JP2002220630A - Strip for welded heat exchanger tube, and welded heat exchanger tube - Google Patents

Strip for welded heat exchanger tube, and welded heat exchanger tube

Info

Publication number
JP2002220630A
JP2002220630A JP2001020827A JP2001020827A JP2002220630A JP 2002220630 A JP2002220630 A JP 2002220630A JP 2001020827 A JP2001020827 A JP 2001020827A JP 2001020827 A JP2001020827 A JP 2001020827A JP 2002220630 A JP2002220630 A JP 2002220630A
Authority
JP
Japan
Prior art keywords
copper
welding
ppm
strip
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001020827A
Other languages
Japanese (ja)
Inventor
Nobuaki Hinako
伸明 日名子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001020827A priority Critical patent/JP2002220630A/en
Publication of JP2002220630A publication Critical patent/JP2002220630A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a strip for a welded heat exchanger tube consisting of copper or a copper alloy, which can prevent welding failure and spatter in welding, and to provide a welded heat exchanger tube made by means of welding the strip. SOLUTION: A method for manufacturing the strip comprises melting and casting the copper or the copper alloy, hot rolling, cold rolling, continuous annealing, then, furthermore cold rolling and continuous annealing, and winding it up. In this time, in the above copper or the copper alloy, [H]2×[O] is to be 40, when content of hydrogen is to be 1.0 ppm or less, content of oxygen is to be 50 ppm or less, the content of hydrogen is to be [H] (ppm), and the content of oxygen is to be [O] (ppm). A method for manufacturing the welding heat exchanger tube includes groove rolling the strip, curving it to a widthwise direction, and high frequency welding it after butting edges of a widthwise direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶接伝熱管の素材
として使用される銅又は銅合金からなる溶接伝熱管用条
材及びこの条材を溶接して形成される溶接伝熱管に関
し、特に、高周波溶接時におけるブローホール等の溶接
不良の発生を抑制した溶接伝熱管用条材及び溶接伝熱管
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding heat transfer tube made of copper or a copper alloy used as a material of a welding heat transfer tube and a welded heat transfer tube formed by welding this material. The present invention relates to a welding heat transfer tube strip and a welding heat transfer tube that suppress occurrence of welding defects such as blow holes during high frequency welding.

【0002】[0002]

【従来の技術】従来、熱交換器に使用される伝熱管とし
て、銅又は銅合金からなり転造加工により製造される内
面溝付管が使用されている。しかしながら、近時、熱交
換器において伝熱性能の向上及び環境問題による冷媒の
変更が求められ、伝熱管の伝熱性能をより向上させるこ
とが要求されている。伝熱管の伝熱性能を向上させるた
めには、伝熱管の内面に複雑な形状の溝を形成すること
が有効である。しかしながら、転造加工ではこのような
複雑な形状の溝を形成することが困難であるため、銅又
は銅合金からなる条材を溝圧延して前記条材の少なくと
も片面に溝を形成し、この条材を高周波溶接することに
より製造される内面溝付溶接管が多く使用されるように
なっている。
2. Description of the Related Art Conventionally, as a heat transfer tube used in a heat exchanger, an inner grooved tube made of copper or a copper alloy and manufactured by rolling is used. However, recently, it has been required to improve the heat transfer performance of the heat exchanger and to change the refrigerant due to environmental problems, and to further improve the heat transfer performance of the heat transfer tube. In order to improve the heat transfer performance of the heat transfer tube, it is effective to form a groove having a complicated shape on the inner surface of the heat transfer tube. However, since it is difficult to form such a complicated-shaped groove in the rolling process, a groove made of copper or a copper alloy is groove-rolled to form a groove on at least one surface of the strip, and this groove is formed. 2. Description of the Related Art Welded pipes with an inner groove manufactured by high-frequency welding of strip materials have come to be used in many cases.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
技術には以下に示すような問題点がある。前述の溶接管
はその製造工程において、溶接時に溶着不良及びブロー
ホール等の溶接不良並びにスパッタが発生することがあ
る。溶接不良部が発生した溶接管はリークを生じたり、
ヘアピン曲げ、拡管及びフレアー加工等の2次加工によ
り割れを生じたりするため、伝熱管として使用できな
い。また、溶接時に発生したスパッタは管内に残留す
る。このような管内にスパッタが残留した溶接管を熱交
換器に組み込むと、熱交換器のコンプレッサーを損傷す
る可能性があるため、スパッタが多く発生した溶接管も
伝熱管として使用できない。
However, the prior art has the following problems. In the manufacturing process of the above-described welded pipe, poor welding and poor welding such as blow holes and spatter may occur during welding. Welded pipes with poor welds may leak,
It cannot be used as a heat transfer tube because cracks are caused by secondary processing such as hairpin bending, tube expansion and flaring. Spatter generated during welding remains in the tube. If a welded tube with spatter remaining in such a tube is incorporated into a heat exchanger, the compressor of the heat exchanger may be damaged, so that a welded tube with a large amount of spatter cannot be used as a heat transfer tube.

【0004】前述の内面溝付溶接管の製造工程において
は、素条(条材)を溶接して管に成形した後、整列巻取
りコイル(LWC:Level Wound Coil)とする前に管内
に残留するスパッタの量を測定し、残留スパッタ量が多
い材料は破棄される。更に、整列巻取り後、連続焼鈍
し、その後溶接管の気密試験を行い、リーク(漏れ)が
発生した場合はLWC全体が屑として破棄される。そし
て、リークが発生しなかったLWCのみが製品となり、
顧客に出荷される。このように、溶接時に溶着不良及び
ブローホール等の溶接不良並びにスパッタが発生する
と、溶接伝熱管の歩留まりが下がり、溶接伝熱管の製造
コストが増加するという問題点がある。
[0004] In the above-mentioned process of manufacturing a welded pipe with an inner groove, after a raw material (strip) is welded and formed into a pipe, it remains in the pipe before forming an aligned winding coil (LWC: Level Wound Coil). The amount of spatter to be performed is measured, and the material having a large amount of residual sputter is discarded. Further, after the aligned winding, continuous annealing is performed, and then an airtight test of the welded pipe is performed. When a leak (leakage) occurs, the entire LWC is discarded as waste. Then, only the LWC in which no leak occurred becomes a product,
Shipped to customer. As described above, when welding defects such as poor welding, poor welding such as blow holes, and spatter occur during welding, there is a problem in that the yield of the welded heat transfer tubes is reduced and the manufacturing cost of the welded heat transfer tubes is increased.

【0005】従来より、圧延条件、溶接条件並びに素条
の形状及び寸法が溶接不良及びスパッタの発生に影響を
及ぼすことが知られているが、これらの条件を適切と考
えられるものに一定にしても、場合によっては溶接不良
及びスパッタが発生することがある。このため、溶接条
件等の調整だけでは、溶接不良及びスパッタの発生を完
全には防止できない。
Conventionally, it has been known that rolling conditions, welding conditions, and shapes and dimensions of strips affect welding defects and the occurrence of spatters. In some cases, poor welding and spatter may occur. For this reason, it is not possible to completely prevent poor welding and generation of spatter only by adjusting welding conditions and the like.

【0006】本発明はかかる問題点に鑑みてなされたも
のであって、銅又は銅合金からなり溶接時における溶接
不良及びスパッタの発生を確実に防止することができる
溶接伝熱管用条材及びこの条材を溶接して形成される溶
接伝熱管を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and a strip for a heat transfer tube made of copper or a copper alloy and capable of reliably preventing poor welding and spatter during welding. It is an object to provide a welded heat transfer tube formed by welding a strip.

【0007】[0007]

【課題を解決するための手段】本発明に係る溶接伝熱管
用条材は、幅方向に丸められてその幅方向端縁同士を溶
接し、長手方向と軸方向が一致する溶接伝熱管用の素材
である銅又は銅合金からなる条材において、水素含有量
が1.0ppm以下、酸素含有量が50ppm以下、且
つ、水素含有量を[H](ppm)、酸素含有量を
[O](ppm)とするとき、[H]×[O]が40
以下であることを特徴とする。
A strip member for a welded heat transfer tube according to the present invention is rolled in the width direction and welded at its edges in the width direction so that the longitudinal direction and the axial direction coincide with each other. In a strip made of copper or a copper alloy as a raw material, the hydrogen content is 1.0 ppm or less, the oxygen content is 50 ppm or less, the hydrogen content is [H] (ppm), and the oxygen content is [O] ( ppm), [H] 2 × [O] is 40
It is characterized by the following.

【0008】本発明においては、銅又は銅合金中の水素
含有量及び酸素含有量を前記範囲に限定することによ
り、溶接伝熱管用条材の溶接時における溶着不良及びブ
ローホール等の溶接不良並びにスパッタの発生を防止す
ることができる。
In the present invention, by limiting the hydrogen content and the oxygen content in the copper or copper alloy to the above-mentioned ranges, poor welding and poor welding such as blow holes during welding of the heat transfer tube strip can be obtained. Sputtering can be prevented.

【0009】本発明に係る溶接伝熱管は、周方向端縁を
溶接して製造され銅又は銅合金からなる溶接伝熱管にお
いて、前記銅又は銅合金が、水素含有量が1.0ppm
以下、酸素含有量が50ppm以下、且つ、水素含有量
を[H](ppm)、酸素含有量を[O](ppm)と
するとき、[H]×[O]が40以下である組成を有
することを特徴とする。
[0009] A welded heat transfer tube according to the present invention is a welded heat transfer tube made of copper or a copper alloy manufactured by welding circumferential edges, wherein the copper or copper alloy has a hydrogen content of 1.0 ppm.
Hereinafter, when the oxygen content is 50 ppm or less, and the hydrogen content is [H] (ppm) and the oxygen content is [O] (ppm), [H] 2 × [O] is 40 or less. It is characterized by having.

【0010】本発明においては、銅又は銅合金中の水素
含有量及び酸素含有量を前記範囲に限定することによ
り、溶接時における溶着不良及びブローホール等の溶接
不良並びにスパッタの発生を防止することができる。こ
れにより、気密性が良好で管内にスパッタが残留してい
ない溶接伝熱管を得ることができる。なお、本発明の溶
接伝熱管は内面溝付管であってもよく、平滑管であって
もよい。
In the present invention, by limiting the hydrogen content and the oxygen content in copper or a copper alloy to the above ranges, it is possible to prevent poor welding at welding, poor welding such as blowholes, and generation of spatter. Can be. This makes it possible to obtain a welded heat transfer tube having good airtightness and no spatter remaining in the tube. In addition, the welded heat transfer tube of the present invention may be an inner grooved tube or a smooth tube.

【0011】[0011]

【発明の実施の形態】本発明者等は前記課題を解決する
ために鋭意実験研究を行った結果、溶接不良及びスパッ
タの発生は、条材を構成する銅又は銅合金に含有される
水素量及び酸素量と密接な関係にあることが明らかにな
った。以下、本発明の各構成要件の数値限定理由につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of intensive experiments and research conducted by the present inventors to solve the above-mentioned problems, poor welding and generation of spatter are caused by the amount of hydrogen contained in copper or copper alloy constituting the strip. And oxygen content. Hereinafter, the reasons for limiting the numerical values of the components of the present invention will be described.

【0012】水素含有量:1.0ppm以下 銅又は銅合金が液体から固体に相変化するときに、銅又
は銅合金中における水素の溶解量は著しく減少する。こ
のため、液体状態で銅又は銅合金中に溶解している水素
は凝固時に水素ガスとなって銅又は銅合金より排出され
ようとする。このとき、凝固速度が大きいと、排出され
なかった水素ガスが固体の銅又は銅合金内に閉じ込めら
れる。この閉じ込められた水素ガスによりブローホール
及びピンホールが発生し、また溶着部の接合強度が低下
して溶着不良が発生しやすくなる。更に、液体からの水
素ガスの排出に伴って粒状の銅又は銅合金が一緒に排出
されるスパッタが発生しやすくなる。銅又は銅合金の水
素含有量が1.0ppmを超えると、溶接部において前
述のブローホール、ピンホール、溶着不良部及びスパッ
タ等が形成されやすくなる。これは、固体の銅又は銅合
金中に存在している水素原子が、溶接による温度の上昇
に伴って銅又は銅合金の結晶粒界等を高速で拡散するよ
うになり、溶解した銅又は銅合金中において水素ガスを
形成し、凝固時に前述のような現象を発生させるためと
考えられる。従って、銅又は銅合金中の水素含有量は
1.0ppm以下とする。なお、銅又は銅合金中の水素
含有量は0.7ppm以下であることが望ましく、0.
5ppm以下であることがより望ましい。
Hydrogen content: 1.0 ppm or less When copper or a copper alloy undergoes a phase change from a liquid to a solid, the amount of hydrogen dissolved in the copper or copper alloy is significantly reduced. For this reason, the hydrogen dissolved in the liquid state in the copper or copper alloy tends to become a hydrogen gas at the time of solidification and be discharged from the copper or copper alloy. At this time, if the solidification rate is high, the hydrogen gas that has not been discharged is trapped in the solid copper or copper alloy. Blowholes and pinholes are generated by the trapped hydrogen gas, and the bonding strength of the welded portion is reduced, so that poor welding tends to occur. Further, spattering in which granular copper or copper alloy is discharged together with discharge of hydrogen gas from the liquid is likely to occur. When the hydrogen content of copper or a copper alloy exceeds 1.0 ppm, the above-described blowholes, pinholes, poorly welded portions, spatters, and the like are likely to be formed in the welded portion. This is because the hydrogen atoms present in the solid copper or copper alloy diffuse at high speed in the crystal grain boundaries of copper or copper alloy as the temperature rises due to welding, and the dissolved copper or copper alloy It is considered that hydrogen gas is formed in the alloy to cause the above-described phenomenon during solidification. Therefore, the hydrogen content in the copper or copper alloy is set to 1.0 ppm or less. The hydrogen content in copper or copper alloy is desirably 0.7 ppm or less.
More preferably, it is 5 ppm or less.

【0013】酸素含有量:50ppm以下 銅又は銅合金中において、酸素は母相中に固溶し、又は
銅の酸化物(CuO)若しくは合金元素等の酸化物の
状態で存在する。通常、銅の酸化物の解離圧は極めて低
いため、酸素単体では溶接部においてブローホール等は
形成されにくい。しかし、溶接時の加熱溶融により、銅
又は銅合金中の酸素は溶融部又は溶接部の周囲の雰囲気
に存在するH、S、C又はZn等と反応して夫々水蒸
気、SO、CO、ZnO等を形成し、溶接部にブロ
ーホール及び溶着不良部を形成し、またスパッタを発生
させる。銅又は銅合金中の酸素含有量が50ppmを超
えると、溶接部に形成されるブローホール、溶着不良部
及び溶接により発生するスパッタの量が増加する。従っ
て、酸素含有量は50ppm以下とする。なお、酸素含
有量は40ppm以下であることが望ましく、30pp
m以下であることがより望ましい。
Oxygen content: 50 ppm or less In copper or a copper alloy, oxygen is present as a solid solution in the parent phase or in the form of an oxide of copper (Cu 2 O) or an alloy element. Usually, the dissociation pressure of copper oxide is extremely low, so that blow holes and the like are not easily formed in the welded portion with oxygen alone. However, due to heating and melting at the time of welding, oxygen in copper or a copper alloy reacts with H, S, C, Zn, or the like existing in the atmosphere around the molten portion or the welded portion, and respectively reacts with steam, SO 2 , CO 2 , By forming ZnO or the like, a blow hole and a poor welding portion are formed in a welded portion, and spatter is generated. If the oxygen content in the copper or copper alloy exceeds 50 ppm, the amount of blowholes formed in the welded portion, poorly welded portions, and spatter generated by welding increases. Therefore, the oxygen content is set to 50 ppm or less. The oxygen content is desirably 40 ppm or less, and 30 pp.
m is more preferable.

【0014】水素含有量を[H](ppm)、酸素含有
量を[O](ppm)とするとき、[H]×[O]:
40以下 通常、大気中で溶解鋳造した銅又は銅合金を加工熱処理
して製作した銅又は銅合金条には、一定量の水素及び酸
素が含まれており、その量は通常、溶解雰囲気によって
決まり、[H]×[O]の値は一定値となる。このよ
うな銅又は銅合金条を使用して溶接管を作製すると、
[H]×[O]の値によっては溶接時に水素ガス及び
水蒸気ガスが発生し、ブローホール、ピンホール、溶着
不良及びスパッタ等が発生しやすくなる。水素含有量が
1.0ppm以下、酸素含有量が50ppm以下であっ
ても、[H]×[O]の値が40を超えると、溶接時
に溶着不良及びブローホールが発生しやすくなると共
に、スパッタの発生量も増大する。従って、[H]×
[O]は40以下とする。なお、[H]×[O]は、
30以下であることが望ましく、20以下であることが
より望ましい。
[H] (ppm) hydrogen content, oxygen content
When the amount is [O] (ppm), [H] 2 × [O]:
40 or less Normally, copper or copper alloy strips produced by thermomechanical processing of copper or copper alloy melt-cast in air contain a certain amount of hydrogen and oxygen, the amount of which is usually determined by the melting atmosphere. , [H] 2 × [O] are constant. When making a welded pipe using such copper or copper alloy strip,
Depending on the value of [H] 2 × [O], hydrogen gas and steam gas are generated at the time of welding, and blow holes, pin holes, poor welding, spatter, and the like are likely to occur. Even when the hydrogen content is 1.0 ppm or less and the oxygen content is 50 ppm or less, if the value of [H] 2 × [O] exceeds 40, poor welding and blow holes are likely to occur during welding, and The amount of spatter also increases. Therefore, [H] 2 ×
[O] is 40 or less. [H] 2 × [O] is
It is desirably 30 or less, and more desirably 20 or less.

【0015】以下、本発明の実施例について具体的に説
明する。本実施例の溶接伝熱管用条材は、銅又は銅合金
を溶解鋳造し、熱延し冷延し連続焼鈍した後、更に冷延
し連続焼鈍して巻き取ることにより製造される。銅又は
銅合金には、無酸素銅、無酸素銅に合金元素を添加した
銅合金、JISH3100のC1201、C1220及
びC1221等に記載されているりん脱酸銅、C192
10及びC194等に記載されているCu−Fe−P系
合金、Cu−Fe−P−Sn系合金、Cu−Ni−Si
系合金、Cu−Co−P系合金、Cu−Cr系合金並び
にCu−Zr系合金等が使用可能である。これらの銅又
は銅合金において、水素含有量を1.0ppm以下、酸
素含有量を50ppm以下、水素含有量を[H](pp
m)、酸素含有量を[O](ppm)とするとき、
[H]×[O]を40以下とする。また、前述のよう
な理由からSの含有量は30ppm以下、Cの含有量は
10ppm以下であることが望ましい。更に、銅又は銅
合金条の表面に形成されている酸化膜の厚さは、ブロー
ホール、溶着不良及びスパッタ等を減少させ、且つ製造
後の銅管の変色を発生させないために10nm以下であ
ることが望ましい。
Hereinafter, embodiments of the present invention will be specifically described. The strip material for a welded heat transfer tube according to the present embodiment is manufactured by melting and casting copper or a copper alloy, hot rolling, cold rolling and continuous annealing, and then cold rolling, continuous annealing and winding. Examples of copper or copper alloy include oxygen-free copper, a copper alloy obtained by adding an alloying element to oxygen-free copper, phosphorus deoxidized copper described in C1201, C1220, and C1221 of JIS H3100, C192
10 and C194, a Cu-Fe-P-based alloy, a Cu-Fe-P-Sn-based alloy, Cu-Ni-Si
Alloys, Cu-Co-P alloys, Cu-Cr alloys, Cu-Zr alloys and the like can be used. In these copper or copper alloys, the hydrogen content is 1.0 ppm or less, the oxygen content is 50 ppm or less, and the hydrogen content is [H] (pp
m), when the oxygen content is [O] (ppm),
[H] 2 × [O] is 40 or less. Further, it is preferable that the content of S is 30 ppm or less and the content of C is 10 ppm or less for the above-described reason. Furthermore, the thickness of the oxide film formed on the surface of the copper or copper alloy strip is 10 nm or less in order to reduce blow holes, poor welding, spattering, etc., and to prevent discoloration of the copper tube after production. It is desirable.

【0016】本発明における銅又は銅合金条の厚さは特
に制限されないが、突き合わせて溶接される端部の厚さ
が0.1乃至1.5mm程度であれば問題ない。なお、
必要に応じて前記条材に溝圧延を施し、この条材の片面
又は両面に溝を形成してもよい。
The thickness of the copper or copper alloy strip in the present invention is not particularly limited. However, there is no problem if the thickness of the butt-welded end is about 0.1 to 1.5 mm. In addition,
If necessary, the strip may be subjected to groove rolling to form grooves on one or both sides of the strip.

【0017】次に、本実施例の溶接伝熱管の製造方法を
説明する。前記条材を素条として、この条材をロールフ
ォーミングにより幅方向に円弧状に湾曲させ、条材の幅
方向のエッジを突き合わせる。このとき、条材の片面に
溝が形成されている場合は、溝形成面が内面になるよう
に条材を湾曲させる。次に、この付き合わせたエッジ同
士を高周波溶接して管状に成形する。溶接後、この溶接
管を冷却し、サイジングして所定の外径に縮径する。そ
の後、連続的にコイル(レベルワウンドコイル:LW
C)に巻き、焼鈍を行う。これにより、所定の外径を有
する溶接伝熱管を製造することができる。
Next, a method for manufacturing the welded heat transfer tube of this embodiment will be described. Using the above-mentioned strip as a raw strip, this strip is curved into an arc shape in the width direction by roll forming, and the edges in the width direction of the strip are abutted. At this time, if a groove is formed on one surface of the strip, the strip is curved so that the groove forming surface is the inner surface. Next, the joined edges are formed into a tubular shape by high frequency welding. After welding, the welded pipe is cooled, sized and reduced to a predetermined outer diameter. Then, continuously coil (level wound coil: LW
C) and annealing is performed. Thereby, a welding heat transfer tube having a predetermined outer diameter can be manufactured.

【0018】本実施例の溶接伝熱管は、その材料である
銅又は銅合金において、含有水素量及び含有酸素量が前
述の所定範囲に限定されているため、溶接時に溶着不
良、ブローホール及びスパッタが発生することがない。
このため、気密性が良好でリークがなく、管内にスパッ
タが残留していない溶接伝熱管を得ることができる。
In the welding heat transfer tube of this embodiment, since the content of hydrogen and the content of oxygen are limited to the above-mentioned predetermined ranges in the material copper or copper alloy, poor welding, blow holes and spatter Does not occur.
Therefore, a welded heat transfer tube having good airtightness, no leak, and no spatter remaining in the tube can be obtained.

【0019】[0019]

【実施例】以下、本発明の実施例の効果について、その
特許請求の範囲から外れる比較例と比較して具体的に説
明する。先ず、実施例及び比較例の溶接伝熱管用条材及
びこの条材から形成される溶接伝熱管の製造方法につい
て説明する。先ず、りん脱酸銅を溶解鋳造して厚さが1
50mm、幅が600mm、長さが4500mmの鋳塊
を製造した。次に、この鋳塊を熱延し、冷延し、連続焼
鈍した後更に冷延し、再び連続焼鈍した後、スリットし
ながらトラバースコイルに巻取り、板厚が0.5mm、
板幅が25mm、長さが5000mの条材を製造した。
このとき、溶解原料の乾燥度合い及び溶解時の木炭量等
を変化させることにより、前記条材における水素含有量
及び酸素含有量を変化させた。
The effects of the embodiment of the present invention will be specifically described below in comparison with a comparative example outside the scope of the claims. First, a description will be given of a method for manufacturing a welded heat transfer tube formed from the strip and a material for a welded heat transfer tube in Examples and Comparative Examples. First, the phosphorous deoxidized copper is melted and cast to a thickness of 1
An ingot having a length of 50 mm, a width of 600 mm and a length of 4500 mm was produced. Next, this ingot was hot-rolled, cold-rolled, further cold-rolled after continuous annealing, again continuous-annealed, wound around a traverse coil while slitting, and the sheet thickness was 0.5 mm.
A strip having a width of 25 mm and a length of 5000 m was produced.
At this time, the hydrogen content and the oxygen content in the strip were changed by changing the degree of drying of the melted raw material, the amount of charcoal at the time of melting, and the like.

【0020】なお、本実施例及び比較例に使用した銅合
金におけるPの含有量は0.016〜0.027質量%
の範囲内であった。また、その他の主要な元素を分析し
た結果、Fe:0.0003〜0.0015質量%、N
i:0.0003〜0.0023質量%、Co:0.0
002〜0.0017質量%、Sn:0.0005〜
0.0026質量%、Zn:0.0006〜0.001
5質量%、Al:0.0002〜0.0012質量%、
Mn:0.0002〜0.0011質量%、Cr:0.
0001〜0.0005質量%、Pb:0.001〜
0.005質量%、S:0.0002〜0.0013質
量%、Bi:0.00005〜0.0003質量%、A
s:0.0001〜0.0003質量%、Sb:0.0
001〜0.0006質量%、C:0.00005〜
0.0003質量%であった。また、溝圧延を行う前に
測定した条材表面の酸化膜の厚さは2〜6nmであっ
た。
The content of P in the copper alloy used in this example and the comparative example is 0.016 to 0.027 mass%.
Was within the range. Further, as a result of analyzing other main elements, it was found that Fe: 0.0003 to 0.0015% by mass, N:
i: 0.0003 to 0.0023 mass%, Co: 0.0
002 to 0.0017 mass%, Sn: 0.0005 to
0.0026 mass%, Zn: 0.0006 to 0.001
5% by mass, Al: 0.0002 to 0.0012% by mass,
Mn: 0.0002 to 0.0011% by mass, Cr: 0.
0001 to 0.0005% by mass, Pb: 0.001 to
0.005% by mass, S: 0.0002 to 0.0013% by mass, Bi: 0.00005 to 0.0003% by mass, A
s: 0.0001 to 0.0003 mass%, Sb: 0.0
001-0.0006 mass%, C: 0.00005-
0.0003% by mass. In addition, the thickness of the oxide film on the surface of the strip measured before performing the groove rolling was 2 to 6 nm.

【0021】次に、前記条材の水素含有量及び酸素含有
量を測定した。以下、測定方法について説明する。条材
をトラバースコイルに巻き取った後、各条材について測
定用試料を2個ずつ採取し、以下に示す定量方法により
水素含有量及び酸素含有量を測定した。測定の結果、前
記2個の試料において、水素含有量の測定値が0.05
ppm以上異なった場合及び酸素含有量の測定値が2p
pm以上異なった場合は、更に2個の試料を採取して測
定し、合計4つの測定値における中央の2つの測定値の
平均値を採用した。
Next, the hydrogen content and the oxygen content of the strip were measured. Hereinafter, the measurement method will be described. After the strip was wound around a traverse coil, two measurement samples were collected for each strip, and the hydrogen content and the oxygen content were measured by the following quantitative methods. As a result of the measurement, in the two samples, the measured value of the hydrogen content was 0.05.
ppm or more and the measured oxygen content is 2p
When the difference was not less than pm, two more samples were taken and measured, and the average value of the central two measured values in a total of four measured values was adopted.

【0022】水素の定量測定は、JISZ2614「金
属材料の水素定量方法通則」に記載されている不活性ガ
ス融解−熱伝導度法により行った。試料を石英ルツボに
入れ、この試料を不活性ガスの気流中で融解し、試料に
含有されている水素を他のガスと共に抽出した。次に、
この抽出されたガスを、熱伝導度セルを備え一定の容積
を持つ容器中に捕集し、水素による熱伝導度の変化を測
定し、水素量を算出した。測定機器はLECO社製の水
素分析装置RH−402型を使用した。
The quantitative measurement of hydrogen was carried out by an inert gas melting-thermal conductivity method described in JISZ2614 “General rules for the determination of hydrogen in metallic materials”. The sample was placed in a quartz crucible, the sample was melted in a stream of inert gas, and hydrogen contained in the sample was extracted together with other gases. next,
The extracted gas was collected in a container having a fixed capacity and provided with a thermal conductivity cell, and the change in thermal conductivity due to hydrogen was measured to calculate the amount of hydrogen. As a measuring instrument, a hydrogen analyzer RH-402 manufactured by LECO was used.

【0023】酸素の定量測定は、JISZ1067「銅
中の酸素定量方法通則」に記載されている不活性ガス融
解−赤外線吸収法により行った。黒鉛ルツボに試料を入
れ、この試料を不活性ガスの気流中でインパルス加熱を
施して融解し、試料に含有される酸素を一酸化炭素(C
O)として他のガスと共に抽出した。この抽出されたガ
スを、不活性ガスをキャリアとして赤外線検出器に導
き、赤外線の吸収の度合いから酸素量を算出した。測定
機器は、堀場製作所社製のO、N同時分析装置EMGA
−650A型を使用した。このようにして測定された条
材の水素含有量及び酸素含有量を表1に示す。
The quantitative measurement of oxygen was carried out by an inert gas melting-infrared absorption method described in JISZ1067 "General rules for the method of determining oxygen in copper". A sample is placed in a graphite crucible, the sample is melted by impulse heating in an inert gas stream, and oxygen contained in the sample is converted to carbon monoxide (C).
Extracted with other gases as O). The extracted gas was led to an infrared detector using an inert gas as a carrier, and the amount of oxygen was calculated from the degree of infrared absorption. The measuring instrument is O, N simultaneous analyzer EMGA manufactured by Horiba Ltd.
Model -650A was used. Table 1 shows the hydrogen content and the oxygen content of the strip thus measured.

【0024】次に、前記条材を使用して溶接伝熱管を製
造した。前述のトラバースコイルに巻き取った後の条材
に、溝圧延を施し、条材の片面に溝を形成した。溝圧延
には、6枚の溝加工された溝付リングを隣接する溝付リ
ングのリードの向きが相互に異なるように組み合わせ、
この組み合わせた6枚の溝付リングの両端に溝のないフ
ラットロールを配置して構成された溝付ロールを使用し
た。溝付リングの形状は、リード角が30°、溝の深さ
が0.25mm、山頂角が30°、溝付リングの軸を含
む断面から見た溝ピッチが0.45mmであった。
Next, a welding heat transfer tube was manufactured using the above-mentioned strip. Groove rolling was performed on the strip after being wound on the above-mentioned traverse coil to form a groove on one surface of the strip. For groove rolling, six grooved grooved rings are combined so that the directions of leads of adjacent grooved rings are different from each other,
A grooved roll configured by arranging flat rolls without grooves at both ends of the combined six grooved rings was used. The grooved ring had a lead angle of 30 °, a groove depth of 0.25 mm, a crest angle of 30 °, and a groove pitch of 0.45 mm as viewed from a cross section including the axis of the grooved ring.

【0025】次に、この条材をロールフォーミングによ
り、溝形成面が内側になるように幅方向に円弧状に湾曲
させ、条材の幅方向のエッジを突き合わせた。次に、こ
の付き合わせたエッジ同士を高周波誘導加熱により溶接
して管状に成形した。このとき、高周波溶接における高
周波周波数は600kHz、溶接速度は120m/分、
溶接後の管の外径は約8mmとした。また、溶接時の気
温は15乃至25℃、相対湿度は60乃至85%であっ
た。溶接後、この溶接管を冷却し、サイジングして管の
外径が7mmになるように縮径した。
Next, this strip was roll-formed so as to be curved in an arc shape in the width direction so that the groove forming surface was on the inside, and the edges in the width direction of the strip were abutted. Next, the joined edges were welded by high-frequency induction heating to form a tubular shape. At this time, the high-frequency frequency in the high-frequency welding is 600 kHz, the welding speed is 120 m / min,
The outer diameter of the tube after welding was about 8 mm. The temperature during welding was 15 to 25 ° C., and the relative humidity was 60 to 85%. After welding, the welded pipe was cooled and sized to reduce the outer diameter of the pipe to 7 mm.

【0026】このようにして製造された溶接伝熱管につ
いて、管内のスパッタ量の測定を行った。以下、管内の
スパッタ量の測定方法について説明する。試料として、
縮径後且つLWC巻取り前の各LWCにおいて、各LW
Cの巻き始め側、即ち、溶接の終わり側から長さが10
00mmの管を各10本採取した。この採取した溶接伝
熱管の管内を水で洗い流し、洗い流した水をろ紙でろ過
してスパッタを集め、このろ紙の重量変化から管内のス
パッタ量を求めた。管内スパッタ量の測定結果を表1に
示す。
With respect to the welded heat transfer tube manufactured as described above, the amount of spatter in the tube was measured. Hereinafter, a method for measuring the amount of spatter in the tube will be described. As a sample,
In each LWC after diameter reduction and before LWC winding, each LWC
The length from the beginning of the winding of C, that is, 10 mm from the end of the welding
Ten tubes of 00 mm each were collected. The inside of the collected welding heat transfer tube was washed away with water, and the washed water was filtered with filter paper to collect spatter, and the amount of spatter in the tube was determined from the change in weight of the filter paper. Table 1 shows the measurement results of the sputter amount in the tube.

【0027】次に、縮径後のLWCを整列巻取りし、そ
の後連続焼鈍を施した。次に、このLWCの内側管端部
及び外側管端部を容器外に取り出せるようにしてLWC
全体をヘリウムリーク検知器が備えられている真空容器
内に収納した。次に、この真空容器内を真空引きし、真
空度を約1.3×10−5Paとした。この後、容器外
に取り出していたLWC内側管端部からLWC内を60
分間以上真空引きし、その後、LWC内側管端部をバル
ブ等で塞いだ。次に、LWC外側管端部からLWC内に
ヘリウムを注入し、真空容器内に設置されているヘリウ
ムリーク検知器によりLWCのリークの有無を連続して
30分以上調査し、気密性を評価した。この評価結果を
表1に示す。なお、リークが検知されたLWCは破棄し
た。
Next, the LWC after diameter reduction was aligned and wound up, and then subjected to continuous annealing. Next, the LWC is made so that the inner tube end and the outer tube end of the LWC can be taken out of the container.
The whole was housed in a vacuum vessel equipped with a helium leak detector. Next, the inside of the vacuum container was evacuated to a degree of vacuum of about 1.3 × 10 −5 Pa. Thereafter, the inside of the LWC is taken out from the end of the LWC inner tube which has been taken out of the container.
The vacuum was evacuated for more than one minute, and then the end of the LWC inner tube was closed with a valve or the like. Next, helium was injected into the LWC from the end of the LWC outer tube, and a helium leak detector installed in the vacuum vessel was used to continuously check the presence or absence of a leak of the LWC for 30 minutes or more, and the airtightness was evaluated. . Table 1 shows the evaluation results. The LWC in which the leak was detected was discarded.

【0028】また、リーク及びスパッタが発生した溶接
伝熱管の一部について、溶接部から試料を採取して溶接
部の断面を光学顕微鏡により観察した。更に、発生した
スパッタを光学顕微鏡により観察した。
A sample was taken from the welded portion of a part of the welded heat transfer tube where the leak and the spatter occurred, and the cross section of the welded portion was observed with an optical microscope. Further, the generated spatter was observed with an optical microscope.

【0029】表1に、実施例及び比較例における条材の
水素含有量及び酸素含有量並びにこの条材を高周波溶接
して形成した溶接伝熱管の気密性評価結果及び管内スパ
ッタ量の測定結果を示す。表1において、「水素×酸
素」は、水素含有量(ppm)の2乗に酸素含有量(p
pm)を乗じた値を示す。また、気密性の評価は、気密
試験においてリークが認められなかったものを良好
(○)、リークが認められたものを不良(×)とする。
更に、管内スパッタ量は、試料管1000mm当たり
0.06mg以下のものを良好(○)、0.06mgを
超えるものを不良(×)とする。
Table 1 shows the hydrogen content and oxygen content of the strips in the examples and comparative examples, the airtightness evaluation results of the heat transfer tubes formed by high-frequency welding of these strips, and the measurement results of the spatter amount in the pipes. Show. In Table 1, “hydrogen 2 × oxygen” means the square of the hydrogen content (ppm) equals the oxygen content (p
pm). The airtightness was evaluated as good (○) when no leak was observed in the airtight test, and poor (x) when leak was observed in the airtightness test.
Further, the amount of spatter in the tube is 0.06 mg or less per 1000 mm of the sample tube as good (○), and the amount exceeding 0.06 mg is poor (×).

【0030】[0030]

【表1】 [Table 1]

【0031】表1において、No.1乃至5は本発明の
実施例である。実施例No.1乃至5は、条材の水素含
有量が1.0ppm以下であり、酸素含有量の値が50
ppm以下であり、且つ、(水素×酸素)の値が40
以下であるため、条材の溶接時に溶接不良及びスパッタ
が発生せず、このため、溶接伝熱管の気密性が良好であ
り、溶接伝熱管内にスパッタが認められなかった。
In Table 1, no. 1 to 5 are embodiments of the present invention. Example No. In Nos. 1 to 5, the hydrogen content of the strip was 1.0 ppm or less and the oxygen content was 50 ppm.
ppm or less, and the value of (hydrogen 2 × oxygen) is 40
Because of the following, welding defects and spatter did not occur during welding of the strip, and therefore, the airtightness of the welded heat transfer tube was good, and no spatter was observed in the welded heat transfer tube.

【0032】これに対して、表1におけるNo.6及び
7は比較例である。比較例No.6は(水素×酸素)
の値が40を超えているため、条材の溶接時に溶接不良
及びスパッタが発生し、このため溶接伝熱管においてリ
ークが発生し、また、溶接伝熱管内にスパッタが多く存
在した。また、比較例No.7は水素含有量が1.0p
pmを超えているため、条材の溶接時に溶接不良及びス
パッタが発生し、このため溶接伝熱管においてリークが
発生し、管内にスパッタが多く存在した。
On the other hand, No. 1 in Table 1 6 and 7 are comparative examples. Comparative Example No. 6 is (hydrogen 2 x oxygen)
Is greater than 40, welding defects and spatters occur during welding of the strip, which causes leaks in the welded heat transfer tubes, and more spatters are present in the welded heat transfer tubes. Also, in Comparative Example No. 7 has a hydrogen content of 1.0p
pm, welding defects and spatters occurred during welding of the strips, and as a result, leaks occurred in the welded heat transfer tubes, and a large amount of spatters existed in the tubes.

【0033】図1は、比較例No.6の溶接部の断面構
造を示す倍率が150倍の光学顕微鏡写真である。図1
に示すように、比較例No.6の溶接部においては、図
1における縦方向(管厚方向)に沿って管肉を貫通する
ように2本の線が観察された。これらの2本の線は完全
には接合しておらず、この部分は溶着不良部であった。
また、これらの線に沿ってブローホールと考えられる微
細な穴が多数形成されていた。このように、ブローホー
ル及び溶着不良部の存在は溶接伝熱管の外観からは判別
できないが、気密試験においてリークが発生した部分か
らサンプルを採取し、このサンプルにおける溶接部の断
面を顕微鏡で観察することにより判別可能である。な
お、比較例No.6においては、リークの発生位置から
溶着不良及びブローホール等の溶接不良が発生した位置
を特定したが、近時、溶接管製造工程において溶接を行
いながら渦流探傷装置により溶接不良部の位置を特定す
ることも可能であるため、この渦流探傷装置を使用する
方法により溶接不良部の位置を特定してもよい。
FIG. 1 shows Comparative Example No. 6 is an optical microscope photograph (magnification: 150) showing a cross-sectional structure of a welded part No. 6; Figure 1
As shown in FIG. In the weld of No. 6, two lines were observed so as to penetrate the pipe wall along the vertical direction (pipe thickness direction) in FIG. These two wires were not completely joined, and this portion was a poorly welded portion.
Further, many fine holes considered as blow holes were formed along these lines. As described above, the presence of the blow hole and the poor welding portion cannot be determined from the appearance of the welding heat transfer tube. This can be determined by the following. In addition, the comparative example No. In 6, the position where welding failure and welding failure such as blowholes occurred was identified from the leak occurrence position. Therefore, the position of the defective welding portion may be specified by a method using the eddy current inspection device.

【0034】図2は比較例No.6の溶接伝熱管におい
て管内に残留していたスパッタの形状を示す倍率が15
0倍の光学顕微鏡写真である。比較例No.6及び7の
溶接伝熱管においては、図2に示すような形状を持つス
パッタが観察された。
FIG. In the welding heat transfer tube of No. 6, the magnification indicating the shape of the spatter remaining in the tube is 15
It is a 0 times optical microscope photograph. Comparative Example No. In the welded heat transfer tubes of Nos. 6 and 7, spatters having a shape as shown in FIG. 2 were observed.

【0035】[0035]

【発明の効果】以上詳述したように本発明によれば、銅
又は銅合金からなり溶接時における溶接不良及びスパッ
タの発生を防止することができる溶接伝熱管用条材を得
ることができる。また、この条材を溶接して溶接伝熱管
を製造することにより、気密性が良好で管内にスパッタ
が残留していない溶接伝熱管を得ることができる。
As described above in detail, according to the present invention, it is possible to obtain a welded heat transfer tube strip made of copper or a copper alloy and capable of preventing poor welding and spatter during welding. Further, by welding the strip material to produce a welded heat transfer tube, it is possible to obtain a welded heat transfer tube having good airtightness and no spatter remaining in the tube.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の比較例における溶接部の断面構造を示
す図面代用写真である(光学顕微鏡写真:倍率150
倍)。
FIG. 1 is a drawing-substituting photograph showing a cross-sectional structure of a welded portion in a comparative example of the present invention (optical microscope photograph: magnification of 150).
Times).

【図2】この比較例の溶接伝熱管内に残留していたスパ
ッタの形状を示す図面代用写真である(光学顕微鏡写
真:倍率150倍)。
FIG. 2 is a drawing-substituting photograph showing the shape of a spatter remaining in a welded heat transfer tube of this comparative example (optical microscope photograph: magnification of 150).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 幅方向に丸められてその幅方向端縁同士
を溶接し、長手方向と軸方向が一致する溶接伝熱管用の
素材である銅又は銅合金からなる条材において、水素含
有量が1.0ppm以下、酸素含有量が50ppm以
下、且つ、水素含有量を[H](ppm)、酸素含有量
を[O](ppm)とするとき、[H] ×[O]が4
0以下であることを特徴とする溶接伝熱管用条材。
1. An edge which is rounded in the width direction and whose width direction edges are adjacent to each other.
For welding heat transfer tubes whose longitudinal direction and axial direction match
In the material made of copper or copper alloy, which contains hydrogen,
Weight is 1.0 ppm or less, oxygen content is 50 ppm or less
Below, and the hydrogen content is [H] (ppm), the oxygen content
[O] (ppm), [H] 2× [O] is 4
A strip material for a welded heat transfer tube, characterized by being 0 or less.
【請求項2】 周方向端縁を溶接して製造され銅又は銅
合金からなる溶接伝熱管において、前記銅又は銅合金
が、水素含有量が1.0ppm以下、酸素含有量が50
ppm以下、且つ、水素含有量を[H](ppm)、酸
素含有量を[O](ppm)とするとき、[H]×
[O]が40以下である組成を有することを特徴とする
溶接伝熱管。
2. A welded heat transfer tube made of copper or a copper alloy manufactured by welding circumferential edges thereof, wherein said copper or copper alloy has a hydrogen content of 1.0 ppm or less and an oxygen content of 50 ppm or less.
ppm or less, and when the hydrogen content is [H] (ppm) and the oxygen content is [O] (ppm), [H] 2 ×
A welded heat transfer tube having a composition in which [O] is 40 or less.
JP2001020827A 2001-01-29 2001-01-29 Strip for welded heat exchanger tube, and welded heat exchanger tube Pending JP2002220630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020827A JP2002220630A (en) 2001-01-29 2001-01-29 Strip for welded heat exchanger tube, and welded heat exchanger tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020827A JP2002220630A (en) 2001-01-29 2001-01-29 Strip for welded heat exchanger tube, and welded heat exchanger tube

Publications (1)

Publication Number Publication Date
JP2002220630A true JP2002220630A (en) 2002-08-09

Family

ID=18886479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020827A Pending JP2002220630A (en) 2001-01-29 2001-01-29 Strip for welded heat exchanger tube, and welded heat exchanger tube

Country Status (1)

Country Link
JP (1) JP2002220630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2628815A4 (en) * 2010-10-13 2018-01-24 Canon Denshi Kabushiki Kaisha Method for producing metal material and metal material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2628815A4 (en) * 2010-10-13 2018-01-24 Canon Denshi Kabushiki Kaisha Method for producing metal material and metal material

Similar Documents

Publication Publication Date Title
WO2014034782A1 (en) Copper wire rod and winding
US20110287277A1 (en) Aluminum alloy brazing sheet
CA3020413A1 (en) A tube and a method of manufacturing a tube
EP1005946B1 (en) Nickel base alloy welding electrode and the alloy
EP0145933B1 (en) Low temperature aluminum based brazing alloys
EP2633938A1 (en) Method for brazing aluminum member, and brazing apparatus used therein
JP2001240924A (en) Aluminum bronze alloy for bottol making
JP5655269B2 (en) Oxygen-free copper winding and method for manufacturing oxygen-free copper winding
JP2002220630A (en) Strip for welded heat exchanger tube, and welded heat exchanger tube
KR20160133440A (en) Iron-nickel alloy having improved weldability
JP4963078B2 (en) Corrosion resistant copper alloy tube
JP6206628B1 (en) Titanium material and manufacturing method thereof
JP2002273514A (en) Bar for high-frequency induction heating and welding, high-frequency induction heated and welded tube and method for manufacturing the same
JPH0658688A (en) Inner surface grooved weld copper alloy pipe
JP2006175514A (en) Electric resistance welded tube having reduced defect in weld zone and its production method
US4838341A (en) Production of low temperature aluminum based brazing alloys
CN112453755A (en) Welding flux for casting defect of K477 high-temperature alloy guider and repair welding method
JP7469635B2 (en) Fe-based alloy pipes and welded joints
JPS6151022B2 (en)
JP4920168B2 (en) Titanium welded tube and manufacturing method thereof
JP3321113B2 (en) MIG welding wire for aluminum or aluminum alloy
JP7469636B2 (en) Stainless Steel Pipes and Welded Fittings
US6808103B2 (en) Method for continuous high-speed welding of double-ply metal tubes and welding furnace for performing the same
JP2011251340A (en) Titanium welded pipe for fretting fatigue resistant member, and method for manufacturing the same
Miyamoto et al. Production of thin wall welded titanium tubes by high frequency pulsed arc welding