JP2002221374A - Evaporator placed in ventilation trunk, and heat pump apparatus utilizing it - Google Patents

Evaporator placed in ventilation trunk, and heat pump apparatus utilizing it

Info

Publication number
JP2002221374A
JP2002221374A JP2001015783A JP2001015783A JP2002221374A JP 2002221374 A JP2002221374 A JP 2002221374A JP 2001015783 A JP2001015783 A JP 2001015783A JP 2001015783 A JP2001015783 A JP 2001015783A JP 2002221374 A JP2002221374 A JP 2002221374A
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
air
heat
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001015783A
Other languages
Japanese (ja)
Inventor
Yukihiro Yano
幸博 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001015783A priority Critical patent/JP2002221374A/en
Publication of JP2002221374A publication Critical patent/JP2002221374A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the performance of an evaporator placed in a ventilation trunk and used in a heat pump apparatus. SOLUTION: In the evaporator structure, an unevaporated refrigerant R, which has passed through an expansion valve mechanism 6, is conducted in a heat-transfer pipe 11 from its one end. The refrigerant R is allowed to reside in the pipe in a full state. The pipe 11 is placed in a ventilation trunk f of a heat-source air A in a posture, in which heat-transfer fins 12 attached on the pipe periphery are inclined or made vertical. Further preferably, in the evaporator structure, a drain duct 17 provided with an opening/closing valve 18 is connected to the lower end of the heat transfer pipe 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヒートポンプ装置
において冷媒を熱源空気と熱交換させる対空気用の蒸発
器、及び、それを用いたヒートポンプ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air evaporator for exchanging heat between a refrigerant and a heat source air in a heat pump device, and a heat pump device using the same.

【0002】[0002]

【従来の技術】ヒートポンプ装置における対空気用蒸発
器には、大風量の空気(すなわち、比容積の大きな気体
空気)を熱交換対象とすることから、一般に図11に示
す如く伝熱管11の管外に熱源空気Aを通過させるのに
対し管内に冷媒Rを通過させるフィンチューブコイル形
式が採用されるが、従来、この形式の対空気用蒸発器で
は、膨張弁機構6を通過した後の未蒸発冷媒Rをミスト
状の湿り蒸気の状態で管内通過させる過程で、その湿り
蒸気冷媒Rの微小液滴を熱源空気Aからの気化熱奪取に
より蒸発させるようにしていた(いわゆる乾式蒸発
器)。
2. Description of the Related Art Since a large air volume (that is, gas air having a large specific volume) is to be subjected to heat exchange in an evaporator for air in a heat pump device, generally, as shown in FIG. A fin tube coil type is adopted in which the heat source air A passes through and the refrigerant R passes through the tube, but conventionally, in this type of evaporator for air, the air after passing through the expansion valve mechanism 6 is not used. In the process of passing the evaporating refrigerant R through the tube in the form of mist-like wet vapor, minute droplets of the moist vapor refrigerant R are evaporated by removing vaporization heat from the heat source air A (a so-called dry evaporator).

【0003】[0003]

【発明が解決しようとする課題】しかし、この乾式の対
空気用蒸発器では、液体に比べ熱伝達の悪い気体空気を
熱交換対象とするため空気側伝熱面の熱伝達率が低く制
限されることに加え、管内側の冷媒側伝熱面について
も、気体状の冷媒(湿り蒸気冷媒)を熱交換対象とする
ためその冷媒側伝熱面の熱伝達率が低く制限され、この
ことで、全体としての熱通過率(K値)が低くなって蒸
発器性能(ひいてはヒートポンプ装置の採熱性能)が低
くなる問題があった。
However, in this dry-type evaporator for air, the heat transfer coefficient of the air-side heat transfer surface is limited to a low value because gas air, which has a lower heat transfer than liquid, is subjected to heat exchange. In addition, the heat transfer surface of the refrigerant side heat transfer surface of the refrigerant side is also limited to the gaseous refrigerant (wet vapor refrigerant) for heat exchange with the heat transfer surface of the refrigerant side inside the pipe. In addition, there has been a problem that the heat transfer rate (K value) as a whole is lowered and the evaporator performance (and the heat collection performance of the heat pump device) is lowered.

【0004】また、乾式の対空気用蒸発器は一般に、伝
熱面積を大きく確保するために多数の伝熱管を並列に配
置して、これら伝熱管に対し蒸発対象冷媒を分配器によ
り分配する構造が採られるが、気体状の冷媒を多数の伝
熱管に対し均等に分配することは技術的に難しくて、各
伝熱管の冷媒流量にかなりの差が生じ、この為、冷媒流
量の多い伝熱管の出口で適切な冷媒乾き度が得られるよ
うに冷媒の全体流量が調整された状態において、冷媒流
量の少ない伝熱管では冷媒流量に対し過剰の伝熱面積を
有する状態(すなわち、未蒸発冷媒を蒸発させるのに伝
熱面積の一部が有効に利用されていない状態)になり、
これが原因で蒸発器性能が一層低くなる問題もあった。
In general, a dry type evaporator for air generally has a structure in which a large number of heat transfer tubes are arranged in parallel to secure a large heat transfer area, and a refrigerant to be evaporated is distributed to these heat transfer tubes by a distributor. However, it is technically difficult to distribute the gaseous refrigerant evenly to many heat transfer tubes, and there is a considerable difference in the refrigerant flow rate of each heat transfer tube. In the state in which the overall flow rate of the refrigerant is adjusted so that an appropriate refrigerant dryness is obtained at the outlet of the refrigerant, the heat transfer tube having a low refrigerant flow rate has an excessive heat transfer area with respect to the refrigerant flow rate (that is, the unevaporated refrigerant is removed). A part of the heat transfer area is not effectively used to evaporate)
Due to this, there was a problem that the evaporator performance was further reduced.

【0005】この実情に鑑み、本発明の主たる課題は、
合理的な構造を採ることにより上記の如き問題を効果的
に解消する点にある。
[0005] In view of this situation, the main problems of the present invention are:
The point is that the above-mentioned problem is effectively solved by adopting a rational structure.

【0006】[0006]

【課題を解決するための手段】〔1〕請求項1に係る発
明は対空気用蒸発器に係り、その特徴は、膨張弁機構を
通過した未蒸発冷媒を一端側から導入する伝熱管を、そ
の管内に液相冷媒が満液状態で滞留し、かつ、管外周の
伝熱フィンが傾斜姿勢又は鉛直姿勢になる管姿勢にし
て、熱源空気の通風路に配置してある点にある。
Means for Solving the Problems [1] The invention according to claim 1 relates to an evaporator for air, which is characterized by a heat transfer tube for introducing unevaporated refrigerant passing through an expansion valve mechanism from one end side. The point is that the liquid-phase refrigerant stays in a full state in the pipe, and the heat transfer fins on the outer circumference of the pipe are arranged in the inclined posture or the vertical posture so as to be disposed in the ventilation path of the heat source air.

【0007】つまり、この構成によれば、従来と同様に
伝熱管の管内に冷媒を通過させるのに対し伝熱管の管外
に熱源空気を通過させるようにして、大風量の空気の通
風を可能にしながらも、気体状の湿り蒸気冷媒を管内通
過させる先述の如き乾式の対空気用蒸発器に比べ、伝熱
管の管内に満液状態で滞留する液相冷媒の存在により、
管内側の冷媒側伝熱面の熱伝達率(対冷媒の熱伝達率)
を高く確保することができる。
In other words, according to this structure, a large amount of air can be ventilated by passing the heat source air outside the heat transfer tube while allowing the refrigerant to pass through the heat transfer tube as in the conventional case. However, compared to the dry-type evaporator for air as described above in which the gaseous wet vapor refrigerant passes through the pipe, the presence of the liquid-phase refrigerant that remains in the pipe of the heat transfer pipe in a full state causes
Heat transfer coefficient of refrigerant-side heat transfer surface inside tube (heat transfer coefficient to refrigerant)
Can be kept high.

【0008】また、伝熱管内に液相冷媒を滞留させる管
姿勢にするにあたり、熱伝達の悪い大風量の気体空気を
熱交換対象とする上で必要な管外周の伝熱フィンが傾斜
姿勢又は鉛直姿勢になる管姿勢を採ることにより、伝熱
フィンに熱源空気中水分の凝縮水が溜まることに原因す
る対空気熱伝達率の低下や早期の霜付きも防止でき、こ
れらのことで、従来の乾式の対空気用蒸発器に比べ、全
体としての熱通過率(K値)を効果的に向上させて、そ
の蒸発器性能を効果的に向上させることができる。
[0008] Further, in order to make the pipe position in which the liquid-phase refrigerant stays in the heat transfer pipe, the heat transfer fins on the outer circumference of the pipe which are necessary for heat exchange of a large air volume gas having poor heat transfer are inclined. By adopting the pipe position that is vertical, it is possible to prevent the heat transfer coefficient of air from decreasing due to the accumulation of condensed water in the heat source air on the heat transfer fins and to prevent early frosting. In comparison with the dry type evaporator for air, the heat transfer coefficient (K value) as a whole can be effectively improved, and the performance of the evaporator can be effectively improved.

【0009】しかも、このように液相冷媒を滞留させる
満液方式であれば、蒸発器出口における冷媒の過熱度を
大きく取る必要がないことから、気体状の湿り蒸気冷媒
を管内通過させる乾式の対空気用蒸発器において同じ熱
源空気を熱交換対象とする場合に比べ、蒸発温度も高く
することができ、このことからも霜付きを抑制する効果
を期待できる。
In addition, in the case of the full liquid system in which the liquid-phase refrigerant is retained, it is not necessary to increase the degree of superheating of the refrigerant at the outlet of the evaporator. As compared with the case where the same heat source air is subjected to heat exchange in the evaporator for air, the evaporation temperature can be increased, and from this, the effect of suppressing frost can be expected.

【0010】そしてまた、多数の伝熱管を並列に配置し
てそれら伝熱管に蒸発対象冷媒を分配する場合では、そ
の分配が多少不均等になったとしても、各伝熱管内に満
液状態で滞留する液相冷媒の存在により、各伝熱管の伝
熱面積を未蒸発冷媒の蒸発(すなわち、熱源空気からの
気化熱奪取)に有効に寄与させることができて、この点
でも従来の乾式の対空気用蒸発器に比べ蒸発器性能を効
果的に向上させることができ、さらには、従来の乾式の
対空気用蒸発器において各伝熱管に極力均等に気体状の
湿り蒸気冷媒を分配するのに必要になっていた複雑な構
造の分配器や高い製作精度も不要になって、装置コスト
も安価にすることができる。
Further, when a large number of heat transfer tubes are arranged in parallel and the refrigerant to be evaporated is distributed to the heat transfer tubes, even if the distribution becomes somewhat uneven, the heat transfer tubes are filled in a full state. Due to the presence of the staying liquid phase refrigerant, the heat transfer area of each heat transfer tube can effectively contribute to the evaporation of the unevaporated refrigerant (that is, the removal of vaporized heat from the heat source air). The performance of the evaporator can be effectively improved as compared with the evaporator for air.Furthermore, in the conventional dry-type evaporator for air, the gaseous wet vapor refrigerant is equally distributed to each heat transfer tube as much as possible. This eliminates the need for a distributor having a complicated structure and a high manufacturing precision, which are required for the above-described method, and can reduce the apparatus cost.

【0011】なお、請求項1に係る発明において満液状
態とは、熱源空気の通風路中に位置する伝熱管において
その管長手方向の少なくとも一部分が滞留液相冷媒によ
り完全に満たされている状態(換言すれば、滞留液相冷
媒の液面が管横断面の全面にわたる状態)を言うもので
あり、必ずしも伝熱管の全長にわたって管内に滞留液相
冷媒が満たされている必要はない。
In the invention according to the first aspect, the liquid-filled state is a state in which at least a part of the heat transfer tube located in the ventilation path of the heat source air in the longitudinal direction of the tube is completely filled with the staying liquid phase refrigerant. (In other words, the state in which the liquid level of the staying liquid-phase refrigerant extends over the entire cross section of the tube), and it is not always necessary that the inside of the heat transfer tube be filled with the staying liquid-phase refrigerant over the entire length of the heat transfer tube.

【0012】〔2〕請求項2に係る発明は、請求項1に
係る発明の実施に好適な実施形態を特定するものであ
り、その特徴は、縦姿勢にして上端部に未蒸発冷媒の導
入路を接続した往路側の前記伝熱管と、縦姿勢にして上
端部に蒸発冷媒の導出路を接続した復路側の前記伝熱管
とを、それらの下端部どうしを連通させた状態で、熱源
空気の横向き通風路に配置してある点にある。
[2] The invention according to claim 2 specifies an embodiment suitable for carrying out the invention according to claim 1, and the feature thereof is that a non-evaporated refrigerant is introduced into an upper end portion in a vertical posture. The heat transfer tube on the outward path to which the path is connected, and the heat transfer tube on the return path to which the evaporative refrigerant outlet path is connected in the vertical position at the upper end in a vertical position, with their lower end portions communicating with each other. Is located in the horizontal ventilation path.

【0013】つまり、この構成では、往路側の伝熱管に
対しその上端側から導入路を通じて未蒸発冷媒を供給す
ることで、下端部どうしを連通させた往路側及び復路側
の縦姿勢伝熱管の管内に、いわゆるUトラップにおける
封水と同様の滞留形態で液相冷媒の満液滞留部が形成さ
れるようにし、そして、管外の通風熱源空気による冷媒
加熱でその満液滞留部における復路側伝熱管の側の液面
から沸出する蒸発冷媒を導出路へ送出する。
In other words, in this configuration, the unevaporated refrigerant is supplied to the heat transfer tube on the outward path from the upper end of the heat transfer tube through the introduction path, so that the heat transfer tubes on the forward path and the return path on the forward path and the return path with the lower ends communicating with each other. In the pipe, a full-stagnation portion of the liquid-phase refrigerant is formed in the same retention form as the so-called water trap in the U-trap, and the refrigerant is heated by the ventilating heat source air outside the pipe, and the return path in the full-stagnation portion is formed. The evaporative refrigerant boiling from the liquid surface on the side of the heat transfer tube is sent to the outlet path.

【0014】すなわち、この構成によれば、往路側伝熱
管と復路側伝熱管とを縦姿勢にしてそれらの下端部どう
しを連通させた言わばU字状の管形状により、蒸発器の
全体構成をコンパクトにしながらも、未蒸発冷媒の蒸発
に有効に寄与させる伝熱面積(換言すれば、液相冷媒滞
留部の周面積)を大きく確保することができ、これによ
り、請求項1に係る発明の前述の如き効果と相俟って、
コンパクトでありながら大きな採熱量(吸熱量)を得る
ことができる一層優れた対空気用蒸発器にすることがで
きる。
In other words, according to this configuration, the overall configuration of the evaporator is formed by a so-called U-shaped tube shape in which the forward heat transfer tube and the backward heat transfer tube are placed in a vertical posture and their lower ends communicate with each other. While being compact, a large heat transfer area (in other words, the peripheral area of the liquid-phase refrigerant retaining portion) that effectively contributes to the evaporation of the unevaporated refrigerant can be ensured. Combined with the effects described above,
A more excellent evaporator for air can be obtained which can obtain a large heat collection amount (heat absorption amount) while being compact.

【0015】〔3〕請求項3に係る発明は、請求項1又
は2に係る発明の実施に好適な実施形態を特定するもの
であり、その特徴は、多数の前記伝熱管を隣合うものど
うしの間に間隔を設けた状態で並列に配置して、その伝
熱管並列群を熱源空気の通風路に対し風路横断状態に配
置してある点にある。
[3] The invention according to claim 3 specifies an embodiment suitable for carrying out the invention according to claim 1 or 2, and the feature of the invention is that a large number of the heat transfer tubes are connected to each other. Are arranged in parallel with a space between them, and the parallel group of heat transfer tubes is arranged in a state of crossing the air passage with respect to the ventilation passage of the heat source air.

【0016】つまり、この構成によれば、上記の如き多
数の伝熱管の並列配置により通風熱源空気に対する伝熱
面積を効果的に拡大することができ、これにより、一層
大きな採熱量(吸熱量)を効率的に得ることができる対
空気用蒸発器にすることができる。
That is, according to this configuration, the heat transfer area for the ventilation heat source air can be effectively expanded by the parallel arrangement of a large number of heat transfer tubes as described above, whereby a larger heat absorption (heat absorption) is achieved. Can be obtained efficiently.

【0017】なお、風路横断状態に配置する上記の伝熱
管並列群を熱源空気の通風方向に複数並置する構成を採
れば、通風熱源空気に対する伝熱面積を一層効果的に拡
大することができる。
By adopting a configuration in which a plurality of the above-described heat transfer tube parallel groups arranged in a state of crossing the air passage are juxtaposed in the direction in which the heat source air is passed, the heat transfer area for the wind heat source air can be expanded more effectively. .

【0018】〔4〕請求項4に係る発明は、請求項1〜
3のいずれか1項に係る発明の実施に好適な実施形態を
特定するものであり、その特徴は、開閉弁を備える排液
路を、前記伝熱管の下端部に接続してある点にある。
[4] The invention according to claim 4 is the invention according to claims 1 to
A third embodiment of the present invention specifies a preferred embodiment for implementing the invention according to any one of the first to third aspects, and is characterized in that a drainage path including an on-off valve is connected to a lower end portion of the heat transfer tube. .

【0019】つまり、この構成によれば、空気側伝熱面
である伝熱管外面に熱源空気中水分による霜付きが生じ
た際、上記開閉弁の開弁により管中の滞留液相冷媒を伝
熱管から排出した状態で、その伝熱管内に除霜用のホッ
トガス(圧縮機の吐出気相冷媒)を送り込むことがで
き、これにより、伝熱管内に液相冷媒を滞留させる形態
を採りながらも、除霜の必要時には滞留液相冷媒を支障
とすることなく効率的にホットガスによる除霜を行なう
ことができる。
That is, according to this configuration, when frost due to moisture in the heat source air is generated on the outer surface of the heat transfer tube, which is the air-side heat transfer surface, the liquid refrigerant remaining in the tube is transferred by opening the on-off valve. With the gas discharged from the heat pipe, a hot gas for defrosting (gas-phase refrigerant discharged from the compressor) can be sent into the heat transfer pipe, thereby allowing the liquid-phase refrigerant to stay in the heat transfer pipe. Also, when defrosting is required, defrosting with hot gas can be efficiently performed without hindering the staying liquid phase refrigerant.

【0020】〔5〕請求項5に係る発明は、請求項4に
係る対空気用蒸発器を用いたヒートポンプ装置に係り、
その特徴は、前記膨張弁機構を通過した未蒸発冷媒を前
記伝熱管に送る通常冷媒循環と、圧縮機の吐出冷媒を前
記伝熱管を通じて膨張弁機構に送る除霜用冷媒循環と
に、冷媒の循環経路を切り換える切換弁を設け、前記排
液路の他端を冷媒回路中の受液器に接続し、通常冷媒循
環から除霜用冷媒循環への切り換え時に前記開閉弁を自
動的に開弁する制御手段を設けてある点にある。
[5] The invention according to claim 5 relates to a heat pump apparatus using the evaporator for air according to claim 4,
Its features are: a normal refrigerant circulation that sends the unevaporated refrigerant that has passed through the expansion valve mechanism to the heat transfer tube, and a defrosting refrigerant circulation that sends the refrigerant discharged from the compressor to the expansion valve mechanism through the heat transfer tube. A switching valve for switching a circulation path is provided, the other end of the drain path is connected to a receiver in a refrigerant circuit, and the switching valve is automatically opened when switching from normal refrigerant circulation to defrost refrigerant circulation. That is, a control means is provided.

【0021】つまり、この構成では、伝熱管外面に熱源
空気中水分による霜付きが生じた際、上記切換弁により
冷媒循環を通常冷媒循環から除霜用冷媒循環に切り換え
ることで、圧縮機の吐出冷媒(ホットガス)を伝熱管に
供給して除霜を行なうが、この切り換えの際、制御手段
による上記開閉弁の自動開弁により伝熱管内の滞留液相
冷媒が排液路を通じ冷媒回路中の受液器に排出される。
そして、このように滞留液相冷媒が排出された伝熱管に
対し圧縮機の吐出冷媒が供給されることで、前述の如き
効率的な除霜が行なわれる。
That is, in this configuration, when frost is formed on the outer surface of the heat transfer tube due to moisture in the heat source air, the refrigerant circulation is switched from the normal refrigerant circulation to the defrosting refrigerant circulation by the switching valve, thereby discharging the compressor. The refrigerant (hot gas) is supplied to the heat transfer tube to perform defrosting. At the time of this switching, the liquid refrigerant remaining in the heat transfer tube passes through the drain passage in the refrigerant circuit by the automatic opening of the on-off valve by the control means. Is discharged to the receiver.
By supplying the refrigerant discharged from the compressor to the heat transfer tubes from which the retained liquid-phase refrigerant has been discharged, efficient defrosting is performed as described above.

【0022】すなわち、この構成によれば、開閉弁の上
記の如き自動開弁による滞留液相冷媒の自動排出により
除霜を確実に効率化した状態で実施することができ、こ
れにより、除霜に要する時間を確実かつ効果的に短縮す
ることができて、ヒートポンプ装置の運転効率を高める
ことができる。
That is, according to this configuration, the defrosting can be performed in a state in which the defrosting is reliably performed by the automatic discharge of the staying liquid-phase refrigerant by the automatic opening of the on-off valve as described above. Can be reliably and effectively reduced, and the operation efficiency of the heat pump device can be increased.

【0023】なお、伝熱管に対する排液路の接続口が除
霜用冷媒循環時における蒸発器の冷媒入口と冷媒出口と
の間に位置する場合、上記開閉弁を滞留液相冷媒の排出
完了時において自動的に閉弁するようにすれば、除霜用
冷媒循環で伝熱管に供給される圧縮機吐出冷媒を上記開
閉弁の自動閉弁により排液路への漏出を無くした状態で
蒸発器の冷媒入口から冷媒出口にわたって確実に行き渡
らせることができ、そのことで、圧縮機吐出冷媒(ホッ
トガス)による除霜を一層確実かつ効率的なものにする
ことができる。
When the connection port of the drainage passage to the heat transfer tube is located between the refrigerant inlet and the refrigerant outlet of the evaporator during the circulation of the defrosting refrigerant, the above-mentioned on-off valve is operated when the staying liquid phase refrigerant is completely discharged. If the valve is automatically closed in the evaporator, the compressor discharge refrigerant supplied to the heat transfer tube by the defrosting refrigerant circulation is prevented from leaking to the drainage path by the automatic closing of the on-off valve. Can be surely spread from the refrigerant inlet to the refrigerant outlet, thereby making the defrosting by the refrigerant (hot gas) discharged from the compressor more reliable and efficient.

【0024】また、滞留液相冷媒の排出先とする受液器
には、除霜用冷媒循環において凝縮器出口に位置する受
液器(レシーバ)を用いるのが好ましいが、場合によっ
ては、圧縮機の吸入路に位置するアキュムレータを用い
るようにしてもよい。
It is preferable to use a receiver located at the outlet of the condenser in the circulation of the defrosting refrigerant as a receiver to which the staying liquid-phase refrigerant is discharged. An accumulator located in the suction passage of the machine may be used.

【0025】[0025]

【発明の実施の形態】図1はヒートポンプを用いた融雪
装置を示し、1は路面等の融雪対象箇所に設置する融雪
用熱交換器、2は外気A(大気空気)を採熱源とする屋
外設置パッケージ型のヒートポンプ装置であり、このヒ
ートポンプ装置2には、圧縮機3、対負荷熱交換器4、
対空気熱交換器5、膨張弁機構6、四方弁7、四つの逆
止弁8a〜8dをブリッジ回路状に組み合わせた冷媒案
内回路8、並びに、レシーバ9(受液器)を主要構成品
とする蒸気圧縮式の冷媒回路HP(冷凍回路)を装備し
てある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a snow melting device using a heat pump, 1 is a heat exchanger for snow melting installed at a snow melting target place such as a road surface, and 2 is an outdoor using external air A (atmospheric air) as a heat source. The heat pump device 2 is an installation package type. The heat pump device 2 includes a compressor 3, a load heat exchanger 4,
The main components are a refrigerant guide circuit 8 in which an air heat exchanger 5, an expansion valve mechanism 6, a four-way valve 7, four check valves 8a to 8d are combined in a bridge circuit, and a receiver 9 (liquid receiver). A refrigerant circuit HP (refrigeration circuit) of a vapor compression type is provided.

【0026】四方弁7は、通常冷媒循環と除霜用冷媒循
環との切り換えを行なう弁であり、通常冷媒循環では同
図1に示す如く、冷媒Rを圧縮機3―四方弁7−対負荷
熱交換器4−冷媒案内回路8−レシーバ9−膨張弁機構
6−冷媒案内回路8−対空気熱交換器5−四方弁7−圧
縮機3の順に循環させ、これにより、対負荷熱交換器4
を凝縮器Cとして機能させるのに対し、対空気熱交換器
5を蒸発器E(すなわち、対空気用蒸発器)として機能
させる。
The four-way valve 7 switches between the normal refrigerant circulation and the defrosting refrigerant circulation. In the normal refrigerant circulation, as shown in FIG. Heat exchanger 4-refrigerant guide circuit 8-receiver 9-expansion valve mechanism 6-refrigerant guide circuit 8-air heat exchanger 5-four-way valve 7-compressor 3 4
Function as a condenser C, whereas the air heat exchanger 5 functions as an evaporator E (that is, an air evaporator).

【0027】また、除霜用冷媒循環では図2に示す如
く、冷媒Rを逆に圧縮機3―四方弁7−対空気熱交換器
5−冷媒案内回路8−レシーバ9−膨張弁機構6−冷媒
案内回路8−対負荷熱交換器4−四方弁7−圧縮機3の
順に循環させ、これにより、対空気熱交換器5を凝縮器
Cとして機能させるのに対し、対負荷熱交換器4を蒸発
器Eとして機能させる。
In the circulation of the defrosting refrigerant, as shown in FIG. 2, the refrigerant R is conveyed in reverse to the compressor 3-four-way valve 7-air heat exchanger 5-refrigerant guide circuit 8-receiver 9-expansion valve mechanism 6-. The refrigerant is circulated in the order of the refrigerant guide circuit 8-the load heat exchanger 4-the four-way valve 7-the compressor 3, whereby the air heat exchanger 5 functions as the condenser C, whereas the load heat exchanger 4 Function as an evaporator E.

【0028】10は融雪用熱交換器1と対負荷熱交換器
4との間で循環ポンプP1によりブラインなどの熱媒L
を循環させる熱媒循環路、5aは対空気熱交換器5に対
し熱源空気として外気Aを通風するファンである。
Numeral 10 designates a heat medium L such as brine between the snow melting heat exchanger 1 and the load heat exchanger 4 by the circulation pump P1.
Is a heat medium circulating path for circulating air through the outside air A as heat source air to the air heat exchanger 5.

【0029】つまり、この融雪装置では、ファン5aの
運転下で通常冷媒循環を行なうことにより、対空気熱交
換器5を蒸発器機能させて対空気熱交換器5で外気Aか
ら採熱しながら、対負荷熱交換器4を凝縮器機能させて
対負荷熱交換器4で融雪用熱交換器1への送給熱媒Lを
加熱し、これにより融雪対象箇所の融雪を行なう。
In other words, in this snow melting apparatus, by circulating the normal refrigerant under the operation of the fan 5a, the air heat exchanger 5 is made to function as an evaporator, and heat is collected from the outside air A by the air heat exchanger 5. The load heat exchanger 4 is caused to function as a condenser, and the heat medium L to be fed to the snow melting heat exchanger 1 is heated by the load heat exchanger 4, thereby melting the snow at the snow melting target portion.

【0030】また、蒸発器としての対空気熱交換器5で
外気中水分による霜付きが生じた際には、通常冷媒循環
から除霜用冷媒循環に冷媒循環を切り換えることで、対
負荷熱交換器4を蒸発器機能させて対負荷熱交換器4で
熱媒Lから採熱しながら、対空気熱交換器5を凝縮器機
能させて対空気熱交換器5で温熱発生させ、これにより
対空気熱交換器5の除霜を行なう。
When frost occurs due to moisture in the outside air in the air heat exchanger 5 serving as an evaporator, the refrigerant circulation is switched from the normal refrigerant circulation to the defrosting refrigerant circulation, so that the heat exchange with the load is reduced. The heat exchanger L functions as a condenser while the heat exchanger L functions as a condenser while the heat exchanger L functions as an evaporator to collect heat from the heat medium L. The heat exchanger 5 is defrosted.

【0031】通常冷媒循環で対空気用蒸発器として機能
させる対空気熱交換器5は、図3,図4に示す如く、往
路側の伝熱管並列群D1と復路側の伝熱管並列群D2と
を面対向状態で並列配置した構造にしてあり、両伝熱管
並列群D1,D2は、多数の直管状伝熱管11を隣合う
ものどうしの間に間隔を設けた平行姿勢で並列に配置し
て、それら並列伝熱管11にわたる板状の伝熱フィン1
2を管芯方向に多数並べて伝熱管11の外周面に付設し
た構造にしてある。
As shown in FIGS. 3 and 4, the air heat exchanger 5 which normally functions as an air evaporator in the circulation of the refrigerant includes a parallel group D1 of heat transfer tubes on the outward path and a parallel group D2 of heat transfer tubes on the return path. Are arranged in parallel in a face-to-face state, and the two heat transfer tube parallel groups D1 and D2 are arranged by arranging a large number of straight tubular heat transfer tubes 11 in parallel in a parallel posture in which an interval is provided between adjacent tubes. , Plate-shaped heat transfer fins 1 extending over the parallel heat transfer tubes 11
2 are arranged in the tube core direction and are provided on the outer peripheral surface of the heat transfer tube 11.

【0032】往路側の伝熱管並列群D1における伝熱管
11と復路側の伝熱管並列群D2における伝熱管11と
は、それらの一端を伝熱管並列方向に沿う姿勢の共通の
中間ヘッダ管13に接続して、一端側(下端側)どうし
で中間ヘッダ管13を通じ連通させてあり、一方、往路
側の伝熱管並列群D1における各伝熱管11の他端(上
端)は、伝熱管並列方向に沿う姿勢の導入側ヘッダ管1
4に接続し、また、復路側の伝熱管並列群D2における
各伝熱管11の他端(上端)は、同じく伝熱管並列方向
に沿う姿勢の導出側ヘッダ管15に接続してある。
The heat transfer tubes 11 in the heat transfer tube parallel group D1 on the outward path and the heat transfer tubes 11 in the heat transfer tube parallel group D2 on the return path are connected to a common intermediate header tube 13 having a position along the heat transfer tube parallel direction. The heat transfer tubes 11 are connected to each other and communicate with each other through the intermediate header tube 13 on one end side (lower end side). On the other hand, the other end (upper end) of each heat transfer tube 11 in the heat transfer tube parallel group D1 on the outward path is parallel to the heat transfer tube parallel direction. Introductory header tube 1 along the posture
4, and the other end (upper end) of each heat transfer tube 11 in the heat transfer tube parallel group D2 on the return path is connected to a lead-out side header tube 15 also in a posture along the heat transfer tube parallel direction.

【0033】そして、この構造の対空気熱交換器5を、
両伝熱管並列群D1,D2が中間ヘッダ管13を下部に
した傾斜面状の姿勢で外気Aの通風路fを横断する状態
(すなわち、各伝熱管11が斜め向きの縦姿勢となって
板状の伝熱フィン12が傾斜姿勢となる状態)に配置
し、この配置状態において、冷媒案内回路8からの冷媒
導入路16i(すなわち、通常冷媒循環において膨張弁
機構6を通過した後の未蒸発冷媒を対空気熱交換器5に
導入する冷媒路)を導入側ヘッダ管14に接続するとと
もに、四方弁7への冷媒導出路16o(すなわち、通常
冷媒循環において対空気熱交換器5での蒸発冷媒を対空
気熱交換器5から導出する冷媒路)を導出側ヘッダ管1
5に接続してある。
Then, the air-to-air heat exchanger 5 having this structure is
A state in which both the heat transfer tube parallel groups D1 and D2 cross the ventilation path f of the outside air A in an inclined surface position with the intermediate header tube 13 at the bottom (that is, the heat transfer tubes 11 The heat transfer fins 12 are arranged in an inclined posture (in a state where the heat transfer fins 12 are in an inclined posture). The refrigerant passage for introducing the refrigerant into the air heat exchanger 5) is connected to the introduction-side header pipe 14, and the refrigerant outlet passage 16o to the four-way valve 7 (that is, evaporation in the air heat exchanger 5 in the normal refrigerant circulation). The outlet side header tube 1 is connected to a refrigerant passage through which the refrigerant is discharged from the air heat exchanger 5).
5 is connected.

【0034】つまり、この構造により、対空気熱交換器
5を対空気用蒸発器とする通常冷媒循環では、往路側の
伝熱管並列群D1の各伝熱管11にそれらの上端側から
冷媒導入路16iを通じて未蒸発冷媒Rを供給すること
に対し、下部どうしを連通させた往路側及び復路側の伝
熱管11の管内に、いわゆるUトラップにおける封水と
同様の滞留形態で液相冷媒Rの満液滞留部RXが形成さ
れるようにし、これにより、各伝熱管11における冷媒
側伝熱面の熱伝達率(対冷媒の熱伝達率)を高く確保す
る。
In other words, with this structure, in the ordinary refrigerant circulation in which the air heat exchanger 5 is used as the evaporator for air, the heat transfer tubes 11 of the parallel group D1 of heat transfer tubes on the outward path are connected to the refrigerant introduction path from their upper ends. In contrast to the supply of the non-evaporated refrigerant R through 16i, the liquid-phase refrigerant R fills up in the forward and backward heat transfer tubes 11 that communicate with each other in the same manner as water sealing in a so-called U trap. The liquid stagnation portion RX is formed, thereby ensuring a high heat transfer coefficient of the heat transfer surface on the refrigerant side of each heat transfer tube 11 (heat transfer coefficient with respect to the refrigerant).

【0035】また、このように伝熱管11の管内に液相
冷媒Rの満液滞留部RXが形成される姿勢に伝熱管11
を配置するにあたり、上記の如く伝熱管外周の伝熱フィ
ン12が傾斜姿勢となる管姿勢を採ることにより、外気
中水分の凝縮水が伝熱フィン12に溜まることを防止し
て、伝熱フィン12での凝縮水溜りに原因する対空気熱
伝達率の低下や、対空気用蒸発器としての対空気熱交換
器5の早期の霜付きを防止する。
Further, the heat transfer tube 11 is placed in such a position that the liquid refrigerant R full liquid retaining portion RX is formed in the heat transfer tube 11.
When the heat transfer fins 12 are arranged as described above, the heat transfer fins 12 on the outer circumference of the heat transfer tube adopt a pipe posture in which the heat transfer fins 12 are inclined. This prevents the heat transfer coefficient to the air from lowering due to the condensed water pool at 12 and the early frosting of the heat exchanger to the air 5 as an evaporator for the air.

【0036】17は対空気熱交換器5の中間ヘッダ管1
3から下方のレシーバ9へ延設した排液路、18はこの
排液路17に介装した開閉弁であり、通常冷媒循環から
除霜用冷媒循環に冷媒循環を切り換えて対空気熱交換器
5の除霜を行なう際には、この開閉弁18を開くこと
で、対空気熱交換器5の伝熱管11内に滞留していた液
相冷媒Rを排液路17を通じて重力によりレシーバ9へ
速やかに排出できるようにしてある。
Reference numeral 17 denotes the intermediate header tube 1 of the air heat exchanger 5.
A drain passage 18 extending from the base 3 to the receiver 9 below is an on-off valve interposed in the drain passage 17 and switches the refrigerant circulation from the normal refrigerant circulation to the defrosting refrigerant circulation to provide an air heat exchanger. When defrosting 5 is performed, by opening the on-off valve 18, the liquid-phase refrigerant R staying in the heat transfer tube 11 of the air heat exchanger 5 is transferred to the receiver 9 by gravity through the drainage passage 17. It is designed to discharge quickly.

【0037】19は上記ヒートポンプ装置2の運転制御
を司る制御器であり、この制御器19は、対空気熱交換
器5で霜付きが生じると、検出手段による霜付き検出に
基づいて四方弁7の切り換えによる通常冷媒循環から除
霜用冷媒循環への切り換えを自動的に行なうとともに、
その切り換えの際に上記開閉弁18を設定時間だけ自動
的に開弁する切換制御を行なうものにしてある。
Reference numeral 19 denotes a controller for controlling the operation of the heat pump device 2. When frost occurs in the air heat exchanger 5, the controller 19 controls the four-way valve 7 based on the detection of frost by the detecting means. Automatic switching from normal refrigerant circulation to defrost refrigerant circulation by switching
At the time of the switching, switching control for automatically opening the on-off valve 18 for a set time is performed.

【0038】つまり、このように通常冷媒循環から除霜
用冷媒循環への切り換えの際に開閉弁18を一時的に開
弁することにより、対空気熱交換器5の伝熱管11内に
滞留していた液相冷媒Rを上記の如くレシーバ9へ速や
かに排出して、除霜用として供給される圧縮機吐出冷媒
R(ホットガス)の対空気熱交換器5への導入を円滑に
するとともに、導出路16oの側から対空気熱交換器5
に供給される圧縮機吐出冷媒Rを滞留液相冷媒Rの排出
後における開閉弁18の閉弁をもって出口側である往路
側伝熱管11まで確実に行き渡らせるようにし、これら
のことで、圧縮機吐出冷媒Rによる除霜を確実かつ効率
的に行なえるようにする。
That is, by temporarily opening the on-off valve 18 at the time of switching from the normal refrigerant circulation to the defrosting refrigerant circulation, the refrigerant stays in the heat transfer tube 11 of the air heat exchanger 5. The liquid refrigerant R, which has been discharged, is quickly discharged to the receiver 9 as described above, and the compressor discharge refrigerant R (hot gas) supplied for defrosting is smoothly introduced into the air heat exchanger 5. From the side of the outlet path 16o to the air heat exchanger 5
The refrigerant discharged to the compressor R is supplied to the outlet-side heat transfer tube 11 which is the outlet side by closing the on-off valve 18 after discharging the retained liquid-phase refrigerant R, so that the compressor Defrosting by the discharged refrigerant R can be performed reliably and efficiently.

【0039】〔別実施形態〕次に別実施形態を列記す
る。
[Another Embodiment] Next, another embodiment will be described.

【0040】膨張弁機構を通過した未蒸発冷媒を一端側
から導入する伝熱管11を、その管内に液相冷媒Rが満
液状態で滞留し、かつ、管外周の伝熱フィン12が傾斜
姿勢又は鉛直姿勢になる管姿勢にして熱源空気Aの通風
路fに配置するのに、その具体的な構造は前述の実施形
態で示した構造に限らず種々の変更が可能であり、例え
ば次の如き構造を採用してもよい。
The heat transfer tube 11 for introducing the unevaporated refrigerant that has passed through the expansion valve mechanism from one end side is filled with the liquid-phase refrigerant R in the tube, and the heat transfer fins 12 on the outer periphery of the tube are inclined. Alternatively, the specific structure is not limited to the structure shown in the above-described embodiment, and various changes are possible. Such a structure may be adopted.

【0041】図5及び図6に示す如く、複数の伝熱管1
1を伝熱フィン12が傾斜姿勢となる斜め向きの縦姿勢
で並列に配置して、これら伝熱管11の下端を未蒸発冷
媒導入側のヘッダ管14に接続するとともに、上端を蒸
発冷媒導出側のヘッダ管15に接続し、この伝熱管並列
群Dを熱源空気Aの通風路fに対し風路横断状態に配置
した構造にする。なお、伝熱管11の傾斜姿勢は、同図
5に示す如き伝熱管11の並列方向とは直交する方向に
対して傾斜する姿勢に代え、伝熱管11の並列方向に傾
斜する姿勢にしてもよい。
As shown in FIGS. 5 and 6, a plurality of heat transfer tubes 1 are provided.
The heat transfer fins 12 are arranged in parallel in an oblique vertical position in which the heat transfer fins 12 are inclined, and the lower ends of these heat transfer tubes 11 are connected to the header pipe 14 on the unevaporated refrigerant introduction side, and the upper ends are connected to the evaporative refrigerant discharge side. And the heat transfer tube parallel group D is arranged in a state of crossing the air passage f with the air passage f of the heat source air A. The heat transfer tubes 11 may be inclined in the direction parallel to the heat transfer tubes 11 instead of the direction inclined to the direction orthogonal to the parallel direction of the heat transfer tubes 11 as shown in FIG. .

【0042】図7に示す如く、伝熱フィン12を管芯に
対し傾斜させた姿勢で管外周に付設した複数の伝熱管1
1を鉛直の縦姿勢で並列に配置して、これら伝熱管11
の下端を未蒸発冷媒導入側のヘッダ管14に接続すると
ともに、上端を蒸発冷媒導出側のヘッダ管15に接続
し、この伝熱管並列群Dを熱源空気Aの通風路fに対し
風路横断状態に配置した構造にする。なお、伝熱フィン
12の傾斜姿勢は、同図6に示す如き伝熱管11の並列
方向とは直交する方向に対して傾斜する姿勢に代え、伝
熱管11の並列方向に傾斜する姿勢にしてもよい。
As shown in FIG. 7, a plurality of heat transfer tubes 1 attached to the outer periphery of the tube with the heat transfer fins 12 inclined with respect to the tube core.
1 are arranged in parallel in a vertical position, and these heat transfer tubes 11
Is connected to the header pipe 14 on the unevaporated refrigerant introduction side, and the upper end is connected to the header pipe 15 on the evaporative refrigerant outlet side. Make the structure arranged in the state. The heat transfer fins 12 may be inclined in the direction parallel to the heat transfer tubes 11 in the direction parallel to the direction perpendicular to the direction in which the heat transfer tubes 11 are parallel as shown in FIG. Good.

【0043】図8及び図9に示す如く、複数のU字状伝
熱管11を伝熱フィン12が鉛直姿勢又は傾斜姿勢とな
る姿勢で並列に配置して、これらU字状伝熱管11の一
端を未蒸発冷媒導入側のヘッダ管14に接続するととも
に、他端を蒸発冷媒導出側のヘッダ管15に接続し、こ
のU字状伝熱管11の並列群Dを熱源空気Aの通風路f
に配置した構造にする。
As shown in FIGS. 8 and 9, a plurality of U-shaped heat transfer tubes 11 are arranged in parallel so that the heat transfer fins 12 are in a vertical position or an inclined position. Is connected to the header pipe 14 on the unevaporated refrigerant introduction side, and the other end is connected to the header pipe 15 on the evaporative refrigerant outlet side, and the parallel group D of the U-shaped heat transfer tubes 11 is connected to the ventilation path f of the heat source air A.
To the structure arranged in.

【0044】図10に示す如く、複数の伝熱管11を伝
熱フィン12が鉛直姿勢となる横向き姿勢で上下方向に
並列に配置して、これら横向き伝熱管11の一端を未蒸
発冷媒導入側の縦姿勢ヘッダ管14に接続するととも
に、他端を蒸発冷媒導出側の縦姿勢ヘッダ管15に接続
し、この伝熱管並列群Dを熱源空気Aの通風路fに配置
した構造にする。
As shown in FIG. 10, a plurality of heat transfer tubes 11 are vertically arranged in parallel in a horizontal position in which the heat transfer fins 12 are in a vertical position, and one end of each of the horizontal heat transfer tubes 11 is connected to the unevaporated refrigerant introduction side. Connected to the vertical attitude header pipe 14, the other end is connected to the vertical attitude header pipe 15 on the evaporative refrigerant outlet side, and the heat transfer tube parallel group D is arranged in the ventilation path f of the heat source air A.

【0045】前述の実施形態では、通常冷媒循環と除霜
用冷媒循環とで同一の膨張弁機構6に冷媒Rを通過させ
るようにしたが、通常冷媒循環と除霜用冷媒循環とで各
別の膨張弁機構6に冷媒Rを通過させる冷媒回路構造に
してもよく、その他、冷媒回路の具体的構造は、前述の
実施形態で示した構造に限らず、種々の構成変更が可能
である。
In the above-described embodiment, the refrigerant R is passed through the same expansion valve mechanism 6 in the normal refrigerant circulation and the defrosting refrigerant circulation. A refrigerant circuit structure that allows the refrigerant R to pass through the expansion valve mechanism 6 may be used. In addition, the specific structure of the refrigerant circuit is not limited to the structure described in the above-described embodiment, and various configuration changes are possible.

【0046】熱源空気Aは外気に限られるものではな
く、種々の施設からの排出空気や太陽熱利用等により予
熱した空気、あるいは、冷却を目的とする室内空気など
であってもよい。
The heat source air A is not limited to outside air, but may be air discharged from various facilities, air preheated by utilizing solar heat, or indoor air for cooling.

【0047】本発明による対空気用蒸発器は、温熱用途
に用いるヒートポンプ装置あるいは冷熱用途に用いるヒ
ートポンプ装置のいずれにも適用できる。
The evaporator for air according to the present invention can be applied to either a heat pump device used for heat application or a heat pump device used for cold application.

【図面の簡単な説明】[Brief description of the drawings]

【図1】融雪装置の装置構成及び通常冷媒循環での冷媒
流れを示す図
FIG. 1 is a diagram showing an apparatus configuration of a snow melting apparatus and a refrigerant flow in a normal refrigerant circulation.

【図2】除霜用冷媒循環での冷媒流れを示す図FIG. 2 is a diagram showing a refrigerant flow in a defrosting refrigerant circulation.

【図3】対空気用蒸発器(熱交換器)の側面図FIG. 3 is a side view of an evaporator for air (heat exchanger).

【図4】対空気用蒸発器(熱交換器)の斜視図FIG. 4 is a perspective view of an evaporator for air (heat exchanger).

【図5】別実施形態を示す側面図FIG. 5 is a side view showing another embodiment.

【図6】別実施形態を示す斜視図FIG. 6 is a perspective view showing another embodiment.

【図7】他の別実施形態を示す側面図FIG. 7 is a side view showing another alternative embodiment.

【図8】他の別実施形態を示す側面図FIG. 8 is a side view showing another alternative embodiment.

【図9】他の別実施形態を示す斜視図FIG. 9 is a perspective view showing another alternative embodiment.

【図10】他の別実施形態を示す斜視図FIG. 10 is a perspective view showing another alternative embodiment.

【図11】従来例を示す断面図FIG. 11 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

6 膨張弁機構 7 切換弁 9 受液器 11 伝熱管 12 伝熱フィン 16i 導入路 16o 導出路 17 排液路 18 開閉弁 19 制御手段 A 熱源空気 D1,D2 伝熱管並列群 f 通風路 R 冷媒 Reference Signs List 6 expansion valve mechanism 7 switching valve 9 liquid receiver 11 heat transfer pipe 12 heat transfer fin 16i introduction path 16o outlet path 17 drain path 18 on-off valve 19 control means A heat source air D1, D2 heat transfer pipe parallel group f ventilation path R refrigerant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 膨張弁機構を通過した未蒸発冷媒を一端
側から導入する伝熱管を、その管内に液相冷媒が満液状
態で滞留し、かつ、管外周の伝熱フィンが傾斜姿勢又は
鉛直姿勢になる管姿勢にして、熱源空気の通風路に配置
してある対空気用蒸発器。
1. A heat transfer tube for introducing unevaporated refrigerant that has passed through an expansion valve mechanism from one end side, wherein a liquid-phase refrigerant stays in a full state in the tube, and heat transfer fins on the outer periphery of the tube have an inclined posture or An evaporator for air that is arranged in a ventilation path for heat source air in a vertical pipe attitude.
【請求項2】 縦姿勢にして上端部に未蒸発冷媒の導入
路を接続した往路側の前記伝熱管と、縦姿勢にして上端
部に蒸発冷媒の導出路を接続した復路側の前記伝熱管と
を、それらの下端部どうしを連通させた状態で、熱源空
気の横向き通風路に配置してある請求項1記載の対空気
用蒸発器。
2. The heat transfer tube on the outward path, which has a vertical position and a non-evaporating refrigerant introduction path connected to the upper end at the upper end, and the heat transfer tube on the return path which has a vertical position and a discharge path for the evaporated refrigerant connected to the upper end. The evaporator for air according to claim 1, wherein the lower end and the upper end of the evaporator are arranged in a horizontal ventilation path of the heat source air.
【請求項3】 多数の前記伝熱管を隣合うものどうしの
間に間隔を設けた状態で並列に配置して、その伝熱管並
列群を熱源空気の通風路に対し風路横断状態に配置して
ある請求項1又は2記載の対空気用蒸発器。
3. A plurality of said heat transfer tubes are arranged in parallel with an interval provided between adjacent ones, and the heat transfer tube parallel group is arranged in a state of crossing the air passage of the heat source air. The evaporator for air according to claim 1 or 2, wherein:
【請求項4】 開閉弁を備える排液路を、前記伝熱管の
下端部に接続してある請求項1〜3のいずれか1項に記
載の対空気用蒸発器。
4. The evaporator for air according to claim 1, wherein a drainage passage having an on-off valve is connected to a lower end of the heat transfer tube.
【請求項5】 請求項4記載の対空気用蒸発器を用いた
ヒートポンプ装置であって、 前記膨張弁機構を通過した未蒸発冷媒を前記伝熱管に送
る通常冷媒循環と、圧縮機の吐出冷媒を前記伝熱管を通
じて膨張弁機構に送る除霜用冷媒循環とに、冷媒の循環
経路を切り換える切換弁を設け、 前記排液路の他端を冷媒回路中の受液器に接続し、 通常冷媒循環から除霜用冷媒循環への切り換え時に前記
開閉弁を自動的に開弁する制御手段を設けてあるヒート
ポンプ装置。
5. A heat pump apparatus using the evaporator for air according to claim 4, wherein a normal refrigerant circulation for sending the unevaporated refrigerant having passed through the expansion valve mechanism to the heat transfer tube, and a refrigerant discharged from the compressor. And a switching valve for switching the circulation path of the refrigerant is provided to the defrosting refrigerant circulation that sends the refrigerant to the expansion valve mechanism through the heat transfer tube. The other end of the drainage path is connected to a receiver in the refrigerant circuit, A heat pump device provided with control means for automatically opening the on-off valve when switching from circulation to defrost refrigerant circulation.
JP2001015783A 2001-01-24 2001-01-24 Evaporator placed in ventilation trunk, and heat pump apparatus utilizing it Pending JP2002221374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001015783A JP2002221374A (en) 2001-01-24 2001-01-24 Evaporator placed in ventilation trunk, and heat pump apparatus utilizing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001015783A JP2002221374A (en) 2001-01-24 2001-01-24 Evaporator placed in ventilation trunk, and heat pump apparatus utilizing it

Publications (1)

Publication Number Publication Date
JP2002221374A true JP2002221374A (en) 2002-08-09

Family

ID=18882270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001015783A Pending JP2002221374A (en) 2001-01-24 2001-01-24 Evaporator placed in ventilation trunk, and heat pump apparatus utilizing it

Country Status (1)

Country Link
JP (1) JP2002221374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541691A (en) * 2010-11-04 2013-11-14 三花控股集▲団▼有限公司 Evaporator and refrigeration system provided with the evaporator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541691A (en) * 2010-11-04 2013-11-14 三花控股集▲団▼有限公司 Evaporator and refrigeration system provided with the evaporator
KR101504720B1 (en) * 2010-11-04 2015-03-20 산후아 홀딩 그룹 컴파니 리미티드 Refrigerating system

Similar Documents

Publication Publication Date Title
CN105283720B (en) The distillation of refrigerating plant is except defrosting system and distillation Defrost method
US20090173091A1 (en) Multi-range composite-evaporator type cross-defrosting system
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
WO2013051166A1 (en) Refrigeration cycle device
JPH034836B2 (en)
JPH09145187A (en) Air conditioner
JPH0926229A (en) Heat pump device
JP3888000B2 (en) Air conditioner
JP2004069228A (en) Heat exchanger
JPH1078265A (en) Air-cooled absorption air conditioner
JP2002221374A (en) Evaporator placed in ventilation trunk, and heat pump apparatus utilizing it
KR101260198B1 (en) Using the latent heat of refrigerant defrost air heat boiler
JPH08226727A (en) Heat exchanger for heat pump
JP2021032428A (en) Outdoor heat exchanger for heat pump type refrigeration cycle
KR102345053B1 (en) Air conditioner with integrated structure
JPH1089803A (en) Air conditioner
WO2018037452A1 (en) Air conditioning device
KR20020038005A (en) Conductible fin for evaporator
JP7341341B2 (en) air conditioner
JP7279562B2 (en) Cooling system
KR100486096B1 (en) Heat pump system
JP3451539B2 (en) Absorption type cold heat generator
CN101178211A (en) Air conditioner
KR20060025899A (en) Air conditioner having dryer for defrost
JP2002333237A (en) Heat transfer device