JP2002221377A - Pressure control valve - Google Patents

Pressure control valve

Info

Publication number
JP2002221377A
JP2002221377A JP2001014120A JP2001014120A JP2002221377A JP 2002221377 A JP2002221377 A JP 2002221377A JP 2001014120 A JP2001014120 A JP 2001014120A JP 2001014120 A JP2001014120 A JP 2001014120A JP 2002221377 A JP2002221377 A JP 2002221377A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
control valve
evaporator
pressure control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001014120A
Other languages
Japanese (ja)
Inventor
Masaru Mukawa
大 務川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Zexel Valeo Climate Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corp filed Critical Zexel Valeo Climate Control Corp
Priority to JP2001014120A priority Critical patent/JP2002221377A/en
Publication of JP2002221377A publication Critical patent/JP2002221377A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a pressure control valve, in which cycle stability in particular at a low load is improved, miniaturization and weight reduction can be attained without problem, and the degree of freedom in the valve shape is improved. SOLUTION: The pressure control valve includes a compressor, a radiator, and an evaporator. The compressor can change the capacity of compression and discharge of the refrigerant, the radiator radiates the heat of the refrigerant discharged from the compressor, and the evaporator evaporates the refrigerant. The control valve is employed in the refrigeration cycle, in which the refrigerant is brought into a supercritical state, and is placed between the radiator and evaporator. In the control valve, the pressure of the refrigerant cooled by the radiator is reduced, and the refrigerant is supplied to the evaporator. The control valve is formed of a valve element 6, a throttling path 7, and a control means. The valve element 6 is displaced in accordance with the pressure and temperature of the refrigerant on the inlet side of the control valve. In the path 7, the opening area is changed in response to the position of the valve element 6. The control means controls the position of the valve element 6 so as to secure a specified opening area S, when the opening area of the path 7 has become smallest.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、車両用空調装置
等に用いられ二酸化炭素等の冷媒を超臨界状態にして循
環させる冷凍サイクルの一部を構成する圧力制御弁に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure control valve which is used in a vehicle air conditioner or the like and which constitutes a part of a refrigeration cycle for circulating a refrigerant such as carbon dioxide in a supercritical state.

【0002】[0002]

【従来の技術】従来から、空調装置等に利用される冷凍
サイクルにおいて、冷媒として二酸化炭素等を用い高圧
ライン(圧縮機から圧力制御弁にかけてのライン)にお
いて冷媒の圧力を臨界圧以上にするものが知られてい
る。また、冷媒を圧送する圧縮機としては、冷媒の圧縮
及び吐出量を変化させることができる可変容量型のもの
があり、その中でも低圧ライン(圧力制御弁から圧縮機
にかけてのライン)の圧力に応じて高圧ラインへの冷媒
吐出量を変化させるものが多く用いられている。この可
変容量型の圧縮機の制御方法としては、低圧圧力が高く
なるに従い冷媒の吐出量を増加させ、低圧圧力が低くな
るに従い吐出量を減少させるものが多い。また、前記圧
力制御弁は、放熱器により冷却された冷媒を減圧して蒸
発器側へ流す働きを有し、その制御方法としては、圧力
制御弁の入口側において、その時々の冷媒の温度に応じ
て最適な圧力となるように、弁を開閉させるものがあ
り、一般に高圧ラインの冷媒温度が高くなるに従い、目
標となる高圧圧力も高くなるように設定されている。
2. Description of the Related Art Conventionally, in a refrigeration cycle used for an air conditioner or the like, a refrigerant in a high pressure line (a line from a compressor to a pressure control valve) is made to have a pressure higher than a critical pressure by using carbon dioxide or the like as a refrigerant. It has been known. In addition, as a compressor for pumping the refrigerant, there is a variable displacement type compressor which can change the compression and discharge amount of the refrigerant, and among them, according to the pressure of a low pressure line (line from the pressure control valve to the compressor). In order to change the amount of refrigerant discharged to a high-pressure line, many types are used. As a control method of the variable displacement type compressor, in many cases, the discharge amount of the refrigerant is increased as the low pressure becomes higher, and the discharge amount is decreased as the low pressure becomes lower. Further, the pressure control valve has a function of reducing the pressure of the refrigerant cooled by the radiator and flowing the refrigerant to the evaporator side. As a control method, at the inlet side of the pressure control valve, the temperature of the refrigerant at each time is controlled. Some of the valves open and close so as to obtain an optimal pressure according to the pressure. Generally, the target high pressure is set to increase as the refrigerant temperature in the high pressure line increases.

【0003】上記のような可変容量型の圧縮機及び圧力
制御弁を備える冷凍サイクルにおいては、低負荷時には
低圧ラインの圧力が低下するので、圧縮機の冷媒吐出量
が減少する。これに伴い、高圧ラインの圧力の上昇が緩
慢になるので、圧力制御弁が長い間閉じたままとなり、
一度開いてもすぐに閉じてしまうという現象が起こるこ
とがある。この現象により、低負荷時におけるサイクル
の安定性が損なわれてしまう。
In a refrigeration cycle having the above-described variable displacement compressor and pressure control valve, when the load is low, the pressure in the low pressure line decreases, so that the refrigerant discharge amount of the compressor decreases. As a result, the pressure in the high pressure line rises slowly, so the pressure control valve remains closed for a long time,
Once opened, it may close immediately. This phenomenon impairs cycle stability at low load.

【0004】特開2000−74513号公報におい
て、圧力制御弁をバイパスさせるバイパス通路を設け、
高圧ラインから低圧ラインへの冷媒の流れが途絶えない
ようにした冷凍サイクルが開示されている。
In Japanese Patent Application Laid-Open No. 2000-74513, a bypass passage for bypassing a pressure control valve is provided,
There is disclosed a refrigeration cycle in which the flow of refrigerant from a high pressure line to a low pressure line is not interrupted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記特
開2000−74513号公報に開示される冷凍サイク
ルにおいては、通常の配管とは別個にバイパス通路用の
配管を設けなくてはならないため、小型化、軽量化を図
る上で不具合が生じる。また、バイパス通路による冷媒
の流量が少な過ぎれば、サイクルの安定性を向上させる
効果が薄れてしまう一方、流量が多すぎれば、低負荷時
に蒸発器への冷媒の供給量が多くなり過ぎてしまい、蒸
発器が凍りつくフロスト現象が生じる可能性がある。
However, in the refrigeration cycle disclosed in Japanese Patent Application Laid-Open No. 2000-74513, since a pipe for a bypass passage must be provided separately from a normal pipe, the size is reduced. However, there is a problem in reducing the weight. Also, if the flow rate of the refrigerant in the bypass passage is too small, the effect of improving the stability of the cycle is diminished, while if the flow rate is too large, the supply amount of the refrigerant to the evaporator at a low load becomes too large. The frost phenomenon that the evaporator freezes may occur.

【0006】また、上記圧力制御弁の多くは、図9に示
すように、弁体40が絞り通路41の周縁に形成された
弁座42に着脱する構造を有するものが多いが、弁体4
0の嵌合部分に形成された傾斜の角度(挟み角)θが大
き過ぎると、弁座42に嵌合した弁体40が抜けなくな
る現象(噛み込み)が生じることがあり、特に二酸化炭
素等を用いた超臨界サイクルにおいては、高圧ラインの
圧力が高くなるため、噛み込みが起こりやすい。このた
め、挟み角θを小さくすることが必要となり、弁体40
や弁座42の形状に自由度が少なかった。
As shown in FIG. 9, many of the pressure control valves have a structure in which a valve element 40 is attached to and detached from a valve seat 42 formed on the peripheral edge of a throttle passage 41.
If the angle of inclination (clipping angle) θ formed at the fitting portion of 0 is too large, a phenomenon (biting) in which the valve body 40 fitted to the valve seat 42 may not come off may occur, and in particular, carbon dioxide, etc. In a supercritical cycle using, the bite is likely to occur because the pressure in the high pressure line increases. Therefore, it is necessary to reduce the included angle θ, and the valve body 40
And the degree of freedom in the shape of the valve seat 42 was small.

【0007】そこで、この発明は、特に低負荷時におけ
るサイクルの安定性を向上させることができると共に、
小型化や軽量化を図る上で不利にならず、また弁の形状
の自由度が高い圧力制御弁を提供することを目的とす
る。
Accordingly, the present invention can improve the stability of a cycle, especially at a low load, and
It is an object of the present invention to provide a pressure control valve which is not disadvantageous in reducing the size and weight and has a high degree of freedom in the shape of the valve.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、冷媒を圧縮及び吐出する容量を変化さ
せることができる圧縮機と、前記圧縮機から吐出された
冷媒を放熱させる放熱器と、冷媒を蒸発させる蒸発器と
を含んで構成されると共に冷媒が超臨界状態となり得る
冷凍サイクルにおいて使用され、前記放熱器と前記蒸発
器との間に配置され前記放熱器により冷却された冷媒を
減圧して前記蒸発器側へ送り出す圧力制御弁において、
該圧力制御弁の入口側の冷媒の圧力及び温度に応じて変
位する弁体と、前記弁体の位置に応じて開口面積が変化
する絞り通路とを備え、前記絞り通路の開口面積が最も
小さくなった時に、所定の開口面積が確保されるよう
に、前記弁体の位置を規制する手段を備えるものである
(請求項1)。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a compressor capable of changing a capacity of compressing and discharging a refrigerant, and a radiator for radiating the refrigerant discharged from the compressor. And used in a refrigeration cycle configured to include a evaporator for evaporating the refrigerant and in which the refrigerant can be in a supercritical state, and disposed between the radiator and the evaporator and cooled by the radiator. In a pressure control valve for reducing the pressure of the refrigerant and sending it to the evaporator side,
The pressure control valve includes a valve body that is displaced according to the pressure and temperature of the refrigerant on the inlet side of the pressure control valve, and a throttle passage whose opening area changes according to the position of the valve body, and the opening area of the throttle passage is the smallest. In such a case, a means for regulating the position of the valve element is provided so that a predetermined opening area is secured when it comes to the above (claim 1).

【0009】これにより、別途バイパス用の配管等を設
けなくても、高圧ラインから低圧ラインへの冷媒の流れ
が途絶えないようにすることができるので、小型化や軽
量化を図る上で不利になることなく、特に低負荷時にお
けるサイクルの安定性を良好に維持することができる。
また、弁体が弁座(絞り通路の端部)に接触しないこと
により、噛み込みが生じる心配がなくなるので、弁体や
弁座の形状の自由度が向上する。
Thus, the flow of the refrigerant from the high-pressure line to the low-pressure line can be prevented from being interrupted without providing a separate bypass pipe or the like, which is disadvantageous in reducing the size and weight. Without this, the stability of the cycle, especially at a low load, can be favorably maintained.
In addition, since the valve body does not contact the valve seat (the end of the throttle passage), there is no need to worry about biting, so that the degree of freedom of the shape of the valve body and the valve seat is improved.

【0010】また、前記所定の開口面積は、0.07〜
0.20mm2 の範囲内であるとよい(請求項2)。
The predetermined opening area is 0.07 to 0.07.
It is good to be within the range of 0.20 mm 2 (claim 2).

【0011】上記開口面積が小さ過ぎる場合には、サイ
クルの安定性を向上させる効果が弱まり、また大き過ぎ
る場合には、蒸発器に冷媒が過度に流れてしまい低負荷
時には蒸発器が凍結するフロスト現象が生じる可能性が
ある。発明者は、実験の結果、サイクルの安定性を向上
させるために最良な開口面積は0.07mm2 から0.
20mm2 であることを見出した。このことから、前記
開口面積を上記範囲内にすることにより、良好な性能を
有する圧力制御弁を提供することができる。
If the opening area is too small, the effect of improving the stability of the cycle is weakened. If the opening area is too large, the refrigerant flows excessively into the evaporator, so that the frost that the evaporator freezes at a low load. A phenomenon may occur. As a result of the experiment, the inventor has found that the best opening area for improving the cycle stability is 0.07 mm 2 to 0.1 mm.
It was found to be 20 mm 2 . For this reason, by setting the opening area within the above range, a pressure control valve having good performance can be provided.

【0012】[0012]

【発明の実施の形態】以下、この発明の実施の形態を図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1に示すこの発明の実施の形態に係る圧
力制御弁1は、例えば図2に示すような冷凍サイクルR
Cの一部を構成するものであり、この冷凍サイクルRC
は、運転状況に応じて冷媒の圧縮及び吐出容量を変化さ
せることができる可変容量型の圧縮機A、圧縮機Aによ
り圧縮された冷媒を外気等との熱交換により放熱させる
放熱器B、高圧ラインHの冷媒と低圧ラインLの冷媒と
の間で熱交換させる内部熱交換器C、高圧ラインHの冷
媒を減圧して低圧ラインLへ送り出す膨張装置としての
圧力制御弁1、圧力制御弁1により減圧された冷媒を室
内に吹き出させる空気と間で熱交換させることにより蒸
発させる蒸発器D、蒸発器Dから流出した冷媒を気液分
離して気相のみを圧縮機Aに流出させるアキュムレータ
Eを有して構成される。また、この冷凍サイクルRC
は、冷媒として二酸化炭素が用いられ、前記圧縮機Aに
より二酸化炭素を超臨界圧まで圧縮するものである。
A pressure control valve 1 according to an embodiment of the present invention shown in FIG. 1 has a refrigeration cycle R as shown in FIG.
C, which constitutes a part of the refrigeration cycle RC.
Is a variable capacity compressor A capable of changing the compression and discharge capacity of the refrigerant in accordance with the operating conditions; a radiator B for releasing the refrigerant compressed by the compressor A by heat exchange with the outside air; An internal heat exchanger C for exchanging heat between the refrigerant in the line H and the refrigerant in the low-pressure line L; a pressure control valve 1 as an expansion device for decompressing the refrigerant in the high-pressure line H and sending it to the low-pressure line L; Evaporator D that evaporates by exchanging the refrigerant depressurized by the air with the air that is blown into the room, and an accumulator E that separates the refrigerant flowing out of the evaporator D into gas and liquid and flows only the gas phase to the compressor A. Is configured. In addition, this refrigeration cycle RC
Uses carbon dioxide as a refrigerant, and compresses carbon dioxide to a supercritical pressure by the compressor A.

【0014】前記圧力制御弁1は、高圧ラインHの冷媒
の圧力及び温度に応じて開閉し、その時々の温度に応じ
て最適となるように、即ち成績係数が最大となるよう
に、高圧ラインHの圧力を調整するものである。この圧
力制御弁1は、アッパシェル2、ロワシェル3、ベロー
ズ4、スライド部材5、弁体6、絞り通路7、高圧連通
路8、低圧連通路9、弁体移動規制部10を有して構成
されている。アッパシェル2とロワシェル3とは互いに
螺合されていると共に螺合部11にシールリング12が
配されていることにより、気密的に結合しており、これ
ら両シェル2,3により略円筒状の内部空間15が画成
されている。アッパシェル2には、前記高圧ラインHと
連通する高圧連通路8が前記内部空間15と連通するよ
うに連結され、ロワシェル3には、前記低圧ラインLと
連通する低圧連通路9が前記内部空間15と連通するよ
うに連結されている。
The pressure control valve 1 opens and closes in accordance with the pressure and temperature of the refrigerant in the high-pressure line H, so that the pressure control valve 1 is optimized according to the temperature at that time, that is, so that the coefficient of performance is maximized. The pressure of H is adjusted. The pressure control valve 1 includes an upper shell 2, a lower shell 3, a bellows 4, a slide member 5, a valve element 6, a throttle path 7, a high-pressure communication path 8, a low-pressure communication path 9, and a valve element movement restricting section 10. ing. The upper shell 2 and the lower shell 3 are screwed to each other, and are hermetically connected by a sealing ring 12 disposed on a screwing portion 11. A space 15 is defined. A high-pressure communication passage 8 communicating with the high-pressure line H is connected to the upper shell 2 so as to communicate with the internal space 15, and a low-pressure communication passage 9 communicating with the low-pressure line L is connected to the lower shell 3. It is connected so that it may communicate with.

【0015】前記内部空間15には、ベローズ4、スラ
イド部材5、弁体6、絞り通路7、弁体移動規制部10
が設けられている。ベローズ4は、金属箔等により蛇腹
状に形成され、伸縮自在になされており、中空状の内部
には前記冷凍サイクルRCを循環する冷媒である二酸化
炭素等の気体が封入されている。スライド部材5は、ア
ッパシェル2の内壁に沿って上下にスライド自在になさ
れている。弁体6は、ベローズ4の伸縮に伴い上下に変
位し、その下端部分が絞り通路7に嵌り込める形状を有
している。絞り通路7は、内部空間15の略中央に向か
ってせり出すようにロワシェル3と一体的に形成された
せり出し部16により所定の内径となるように形成され
ており、高圧ラインHから低圧ラインLへ流れる冷媒の
体積を絞る働きを有し、その開口面積は、前記弁体6と
の位置関係により変化し、弁体6が絞り通路7に近付く
程小さくなる。
The internal space 15 includes a bellows 4, a slide member 5, a valve body 6, a throttle passage 7, and a valve body movement restricting section 10.
Is provided. The bellows 4 is formed in a bellows shape by a metal foil or the like and is made to be able to expand and contract, and a gas such as carbon dioxide as a refrigerant circulating through the refrigeration cycle RC is sealed in the hollow inside. The slide member 5 is slidable up and down along the inner wall of the upper shell 2. The valve element 6 is displaced up and down with the expansion and contraction of the bellows 4, and has a shape such that the lower end portion can be fitted into the throttle passage 7. The throttle passage 7 is formed so as to have a predetermined inner diameter by a protrusion 16 formed integrally with the lower shell 3 so as to protrude substantially toward the center of the internal space 15, and from the high-pressure line H to the low-pressure line L. It has a function of reducing the volume of the flowing refrigerant, and its opening area changes depending on the positional relationship with the valve body 6, and becomes smaller as the valve body 6 approaches the throttle passage 7.

【0016】前記ベローズ4は、その上端部がアッパシ
ェル2の上面部に固定された固定部材17に固定され、
その下端部にスライド部材5が固定されており、このス
ライド部材5の下面側には、弁体6の上端部が固定され
ている。ベローズ4は、内部空間15に流入した高圧ラ
インHの冷媒の圧力及び温度に応じて伸縮し、弁体6を
上下に移動させる。即ち、冷媒の圧力が高くなるとベロ
ーズ4を縮める力が働き、冷媒の温度が高くなるとベロ
ーズ4の内部に封入された気体の体積が膨張するために
ベローズ4を伸ばす力が働く。このように、高圧ライン
Hの冷媒の圧力及び温度のバランスに応じて、ベローズ
4が伸縮し、弁体6が上下に変位し、絞り通路7の開口
面積が変化する。
The bellows 4 has an upper end fixed to a fixing member 17 fixed to the upper surface of the upper shell 2.
A slide member 5 is fixed to a lower end thereof, and an upper end of a valve body 6 is fixed to a lower surface side of the slide member 5. The bellows 4 expands and contracts according to the pressure and temperature of the refrigerant in the high-pressure line H flowing into the internal space 15, and moves the valve 6 up and down. That is, when the pressure of the refrigerant increases, a force for contracting the bellows 4 acts, and when the temperature of the refrigerant increases, a force for expanding the bellows 4 acts because the volume of the gas sealed in the bellows 4 expands. In this way, the bellows 4 expands and contracts, the valve element 6 is displaced up and down, and the opening area of the throttle passage 7 changes according to the balance between the pressure and the temperature of the refrigerant in the high-pressure line H.

【0017】また、この実施の形態におけるスライド部
材5は、図3(a),(b)に示すように、略円盤形状
を有し、上面から下面へ貫通する6つの通孔20が穿設
されており、縁端部には下面側へ突き出したフランジ2
1が形成されている。
Further, as shown in FIGS. 3 (a) and 3 (b), the slide member 5 in this embodiment has a substantially disk shape and has six through holes 20 penetrating from the upper surface to the lower surface. The edge 2 has a flange 2 protruding downward.
1 is formed.

【0018】前記弁体移動規制部10は、図1に示すよ
うに、前記スライド部材5に形成されたフランジ21
と、アッパシェル2の下端部にこのアッパシェル2と一
体的に形成された台部22とから構成される。前記台部
22の上面部に前記フランジ21の下端部が当接するこ
とにより、前記スライド部材5が所定位置よりも下方へ
移動することが阻止される。これにより、弁体6が絞り
通路7を完全に塞がないようになされている。
As shown in FIG. 1, the valve body movement restricting portion 10 includes a flange 21 formed on the slide member 5.
And a base 22 formed integrally with the upper shell 2 at the lower end of the upper shell 2. When the lower end of the flange 21 abuts on the upper surface of the base 22, the slide member 5 is prevented from moving below a predetermined position. As a result, the valve element 6 does not completely block the throttle passage 7.

【0019】前記移動規制部10により、前記弁体6と
絞り通路7との位置関係は、図4(a),(b)に示す
ようになる。上述のように、前記フランジ21と前記台
部22とが当接し、前記スライド部材5の下降が規制さ
れることにより、弁体6は、絞り通路7を完全に閉鎖す
る位置P0 よりも距離dだけ上方の位置P1 を最下位置
とし、弁体6がこの最下位置P1 にきた時に、図4
(b)に示すように、絞り通路7には開口面積Sが確保
され、絞り通路7は完全に閉鎖することがない。そし
て、この実施の形態においては、前記開口面積Sは、
0.07〜0.20mm 2 の範囲内となるように設定さ
れている。
The movement restricting section 10 allows the valve 6 to be
The positional relationship with the throttle passage 7 is shown in FIGS.
Become like As described above, the flange 21 and the platform
The sliding member 5 is restricted from descending.
As a result, the valve element 6 completely closes the throttle passage 7.
The position P1 above the position P0 by the distance d to the lowermost position
When the valve body 6 comes to this lowermost position P1, FIG.
As shown in (b), an opening area S is secured in the throttle passage 7.
Thus, the throttle passage 7 is not completely closed. Soshi
In this embodiment, the opening area S is
0.07-0.20mm TwoSet to be within the range of
Have been.

【0020】ここで、図5乃至図8に示す実験データを
参照して、所定の低負荷状況における圧力制御弁をバイ
パスする冷媒量と冷凍サイクルの安定性との関係を検証
する。この実験における冷凍サイクルは、冷媒が圧力制
御弁をバイパスするためのバイパス管を備えたものであ
り、図5乃至図8に示す各データは、4種のバイパス管
の内径(バイパス管がないものも含む)について、圧縮
機が始動中の経過時間と、サイクルの各部での冷媒の温
度及び圧力との関係を表したものであり、各グラフ中、
30は圧力制御弁入口での温度、31は圧縮機入口での
温度、32は圧力制御弁入口での圧力、33は蒸発器出
口での圧力、34は圧縮機入口での圧力、35は蒸発器
出口での温度を示す。
Here, the relationship between the amount of refrigerant bypassing the pressure control valve and the stability of the refrigeration cycle under a predetermined low load condition will be verified with reference to the experimental data shown in FIGS. The refrigeration cycle in this experiment was provided with a bypass pipe for the refrigerant to bypass the pressure control valve. Each data shown in FIGS. 5 to 8 shows the inner diameters of four types of bypass pipes (with no bypass pipe). ), The relationship between the elapsed time during the start-up of the compressor and the temperature and pressure of the refrigerant in each part of the cycle.
30 is the temperature at the pressure control valve inlet, 31 is the temperature at the compressor inlet, 32 is the pressure at the pressure control valve inlet, 33 is the pressure at the evaporator outlet, 34 is the pressure at the compressor inlet, 35 is the evaporator Indicates the temperature at the vessel outlet.

【0021】先ず、図5に示すグラフは、バイパス管を
設けない場合、即ち圧力制御弁が全閉となった時に、冷
媒が高圧ラインから低圧ラインへ供給されなくなる冷凍
サイクルのものであり、この場合、圧縮機の始動からし
ばらくの間は各部での温度及び圧力が不安定であり、且
つ圧力制御弁入口での温度30及び蒸発器出口での温度
35の変動が大きい。この圧力制御弁入口での温度30
及び蒸発器出口での温度35の変動は、一度閉じた圧力
制御弁が再び開くまでに、長い時間がかかっていること
を示しており、サイクルが不安定であることがわかる。
First, the graph shown in FIG. 5 shows a refrigeration cycle in which the refrigerant is not supplied from the high pressure line to the low pressure line when no bypass pipe is provided, that is, when the pressure control valve is fully closed. In this case, the temperature and the pressure in each part are unstable for a while after the start of the compressor, and the temperature 30 at the pressure control valve inlet and the temperature 35 at the evaporator outlet fluctuate greatly. The temperature at the pressure control valve inlet 30
The fluctuation of the temperature 35 at the outlet of the evaporator indicates that it takes a long time for the pressure control valve, which has been closed, to open again, which indicates that the cycle is unstable.

【0022】次に、図6に示すグラフは、バイパス管の
内径を0.3mm(断面積約0.07065mm2 )と
した場合のものであり、この場合には、圧縮機の始動開
始から間もない頃の変動は小さくなるが、圧力制御弁入
口での温度30及び蒸発器出口での温度35の変動は相
変わらず大きいことがわかる。
Next, the graph shown in FIG. 6 is for the case where the inner diameter of the bypass pipe is 0.3 mm (cross-sectional area of about 0.07065 mm 2 ). It can be seen that the fluctuation in the temperature at the time of the absence is small, but the fluctuation of the temperature 30 at the inlet of the pressure control valve and the temperature 35 at the outlet of the evaporator are still large.

【0023】次に、図7に示すグラフは、バイパス管の
内径を0.4mm(断面積約0.1256mm2 )とし
た場合のものであり、この場合には、圧縮機の始動中の
温度及び圧力は安定し、且つ蒸発器出口での温度35が
0℃以下にならないことから、サイクルが安定している
と共に、蒸発器のフロストが起こる可能性もほどんどな
いことがわかる。
Next, the graph shown in FIG. 7 is for the case where the inner diameter of the bypass pipe is 0.4 mm (the cross-sectional area is about 0.1256 mm 2 ). Since the pressure and the pressure are stable and the temperature 35 at the outlet of the evaporator does not become 0 ° C. or less, it is understood that the cycle is stable and the possibility that frost of the evaporator occurs is negligible.

【0024】次に、図8に示すグラフは、バイパス管の
内径を0.5mm(断面積約0.19625mm2 )と
した場合のものであり、この場合には、圧縮機の始動中
の温度及び圧力は安定しているが、蒸発器出口での温度
35が0℃以下になることから、フロストが起こる可能
性が高いことがわかる。
Next, the graph shown in FIG. 8 is for the case where the inner diameter of the bypass pipe is 0.5 mm (the cross-sectional area is about 0.19625 mm 2 ). And the pressure is stable, but since the temperature 35 at the outlet of the evaporator is 0 ° C. or less, it is understood that the possibility of frost is high.

【0025】以上のことから、サイクルの安定を得るた
めにはバイパス管の内径が最低でも0.3mm(断面積
約0.07mm2 )程度必要であり、またフロストを生
じさせないためにはバイパス管の内径を最大でも0.5
mm(断面積約0.20mm 2 )程度とするのがよいと
考察されるので、上述したように、この発明の実施の形
態に係る圧力制御弁1における絞り通路7に確保するべ
き前記開口面積Sは、0.07〜0.20mm2 の範囲
内とするのがよい。
From the above, it is possible to obtain cycle stability.
The minimum diameter of the bypass pipe is 0.3 mm
About 0.07mmTwo) About required, and raw frost
In order to prevent interference, the inner diameter of the bypass
mm (cross-sectional area about 0.20mm Two)
As will be discussed, as described above,
Should be secured in the throttle passage 7 of the pressure control valve 1 according to the embodiment.
The opening area S is 0.07 to 0.20 mmTwoRange
It is good to be inside.

【0026】[0026]

【発明の効果】以上のように、この発明によれば、別途
バイパス用の配管等を設けなくても、高圧ラインから低
圧ラインへの冷媒の流れが途絶えないようにすることが
できるので、小型化や軽量化を図る上で不利になること
なく、特に低負荷時におけるサイクルの安定性を向上さ
せることができる。また、弁体が弁座(絞り通路の端
部)に接触しないことにより、噛み込みが生じる心配が
なくなるので、弁体や弁座の形状の自由度を向上させる
ことができる。更に、上記絞り通路に確保される開口面
積を0.07〜0.20mm2 の範囲内とすることによ
り、良好な性能を確保することができる。
As described above, according to the present invention, the flow of the refrigerant from the high pressure line to the low pressure line can be prevented from being interrupted without providing a separate bypass pipe or the like. The cycle stability can be improved, especially at low load, without being disadvantageous in reducing the weight and weight. Further, since the valve body does not contact the valve seat (the end of the throttle passage), there is no need to worry about biting, so that the degree of freedom of the shape of the valve body and the valve seat can be improved. Further, good performance can be ensured by setting the opening area secured in the throttle passage in the range of 0.07 to 0.20 mm 2 .

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、この発明の実施の形態に係る圧力制御
弁を示す断面図である。
FIG. 1 is a sectional view showing a pressure control valve according to an embodiment of the present invention.

【図2】図2は、この実施の形態に係る圧力制御弁が用
いられる冷凍サイクルの例を示す図である。
FIG. 2 is a diagram showing an example of a refrigeration cycle in which the pressure control valve according to the embodiment is used.

【図3】図3(a)は、圧力制御弁のスライド部材の構
造を示す上面斜視図であり、図3(b)は、圧力制御弁
のスライド部材の構造を示す下面斜視図である。
FIG. 3A is a top perspective view showing a structure of a slide member of the pressure control valve, and FIG. 3B is a bottom perspective view showing a structure of a slide member of the pressure control valve.

【図4】図4(a)は、この実施の形態に係る圧力制御
弁の弁体の最下位置を示す拡大断面図であり、図4
(b)は、前記図4(a)におけるA−A’を上面から
見た断面図である。
FIG. 4A is an enlarged sectional view showing a lowermost position of a valve body of the pressure control valve according to the embodiment;
FIG. 4B is a cross-sectional view of AA ′ in FIG.

【図5】図5は、バイパス管を用いない場合における圧
縮機が始動してからの経過時間とサイクルの各部での冷
媒の温度及び圧力との関係を示す実験データである。
FIG. 5 is experimental data showing the relationship between the elapsed time from the start of the compressor and the temperature and pressure of the refrigerant in each part of the cycle when the compressor is not used, when the bypass pipe is not used.

【図6】図6は、内径が0.3mmのバイパス管を用い
た場合における圧縮機が始動してからの経過時間とサイ
クルの各部での冷媒の温度及び圧力との関係を示す実験
データである。
FIG. 6 is experimental data showing the relationship between the elapsed time from the start of the compressor and the temperature and pressure of the refrigerant in each part of the cycle when a bypass pipe having an inner diameter of 0.3 mm is used. is there.

【図7】図7は、内径が0.4mmのバイパス管を用い
た場合における圧縮機が始動してからの経過時間とサイ
クルの各部での冷媒の温度及び圧力との関係を示す実験
データである。
FIG. 7 is experimental data showing the relationship between the elapsed time from the start of the compressor and the temperature and pressure of the refrigerant at each part of the cycle when a bypass pipe having an inner diameter of 0.4 mm is used. is there.

【図8】図8は、内径が0.5mmのバイパス管を用い
た場合における圧縮機が始動してからの経過時間とサイ
クルの各部での冷媒の温度及び圧力との関係を示す実験
データである。
FIG. 8 is experimental data showing the relationship between the elapsed time from the start of the compressor and the temperature and pressure of the refrigerant in each part of the cycle when a bypass pipe having an inner diameter of 0.5 mm is used. is there.

【図9】図9は、従来の圧力制御弁における弁体の構造
を示す図である。
FIG. 9 is a view showing a structure of a valve body in a conventional pressure control valve.

【符号の説明】[Explanation of symbols]

1 圧力制御弁 2 アッパシェル 3 ロワシェル 4 ベローズ 5 スライド部材 6 弁体 7 絞り通路 8 高圧連通路 9 低圧連通路 10 弁体移動規制部 16 せり出し部 20 通孔 21 フランジ 22 台部 A 圧縮機 B 放熱器 C 内部熱交換器 D 蒸発器 E アキュムレータ RC 冷凍サイクル REFERENCE SIGNS LIST 1 pressure control valve 2 upper shell 3 lower shell 4 bellows 5 slide member 6 valve element 7 throttle path 8 high-pressure communication path 9 low-pressure communication path 10 valve element movement restricting section 16 protruding section 20 through hole 21 flange 22 base section A compressor B radiator C Internal heat exchanger D Evaporator E Accumulator RC Refrigeration cycle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮及び吐出する容量を変化させ
ることができる圧縮機と、前記圧縮機から吐出された冷
媒を放熱させる放熱器と、冷媒を蒸発させる蒸発器とを
含んで構成されると共に冷媒が超臨界状態となり得る冷
凍サイクルにおいて使用され、前記放熱器と前記蒸発器
との間に配置され前記放熱器により冷却された冷媒を減
圧して前記蒸発器側へ送り出す圧力制御弁において、 該圧力制御弁の入口側の冷媒の圧力及び温度に応じて変
位する弁体と、前記弁体の位置に応じて開口面積が変化
する絞り通路とを備え、 前記絞り通路の開口面積が最も小さくなった時に、所定
の開口面積が確保されるように、前記弁体の位置を規制
する手段を備えることを特徴とする圧力制御弁。
1. A compressor capable of changing a capacity of compressing and discharging a refrigerant, a radiator for dissipating heat of the refrigerant discharged from the compressor, and an evaporator for evaporating the refrigerant. In a pressure control valve that is used in a refrigeration cycle in which the refrigerant can be in a supercritical state, and that is disposed between the radiator and the evaporator and that depressurizes the refrigerant cooled by the radiator and sends it to the evaporator side, A valve body that is displaced in accordance with the pressure and temperature of the refrigerant on the inlet side of the pressure control valve, and a throttle passage whose opening area changes in accordance with the position of the valve body, wherein the opening area of the throttle passage is the smallest. A pressure control valve, comprising: means for restricting the position of the valve element so that a predetermined opening area is secured when the pressure is changed.
【請求項2】 前記所定の開口面積は、0.07〜0.
20mm2 の範囲内であることを特徴とする請求項1記
載の圧力制御弁。
2. The method according to claim 1, wherein the predetermined opening area is 0.07 to 0.1.
2. The pressure control valve according to claim 1, wherein the pressure is within a range of 20 mm 2 .
JP2001014120A 2001-01-23 2001-01-23 Pressure control valve Pending JP2002221377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001014120A JP2002221377A (en) 2001-01-23 2001-01-23 Pressure control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001014120A JP2002221377A (en) 2001-01-23 2001-01-23 Pressure control valve

Publications (1)

Publication Number Publication Date
JP2002221377A true JP2002221377A (en) 2002-08-09

Family

ID=18880855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001014120A Pending JP2002221377A (en) 2001-01-23 2001-01-23 Pressure control valve

Country Status (1)

Country Link
JP (1) JP2002221377A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131294B2 (en) 2004-01-13 2006-11-07 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
JP2011027412A (en) * 2004-04-22 2011-02-10 Ice Energy Inc Mixed-phase regulator for managing coolant in refrigerant based high efficiency energy storage and cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205926A (en) * 1997-01-23 1998-08-04 Tgk Co Ltd Expansion valve
JP2000074513A (en) * 1998-06-16 2000-03-14 Denso Corp Supercritical refrigerating cycle
JP2000205671A (en) * 1999-01-18 2000-07-28 Zexel Corp Refrigeration cycle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205926A (en) * 1997-01-23 1998-08-04 Tgk Co Ltd Expansion valve
JP2000074513A (en) * 1998-06-16 2000-03-14 Denso Corp Supercritical refrigerating cycle
JP2000205671A (en) * 1999-01-18 2000-07-28 Zexel Corp Refrigeration cycle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131294B2 (en) 2004-01-13 2006-11-07 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
US7721569B2 (en) 2004-01-13 2010-05-25 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
JP2011027412A (en) * 2004-04-22 2011-02-10 Ice Energy Inc Mixed-phase regulator for managing coolant in refrigerant based high efficiency energy storage and cooling system

Similar Documents

Publication Publication Date Title
US20060150650A1 (en) Expansion valve for refrigerating cycle
US20060117793A1 (en) Expansion device
JP2000346472A (en) Supercritical steam compression cycle
JP2003176958A (en) Ejector cycle
US20080053125A1 (en) Expansion device
US20080011363A1 (en) Pressure Control Valve
US6189326B1 (en) Pressure control valve
CN107615204A (en) Pressure-reducing valve
EP1785681A1 (en) High pressure control valve
JP2010112616A (en) Thermal expansion valve
JP2001174076A (en) Refrigeration cycle
WO2001006183A1 (en) Refrigerating cycle
JP6569061B2 (en) Control valve
JP2004142701A (en) Refrigeration cycle
JP2000241048A (en) Temperature-sensitive expansion valve
US20040007015A1 (en) Expansion valve
JP7025735B2 (en) Valve device
JP2002221377A (en) Pressure control valve
JP2007278616A (en) Expansion device
JPH09133435A (en) Expansion valve
WO2003019089A1 (en) Refrigerating cycle
JP2000097523A (en) Inflation device of super-critical refrigeration cycle
JP6312943B1 (en) Air conditioner
JP2001116399A (en) Refrigeration cycle
JP2001153499A (en) Control valve for refrigerating cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323