. System and method for analyzing modeling accuracy while performing reverse engineering with 3D scan data
KR100933715B1 (en) 2006-05-09 2009-12-24 주식회사 아이너스기술 System and method for modeling precision analysis of reverse engineering execution using 3D scan data
JP2008170279A (en) * 2007-01-11 2008-07-24 Omron Corp Three-dimensional shape measuring device, method for correction therefor, program, and computer-readable recording medium
JP2009036589A (en) * 2007-07-31 2009-02-19 Omron Corp Target for calibration and device, method and program for supporting calibration
JP2011021970A (en) * 2009-07-15 2011-02-03 Nikon Corp Three-dimensional shape measuring device and three-dimensional shape measuring method
CN104655050A (en) * 2013-11-18 2015-05-27 精工爱普生株式会社 Calibration method and shape measuring apparatus
KR101515365B1 (en) * 2014-05-28 2015-05-04 주식회사 스페이스솔루션 Apparatus for Measuring Non-Contact and Method for Compensating Error Thereof
JP6280281B1 (en) * 2017-10-18 2018-02-14 株式会社浅沼技研 Inspection master, reference member for inspection master, and measurement method for measuring the traceability of optical CMM
JP2019074455A (en) * 2017-10-18 2019-05-16 株式会社浅沼技研 Inspection master, reference member for inspection master, and method for confirming measurement traceability of optical three-dimensional measuring instrument
KR20190137536A (en) * 2018-06-01 2019-12-11 주식회사 케이피에스 Reference plate for controling the optical axis of up-look review camera with z-axis stage in the tension mask assembly
KR102187587B1 (en) * 2018-06-01 2020-12-09 주식회사 케이피에스 Reference plate for controling the optical axis of up-look review camera with z-axis stage in the tension mask assembly

Also Published As

Publication number Publication date
JP4345235B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP5334835B2 (en) Method and system for measuring shape of reflecting surface
EP2183546B1 (en) Non-contact probe
US7532333B2 (en) Method and apparatus for determining the shape and the local surface normals of specular surfaces
JP3070953B2 (en) Method and system for point-by-point measurement of spatial coordinates
KR101155816B1 (en) Image processing device and image processing method for performing three dimensional measurements
JP2000509505A (en) Non-contact measuring device for 3D object surface
JP2012168180A (en) Device and method for determining 3d coordinates of object and calibrating industrial robot
JP2010507079A (en) Apparatus and method for non-contact detection of 3D contours
JP2013504752A (en) Non-contact object inspection
KR19980063676A (en) System for measuring gaps and mismatches between opposing parts
JP6937482B2 (en) Surface shape measuring device and its stitching measuring method
JP4743771B2 (en) Section data acquisition method, system, and section inspection method
JP4345235B2 (en) Measurement accuracy guarantee method for non-contact 3D shape measuring instrument
JP6945415B2 (en) How to adjust the image measuring device
CN108195314B (en) Reflective striped three dimension profile measurement method based on more field stitchings
CN112415010A (en) Imaging detection method and system
JP2007024764A (en) Noncontact three-dimensional measuring method and system
JPH10311779A (en) Equipment for measuring characteristics of lens
WO2008075632A1 (en) Test method for compound-eye distance measuring device, its test device and chart used for same
US8102516B2 (en) Test method for compound-eye distance measuring apparatus, test apparatus, and chart used for the same
CN101113891B (en) Optical measuring machine
US20190113336A1 (en) Multi-Directional Triangulation Measuring System with Method
JP2003139515A (en) Method for measuring absolute value of deformation quantity using speckle
JP4378128B2 (en) 3D shape measurement method
JP4382699B2 (en) Hole position measurement method in 3D measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees