JP3766763B2 - Field emission electron gun - Google Patents

Field emission electron gun Download PDF

Info

Publication number
JP3766763B2
JP3766763B2 JP09719099A JP9719099A JP3766763B2 JP 3766763 B2 JP3766763 B2 JP 3766763B2 JP 09719099 A JP09719099 A JP 09719099A JP 9719099 A JP9719099 A JP 9719099A JP 3766763 B2 JP3766763 B2 JP 3766763B2
Authority
JP
Japan
Prior art keywords
vacuum
field emission
extraction electrode
emitter
electron gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09719099A
Other languages
Japanese (ja)
Other versions
JP2000294182A (en
Inventor
政顕 箕田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP09719099A priority Critical patent/JP3766763B2/en
Publication of JP2000294182A publication Critical patent/JP2000294182A/en
Application granted granted Critical
Publication of JP3766763B2 publication Critical patent/JP3766763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • H01J2237/06316Schottky emission

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子顕微鏡や荷電粒子装置に使用される電界放射電子銃に関する。
【0002】
【従来の技術】
近年、安定な高輝度電子銃として、タングステン単結晶の針状電極にジルコニウム(Zr)と酸素(O)とからなる被膜層を設けた、ZrO/W熱電界放射電子銃が低加速電子ビームを必要とする電子顕微鏡や他の荷電粒子装置に広く使用されている。
【0003】
図2に熱電界放射電子銃の基本的な構造図を示す。1は表面にジルコニウム(Zr)と酸素(O)とからなるタングステン単結晶チップ(W)のZr/O−Wエミッタ(以下、エミッタと称す)、2はタングステンワイヤーからなるヘアピン型のフイラメント、3はフイラメント2をスポット溶接されているフイラメント端子、4の絶縁碍子を介してサプレッサー電極5が取り付けられている。通常、これら部材1〜5は一体構造で組み立てられ、熱電界放射陰極10として形成されている。熱電界放射陰極10は固定部材6を介して高圧導入碍子7に固定されている。20は引出電極、21は引出電極固定部材で高圧導入碍子7に固定されている。引出電極20は、ネジ22の締めつけに具合によって引出電極固定部材21に対して位置調整を行って固定されている。
【0004】
このような熱電界放射電子銃は所定の電気回路(図示せず)にセットして真空に排気した後、フイラメント2を電流加熱してエミッタ1の温度を上げ、サプレッサー電極5および引出電極20に所定の電界を加えてことにより電子ビームを取り出すことができる。
【0005】
安定な電子ビームを取り出すためには、エミッタ1の温度を適切な温度範囲として1400〜1900度Kと真空度として1×10-7Pa以下を確保する。また、各電極5,20は、エミッタ1に対してサプレッサー電極5に−300V程度の負のサプレッサー電圧を印加しフイラメント2よりの熱電子を抑え、引出電極20に2KV〜4KV程度の正の引出電圧を印加し、エミッタ1に対して安定な電界を印加して電子を引き出すことが重要である。
【0006】
【発明が解決しようとする課題】
ところで、図2で示すように、この熱電界放射電子銃は、エミッタ1と2つの電極5,20の間隔に多くの部材を介して構成されおり、各部の機械的な寸法精度と組立誤差が混入され、特性のバラツキの要因となる。特に、エミッタ1の先端と引出電極20との距離Lは、一例として500μm±100μm、また、絞り20aの径500μmφに対して±80μmのセンタリング精度を求められる。
【0007】
従って、熱電界放射電子銃の組立時には、治具を用いてエミッタ1の先端と引出電極20との距離L、および絞り20aとのセンタリングを±50μm程度以内に位置を合わせてネジ22によって固定される。これにより、エミッタ1の先端には、安定した電界が印加され、特性のバラツキの少ない電子銃が得られる。
【0008】
しかし、エミッタ1と引出電極20の関係が、時として使用中に熱歪みや機械的な歪みによって寸法精度が大きく変化を生じることがある。このよな場合は、電子銃部の真空筒を真空リークし、電子銃を取り出し、形状の確認および再組立(調整)を必要とすることがある。
【0009】
本発明は、上述した問題を解決するものであって、使用中にエミッタ1の先端と引出電極20との距離Lの変化が少なく、また引出電極20の絞り20aに対してセンターが変化が生じても真空外よりセンタリングの位置合わせ機能をもつことにより、エミッタ1の電界強度を一定に保ち、安定な熱電界放射電子銃を供給することを目的としている。
【0010】
【課題を解決するための手段】
この目的を達成するための 本発明は、電子源真空筒の頂部に大気と真空を仕切るように設けられ、真空外から真空内へ高電圧を導入する高圧導入部と、該高圧導入部と真空筒の間を接続する気密シール部材と、該高圧導入部の真空側下面に取り付けられた電界放射陰極と、該電界放射陰極と対向するように前記真空筒に絶縁的に取り付けられる引出電極と、前記高圧導入部に取り付けられる同じ長さの複数のポストであって先端が前記引出電極にスライド可能に当接するポストと、前記高圧導入部を真空外より水平方向に移動させる移動機構とを備え、前記ポストを通して前記引出電極に電圧を印加すると共に、前記移動機構によって前記電界放射陰極と前記引出電極に対する相対位置が調節可能とされていることを特徴とする
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0012】
図1は本発明に係わる熱電界放射電子銃の一実施例の基本構造の断面図である。なお、前述の図2に示す電子銃と同じ構成要素には同じ符号を付けることにより、その詳細な説明は省略する。図中、熱電界放射陰極10は固定部材6を介して高圧導入部16に固定されている。また、熱電界放射陰極10のフイラメント2,サプレッサー5、および12の引出電極には高圧導入部16を通して電子銃の電源(図示せず)より電流および電圧を供給される。フランジ9は、高圧導入部16との間にベローズ8を介して真空気密に溶接され、電子源真空筒15の上部に真空パッキング(図示せず)を挟んで真空気密に固定されている。
【0013】
引出電極12は絶縁碍子13を挟んでアノード14を介して電子源真空筒10の内壁に固定されている。11はポストで3本(3本以上)から成り、このポスト11は、金属で作成され一方の端が高圧導入部16に固定され、もう一方の端は球面で鏡面に加工され引出電極12の上面(鏡面加工)に接し、引出電極12の上面(鏡面加工)をスライドできるように形成されている。このポスト11は、エミッタ1の先端と引出電極12との所定距離Lとして、例えば500μm±100μm以内になるような寸法に作製されている。また、ポスト11は高圧導入部を通して引出電極12に引出電圧を供給する役目も同時に備えている。
【0014】
17は軸調整ネジで、フランジ9の円周上に4個設けられ、この軸調整ネジ17を回すことによって、高圧導入部16をX,Y軸の水平方向に移動できる構造を備えている。高圧導入部16の水平移動は、図1で示している如く、固定部6を介して熱電界放射陰極10が同様に移動することで、熱電界放射陰極10のエミッタ1もほぼ同様な移動を行うことができる。従って、この軸調整ネジ17は、熱電界放射陰極10のエミッタ1の先端が引出電極12の絞り12aの中心に対してセンタリングを行うことができる機能を備えている。このような構成の動作について次に説明する。
【0015】
まず、熱電界放射電子銃部を排気装置(図示せず)によって1×10-7Pa以下の高真空に排気する。高真空に排気された後、フイラメント2に電子銃電源(図示せず)より電流を流して通電加熱してエミッタ1の温度を例えば1800Kに加熱する。次に、サプレッサ電極5には−300V程度の電圧を、引出電極12には2K〜4KV程度の正の電圧をエミッタ1に対してそれぞれ印加すると、エミッタ1の先端から電子が放出される。放出された電子ビームは、エミッタ1の加速電位を持って、引出電極12との電位とアノード電極のグランド電位によって加速され、その一部が引出電極およびアノード電極の絞りを通過し、アノード電極の下部の収束レンズ(図示せず)により、細く絞られた状態で試料に照射される。この電子ビームのビーム電流は数pA〜数100pAである。通常、これらの電子ビームの電流は、試料の上部に設けられたファラデイカップ等のビーム電流検出器(図示せず)をビームの光軸に挿入することにより測定される。
【0016】
次に、本発明のエミッタ1と引出電極12との位置が何らかの要因によってずれた場合、この位置のずれの補正動作について説明する。上述のように、本電子銃はエミッタ1と引出電極12との距離Lはポスト11の寸法によって所定の値に固定される。従って、エミッタ1の先端と引出電極12との位置ずれは、エミッタ1の先端が絞り12aの中心より横方向にずれることすなわち光軸ずれが主となる。
【0017】
このずれによって、電子ビームは、光軸より傾斜角をもって出射され、アノード14の絞り14a等によて電子ビームがカットされ、電子ビームの中心ビームが試料に照射されなくなる。電子ビームは、一般にビームの中心付近ほど輝度が高く、収差が少なく良い性質をもっている。従って、電子顕微鏡の像としては、輝度が低下するのと同時に分解能の低下を招くことになる。このような像を元に戻すには、電子ビームの光軸ずれを直すことが要求される。
【0018】
これを達成するために、本発明では、電子銃部の真空を破らずにエミッタ1の先端を絞り12aに対して横方向に移動させる機構を備えることを特徴としている。
【0019】
まず、この様なずれが生じた場合には、電子ビームの光軸でのビーム電流をファラデイカップ等のビーム電流検出器(図示せず)をビームの光軸に挿入して測定する。次に、オペレータは、この電子ビームの値を確認しながら、4本の軸調整ネジ17を調整しながら、ビーム電流の増加する方向、即ち、電子ビームの中心が光軸に合っていく方向に合わせて行く。このことは、軸調整ネジ17の調整によって、エミッタ1が引出電極12の絞り12aの中心に移動されて行くことを意味している。その結果、軸調整ネジ17を調整して電子ビームの電流値が最大となるようにすることにより、エミッタ1と引出電極12の絞り12aとのずれが補正されることになる。
【0020】
従って、 本発明は、熱電界放射電子銃を使用中に何らかの要因でエミッタ1が引出電極20の絞り20aの中心に対して位置の変化が生じても、電子銃部の真空を破らずに、エミッタ1の先端と引出電極20との距離Lを一定に保って、位置の変化を補正することができる。
【0021】
以上本発明の実施例について説明したが、本発明は上記に限定されるものではなく、種々の変形が可能である。例えば、電子銃として熱電界放射電子銃として説明したがエミッタを常温で用いる冷陰極電界放射電子銃でもよい、また、電子ビームの光軸のずれ補正を光軸でのビーム電流を測定し、その変化で確認したが、エミッタのエミッションパターンを下方に配置される蛍光板上に展開表示させ、そのパターンの形状の変化に基づいて行ってもよい。
【0022】
【発明の効果】
以上の説明からあきらかなように、電子源真空筒の頂部に大気と真空を仕切るように設けられ、真空外から真空内へ高電圧を導入する高圧導入部と、該高圧導入部と真空筒の間を接続する気密シール部材と、該高圧導入部の真空側下面に取り付けられた電界放射陰極と、該電界放射陰極と対向するように前記真空筒に絶縁的に取り付けられる引出電極と、前記高圧導入部に取り付けられる同じ長さの複数のポストであって先端が前記引出電極にスライド可能に当接するポストと、前記高圧導入部を真空外より水平方向に移動させる移動機構とを備え、前記ポストを通して前記引出電極に電圧を印加すると共に、前記移動機構によって前記電界放射陰極と前記引出電極に対する相対位置が調節可能とされているため、熱電界放射電子銃を使用中に何らかの要因でエミッタ1が引出電極20の絞り20aのセンターに対して位置の変化が生じても、電子銃部の真空を破らずに、エミッタ1の先端と引出電極20との距離Lを一定に保って、位置の変化を補正することができる。
【0023】
【図面の簡単な説明】
【図1】本発明の熱電界放射電子銃の一実施例の基本構造の断面図である。
【図2】従来の熱電界放射電子銃の基本的な構造の断面図である。
【符号の説明】
1…エミッタ、2…フラメント、3…フイラメント端子、4…絶縁碍子、5…サプレッサ電極、6…固定部材、7…高圧導入碍子、8…ベローズ、9…フランジ、10…熱電界放射陰極、11…ポスト、12…引出電極、13…絶縁碍子、14…アノード、15…電子源真空筒、16…高圧導入部、17…軸調整ネジ、20…引出電極、21…引出電極固定部材、22…ネジ、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a field emission electron gun used for an electron microscope and a charged particle device.
[0002]
[Prior art]
In recent years, as a stable high-intensity electron gun, a ZrO / W thermal field emission electron gun in which a coating layer made of zirconium (Zr) and oxygen (O) is provided on a needle electrode of tungsten single crystal has a low acceleration electron beam. Widely used in required electron microscopes and other charged particle devices.
[0003]
FIG. 2 shows a basic structural diagram of a thermal field emission electron gun. 1 is a Zr / O—W emitter (hereinafter referred to as an emitter) of a tungsten single crystal chip (W) made of zirconium (Zr) and oxygen (O) on the surface, 2 is a hairpin type filament made of tungsten wire, 3 The suppressor electrode 5 is attached via the insulator terminal of the filament terminal 4 and the filament terminal 2 where the filament 2 is spot-welded. Usually, these members 1 to 5 are assembled as a unitary structure and formed as a thermal field emission cathode 10 . The thermal field emission cathode 10 is fixed to the high-pressure introduction insulator 7 through a fixing member 6. Reference numeral 20 denotes an extraction electrode, and reference numeral 21 denotes an extraction electrode fixing member, which is fixed to the high voltage introduction insulator 7. The extraction electrode 20 is fixed by adjusting the position of the extraction electrode 20 with respect to the extraction electrode fixing member 21 by tightening the screw 22.
[0004]
Such a thermal field emission electron gun is set in a predetermined electric circuit (not shown) and evacuated to vacuum, and then the filament 2 is heated with current to raise the temperature of the emitter 1, and the suppressor electrode 5 and the extraction electrode 20 are applied. An electron beam can be extracted by applying a predetermined electric field.
[0005]
In order to extract a stable electron beam, the temperature of the emitter 1 is ensured to be 1400 to 1900 degrees K as an appropriate temperature range and 1 × 10 −7 Pa or less as a degree of vacuum. Further, each electrode 5, 20 applies a negative suppressor voltage of about −300 V to the suppressor electrode 5 with respect to the emitter 1 to suppress thermoelectrons from the filament 2, and a positive extraction of about 2 KV to 4 KV to the extraction electrode 20. It is important to draw out electrons by applying a voltage and applying a stable electric field to the emitter 1.
[0006]
[Problems to be solved by the invention]
By the way, as shown in FIG. 2, this thermal field emission electron gun is constituted by many members in the interval between the emitter 1 and the two electrodes 5 and 20, and the mechanical dimensional accuracy and assembly error of each part are reduced. It is mixed and causes variation in characteristics. In particular, the distance L between the tip of the emitter 1 and the extraction electrode 20 is, for example, 500 μm ± 100 μm, and a centering accuracy of ± 80 μm is required for the diameter of the diaphragm 20a of 500 μmφ.
[0007]
Therefore, when the thermal field emission electron gun is assembled, the distance L between the tip of the emitter 1 and the extraction electrode 20 and the centering with the aperture 20a are aligned with each other within about ± 50 μm using a jig and fixed with the screw 22. The Thereby, a stable electric field is applied to the tip of the emitter 1, and an electron gun with little variation in characteristics is obtained.
[0008]
However, the dimensional accuracy of the relationship between the emitter 1 and the extraction electrode 20 sometimes changes greatly due to thermal distortion or mechanical distortion during use. In such a case, the vacuum tube of the electron gun part may be vacuum leaked, the electron gun may be taken out, and the shape confirmation and reassembly (adjustment) may be required.
[0009]
The present invention solves the above-described problem, and the change in the distance L between the tip of the emitter 1 and the extraction electrode 20 is small during use, and the center is changed with respect to the aperture 20a of the extraction electrode 20. However, it is intended to supply a stable thermal field emission electron gun while maintaining the electric field strength of the emitter 1 constant by having a centering alignment function from outside the vacuum.
[0010]
[Means for Solving the Problems]
In order to achieve this object, the present invention is provided at the top of an electron source vacuum cylinder so as to partition the atmosphere and the vacuum, and introduces a high voltage into the vacuum from outside the vacuum, and the high pressure introducing unit and the vacuum An airtight seal member for connecting the tubes, a field emission cathode attached to the vacuum side lower surface of the high-pressure introducing portion, and an extraction electrode attached to the vacuum tube in an insulating manner so as to face the field emission cathode; A plurality of posts of the same length that are attached to the high-pressure introduction part, the tips of which are slidably in contact with the extraction electrode, and a moving mechanism that moves the high-pressure introduction part in a horizontal direction from outside the vacuum, A voltage is applied to the extraction electrode through the post, and a relative position between the field emission cathode and the extraction electrode is adjustable by the moving mechanism.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0012]
FIG. 1 is a sectional view of a basic structure of an embodiment of a thermal field emission electron gun according to the present invention. The same components as those in the electron gun shown in FIG. 2 are given the same reference numerals, and detailed description thereof is omitted. In the drawing, the thermal electric field emission cathode 10 is fixed to the high-pressure introducing portion 16 via the fixing member 6. Further, current and voltage are supplied from the power source (not shown) of the electron gun to the extraction electrodes of the filament 2, suppressor 5 and 12 of the thermal field emission cathode 10 through the high voltage introduction part 16. The flange 9 is vacuum-tightly welded to the high-pressure introducing portion 16 via the bellows 8, and is fixed to the upper portion of the electron source vacuum cylinder 15 with a vacuum packing (not shown) interposed therebetween.
[0013]
The extraction electrode 12 is fixed to the inner wall of the electron source vacuum tube 10 via an anode 14 with an insulator 13 interposed therebetween. 11 is composed of three posts (three or more). This post 11 is made of metal, one end is fixed to the high-pressure introduction part 16, and the other end is a spherical surface processed into a mirror surface. The upper surface (mirror finishing) of the extraction electrode 12 is formed so as to be in contact with the upper surface (mirror finishing). The post 11 is manufactured to have a dimension such that the predetermined distance L between the tip of the emitter 1 and the extraction electrode 12 is, for example, within 500 μm ± 100 μm. Further, the post 11 also has a function of supplying an extraction voltage to the extraction electrode 12 through the high voltage introduction portion.
[0014]
Four shaft adjusting screws 17 are provided on the circumference of the flange 9, and have a structure in which the high pressure introducing portion 16 can be moved in the horizontal direction of the X and Y axes by turning the shaft adjusting screws 17. As shown in FIG. 1, the horizontal movement of the high-pressure introduction part 16 is caused by the similar movement of the thermal field emission cathode 10 through the fixed part 6, so that the emitter 1 of the thermal field emission cathode 10 moves almost in the same way. It can be carried out. Accordingly, the shaft adjusting screw 17 has a function that allows the tip of the emitter 1 of the thermal field emission cathode 10 to be centered with respect to the center of the aperture 12a of the extraction electrode 12. The operation of such a configuration will be described next.
[0015]
First, the thermal field emission electron gun part is evacuated to a high vacuum of 1 × 10 −7 Pa or less by an exhaust device (not shown). After being evacuated to a high vacuum, a current is supplied to the filament 2 from an electron gun power source (not shown) and energized to heat the emitter 1 to a temperature of 1800K, for example. Next, when a voltage of about −300 V is applied to the suppressor electrode 5 and a positive voltage of about 2K to 4 KV is applied to the emitter 1 to the extraction electrode 12, electrons are emitted from the tip of the emitter 1. The emitted electron beam has the acceleration potential of the emitter 1 and is accelerated by the potential with the extraction electrode 12 and the ground potential of the anode electrode, and a part of the electron beam passes through the diaphragm of the extraction electrode and the anode electrode. The sample is irradiated in a narrowed state by a lower focusing lens (not shown). The beam current of this electron beam is several pA to several hundred pA. Usually, the current of these electron beams is measured by inserting a beam current detector (not shown) such as a Faraday cup provided on the top of the sample into the optical axis of the beam.
[0016]
Next, when the positions of the emitter 1 and the extraction electrode 12 of the present invention are deviated due to some factor, the operation for correcting the misalignment will be described. As described above, in this electron gun, the distance L between the emitter 1 and the extraction electrode 12 is fixed to a predetermined value depending on the dimensions of the post 11. Therefore, the positional deviation between the tip of the emitter 1 and the extraction electrode 12 is mainly due to the tip of the emitter 1 being displaced laterally from the center of the diaphragm 12a, that is, the optical axis deviation.
[0017]
Due to this shift, the electron beam is emitted with an inclination angle from the optical axis, the electron beam is cut by the aperture 14a of the anode 14, and the central beam of the electron beam is not irradiated onto the sample. In general, the electron beam has higher brightness near the center of the beam, and has good properties with less aberration. Therefore, as an image of the electron microscope, the luminance is lowered and the resolution is lowered at the same time. In order to restore such an image, it is required to correct the optical axis shift of the electron beam.
[0018]
In order to achieve this, the present invention is characterized in that a mechanism for moving the tip of the emitter 1 laterally with respect to the aperture 12a without breaking the vacuum of the electron gun section is provided.
[0019]
First, when such a deviation occurs, the beam current at the optical axis of the electron beam is measured by inserting a beam current detector (not shown) such as a Faraday cup into the optical axis of the beam. Next, the operator confirms the value of the electron beam and adjusts the four shaft adjusting screws 17 to increase the beam current, that is, in the direction in which the center of the electron beam is aligned with the optical axis. Go together. This means that the emitter 1 is moved to the center of the aperture 12 a of the extraction electrode 12 by adjusting the shaft adjusting screw 17. As a result, the deviation between the emitter 1 and the diaphragm 12a of the extraction electrode 12 is corrected by adjusting the shaft adjusting screw 17 so that the current value of the electron beam becomes maximum.
[0020]
Therefore, the present invention does not break the vacuum of the electron gun section even if the emitter 1 changes its position with respect to the center of the aperture 20a of the extraction electrode 20 for some reason while using the thermal field emission electron gun. A change in position can be corrected by keeping the distance L between the tip of the emitter 1 and the extraction electrode 20 constant.
[0021]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above, and various modifications are possible. For example, a thermal field emission electron gun has been described as an electron gun, but a cold cathode field emission electron gun using an emitter at room temperature may be used. As confirmed by the change, the emission pattern of the emitter may be developed and displayed on the fluorescent plate disposed below and may be performed based on the change in the shape of the pattern.
[0022]
【The invention's effect】
As is clear from the above description, the top of the electron source vacuum tube is provided so as to partition the atmosphere and the vacuum, and a high-pressure introduction unit that introduces a high voltage from outside the vacuum into the vacuum, and the high-pressure introduction unit and the vacuum tube An airtight seal member that connects the two, a field emission cathode attached to the vacuum side lower surface of the high pressure introduction portion, an extraction electrode that is insulatedly attached to the vacuum cylinder so as to face the field emission cathode, and the high pressure A plurality of posts of the same length that are attached to the introduction part, the posts having a tip slidably contacting the extraction electrode, and a moving mechanism that moves the high-pressure introduction part in a horizontal direction from outside the vacuum, the post A voltage is applied to the extraction electrode through the electrode, and the relative position of the field emission cathode and the extraction electrode can be adjusted by the moving mechanism. Even if the emitter 1 changes its position with respect to the center of the diaphragm 20a of the extraction electrode 20 for some reason, the distance L between the tip of the emitter 1 and the extraction electrode 20 is kept constant without breaking the vacuum of the electron gun section. It is possible to correct the change in position.
[0023]
[Brief description of the drawings]
FIG. 1 is a sectional view of a basic structure of an embodiment of a thermal field emission electron gun of the present invention.
FIG. 2 is a cross-sectional view of a basic structure of a conventional thermal field emission electron gun.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Emitter, 2 ... Frament, 3 ... Filament terminal, 4 ... Insulator, 5 ... Suppressor electrode, 6 ... Fixing member, 7 ... High pressure introduction insulator, 8 ... Bellows, 9 ... Flange, 10 ... Thermal field emission cathode, 11 ... Post, 12 ... Extract electrode, 13 ... Insulator, 14 ... Anode, 15 ... Electron source vacuum tube, 16 ... High pressure introduction part, 17 ... Axis adjusting screw, 20 ... Extract electrode, 21 ... Extract electrode fixing member, 22 ... screw,

Claims (1)

電子源真空筒の頂部に大気と真空を仕切るように設けられ、真空外から真空内へ高電圧を導入する高圧導入部と、該高圧導入部と真空筒の間を接続する気密シール部材と、該高圧導入部の真空側下面に取り付けられた電界放射陰極と、該電界放射陰極と対向するように前記真空筒に絶縁的に取り付けられる引出電極と、前記高圧導入部に取り付けられる同じ長さの複数のポストであって先端が前記引出電極にスライド可能に当接するポストと、前記高圧導入部を真空外より水平方向に移動させる移動機構とを備え、前記ポストを通して前記引出電極に電圧を印加すると共に、前記移動機構によって前記電界放射陰極と前記引出電極に対する相対位置が調節可能とされていることを特徴とする熱電界放射型電子銃。A high-pressure introduction part that is provided at the top of the electron source vacuum cylinder so as to partition the atmosphere and the vacuum, introduces a high voltage from outside the vacuum into the vacuum, and an airtight seal member that connects the high-pressure introduction part and the vacuum cylinder; A field emission cathode attached to the vacuum side lower surface of the high pressure introduction part, an extraction electrode attached insulatively to the vacuum cylinder so as to face the field emission cathode, and the same length attached to the high pressure introduction part A plurality of posts, the tips of which are slidably in contact with the extraction electrode and a moving mechanism for moving the high-pressure introduction portion in a horizontal direction from outside the vacuum, and applying a voltage to the extraction electrode through the post The thermal field emission electron gun is characterized in that a relative position of the field emission cathode and the extraction electrode can be adjusted by the moving mechanism.
JP09719099A 1999-04-05 1999-04-05 Field emission electron gun Expired - Fee Related JP3766763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09719099A JP3766763B2 (en) 1999-04-05 1999-04-05 Field emission electron gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09719099A JP3766763B2 (en) 1999-04-05 1999-04-05 Field emission electron gun

Publications (2)

Publication Number Publication Date
JP2000294182A JP2000294182A (en) 2000-10-20
JP3766763B2 true JP3766763B2 (en) 2006-04-19

Family

ID=14185671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09719099A Expired - Fee Related JP3766763B2 (en) 1999-04-05 1999-04-05 Field emission electron gun

Country Status (1)

Country Link
JP (1) JP3766763B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001015192A1 (en) * 1999-08-20 2001-03-01 Fei Company Schottky emitter having extended life
JP3980404B2 (en) * 2002-05-15 2007-09-26 株式会社荏原製作所 Electron beam apparatus and device manufacturing method using the apparatus
JP3929873B2 (en) * 2002-10-30 2007-06-13 株式会社荏原製作所 Electron beam apparatus and device manufacturing method using the apparatus
JP4349964B2 (en) 2003-09-10 2009-10-21 株式会社日立ハイテクノロジーズ Small electron gun
JP5394763B2 (en) * 2009-02-04 2014-01-22 日本電子株式会社 Automatic incident axis alignment method for cold cathode electron gun
US11508544B2 (en) * 2018-09-25 2022-11-22 Hitachi High-Tech Corporation Thermoelectric field emission electron source and electron beam application device
US11929230B2 (en) * 2019-04-18 2024-03-12 Hitachi High-Tech Corporation Electron source and charged particle beam device
KR20220145384A (en) * 2020-04-23 2022-10-28 주식회사 히타치하이테크 Charged Particle Guns and Charged Particle Beam Systems

Also Published As

Publication number Publication date
JP2000294182A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
US5399860A (en) Electron optic column and scanning electron microscope
JPH071681B2 (en) Charged particle beam device
US2424790A (en) Electron microscope
JP5715866B2 (en) Multipole and aberration corrector or charged particle beam apparatus using the same
JP6374989B2 (en) Charged particle beam apparatus and method for manufacturing member for charged particle beam apparatus
JP2006324119A (en) Electron gun
JP3766763B2 (en) Field emission electron gun
US20200090897A1 (en) Charged particle beam device
US4137479A (en) Cathode ray tube having an electron lens system including a meshless scan expansion post deflection acceleration lens
US4544845A (en) Electron gun with a field emission cathode and a magnetic lens
JPH0266840A (en) Electron beam measuring instrument
JP3131339B2 (en) Cathode, cathode ray tube and method of operating cathode ray tube
US4798957A (en) Electron beam apparatus comprising an anode which is included in the cathode/Wehnelt unit
JP3720711B2 (en) Electron beam optical axis correction method
KR20010080286A (en) Improved thermal field emission alignment
JP2794221B2 (en) Color picture tube
Latham et al. The development of a high-definition cathode-ray tube using a carbon-fibre field-emission electron source
US5028838A (en) Grid assemblies for use in cathode ray tubes
JP3494152B2 (en) Scanning electron microscope
JPH1012176A (en) Shape observer
JP7502359B2 (en) Charged particle beam source and charged particle beam device
JPH01186539A (en) Cathode ray tube electron gun
GB2135503A (en) Accelerating and scan expansion electron lens system
JPH04357654A (en) Field emission type electron gun
JPH10321174A (en) Electron gun

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3766763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees