JP2002216686A - Electron gun, electron source, electron beam apparatus and method for correcting optical axis of electron beam - Google Patents

Electron gun, electron source, electron beam apparatus and method for correcting optical axis of electron beam

Info

Publication number
JP2002216686A
JP2002216686A JP2001012815A JP2001012815A JP2002216686A JP 2002216686 A JP2002216686 A JP 2002216686A JP 2001012815 A JP2001012815 A JP 2001012815A JP 2001012815 A JP2001012815 A JP 2001012815A JP 2002216686 A JP2002216686 A JP 2002216686A
Authority
JP
Japan
Prior art keywords
electron
electrode
electron beam
optical axis
electron source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001012815A
Other languages
Japanese (ja)
Other versions
JP3720711B2 (en
JP2002216686A5 (en
Inventor
Shigeru Izawa
茂 伊沢
Motoki Nozawa
基樹 野澤
Shigeru Kokubo
滋 小久保
Norifumi Tanimoto
憲史 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001012815A priority Critical patent/JP3720711B2/en
Publication of JP2002216686A publication Critical patent/JP2002216686A/en
Publication of JP2002216686A5 publication Critical patent/JP2002216686A5/ja
Application granted granted Critical
Publication of JP3720711B2 publication Critical patent/JP3720711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently provide an electron gun, an electron source and an electron beam apparatus without displacement of an optical axis of an electron beam and improve a productivity and a maintainability of the electron gun and the electron beam apparatus. SOLUTION: A structure can arbitrarily set a relative position between a needle electrode and a drawn electrode 5 by an optical axis correcting screw 17. A tilt of the needle electrode is previously measured by an optical microscope or other means. The needle electrode and the drawn electrode are decentered so as to be deflected at the same opposite angle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子顕微鏡や電子
線描画装置等の電子線を応用した装置およびこれらに用
いられる電子銃、電子源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device to which an electron beam is applied, such as an electron microscope and an electron beam lithography device, and an electron gun and an electron source used in these devices.

【0002】[0002]

【従来の技術】先端を鋭く尖らせた針状電極に強電界を
印加して電子線を発生させる電界放射型電子源、および
電界印加と通電加熱を同時に行なう熱電界放射型電子源
は、熱電子放射型電子源と比較して、高輝度、長寿命で
あり、放射電子のエネルギーが均一なため、高分解能を
要する電子顕微鏡等に適している。しかし、電界放射型
電子源および熱電界放射型電子源の電子線放射角は立体
角で0.3〜0.5sr程度の大きさをもつが、そのう
ち良好な特性が得られる範囲は中心の0.03〜0.0
5sr程度であり、その範囲を外れた部分の電子線はエ
ネルギーのばらつきが大きく、また、ノイズ成分を多く
含むため電子顕微鏡等の電子線応用装置への使用に適さ
なくなる。従って、電子線装置の性能を確保するには電
子源から放射した電子線のうち、中心付近の放射電子の
みを選択して使用することが必要となる。
2. Description of the Related Art A field emission type electron source for generating an electron beam by applying a strong electric field to a needle electrode having a sharply pointed tip, and a thermal field emission type electron source for simultaneously applying an electric field and heating by heating are made of heat. Compared to an electron emission type electron source, it has higher luminance and longer life, and has uniform energy of emitted electrons, so that it is suitable for an electron microscope or the like that requires high resolution. However, the electron beam emission angles of the field emission type electron source and the thermal field emission type electron source have a solid angle of about 0.3 to 0.5 sr. .03-0.0
The electron beam in a portion outside the range is about 5 sr, which has a large energy variation and contains a lot of noise components, and thus is not suitable for use in an electron beam application device such as an electron microscope. Therefore, in order to ensure the performance of the electron beam device, it is necessary to select and use only the radiated electrons near the center among the electron beams emitted from the electron source.

【0003】図16に針状電極の材料として軸方位<3
10>のタングステン(以下、Wと表記する)単結晶を
用いた電界放射型電子源の概略断面図を示す。電界放射
型電子源は、W単結晶でできた針状電極1と、W多結晶
の細線でできたフィラメント2と、電流導入端子3と、
フィラメント碍子4で構成されている。引出電源6を用
いて引出電極5に、針状電極1に対して正の強電界を印
加すると、針状電極1の先端に形成されているW(31
0)面から電子放射を得ることが出来る。電子源から放
射される電子線光軸105は通常、針状電極中心軸10
4に一致する。従って、針状電極1が引出電極中心軸1
01に対してθwの傾きをもっている場合、引出電極中
心軸101に対する電子線光軸105の傾きθeはθw
と等しくなる。
[0003] FIG. 16 shows that the needle-like electrode is made of a material having an axial orientation <3.
10> is a schematic cross-sectional view of a field emission electron source using a tungsten (hereinafter referred to as W) single crystal. The field emission type electron source includes a needle electrode 1 made of W single crystal, a filament 2 made of W polycrystalline fine wire, a current introduction terminal 3,
It is composed of a filament insulator 4. When a strong positive electric field is applied to the extraction electrode 5 with respect to the extraction electrode 5 using the extraction power source 6, W (31) formed at the tip of the extraction electrode 1 is formed.
Electron emission can be obtained from the 0) plane. The optical axis 105 of the electron beam emitted from the electron source is usually the center axis 10 of the needle electrode.
Matches 4. Therefore, the needle electrode 1 is connected to the extraction electrode center axis 1.
01, the inclination θe of the electron beam optical axis 105 with respect to the extraction electrode center axis 101 is θw.
Becomes equal to

【0004】図17に前記電界放射型電子源、または熱
電界放射型電子源を搭載した電子銃の概略断面図を示
す。電子源11は、電子銃容器12内に、フランジ1
3、筒21、絶縁碍子14を介して引出電極5と対向す
る位置に設置されている。筒21はベローズ22により
フランジ13と連結され、内部の真空を保持したまま水
平方向に移動可能な構造となっており、電子源11に属
する針状電極の角度ずれが原因で電子線光軸105に装
置中心軸100に対してθeの傾斜が生じた場合、円周
方向に90°ピッチで配置された4個の軸調整ねじ23
により筒21、絶縁碍子14、引出電極5と一緒に電子
源11を平行移動し、装置中心軸100に位置する絞り
穴を電子線光軸105が通過する様に調整を行う。しか
し、絞り穴を通過した電子線は依然としてθeの傾斜を
もっているため、このままでは装置中心軸100から外
れてしまう。これを補正するため、鏡体62に配置され
た静電偏向または電磁偏向等の原理を用いた偏向手段1
8により電磁気的に偏向して電子線を装置中心軸100
に合わせることが必要となる。
FIG. 17 is a schematic sectional view of an electron gun equipped with the field emission type electron source or the thermal field emission type electron source. The electron source 11 includes a flange 1 inside an electron gun container 12.
3, it is installed at a position facing the extraction electrode 5 via the cylinder 21 and the insulator 14. The cylinder 21 is connected to the flange 13 by a bellows 22 and has a structure capable of moving in a horizontal direction while maintaining an internal vacuum, and the electron beam optical axis 105 due to an angular displacement of a needle electrode belonging to the electron source 11. When the inclination of θe with respect to the apparatus central axis 100 occurs, the four shaft adjusting screws 23 arranged at a 90 ° pitch in the circumferential direction.
Thereby, the electron source 11 is moved in parallel with the cylinder 21, the insulator 14, and the extraction electrode 5, and adjustment is performed so that the electron beam optical axis 105 passes through the aperture located at the central axis 100 of the apparatus. However, since the electron beam that has passed through the aperture still has a slope of θe, the electron beam deviates from the apparatus central axis 100 as it is. To correct this, a deflecting means 1 using a principle such as electrostatic deflection or electromagnetic deflection, which is disposed on the mirror 62, is used.
8 to electromagnetically deflect the electron beam to the central axis 100 of the apparatus.
It is necessary to match.

【0005】[0005]

【発明が解決しようとする課題】電界放射型電子源ある
いは熱電界放射型電子源から放射される電子線の電子線
光軸は針状電極中心軸に一致するので、電子源の製造過
程における針状電極の取付け精度が重要となる。しか
し、針状電極は通常、フィラメントにスポット溶接によ
り接合される場合が多く、その構造上、実現可能な精度
には限界があり、針状電極の傾きに起因する電子線光軸
ずれは避けて通ることが出来ない。従来技術では、前述
のように、電子銃内での電子源および引出し電極の平行
移動に加えて、鏡体側に配置された偏向手段により電子
線を電磁気的に偏向し、装置中心軸から外れた電子線を
装置中心軸と一致するように補正する必要があり、電子
銃および電子線を利用する機器の構造が複雑となる上、
上記手段を用いて電子線光軸を補正する作業が装置の製
作工程や電子源交換の際の装置停止時間を長引かせる要
因となっている。
The electron beam optical axis of an electron beam emitted from a field emission type electron source or a thermal field emission type electron source coincides with the center axis of a needle-shaped electrode. The mounting accuracy of the electrode is important. However, the needle-shaped electrode is usually joined to the filament by spot welding in many cases, and there is a limit to the accuracy that can be achieved due to its structure, and the deviation of the electron beam optical axis due to the inclination of the needle-shaped electrode should be avoided. I can't pass. In the prior art, as described above, in addition to the parallel movement of the electron source and the extraction electrode in the electron gun, the electron beam is electromagnetically deflected by the deflecting means disposed on the mirror body side, and deviates from the central axis of the apparatus. It is necessary to correct the electron beam so that it coincides with the center axis of the device, which complicates the structure of the electron gun and the device using the electron beam,
The operation of correcting the optical axis of the electron beam using the above means is a factor that prolongs the stoppage time of the apparatus when manufacturing the apparatus or replacing the electron source.

【0006】本発明は、このような問題点に鑑み、前述
した針状電極の取付け精度に起因する電子線光軸ずれを
複雑な機構を用いること無く補正し、電子線光軸ずれの
小さい電子銃、電子源および電子線装置を提供し、更
に、電子銃および電子線装置の生産性、保守性を向上す
ることを目的とする。
In view of the above problems, the present invention corrects the electron beam optical axis deviation caused by the above-described needle electrode mounting accuracy without using a complicated mechanism, and provides an electron beam with a small electron beam optical axis deviation. An object of the present invention is to provide a gun, an electron source, and an electron beam device, and to further improve the productivity and maintainability of the electron gun and the electron beam device.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、電子源に属する針状電極と引出電極の相
対位置を任意に設定できる構造とし、針状電極と引出電
極の偏心による電子線の偏向作用を利用して電子線光軸
を調整する。予め針状電極の傾きを光学顕微鏡、その他
の手段により測定しておき、その反対方向に同じ角度だ
け偏向する様に針状電極と引出電極を偏心させることに
より、傾斜した針状電極から放射した電子線を装置中心
軸に平行に補正することが出来る。
In order to solve the above-mentioned problems, the present invention has a structure in which the relative positions of a needle electrode and an extraction electrode belonging to an electron source can be arbitrarily set, and the eccentricity of the needle electrode and the extraction electrode is determined. The optical axis of the electron beam is adjusted by using the deflection effect of the electron beam. The inclination of the needle electrode is measured in advance by an optical microscope or other means, and the needle electrode and the extraction electrode are eccentric so that they are deflected by the same angle in the opposite direction. The electron beam can be corrected parallel to the central axis of the device.

【0008】すなわち、本発明による電子銃は、針状電
極を有する電界放射型電子源または熱電界放射型電子源
と、針状電極に強電界を印加して電子線を発生させるた
めの引出電極とを備えた電子銃において、引出電極の固
定位置を変えることにより針状電極と引出電極の偏心量
を任意に設定する機能を有することを特徴とする。
That is, an electron gun according to the present invention comprises a field emission type electron source or a thermal field emission type electron source having a needle-like electrode, and an extraction electrode for generating an electron beam by applying a strong electric field to the needle-like electrode. The electron gun provided with (1) has a function of arbitrarily setting the amount of eccentricity between the needle electrode and the extraction electrode by changing the fixing position of the extraction electrode.

【0009】本発明による電子銃は、また、針状電極を
有する電界放射型電子源または熱電界放射型電子源と、
針状電極に強電界を印加して電子線を発生させるための
引出電極とを備えた電子銃において、電界放射型電子源
または熱電界放射型電子源の固定位置を変えることによ
り、針状電極と引出電極の偏心量を任意に設定する機能
を有することを特徴とする。
An electron gun according to the present invention also includes a field emission type electron source or a thermal field emission type electron source having a needle electrode,
In an electron gun having an extraction electrode for generating an electron beam by applying a strong electric field to the needle electrode, the needle electrode is changed by changing a fixed position of the field emission electron source or the thermal field emission electron source. And a function of arbitrarily setting the amount of eccentricity of the extraction electrode.

【0010】本発明による電子源は、針状電極と、熱電
子の放出を抑制するためのサプレッサー電極とを有する
熱電界放射型電子源において、サプレッサー電極と針状
電極の偏心量を任意に設定する機能を有することを特徴
とする。本発明による電子線装置は、試料を保持する試
料ステージと、電子銃と、電子銃から発生された電子線
を収束して試料上に照射するための電子レンズとを含む
電子線装置において、電子銃として前述の電子銃あるい
は前述の電子源を備える電子銃を用いることを特徴とす
る。
An electron source according to the present invention is a thermoelectric field emission type electron source having a needle-like electrode and a suppressor electrode for suppressing the emission of thermoelectrons, wherein the eccentricity of the suppressor electrode and the needle-like electrode is arbitrarily set. It has a function to perform. An electron beam apparatus according to the present invention includes an electron beam apparatus including a sample stage for holding a sample, an electron gun, and an electron lens for converging an electron beam generated from the electron gun and irradiating the electron beam onto the sample. As the gun, the above-described electron gun or the above-described electron gun including the electron source is used.

【0011】本発明による電子線光軸補正方法は、針状
電極を有する電界放射型電子源または熱電界放射型電子
源と針状電極に強電界を印加して電子線を発生させるた
めの引出電極とを備えた電子銃から放出される電子線の
光軸ずれを補正する電子線光軸補正方法において、電界
放射型電子源または熱電界放射型電子源に属する針状電
極の角度ずれに起因する電子線光軸ずれを相殺する方向
に引出電極を偏心させることにより電子線光軸ずれを補
正することを特徴とする。
The method for correcting the optical axis of an electron beam according to the present invention is directed to a field emission type electron source or a thermal field emission type electron source having a needle-like electrode and a drawer for generating an electron beam by applying a strong electric field to the needle-like electrode. An electron beam optical axis correction method for correcting an optical axis shift of an electron beam emitted from an electron gun having an electrode and an electron beam caused by an angle shift of a needle electrode belonging to a field emission type electron source or a thermal field emission type electron source. The electron beam optical axis shift is corrected by decentering the extraction electrode in a direction to offset the electron beam optical axis shift.

【0012】本発明による電子線光軸補正方法は、ま
た、針状電極を有する電界放射型電子源または熱電界放
射型電子源と針状電極に強電界を印加して電子線を発生
させるための引出電極を備えた電子銃から放出される電
子線の光軸ずれを補正する電子線光軸補正方法におい
て、電界放射型電子源または熱電界放射型電子源に属す
る針状電極の角度ずれに起因する電子線光軸ずれを相殺
する方向に前記電子源を偏心させることにより電子線光
軸ずれを補正することを特徴とする。
The method of correcting an optical axis of an electron beam according to the present invention is also intended to generate an electron beam by applying a strong electric field to a field emission electron source or a thermal field emission electron source having a needle electrode and a needle electrode. An electron beam optical axis correction method for correcting an optical axis shift of an electron beam emitted from an electron gun having an extraction electrode of the type described above, wherein an angle shift of a needle electrode belonging to a field emission type electron source or a thermal field emission type electron source is performed. The electron beam optical axis shift is corrected by decentering the electron source in a direction to offset the resulting electron beam optical axis shift.

【0013】本発明による電子線光軸補正方法は、針状
電極と熱電子の放出を抑制するためのサプレッサー電極
とを有する熱電界放射型電子源から放出される電子線の
光軸ずれを補正する電子線光軸補正方法において、電子
源に属する針状電極の角度ずれに起因する電子線光軸ず
れを相殺する方向に針状電極とサプレッサー電極を偏心
させることにより、電子源を電子銃に組込んだ際の針状
電極と引出電極の偏心量を間接的に設定し、電子線光軸
ずれを補正することを特徴とする。
The electron beam optical axis correction method according to the present invention corrects the optical axis shift of an electron beam emitted from a thermal field emission type electron source having a needle electrode and a suppressor electrode for suppressing emission of thermoelectrons. In the electron beam optical axis correction method, the electron source is connected to the electron gun by decentering the needle electrode and the suppressor electrode in a direction to offset the electron beam optical axis deviation caused by the angular deviation of the needle electrode belonging to the electron source. The amount of eccentricity of the needle electrode and the extraction electrode when assembled is indirectly set to correct the electron beam optical axis shift.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。理解を容易にするため、以下の図
において、同じ機能を有する部分には同じ符号を付して
説明する。初めに、図1、図2、図3を用いて電子線光
軸補正の原理を説明する。針状電極1の先端が引出電極
5の中心軸101上に位置している場合、電子線光軸1
05は針状電極中心軸104に一致する。従って、図1
6に示すように針状電極1が引出電極中心軸101から
θwのずれをもって取付けられている場合、放射される
電子線光軸105の傾斜θeはθwに等しくなる。しか
し、図1に示すように針状電極1の先端が引出電極の中
心軸101から偏心すると、電子線光軸105は電界の
偏りにより偏向され、針状電極中心軸104から外れ
る。図1において、φdは引出電極5の穴径、aは針状
電極1と引出電極5の垂直方向距離、Veは引出電圧、
eは針状電極1と引出電極5の偏心量、θcは偏向量を
表す。
Embodiments of the present invention will be described below with reference to the drawings. In order to facilitate understanding, in the following drawings, portions having the same functions will be described with the same reference numerals. First, the principle of electron beam optical axis correction will be described with reference to FIGS. When the tip of the needle electrode 1 is located on the central axis 101 of the extraction electrode 5, the electron beam optical axis 1
05 coincides with the central axis 104 of the needle electrode. Therefore, FIG.
As shown in FIG. 6, when the needle electrode 1 is attached with a deviation of θw from the extraction electrode center axis 101, the inclination θe of the emitted electron beam optical axis 105 becomes equal to θw. However, when the tip of the needle electrode 1 is eccentric from the center axis 101 of the extraction electrode as shown in FIG. 1, the electron beam optical axis 105 is deflected by the bias of the electric field and deviates from the needle electrode center axis 104. In FIG. 1, φd is the hole diameter of the extraction electrode 5, a is the vertical distance between the needle electrode 1 and the extraction electrode 5, Ve is the extraction voltage,
e represents the amount of eccentricity between the needle electrode 1 and the extraction electrode 5, and θc represents the amount of deflection.

【0015】図2に偏向量θcと偏心量eの関係の一例
を示す。図2の横軸は針状電極と引出電極の偏心量をe
T-H、縦軸は偏向量θc[゜]を表す。引出電極の穴径
φdH、針状電極先端と引出電極の垂直方向距離a、引
出電圧Veが一定の場合、偏向量θcは偏心量eにほぼ
比例し、θc=α×eの関係が認められる。図中に示す
ように、a:0.35mm、φdH:1.0mm、V
e:2.0〜2.5kVの条件下では比例定数α:0.
03[°/μm]の値が確認された。
FIG. 2 shows an example of the relationship between the amount of deflection θc and the amount of eccentricity e. The horizontal axis in FIG. 2 represents the amount of eccentricity between the needle electrode and the extraction electrode, e.
TH , and the vertical axis represents the deflection amount θc [゜]. When the hole diameter φd H of the extraction electrode, the vertical distance a between the tip of the needle electrode and the extraction electrode, and the extraction voltage Ve are constant, the deflection amount θc is almost proportional to the eccentricity e, and the relationship θc = α × e is recognized. Can be As shown in the figure, a: 0.35 mm, φd H : 1.0 mm, V
e: Under the condition of 2.0 to 2.5 kV, the proportionality constant α: 0.
A value of 03 [° / μm] was confirmed.

【0016】上記の原理を利用して、傾斜を持った針状
電極から放射された電子線光軸を針状電極と引出電極の
偏心により偏向し、引出電極の中心軸に平行になるよう
に補正する方法の模式図を図3に示す。前述の関係式を
変形するとe=θc/αが得られる。従って針状電極の
傾きθwによる電子線光軸ずれを補正するには、針状電
極と引出し電極の間にe=θw/αの偏心をオフセット
量として与えてやれば良い。例えば前述の条件下におい
て、針状電極1が(−)方向に1.5°傾斜している場
合、引出電極5に対して針状電極1の先端を(+)方向
に50μm偏心させることにより引出電極の中心軸に平
行に補正された電子線光軸105を得ることが出来る。
Utilizing the above principle, the optical axis of the electron beam emitted from the inclined needle electrode is deflected by the eccentricity of the needle electrode and the extraction electrode so that it is parallel to the central axis of the extraction electrode. FIG. 3 shows a schematic diagram of the correction method. By modifying the above relational expression, e = θc / α is obtained. Therefore, in order to correct the electron beam optical axis shift due to the inclination θw of the needle electrode, an eccentricity of e = θw / α may be given as an offset amount between the needle electrode and the extraction electrode. For example, when the needle electrode 1 is inclined by 1.5 ° in the (−) direction under the above-described conditions, the tip of the needle electrode 1 is eccentric in the (+) direction by 50 μm with respect to the extraction electrode 5. The electron beam optical axis 105 corrected parallel to the central axis of the extraction electrode can be obtained.

【0017】図4は、本発明による電子銃の一例を説明
する縦断面図及びそのA−A′断面図である。本例の電
子銃は、同一フランジ上に電子源および引出電極が配置
され、引出電極を電子源に対して任意に偏心させる機能
を有する。電子源11は、電子銃容器12内にあって、
絶縁碍子14を介してフランジ13上に真空封じ用ボル
ト16で固定されている。引出電極5は電子源11と対
向する位置に取付けられ、円周上に90°ピッチで配置
された4個の光軸補正ねじ17により引出電極ベース1
5に対して水平方向(電子源中心軸102に対して垂直
な方向)に移動出来る構造となっている。
FIG. 4 is a longitudinal sectional view for explaining an example of an electron gun according to the present invention, and its AA 'sectional view. In the electron gun of this example, an electron source and an extraction electrode are arranged on the same flange, and have a function of arbitrarily decentering the extraction electrode with respect to the electron source. The electron source 11 is inside the electron gun container 12,
It is fixed on the flange 13 via an insulator 14 with a vacuum sealing bolt 16. The extraction electrode 5 is mounted at a position facing the electron source 11, and is connected to the extraction electrode base 1 by four optical axis correction screws 17 arranged at a 90 ° pitch on the circumference.
5 (in a direction perpendicular to the electron source central axis 102).

【0018】図5は、電子源11に属する針状電極の傾
斜測定を説明する図である。電子源を電子銃に組込む前
に予め、電子源中心軸102に対する針状電極中心軸1
04の傾斜量をXおよびY方向に分けて測定しておく。
電子源中心軸102は仮想の軸であるので、傾斜量測定
は実際にはフィラメント碍子4の側面、あるいは、サプ
レッサー電極付電子源の場合はサプレッサー電極52の
側面等、機械的寸法精度が保証されている面を基準とし
て行う。測定には測長機能付の光学顕微鏡を使用する。
より高精度の軸補正を行うためには走査形電子顕微鏡に
よる測定も有効である。
FIG. 5 is a view for explaining the inclination measurement of the needle electrode belonging to the electron source 11. Before assembling the electron source into the electron gun, the needle electrode center axis 1 with respect to the electron source center axis 102
04 is measured separately in the X and Y directions.
Since the center axis 102 of the electron source is a virtual axis, the measurement of the amount of tilt is actually guaranteed in terms of mechanical dimensional accuracy such as the side surface of the filament insulator 4 or the side surface of the suppressor electrode 52 in the case of an electron source with a suppressor electrode. It is performed based on the surface that is An optical microscope with a length measuring function is used for the measurement.
Measurement with a scanning electron microscope is also effective for performing more accurate axis correction.

【0019】測定の結果、針状電極中心軸104が電子
源中心軸102に対してXおよびY方向にそれぞれθw
xおよびθwyの傾斜量があった場合、引出電極5を電
子源11に属する針状電極1に対してXおよびY方向に
それぞれex=θwx/αおよびey=θwy/αだけ
偏心した位置で固定する。αは電子源の使用条件により
決定される定数である。exおよびeyの確認は光学顕
微鏡を装置中心軸上に設置して行う。図2に示したα=
0.03の例では偏心量1μmあたりの電子線光軸の偏
向量は0.03°であるので、±10μmの精度で偏心
量exおよびeyを設定出来れば±0.3°の精度で電
子線光軸偏向量を制御出来ることになる。
As a result of the measurement, the center axis 104 of the needle electrode is set to θw in the X and Y directions with respect to the center axis 102 of the electron source.
When there is a tilt amount of x and θwy, the extraction electrode 5 is fixed at a position eccentric to the needle electrode 1 belonging to the electron source 11 by ex = θwx / α and ey = θwy / α in the X and Y directions, respectively. I do. α is a constant determined by the use conditions of the electron source. Confirmation of ex and ey is performed by setting an optical microscope on the central axis of the apparatus. Α = shown in FIG.
In the example of 0.03, since the deflection amount of the electron beam optical axis per 1 μm of eccentricity is 0.03 °, if the eccentricity ex and ey can be set with an accuracy of ± 10 μm, the electron can be adjusted with an accuracy of ± 0.3 °. The amount of linear optical axis deflection can be controlled.

【0020】以上の操作により、針状電極に傾斜をもつ
電子源であっても電子源中心軸102に対して平行にな
るように補正された電子線を得ることが出来る。電子銃
容器12の中心に位置する絞り穴を通過し鏡体62内に
到達した電子線105は、既に装置中心軸100に一致
するように補正されているので、鏡体62内では電子線
光軸補正用として特別な偏向手段を必要としない。
By the above operation, an electron beam corrected to be parallel to the center axis 102 of the electron source can be obtained even if the electron source has an inclined needle electrode. The electron beam 105 that has passed through the aperture located at the center of the electron gun container 12 and has reached the inside of the mirror body 62 has already been corrected so as to coincide with the central axis 100 of the apparatus. No special deflection means is required for axis correction.

【0021】図6は、本発明による電子銃の他の例を説
明する縦断面図及びそのA−A′断面図である。本例の
電子銃は、同一フランジ上に電子源および引出電極が配
置され、電子源を可動式にすることにより電子源に属す
る針状電極と引出電極の偏心量を調整する機能を有す
る。引出電極5は、電子銃容器12内にあり、絶縁碍子
14を介してフランジ13上に設置されている。電子源
11は引出し電極5と対向する位置に取付けられ、円周
上に90°ピッチで配置された4個の光軸補正ねじ17
により水平方向(電子源中心軸102に対して垂直な方
向)に移動することが出来る。
FIG. 6 is a longitudinal sectional view for explaining another example of the electron gun according to the present invention, and its AA 'sectional view. The electron gun of this example has an electron source and an extraction electrode arranged on the same flange, and has a function of adjusting the eccentricity of the needle electrode and the extraction electrode belonging to the electron source by making the electron source movable. The extraction electrode 5 is located in the electron gun container 12 and is disposed on the flange 13 via the insulator 14. The electron source 11 is mounted at a position facing the extraction electrode 5 and includes four optical axis correction screws 17 arranged at a 90 ° pitch on the circumference.
Accordingly, it is possible to move in the horizontal direction (the direction perpendicular to the electron source central axis 102).

【0022】予め光学顕微鏡、その他の測定手段により
電子源11に属する針状電極の傾斜を測定しておき、予
想される電子線光軸の傾斜と反対方向に電子線が偏向さ
れる様に電子源11を引出電極5に対して偏心させて固
定することにより、電子源中心軸102に対して平行方
向に補正された電子線105を得ることが出来る。更に
電子銃容器12の中心に位置する絞り穴を通過し鏡体6
2内に到達した電子線105は、既に装置中心軸100
に一致するように補正されているので鏡体62内では電
子線光軸補正用として特別な偏向手段を必要としない。
The inclination of the needle electrode belonging to the electron source 11 is measured in advance by an optical microscope or other measuring means, and the electron beam is deflected in a direction opposite to the expected inclination of the optical axis of the electron beam. By eccentrically fixing the source 11 with respect to the extraction electrode 5, an electron beam 105 corrected in a direction parallel to the electron source central axis 102 can be obtained. Further, the light passes through an aperture located at the center of the electron gun container 12 and passes through the mirror body 6.
The electron beam 105 that has reached the inside of the device 2
Therefore, no special deflecting means is required in the mirror body 62 for correcting the optical axis of the electron beam.

【0023】図7は、本発明による電子源の一例を示す
概略断面図である。本例の電子源は、針状電極の材料と
して軸方位<100>のW単結晶を用い、熱電子の放出
を抑制するためのサプレッサー電極を有する熱電界放射
型電子源であり、サプレッサー電極に対する針状電極の
偏心量を任意に設定できる構造を有する。
FIG. 7 is a schematic sectional view showing an example of the electron source according to the present invention. The electron source of this example is a thermoelectric field emission type electron source using a W single crystal having an axial orientation of <100> as a material of a needle-like electrode and having a suppressor electrode for suppressing emission of thermoelectrons. It has a structure in which the amount of eccentricity of the needle electrode can be set arbitrarily.

【0024】熱電界放射型電子源は、針状電極1、フィ
ラメント2、電流導入端子3、フィラメント碍子4、サ
プレッサー電極52、および光軸補正ねじ17を備えて
構成される。フィラメント加熱電源53により電流導入
端子3を介してフィラメント2に通電すると、針状電極
1の側面に生成されている被覆物質供給源(図示せず)
から酸化ジルコニウムが針状電極1の表面に熱拡散され
る。酸化ジルコニウムは針状電極1の先端に形成されて
いるW(100)面の仕事関数を低下させる作用を有し
ており、この状態で引出電源6を用いて引出し電極5
に、針状電極1に対して正の電圧を印加すると、針状電
極1の先端に形成されているW(100)面から選択的
にエネルギー幅の狭い電子放射を得ることが出来る。サ
プレッサー電極52は、サプレッサー電源54により針
状電極1に対して負の電圧を印加することにより、フィ
ラメント2およびその周辺の高温部から発生する、エネ
ルギーのばらつきが大きく、利用価値が低いとされてい
る熱電子を遮へいする機能を有する。フィラメント2の
通電加熱により針状電極1は常に千数百Kに保持されて
いるので電子銃容器内のガス分子の吸着が無く、また、
被覆物質供給源から熱拡散により酸化ジルコニウムが連
続的に供給されるので、被覆物質が枯渇するまで仕事関
数の低い状態が保持され、安定した電子放射が得られ
る。W(100)面の仕事関数を低下させる被覆物質と
して、酸化ジルコニウムの他、チタン、バリウム、スカ
ンジウム等の酸化物を使用したものが実用化、あるいは
実用化を目指して研究されている。
The thermal field emission type electron source includes a needle electrode 1, a filament 2, a current introduction terminal 3, a filament insulator 4, a suppressor electrode 52, and an optical axis correction screw 17. When a current is supplied to the filament 2 through the current introduction terminal 3 by the filament heating power supply 53, a coating substance supply source (not shown) generated on the side surface of the needle electrode 1
The zirconium oxide is thermally diffused to the surface of the needle electrode 1. The zirconium oxide has a function of lowering the work function of the W (100) plane formed at the tip of the needle electrode 1, and in this state, the extraction electrode 5
When a positive voltage is applied to the needle electrode 1, electron emission with a narrow energy width can be selectively obtained from the W (100) plane formed at the tip of the needle electrode 1. When the suppressor electrode 52 applies a negative voltage to the needle-shaped electrode 1 by the suppressor power supply 54, the energy generated from the filament 2 and the surrounding high-temperature portion varies greatly and is considered to be of low utility value. It has the function of shielding the existing thermoelectrons. Since the needle-shaped electrode 1 is always kept at a temperature of a hundred thousand K by the heating of the filament 2, there is no adsorption of gas molecules in the electron gun container.
Since zirconium oxide is continuously supplied from the coating material supply source by thermal diffusion, a low work function is maintained until the coating material is depleted, and stable electron emission is obtained. As coating materials for lowering the work function of the W (100) plane, those using oxides such as titanium, barium and scandium in addition to zirconium oxide have been studied for practical use or for practical use.

【0025】針状電極1は電流導入端子3にフィラメン
ト2を介して取付けられており、サプレッサー電極52
はその中心に開けられた穴から針状電極1の先端が所要
の長さだけ突出すように配置され、円周上に90°ピッ
チで配置された4個の光軸補正ねじ17によりサプレッ
サー電極52の中心軸と針状電極1の偏心eを任意に設
定出来る構造となっている。
The needle electrode 1 is attached to the current introducing terminal 3 via the filament 2,
Are arranged so that the tip of the needle electrode 1 protrudes by a required length from a hole formed at the center thereof, and the suppressor electrode is provided by four optical axis correction screws 17 arranged at a 90 ° pitch on the circumference. The center axis of 52 and the eccentricity e of the needle electrode 1 can be set arbitrarily.

【0026】図8は、針状電極1とサプレッサー電極5
2および引出電極5の相対位置関係を表す詳細図であ
る。針状電極1とサプレッサー電極52の偏心量をe
T-S、針状電極と引出電極の偏心量をeT-H、サプレッサ
ー電極と引出電極の偏心量をeS -Hで表す。
FIG. 8 shows a needle electrode 1 and a suppressor electrode 5.
FIG. 3 is a detailed diagram showing a relative positional relationship between a second electrode 2 and an extraction electrode 5. The amount of eccentricity between the needle electrode 1 and the suppressor electrode 52 is e
TS , the eccentricity of the needle electrode and the extraction electrode is represented by e TH , and the eccentricity of the suppressor electrode and the extraction electrode is represented by e S -H .

【0027】サプレッサー電極の穴径φdS、引出電極
の穴径φdH、針状電極先端と引出電極の垂直方向距離
a、サプレッサー電極と引出電極の間隔A、引出電圧V
e(図示せず)、サプレッサー電圧Vs(図示せず)を
一定として、針状電極1とサプレッサー電極52の偏心
量eT-S、および針状電極1と引出電極5の偏心量eT-H
をそれぞれ独立して変化させたときの電子線光軸105
の偏向量θcの変化の一例を図9に示す。eT-Sをゼロ
としてeT-Hを変化させたときの、eT-Hに対する偏向量
をθc(T−H)で表す。また、eT-Hをゼロとしてe
T-Sを変化させたときの、eT-Sに対する偏向量をθc
(T−S)で表す。図から分かるように、a:0.35
mm、A:0.6mm、φds:0.4mm、φdH:
1.0mm、Ve:2.0〜2.5kV、Vs:0.1
〜1.0kVの条件下において、偏向量は針状電極と引
出電極の偏心量eT−Hにのみ依存し、針状電極とサプ
レッサー電極の偏心eT−Sの影響は殆ど受けない。
The hole diameter φd S of the suppressor electrode, the hole diameter φd H of the extraction electrode, the vertical distance a between the tip of the needle electrode and the extraction electrode, the distance A between the suppressor electrode and the extraction electrode, the extraction voltage V
e (not shown), the suppressor voltage Vs (not shown) is fixed, and the eccentricity e TS of the needle electrode 1 and the suppressor electrode 52 and the eccentric amount e TH of the needle electrode 1 and the extraction electrode 5 are set.
Beam optical axis 105 when each is independently changed
FIG. 9 shows an example of a change in the deflection amount θc. expressed with respect to a change in the e TH an e TS zero, the deflection amount with respect to e TH by θc (TH). Also, let e TH be zero and e
When the TS is changed, the deflection amount with respect to e TS is θc
Expressed by (TS). As can be seen from the figure, a: 0.35
mm, A: 0.6 mm, φds: 0.4 mm, φdH:
1.0 mm, Ve: 2.0 to 2.5 kV, Vs: 0.1
Under the condition of 1.01.0 kV, the amount of deflection depends only on the amount of eccentricity e T-H between the needle electrode and the extraction electrode, and is hardly affected by the eccentricity e T-S between the needle electrode and the suppressor electrode.

【0028】サプレッサー電極の外周とそれが組み込ま
れる電子銃側の部品の寸法精度を確保することにより、
電子源を電子銃に組込んだ時にeS-H=0、すなわち、
サプレッサー電極の穴と引出電極の穴が同一軸上に位置
する様な構造とすれば、eT- S(針状電極とサプレッサ
ー電極の偏心)=eT-H(針状電極と引出電極の偏心
量)とすることが出来る。この性質を利用して、電子源
の製作過程で、光学顕微鏡、その他の測定手段により針
状電極1の傾斜θwを測定し、予想される電子線光軸の
傾斜θe(=θw)と反対方向に電子線が偏向される様
にサプレッサー電極52と針状電極1の偏心量eT-S
調節して電子源を組立てることにより、電子源を電子銃
に組込んだ時、間接的に引出電極5と針状電極1の所要
偏心量を設定することができる。
By ensuring the dimensional accuracy of the outer periphery of the suppressor electrode and the parts on the electron gun side into which it is incorporated,
When the electron source is incorporated in the electron gun, e SH = 0, ie,
If the structure is such that the hole of the suppressor electrode and the hole of the extraction electrode are located on the same axis, e T− S (eccentricity of the needle electrode and the suppressor electrode) = e TH (eccentricity of the needle electrode and the extraction electrode) ). Utilizing this property, the inclination θw of the needle electrode 1 is measured by an optical microscope or other measuring means in the process of manufacturing the electron source, and the inclination θe (= θw) in the direction opposite to the expected inclination of the electron beam optical axis is measured. When the electron source is assembled by adjusting the eccentricity e TS of the suppressor electrode 52 and the needle electrode 1 so that the electron beam is deflected, the extraction electrode 5 is indirectly mounted when the electron source is incorporated in the electron gun. And the required amount of eccentricity of the needle electrode 1 can be set.

【0029】図7に記載の電子源51を搭載した電子銃
の断面図を図10に示す。電子源51はその製作過程に
おいて既に光軸補正が完了しているので、絶縁碍子14
の内周とサプレッサー電極52の外周の嵌合を利用して
組込むだけで、電子源51に属する針状電極と引出し電
極5との間に所要の偏心量が自動的に設定される。電子
源は消耗部品であるので定期的に交換作業が発生する。
電子源の製作過程において、予めサプレッサー電極と針
状電極の間に適正な偏心量を与えておけば、電子源交換
の度に電子線光軸の補正をする必要が無くなり、装置の
停止時間を短縮することが出来る。
FIG. 10 is a sectional view of an electron gun equipped with the electron source 51 shown in FIG. Since the optical axis correction has already been completed in the manufacturing process of the electron source 51, the insulator 14
The required amount of eccentricity is automatically set between the needle electrode belonging to the electron source 51 and the extraction electrode 5 only by incorporating the inner periphery of the electrode and the outer periphery of the suppressor electrode 52 using the fitting. Since the electron source is a consumable part, replacement work is periodically performed.
If an appropriate amount of eccentricity is given in advance between the suppressor electrode and the needle electrode in the manufacturing process of the electron source, it is not necessary to correct the electron beam optical axis every time the electron source is replaced, and the stopping time of the device can be reduced. Can be shortened.

【0030】図11は、以上に説明した電子銃を搭載し
た本発明による走査形電子顕微鏡の一例を示す模式図で
ある。この装置は、主な構成要素として、電子銃61、
鏡体62、試料室63、高圧電源64、制御部65から
成っており、電子銃61、鏡体62、試料室63は真空
ポンプ(図示せず)により内部を真空排気されている。
電子源11(または51)から放射した電子線105は
鏡体62の中心軸に平行に入射する。更に鏡体62内で
は、収束レンズ621、対物レンズ623により細く絞
られ、試料ステージ631上に設置された試料632の
表面に焦点を結ぶ。走査偏向器622により試料面を走
査した際に発生する二次電子106は二次電子検出器6
24に取り込まれ、増幅されて制御部に送られ、画像情
報を得ることが出来る。
FIG. 11 is a schematic view showing an example of a scanning electron microscope according to the present invention, which is equipped with the above-described electron gun. This device has an electron gun 61 as a main component,
The electron gun 61, the mirror body 62, and the sample chamber 63 are evacuated by a vacuum pump (not shown).
The electron beam 105 emitted from the electron source 11 (or 51) enters the mirror 62 in parallel with the central axis. Further, in the mirror body 62, it is narrowed down by the converging lens 621 and the objective lens 623, and focuses on the surface of the sample 632 set on the sample stage 631. Secondary electrons 106 generated when the sample surface is scanned by the scanning deflector 622 are detected by the secondary electron detector 6.
24, amplified and sent to the control unit to obtain image information.

【0031】電子線105は鏡体62に入射する時点で
既に収束レンズ621の中心軸に平行になるように補正
されているので、鏡体62内部に特別の偏向手段を必要
としない。その結果、装置の信頼性が向上すると共に装
置の小形化を図ることが出来る。尚、本電子銃および電
子源は上記の走査形電子顕微鏡以外にも透過形電子顕微
鏡や電子線描画装置等にも適用が可能である。
Since the electron beam 105 has already been corrected so as to be parallel to the central axis of the converging lens 621 at the time of entering the mirror 62, no special deflecting means is required inside the mirror 62. As a result, the reliability of the device is improved and the device can be downsized. The electron gun and the electron source can be applied to a transmission electron microscope, an electron beam lithography apparatus, and the like in addition to the above-mentioned scanning electron microscope.

【0032】次に、走査形電子顕微鏡の製作工程につい
て説明する。図12は従来の製作工程を示し、図13は
本発明による製作工程を示す。図12に示す従来技術で
は、(工程1)電子銃組立、(工程2)電子源組込、
(工程3)真空排気を行い、(工程4)電子線放射を開
始する。(工程5)電子銃の軸調整機構による光軸調整
を行い、(工程6)放射電流の測定、耐電圧試験等の単
体性能試験に合格すると、(工程7)電子線放射を一時
的に停止して、(工程8)電子銃を鏡体に搭載する。
(工程9)電子線放射再開後、(工程10)鏡体側の偏
向機能による光軸調整が完了して初めて試料の像観察が
可能となる。(工程11)倍率調整、分解能試験等の総
合調整を経て装置完成に至る。
Next, the manufacturing process of the scanning electron microscope will be described. FIG. 12 shows a conventional manufacturing process, and FIG. 13 shows a manufacturing process according to the present invention. In the prior art shown in FIG. 12, (step 1) assembling of an electron gun, (step 2) assembling of an electron source,
(Step 3) Evacuation is performed, and (Step 4) electron beam emission is started. (Step 5) The optical axis is adjusted by the axis adjusting mechanism of the electron gun. (Step 6) When the measurement of the radiated current and the single performance test such as the withstand voltage test are passed, (Step 7) the electron beam emission is temporarily stopped. (Step 8) Mount the electron gun on the mirror body.
(Step 9) After the restart of the electron beam emission, (Step 10) the image observation of the sample becomes possible only after the optical axis adjustment by the deflection function on the mirror side is completed. (Step 11) The apparatus is completed through comprehensive adjustment such as magnification adjustment and resolution test.

【0033】図13は、本発明による電子銃を採用する
走査形電子顕微鏡の製作工程図である。電子銃の製作と
は別に、電子源に属する針状電極の傾斜を測定し予想さ
れる電子線光軸の傾斜を補正するのに必要な偏心量を算
出しておく。電子源組込の段階で針状電極と引出し電極
の間に所要の偏心を与えて固定することにより電子線放
射開始直後から引出電極の中心軸に平行に補正された電
子線を得ることが出来る。これにより図12に示した従
来技術の(工程5)および(工程10)で示した電子線
光軸調整作業が不要となり、電子銃および装置本体の製
作時間の短縮に効果的である。
FIG. 13 is a manufacturing process diagram of a scanning electron microscope employing the electron gun according to the present invention. Separately from the manufacture of the electron gun, the inclination of the needle electrode belonging to the electron source is measured, and the amount of eccentricity required to correct the expected inclination of the electron beam optical axis is calculated. The electron beam corrected parallel to the central axis of the extraction electrode can be obtained immediately after the start of the electron beam emission by fixing the needle electrode and the extraction electrode with the required eccentricity at the stage of assembling the electron source. . This eliminates the necessity of adjusting the optical axis of the electron beam shown in (Step 5) and (Step 10) of the prior art shown in FIG. 12, which is effective in shortening the manufacturing time of the electron gun and the apparatus body.

【0034】次に、稼働中の電子線装置の電子源が寿命
を迎え、新品の電子源に交換する際の作業工程について
説明する。図14に示す従来技術では、(工程1)装置
停止後、(工程2)電子銃内部を大気開放して電子源を
交換し、(工程3)真空排気再開、(工程4)電子線放
射を再開後、(工程5)電子銃の軸調整機構による光軸
調整、および(工程6)鏡体側の偏向機能による光軸調
整が完了すると装置の稼動再開が可能となる。
Next, a description will be given of a working process when the electron source of the active electron beam device reaches its end of life and is replaced with a new one. In the prior art shown in FIG. 14, after (Step 1) the apparatus is stopped, (Step 2) the inside of the electron gun is opened to the atmosphere to replace the electron source, (Step 3) evacuation is resumed, and (Step 4) electron beam emission is performed. After the restart, when (step 5) the optical axis adjustment by the axis adjustment mechanism of the electron gun and (step 6) the optical axis adjustment by the deflection function on the mirror body are completed, the operation of the apparatus can be restarted.

【0035】これに対して本発明による電子源を採用し
た場合の作業工程を図15に示す。電子源は予めその製
作工程において、針状電極の傾斜角に基いて針状電極と
サプレッサー電極との間に偏心量が与えられているの
で、電子源取付け部の嵌合に従って電子源を組み込むだ
けで電子源に属する針状電極と引出し電極の間に所要の
偏心量が自動的に与えられる。これにより電子線放射開
始直後から引出電極の中心軸に平行に補正された電子線
を得られるので、図14に示した従来技術の(工程5)
および(工程6)に示した電子線光軸調整作業が不要と
なる。従って、電子源交換に伴う装置停止時間を最小限
に留めることが出来るので、24時間連続稼動の半導体
検査用電子顕微鏡等、製造ラインで使用される電子線装
置に特に有効である。
On the other hand, FIG. 15 shows a working process when the electron source according to the present invention is adopted. In the manufacturing process of the electron source, the amount of eccentricity is given between the needle electrode and the suppressor electrode based on the inclination angle of the needle electrode in advance, so that the electron source is simply incorporated according to the fitting of the electron source mounting portion. The required amount of eccentricity is automatically given between the needle electrode belonging to the electron source and the extraction electrode. As a result, an electron beam corrected in parallel with the central axis of the extraction electrode can be obtained immediately after the start of the electron beam emission, so that the prior art (step 5) shown in FIG.
Also, the electron beam optical axis adjustment work shown in (Step 6) becomes unnecessary. Therefore, since the apparatus stop time due to the exchange of the electron source can be minimized, the present invention is particularly effective for an electron beam apparatus used in a production line such as a semiconductor inspection electron microscope which operates continuously for 24 hours.

【0036】[0036]

【発明の効果】本発明によれば、電子線を利用する装置
側に特別な電子線偏向手段を必要としない上、電子銃ま
たは電子源の組立段階において針状電極の傾きに起因す
る電子線光軸ずれを予め予想し、事前に補正することが
可能であり、低ノイズ、高電流密度でエネルギーの均一
な電子線を効率良く得ることが可能であると同時に、電
子銃および電子線装置の生産性向上、電子源交換時の装
置停止時間の短縮にも効果的である。
According to the present invention, no special electron beam deflecting means is required on the side of an apparatus utilizing an electron beam, and the electron beam caused by the inclination of the needle electrode in the assembling stage of the electron gun or the electron source. Optical axis deviation can be predicted in advance and corrected in advance, and it is possible to efficiently obtain an electron beam with low noise, high current density and uniform energy, and at the same time, to use an electron gun and an electron beam device. This is also effective for improving productivity and reducing the downtime of the apparatus when replacing the electron source.

【0037】また、従来技術による電子銃では不可欠で
あった、大気側から水平面内の位置調整をするための機
構が不要となるので電子銃の小形化が図れ、これに伴
い、構成部品からの放出ガスが低減し、真空度の向上に
よる放射電流の安定化、放電の抑制等、信頼性向上にも
有効である。更に、鏡体内部で電子線光軸を補正するた
めの偏向手段も不要となるので、装置全体の小形化に有
利であり、耐振性の向上も期待出来る。
In addition, since a mechanism for adjusting the position in the horizontal plane from the atmosphere side, which is indispensable for the electron gun according to the prior art, becomes unnecessary, the size of the electron gun can be reduced. It is also effective in improving reliability, such as stabilizing radiation current and suppressing discharge by reducing the amount of gas emitted and improving the degree of vacuum. Further, a deflection means for correcting the optical axis of the electron beam inside the mirror body is not required, which is advantageous for miniaturization of the entire apparatus, and improvement in vibration resistance can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】針状電極の偏心と電子線光軸の偏向の関係を説
明する図。
FIG. 1 is a view for explaining the relationship between the eccentricity of a needle electrode and the deflection of an electron beam optical axis.

【図2】偏向量θcと偏心量eの関係の一例を示す図。FIG. 2 is a diagram illustrating an example of a relationship between a deflection amount θc and an eccentric amount e.

【図3】電子線光軸の補正方法の説明図。FIG. 3 is an explanatory diagram of a method of correcting an electron beam optical axis.

【図4】本発明による電子銃の一例を説明する縦断面図
及びそのA−A′断面図。
FIG. 4 is a longitudinal sectional view illustrating an example of an electron gun according to the present invention, and its AA ′ sectional view.

【図5】電子源に属する針状電極の傾斜測定を説明する
図。
FIG. 5 is a view for explaining tilt measurement of a needle electrode belonging to an electron source.

【図6】本発明による電子銃の他の例を説明する縦断面
図及びそのA−A′断面図。
FIG. 6 is a longitudinal sectional view for explaining another example of the electron gun according to the present invention, and its AA 'sectional view.

【図7】本発明による電子源の一例を示す概略断面図。FIG. 7 is a schematic sectional view showing an example of an electron source according to the present invention.

【図8】針状電極とサプレッサー電極および引出電極の
相対位置関係を表す詳細図。
FIG. 8 is a detailed diagram showing a relative positional relationship between a needle electrode, a suppressor electrode, and an extraction electrode.

【図9】針状電極とサプレッサー電極の偏心量、および
針状電極と引出電極の偏心量をそれぞれ独立して変化さ
せたときの電子線光軸の偏向量の変化の一例を示す図。
FIG. 9 is a diagram showing an example of a change in the amount of deflection of the electron beam optical axis when the amount of eccentricity of the needle electrode and the suppressor electrode and the amount of eccentricity of the needle electrode and the extraction electrode are independently changed.

【図10】図7に記載の電子源を搭載した電子銃の断面
図。
FIG. 10 is a sectional view of an electron gun equipped with the electron source shown in FIG. 7;

【図11】本発明による走査形電子顕微鏡の一例を示す
模式図。
FIG. 11 is a schematic view showing an example of a scanning electron microscope according to the present invention.

【図12】従来の走査形電子顕微鏡の製作工程の説明
図。
FIG. 12 is an explanatory view of a manufacturing process of a conventional scanning electron microscope.

【図13】本発明による走査形電子顕微鏡の製作工程の
説明図。
FIG. 13 is an explanatory diagram of a manufacturing process of the scanning electron microscope according to the present invention.

【図14】従来の電子源交換の作業工程図。FIG. 14 is a work process diagram of conventional electron source replacement.

【図15】本発明による電子源交換の作業工程図。FIG. 15 is a work process diagram of an electron source exchange according to the present invention.

【図16】従来の電界放射型電子源の概略断面図。FIG. 16 is a schematic sectional view of a conventional field emission electron source.

【図17】従来の電界放射型電子源または熱電界放射型
電子源を搭載した電子銃の概略断面図。
FIG. 17 is a schematic sectional view of an electron gun equipped with a conventional field emission electron source or thermal field emission electron source.

【符号の説明】[Explanation of symbols]

1…針状電極、2…フィラメント、3…電流導入端子、
4…フィラメント碍子、5…引出電極、6…引出電源、
100…装置中心軸、101…引出電極中心軸、102
…電子源中心軸、103…サプレッサー電極中心軸、1
04…針状電極中心軸、105…電子線光軸、106…
二次電子、11…電界放射型電子源または熱電界放射型
電子源、12…電子銃容器、13…フランジ 14…絶縁碍子、15…引出電極ベース、16…真空封
じ用ボルト、17…光軸補正ねじ、18…偏向手段、2
1…筒、22…ベローズ、23…軸調整ねじ、51…サ
プレッサー電極付電子源、52…サプレッサー電極、5
3…フィラメント加熱電源、54…サプレッサー電源、
61…電子銃、62…鏡体、63…試料室、64…高圧
電源、65…制御部、621…収束レンズ、622…走
査偏向器、623…対物レンズ、624…二次電子検出
器、631…試料ステージ、632…試料
1: needle electrode, 2: filament, 3: current introduction terminal,
4: filament insulator, 5: extraction electrode, 6: extraction power supply,
100: central axis of device, 101: central axis of extraction electrode, 102
... Center axis of electron source, 103 ... Center axis of suppressor electrode, 1
04: Needle electrode central axis, 105: Electron beam optical axis, 106:
Secondary electron, 11: Field emission type electron source or thermal field emission type electron source, 12: Electron gun container, 13: Flange 14: Insulator, 15: Extraction electrode base, 16: Vacuum sealing bolt, 17: Optical axis Correction screw, 18 ... deflection means, 2
DESCRIPTION OF SYMBOLS 1 ... cylinder, 22 ... bellows, 23 ... shaft adjustment screw, 51 ... electron source with a suppressor electrode, 52 ... suppressor electrode, 5
3: filament heating power supply, 54: suppressor power supply,
Reference numeral 61: electron gun, 62: mirror body, 63: sample chamber, 64: high-voltage power supply, 65: control unit, 621: converging lens, 622: scanning deflector, 623: objective lens, 624: secondary electron detector, 631 … Sample stage, 632… Sample

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小久保 滋 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器グループ内 (72)発明者 谷本 憲史 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器グループ内 Fターム(参考) 2H097 BB03 CA16 LA10 5C030 AA09 AB02 AB03 5F056 EA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeru Kokubo 882-mo, Ota-shi, Hitachinaka-shi, Ibaraki Pref. Within the Measuring Instruments Group of Hitachi, Ltd. BB03 CA16 LA10 5C030 AA09 AB02 AB03 5F056 EA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 針状電極を有する電界放射型電子源また
は熱電界放射型電子源と、前記針状電極に強電界を印加
して電子線を発生させるための引出電極とを備えた電子
銃において、 前記引出電極の固定位置を変えることにより前記針状電
極と前記引出電極の偏心量を任意に設定する機能を有す
ることを特徴とする電子銃。
1. An electron gun comprising: a field emission electron source or a thermal field emission electron source having a needle electrode; and an extraction electrode for generating an electron beam by applying a strong electric field to the needle electrode. The electron gun according to claim 1, further comprising a function of arbitrarily setting an eccentric amount between the needle electrode and the extraction electrode by changing a fixing position of the extraction electrode.
【請求項2】 針状電極を有する電界放射型電子源また
は熱電界放射型電子源と、前記針状電極に強電界を印加
して電子線を発生させるための引出電極とを備えた電子
銃において、 前記電界放射型電子源または熱電界放射型電子源の固定
位置を変えることにより、前記針状電極と前記引出電極
の偏心量を任意に設定する機能を有することを特徴とす
る電子銃。
2. An electron gun comprising: a field emission electron source or a thermal field emission electron source having a needle electrode; and an extraction electrode for applying a strong electric field to the needle electrode to generate an electron beam. The electron gun according to any one of claims 1 to 3, further comprising a function of arbitrarily setting the amount of eccentricity between the needle electrode and the extraction electrode by changing a fixed position of the field emission electron source or the thermal field emission electron source.
【請求項3】 針状電極と、熱電子の放出を抑制するた
めのサプレッサー電極とを有する熱電界放射型電子源に
おいて、 前記サプレッサー電極と前記針状電極の偏心量を任意に
設定する機能を有することを特徴とする熱電界放射型電
子源。
3. A thermoelectric field emission type electron source having a needle electrode and a suppressor electrode for suppressing emission of thermoelectrons, wherein a function of arbitrarily setting an eccentric amount of the suppressor electrode and the needle electrode is provided. A thermal field emission type electron source characterized by having:
【請求項4】 試料を保持する試料ステージと、電子銃
と、前記電子銃から発生された電子線を収束して試料上
に照射するための電子レンズとを含む電子線装置におい
て、 前記電子銃として請求項1または2記載の電子銃あるい
は請求項3記載の電子源を備える電子銃を用いることを
特徴とする電子線装置。
4. An electron beam apparatus comprising: a sample stage for holding a sample; an electron gun; and an electron lens for converging an electron beam generated from the electron gun and irradiating the electron beam onto the sample. An electron beam apparatus using the electron gun according to claim 1 or 2 or an electron gun including the electron source according to claim 3.
【請求項5】 針状電極を有する電界放射型電子源また
は熱電界放射型電子源と前記針状電極に強電界を印加し
て電子線を発生させるための引出電極とを備えた電子銃
から放出される電子線の光軸ずれを補正する電子線光軸
補正方法において、 前記電界放射型電子源または熱電界放射型電子源に属す
る針状電極の角度ずれに起因する電子線光軸ずれを相殺
する方向に引出電極を偏心させることにより電子線光軸
ずれを補正することを特徴とする電子線光軸補正方法。
5. An electron gun comprising a field emission type electron source or a thermal field emission type electron source having a needle electrode and an extraction electrode for applying a strong electric field to said needle electrode to generate an electron beam. An electron beam optical axis correction method for correcting an optical axis deviation of an emitted electron beam, comprising: correcting an electron beam optical axis deviation caused by an angular deviation of a needle electrode belonging to the field emission type electron source or the thermal field emission type electron source. An electron beam optical axis correction method, wherein an electron beam optical axis shift is corrected by decentering an extraction electrode in a canceling direction.
【請求項6】 針状電極を有する電界放射型電子源また
は熱電界放射型電子源と前記針状電極に強電界を印加し
て電子線を発生させるための引出電極を備えた電子銃か
ら放出される電子線の光軸ずれを補正する電子線光軸補
正方法において、 前記電界放射型電子源または熱電界放射型電子源に属す
る針状電極の角度ずれに起因する電子線光軸ずれを相殺
する方向に前記電子源を偏心させることにより電子線光
軸ずれを補正することを特徴とする電子線光軸補正方
法。
6. A field emission type electron source or a thermal field emission type electron source having a needle-like electrode and an electron gun provided with an extraction electrode for generating an electron beam by applying a strong electric field to said needle-like electrode. An electron beam optical axis correction method for correcting an optical axis deviation of an electron beam to be performed, wherein an electron beam optical axis deviation caused by an angular deviation of a needle electrode belonging to the field emission type electron source or the thermal field emission type electron source is offset. And correcting the electron beam optical axis deviation by decentering the electron source in the direction of the electron beam.
【請求項7】 針状電極と熱電子の放出を抑制するため
のサプレッサー電極とを有する熱電界放射型電子源から
放出される電子線の光軸ずれを補正する電子線光軸補正
方法において、 前記電子源に属する針状電極の角度ずれに起因する電子
線光軸ずれを相殺する方向に針状電極とサプレッサー電
極を偏心させることにより、前記電子源を電子銃に組込
んだ際の前記針状電極と前記引出電極の偏心量を間接的
に設定し、電子線光軸ずれを補正することを特徴とする
電子線光軸補正方法。
7. An electron beam optical axis correction method for correcting an optical axis shift of an electron beam emitted from a thermal field emission type electron source having a needle electrode and a suppressor electrode for suppressing emission of thermoelectrons, By decentering the needle electrode and the suppressor electrode in a direction to offset the electron beam optical axis shift caused by the angle shift of the needle electrode belonging to the electron source, the needle when the electron source is incorporated in an electron gun An electron beam optical axis correction method, comprising indirectly setting the amount of eccentricity between the shape electrode and the extraction electrode to correct the electron beam optical axis deviation.
JP2001012815A 2001-01-22 2001-01-22 Electron beam optical axis correction method Expired - Fee Related JP3720711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001012815A JP3720711B2 (en) 2001-01-22 2001-01-22 Electron beam optical axis correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001012815A JP3720711B2 (en) 2001-01-22 2001-01-22 Electron beam optical axis correction method

Publications (3)

Publication Number Publication Date
JP2002216686A true JP2002216686A (en) 2002-08-02
JP2002216686A5 JP2002216686A5 (en) 2005-01-20
JP3720711B2 JP3720711B2 (en) 2005-11-30

Family

ID=18879759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001012815A Expired - Fee Related JP3720711B2 (en) 2001-01-22 2001-01-22 Electron beam optical axis correction method

Country Status (1)

Country Link
JP (1) JP3720711B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519191A (en) * 2004-01-21 2007-07-12 イツェーテー インテグレイテッド サーキット テスティング ゲゼルシャフト フュール ハルブライタープリュッフテヒニク ミット ベシュレンクテル ハフツング Beam optical components with charged particle lenses
WO2009153939A1 (en) * 2008-06-20 2009-12-23 株式会社日立ハイテクノロジーズ Charged particle beam apparatus, and method of controlling the same
EP2991095A1 (en) * 2014-08-25 2016-03-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. High voltage feedthrough assembly, electron diffraction apparatus and method of electrode manipulation in a vacuum environment
CN107452578A (en) * 2017-09-04 2017-12-08 国家纳米科学中心 A kind of filament alignment system and filament localization method
KR20220145384A (en) 2020-04-23 2022-10-28 주식회사 히타치하이테크 Charged Particle Guns and Charged Particle Beam Systems

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8445846B2 (en) 2004-01-21 2013-05-21 Ict Integrated Circuit Testing Gesellschaft Fur Halbleiterpruftechnik Mbh Beam optical component having a charged particle lens
JP2007519191A (en) * 2004-01-21 2007-07-12 イツェーテー インテグレイテッド サーキット テスティング ゲゼルシャフト フュール ハルブライタープリュッフテヒニク ミット ベシュレンクテル ハフツング Beam optical components with charged particle lenses
JP4731496B2 (en) * 2004-01-21 2011-07-27 アイシーティー インテグレーテッド サーキット テスティング ゲゼルシャフト フィーア ハルプライタープリーフテヒニック エム ベー ハー Beam optical components with charged particle lenses
JP5203456B2 (en) * 2008-06-20 2013-06-05 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and control method thereof
JP2013084629A (en) * 2008-06-20 2013-05-09 Hitachi High-Technologies Corp Charged particle beam apparatus, and method of controlling the same
US8319193B2 (en) 2008-06-20 2012-11-27 Hitachi High-Technologies Corporation Charged particle beam apparatus, and method of controlling the same
WO2009153939A1 (en) * 2008-06-20 2009-12-23 株式会社日立ハイテクノロジーズ Charged particle beam apparatus, and method of controlling the same
US8772735B2 (en) 2008-06-20 2014-07-08 Hitachi High-Technologies Corporation Charged particle beam apparatus, and method of controlling the same
JP2014241301A (en) * 2008-06-20 2014-12-25 株式会社日立ハイテクノロジーズ Charged particle beam apparatus, and method of controlling the same
EP2991095A1 (en) * 2014-08-25 2016-03-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. High voltage feedthrough assembly, electron diffraction apparatus and method of electrode manipulation in a vacuum environment
WO2016030004A3 (en) * 2014-08-25 2016-04-21 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. High voltage feedthrough assembly, time-resolved transmission electron microscope and method of electrode manipulation in a vacuum environment
JP2017529661A (en) * 2014-08-25 2017-10-05 マツクス−プランク−ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウMAX−PLANCK−GESELLSCHAFT ZUR FOeRDERUNG DER WISSENSCHAFTEN E.V. High voltage feedthrough assembly, time-resolved transmission electron microscope, and method of electrode manipulation in a vacuum environment
US10366861B2 (en) 2014-08-25 2019-07-30 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. High voltage feedthrough assembly, time-resolved transmission electron microscope and method of electrode manipulation in a vacuum environment
CN107452578A (en) * 2017-09-04 2017-12-08 国家纳米科学中心 A kind of filament alignment system and filament localization method
KR20220145384A (en) 2020-04-23 2022-10-28 주식회사 히타치하이테크 Charged Particle Guns and Charged Particle Beam Systems

Also Published As

Publication number Publication date
JP3720711B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
US20080315089A1 (en) Electron gun, electron beam exposure apparatus, and exposure method
US20100026160A1 (en) Electron source
US9589759B2 (en) X-ray generator
US7732764B2 (en) Field emission electron gun and electron beam applied device using the same
WO2012132228A1 (en) Multipole and charged particle beam apparatus using same
US8040034B2 (en) Electron source
JP4298399B2 (en) Electron beam apparatus and electron beam drawing apparatus using the electron beam apparatus
JP3720711B2 (en) Electron beam optical axis correction method
JP4210131B2 (en) Electron source and method of using electron source
JP3766763B2 (en) Field emission electron gun
US6576902B2 (en) Correction method of scanning electron microscope
JP4656790B2 (en) Schottky emitter with extended life
EP0439852B1 (en) X-ray tube comprising an exit window
JP4959723B2 (en) Electron gun and electron beam exposure apparatus
WO2019224895A1 (en) Charged particle beam device and axis adjustment method therefor
JP5363413B2 (en) Electron source
JPH0917365A (en) Field emission type electron gun
JP2017228488A (en) Method for adjusting electron beam emission direction and electron beam emitter device
JP4221817B2 (en) Projection type ion beam processing equipment
US11923166B2 (en) Guard electrode and field emission device
JP2004327410A (en) Axial adjustment device of ion source/electron gun
WO2023189735A1 (en) X-ray generator, x-ray imager, and method for adjusting x-ray generator
JPH0545880U (en) Focus electrode structure of electron gun for color picture tube
WO2024018570A1 (en) Charged particle source, charged particle gun, and charged particle beam device
KR20080100158A (en) Electron gun, electron beam exposure apparatus and exposure method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees