JP2002214125A - Light wave tomogram measuring high space resolution composite light source by multiple light wave light source - Google Patents

Light wave tomogram measuring high space resolution composite light source by multiple light wave light source

Info

Publication number
JP2002214125A
JP2002214125A JP2001007501A JP2001007501A JP2002214125A JP 2002214125 A JP2002214125 A JP 2002214125A JP 2001007501 A JP2001007501 A JP 2001007501A JP 2001007501 A JP2001007501 A JP 2001007501A JP 2002214125 A JP2002214125 A JP 2002214125A
Authority
JP
Japan
Prior art keywords
light source
light
wave
spatial resolution
high spatial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001007501A
Other languages
Japanese (ja)
Inventor
Manabu Sato
学 佐藤
Naohiro Tanno
直弘 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001007501A priority Critical patent/JP2002214125A/en
Publication of JP2002214125A publication Critical patent/JP2002214125A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a light wave tomogram measuring high space resolution composite light source by multiple light wave light sources capable of achieving cost reduction, miniaturization, weight reduction, simplification of the light source, and improvement of a space resolution. SOLUTION: This light wave tomogram measuring high space resolution composite light source by the multiple light wave light sources is equipped with the multiple light wave light sources comprising a plurality of semiconductor light-emitting elements 1-N set so that the center wavelength, the spectrum width, and the strength of each light source fulfill the optimum condition, an optical coupler 11 for coupling the outputs from the multiple light wave light sources, and a single fiber composite light source outputted from the optical coupler 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多光波光源による
光波断層画像測定用高空間分解能合成光源に関するもの
である。
[0001] 1. Field of the Invention [0002] The present invention relates to a high spatial resolution synthetic light source for measuring a light wave tomographic image using a multi-light wave light source.

【0002】[0002]

【従来の技術】図3に示すように、スペクトル関数は、
ウィーナーキンチンの定理でコヒーレンス関数とフーリ
エ変換で関係付けられている。
2. Description of the Related Art As shown in FIG.
It is related to the coherence function and the Fourier transform by Wiener-Kinchin's theorem.

【0003】したがって、スペクトル関数をガウス分布
と仮定すると、中心波長、スペクトル幅Δλより、コヒ
ーレンス長LC は厳密に(1)式で与えられる。光波コ
ヒーレンス断層画像化法では、奥行き空間分解能は原理
的にコヒーレンス長LC の半分で与えられる。よって、
如何にLC の短い光源を実現するかが問題となる。
Therefore, assuming that the spectral function is a Gaussian distribution, the coherence length L C is strictly given by equation (1) from the center wavelength and the spectral width Δλ. In lightwave coherence tomography, the depth spatial resolution is given in principle by half the coherence length L C. Therefore,
How do realizing short L C light source becomes a problem.

【0004】これに対して、米国のMITのグループ
は、レーザ光源にモードロックの技術を用いて、1μm
程度のコヒーレンス長を有する光源を実現させている
が、実用面では装置が大型、高価、操作が困難などの問
題がある(文献1:September 1,1999
/Vol.24,No.17/OPTICS LETT
ERS pp.1221−1223「In vivo
ultrahigh−resolution opti
cal coherence tomograph
y」)。
On the other hand, the MIT group in the United States uses a mode-locked technology for a laser
Although a light source having a coherence length of the order has been realized, there are problems in practical use such as a large-sized device, high cost, and difficulty in operation (Reference 1: September 1, 1999).
/ Vol. 24, no. 17 / OPTICS LETT
ERS pp. 1221-1223 "In vivo
ultrahigh-resolution option
cal coherence tomograph
y ").

【0005】一方、従来から、複数の光源を組み合わせ
てコヒーレンス長を短くする試みはなされてきた(文献
2−1:OPTICS LETTERS/Vol.1
8,No.6/March 15,1993.pp.4
62−464「Synthesized source
for white−light sensings
ystems、文献2−2:APPLIED OPTI
CS /Vol.33,No.31/1 Novemb
er 1994.pp.7326−7333)。
On the other hand, conventionally, attempts have been made to reduce the coherence length by combining a plurality of light sources (Ref. 2-1: OPTICS LETTERS / Vol. 1).
8, No. 6 / March 15, 1993. pp. 4
62-464 "Synthesized source
for white-light sensings
systems, reference 2-2: APPLIED OPTI
CS / Vol. 33, no. 31/1 November
er 1994. pp. 7326-7333).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、光波コ
ヒーレンス断層画像化法への応用を意図したものでない
ために、図4に示すようなサイドローブの問題がある
が、従来、この問題に対して詳細な検討はなされていな
かった(文献3:Journal of Biomed
ical.Optics 3(1)、45−54、Ja
nuary 1998)。
However, since it is not intended to be applied to light wave coherence tomography, there is a problem of a side lobe as shown in FIG. Has not been studied (Reference 3: Journal of Biomed).
ical. Optics 3 (1), 45-54, Ja
Nuary 1998).

【0007】本発明は、上記状況に鑑みて、コストダウ
ン、小型・軽量化、光源の簡素化に加えて、空間分解能
の向上を図ることができる多光波光源による光波断層画
像測定用高空間分解能合成光源を提供することを目的と
する。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a high spatial resolution for light wave tomographic image measurement by a multi-light source capable of improving spatial resolution in addition to cost reduction, downsizing and weight reduction, and simplification of a light source. It is an object to provide a synthetic light source.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、〔1〕多光波光源による光波断層画像測
定用高空間分解能合成光源であって、それぞれの光源の
中心波長、スペクトル幅、強度が最適条件を満たすよう
にセットされる複数個の光源からなる多光波光源と、こ
の多光波光源からの出力を結合する光結合器と、この光
結合器から出力される単一光波の合成光源とを具備する
ようにしたものである。
In order to achieve the above object, the present invention provides [1] a high spatial resolution synthetic light source for measuring a light wave tomographic image by a multi-light wave light source, wherein a center wavelength and a spectrum of each light source are obtained. A multi-light source composed of a plurality of light sources whose width and intensity are set to satisfy the optimum conditions, an optical coupler that combines outputs from the multi-light source, and a single optical wave output from the optical coupler And a combined light source.

【0009】〔2〕上記〔1〕記載の多光波光源による
光波断層画像測定用高空間分解能合成光源において、前
記複数個の光源は半導体発光素子であることを特徴とす
る。
[2] In the high spatial resolution synthetic light source for measuring an optical tomographic image by the multi-light source according to [1], the plurality of light sources are semiconductor light emitting elements.

【0010】〔3〕上記〔1〕又は〔2〕記載の多光波
光源による光波断層画像測定用高空間分解能合成光源に
おいて、前記光結合器は光ファイバーカプラーであるこ
とを特徴とする。
[3] In the high spatial resolution combined light source for light wave tomographic image measurement by the multi-light wave light source according to the above [1] or [2], the optical coupler is an optical fiber coupler.

【0011】〔4〕上記〔1〕記載の多光波光源による
光波断層画像測定用高空間分解能合成光源において、前
記複数個の光源からなる多光波光源の場合、コヒーレン
ス関数γ(x)を以下の式とする。
[4] In the high spatial resolution synthetic light source for light wave tomographic image measurement by the multi-light source according to [1], in the case of the multi-light source comprising the plurality of light sources, the coherence function γ (x) is expressed by Expression.

【0012】[0012]

【数2】 (Equation 2)

【0013】〔5〕上記〔4〕記載の多光波光源による
光波断層画像測定用高空間分解能合成光源において、中
心波長λが700nm〜830nm、光強度がI1
1、I 2,3 =0.2〜5、コヒーレンス長Lc が40n
m以下であることを特徴とする。
[5] Using the multi-light source described in [4].
In the high spatial resolution synthetic light source for lightwave tomographic image measurement,
The center wavelength λ is 700 nm to 830 nm, and the light intensity is I1=
1, I 2,3= 0.2-5, coherence length LcIs 40n
m or less.

【0014】〔6〕上記〔5〕記載の多光波光源による
光波断層画像測定用高空間分解能合成光源において、光
強度I1 =1.00、I2 =2.17、I3 =0.6
5、中心波長λ1 =700nm、λ2 =730nm、λ
3 =770nm、コヒーレンス長LC1=14.7μm、
C2=12.4μm、LC3=13.2μmからなる最適
パラメータを有することを特徴とする。
[6] In the high spatial resolution combined light source for light wave tomographic image measurement by the multi-light wave light source according to the above [5], the light intensity I 1 = 1.00, I 2 = 2.17, I 3 = 0.6
5. Center wavelength λ 1 = 700 nm, λ 2 = 730 nm, λ
3 = 770 nm, coherence length L C1 = 14.7 μm,
It is characterized by having optimum parameters of L C2 = 12.4 μm and L C3 = 13.2 μm.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0016】光波コヒーレンス断層画像化法では、得ら
れる断層データは、生体試料の屈折率分布と光源のコヒ
ーレンス関数との畳み込み積分であるので、コヒーレン
ス関数において中心のメインピーク幅の半分が光軸方向
の空間分解能になる。通常は、コヒーレンス関数のメイ
ンピーク幅(半値全幅)がコヒーレンス長と呼ばれ、こ
の1/2が深さ方向の分解能となる。よって、光軸方向
分解能ΔZ、コヒーレンス長lC 、スペクトル幅Δλな
どは次式で示される(図3参照)。
In the light wave coherence tomographic imaging method, the obtained tomographic data is a convolution integral of the refractive index distribution of the biological sample and the coherence function of the light source. Spatial resolution. Usually, the main peak width (full width at half maximum) of the coherence function is called a coherence length, and 1/2 of this is the resolution in the depth direction. Therefore, the optical axis direction resolution ΔZ, coherence length l C , spectrum width Δλ, and the like are represented by the following equations (see FIG. 3).

【0017】[0017]

【数3】 (Equation 3)

【0018】一方、コヒーレンス関数にサイドローブが
あり、それが無視できない場合は、バックグランドにな
り画像の分解能を低下させる。そこで、複数の波長の異
なる光源の光波を合成させた場合、中心のメインピーク
の幅を狭くする事は容易であるが、一般に大きなサイド
ローブが発生してしまう。よって、複数の波長の異なる
光源の光波を合成させた場合、コヒーレンス長LC とサ
イドローブ強度IS を同時に減少させるパラメータ条件
が重要である。
On the other hand, if there is a side lobe in the coherence function and it cannot be ignored, it becomes the background and lowers the resolution of the image. Therefore, when combining light waves from a plurality of light sources having different wavelengths, it is easy to narrow the width of the main peak at the center, but generally large side lobes are generated. Thus, if was synthesized light waves different light sources with multiple wavelengths, parameter condition to reduce the coherence length L C and the side-lobe intensity I S simultaneously is important.

【0019】これに対して、従来、複数の光源の波長、
スペクトル幅をパラメータとして検討が行われていたが
十分ではなかった。そこで、さらに実現可能な半導体発
光素子でのそれぞれの光波の強度を制御することによっ
て、コヒーレンス長LC の減少と同時にサイドローブ強
度IS の抑圧を可能とする方法を提案する。
On the other hand, conventionally, the wavelength of a plurality of light sources,
Although the study was carried out using the spectrum width as a parameter, it was not sufficient. In view of this, a method is proposed in which the coherence length L C can be reduced and the side lobe intensity I S can be suppressed at the same time by controlling the intensity of each light wave in the semiconductor light emitting device that can be further realized.

【0020】数値解析例を以下に述べる。図4のように
仮に3つの光源の場合、コヒーレンス関数γ(x)は次
式となる。
An example of a numerical analysis will be described below. In the case of three light sources as shown in FIG. 4, the coherence function γ (x) is expressed by the following equation.

【0021】[0021]

【数4】 (Equation 4)

【0022】ここで、Nは光源の数、Ii はi番目の光
強度、lciはi番目のコヒーレンス長、νI はi番目の
光の周波数、cは光速である。この時に、3つの光源の
強度、中心波長、波長幅を最適化のパラメータとする。
制限条件は、実際のデバイスを考慮して、中心波長:7
00nm−830nm、光強度:I1 =1,I2 3
0.2〜5、波長幅:<40nmのようにした。この
時、評価関数Fとして次式を定義する。
Here, N is the number of light sources, I i is the i-th light intensity, l ci is the i-th coherence length, v I is the frequency of the i-th light, and c is the speed of light. At this time, the intensity, center wavelength, and wavelength width of the three light sources are used as parameters for optimization.
The limiting condition is: center wavelength: 7 considering the actual device.
00 nm-830 nm, light intensity: I 1 = 1, I 2 , 3 =
0.2 to 5, wavelength width: <40 nm. At this time, the following equation is defined as the evaluation function F.

【0023】 F=W1 +W2 …(3) ここで、W1 はコヒーレンス関数の中心のメインピーク
の半値全幅で、W2 は中心のメインピークの5%の強度
での半値全幅である。この評価関数を用いる場合、サイ
ドローブを5%以下に押え込んだ状態で、ピーク幅の最
小パラメータ条件が得られる。
F = W 1 + W 2 (3) where W 1 is the full width at half maximum of the center main peak of the coherence function, and W 2 is the full width at half maximum of the center main peak at 5% intensity. When this evaluation function is used, the minimum parameter condition of the peak width can be obtained with the side lobe kept at 5% or less.

【0024】最適パラメータは、I1 :I2 :I3
1.00:2.17:0.65,λ1=700nm,λ
2 =730nm,λ3 =770nm,Lc1=14.7μ
m,L c2=12.4μm,Lc3=13.2μmと得られ
た。また、Δλは式(1)より求められる。
The optimal parameter is I1: ITwo: IThree=
1.00: 2.17: 0.65, λ1= 700 nm, λ
Two= 730 nm, λThree= 770 nm, Lc1= 14.7μ
m, L c2= 12.4 μm, Lc3= 13.2 μm
Was. Δλ is obtained from the equation (1).

【0025】図1は本発明にかかる最良強度比を有する
演算されたコヒーレンス機能のACの合成光源を示す図
であり、横軸に通路差(μm)、縦軸に規格化されたA
C(相対単位)を示している。有効コヒーレンス長さL
C は7.0μmであり、LC2の57%のみである。サイ
ドローブはメインパケット(メイン波束)の5%より低
い。
FIG. 1 is a view showing an AC composite light source having a calculated coherence function having the best intensity ratio according to the present invention. The horizontal axis represents the path difference (μm), and the vertical axis represents the normalized A.
C (relative unit) is shown. Effective coherence length L
C is 7.0 μm, which is only 57% of L C2 . Side lobes are less than 5% of the main packet (main wave packet).

【0026】コヒーレンス関数は、図1に示すように、
サイドローブが抑制されつつコヒーレンス長も単独の光
源のコヒーレンス長15μmに比べて7.3μmと約4
9%に低減されており、本発明の方法の有効性が示され
た。
The coherence function is, as shown in FIG.
While the side lobe is suppressed, the coherence length is 7.3 μm, which is about 4 compared to the coherence length of the single light source of 15 μm.
This was reduced to 9%, indicating the effectiveness of the method of the present invention.

【0027】図2は本発明の実施例を示す多光波光源に
よる光波断層画像測定用高空間分解能合成光源の構成図
である。
FIG. 2 is a configuration diagram of a high spatial resolution synthetic light source for measuring a light wave tomographic image using a multi-light wave light source according to an embodiment of the present invention.

【0028】図2に示すように、それぞれの光源の中心
波長、スペクトル幅、強度が最適条件を満たすようにセ
ットされて、汎用の安価な半導体発光素子又は光源から
なる多光波光源1〜Nからの出力を光ファイバーカプラ
ーなどの光結合器11で結合し、一つの光波として、例
えば単一のファイバー合成光源とすると、使用が容易で
ある。
As shown in FIG. 2, the center wavelength, the spectral width, and the intensity of each light source are set so as to satisfy the optimum conditions, and the multi-wave light sources 1 to N comprising general-purpose inexpensive semiconductor light emitting elements or light sources are used. Are combined by an optical coupler 11 such as an optical fiber coupler to form a single light wave, for example, a single fiber composite light source, which is easy to use.

【0029】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are possible based on the gist of the present invention, and these are not excluded from the scope of the present invention.

【0030】[0030]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、汎用の安価な半導体発光素子又は光源を用いた
合成光源で高空間分解能化が可能になることから、約一
桁のコストダウン、小型・軽量化、光源の簡素化から空
間分解能の向上を図ることができる。
As described in detail above, according to the present invention, high spatial resolution can be achieved with a general-purpose inexpensive semiconductor light-emitting element or a synthetic light source using a light source. Spatial resolution can be improved because of cost reduction, size and weight reduction, and simplification of the light source.

【0031】よって、医学分野では汎用化に伴う医療サ
ービスの向上、さらに、半導体産業分野への需要拡大な
ど、その波及的効果は著大である。
Therefore, in the field of medicine, the ripple effect is remarkable, such as improvement of medical services due to generalization and expansion of demand in the semiconductor industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる最良強度比を有する演算された
コヒーレンス機能のACの合成光源を示す図であり、有
効コヒーレンス長さLC は7.0μmであり、LC2の5
7%のみである。サイドローブはメインパケット(メイ
ン波束)の5%より低い。
FIG. 1 is a diagram illustrating an AC combined light source having a calculated coherence function having the best intensity ratio according to the present invention, wherein an effective coherence length L C is 7.0 μm and L C2 is 5;
Only 7%. Side lobes are less than 5% of the main packet (main wave packet).

【図2】本発明の実施例を示す多光波光源による光波断
層画像測定用高空間分解能合成光源の構成図である。
FIG. 2 is a configuration diagram of a high-spatial-resolution combined light source for measuring a lightwave tomographic image using a multi-lightwave light source according to an embodiment of the present invention.

【図3】スペクトル関数とコヒーレンス関数とのフーリ
エ変換による関係付けの説明図である。
FIG. 3 is an explanatory diagram of a relation between a spectral function and a coherence function by a Fourier transform.

【図4】従来技術のサイドローブの問題を示す図であ
る。
FIG. 4 is a diagram illustrating a problem of a side lobe in the related art.

【符号の説明】[Explanation of symbols]

1〜N 複数の半導体発光素子(多光波光源) 11 光結合器(光ファイバーカプラー) 1 to N Plural semiconductor light emitting elements (multi-wave light source) 11 Optical coupler (optical fiber coupler)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】(a)それぞれの光源の中心波長、スペク
トル幅、強度が最適条件を満たすようにセットされる、
複数個の光源からなる多光波光源と、(b)該多光波光
源からの出力を結合する光結合器と、(c)該光結合器
から出力される単一光波の合成光源とを具備する多光波
光源による光波断層画像測定用高空間分解能合成光源。
(A) a center wavelength, a spectral width, and an intensity of each light source are set so as to satisfy an optimum condition;
A multi-wave light source comprising a plurality of light sources; (b) an optical coupler for combining outputs from the multi-light source; and (c) a combined light source for a single light wave output from the optical coupler. High spatial resolution synthetic light source for light wave tomographic image measurement using multiple light source.
【請求項2】 請求項1記載の多光波光源による光波断
層画像測定用高空間分解能合成光源において、前記複数
個の光源は半導体発光素子であることを特徴とする多光
波光源による光波断層画像測定用高空間分解能合成光
源。
2. A high-spatial-resolution synthetic light source for measuring an optical tomographic image by using a multi-light source according to claim 1, wherein the plurality of light sources are semiconductor light-emitting elements. For high spatial resolution synthetic light source.
【請求項3】 請求項1又は2記載の多光波光源による
光波断層画像測定用高空間分解能合成光源において、前
記光結合器は光ファイバーカプラーであることを特徴と
する多光波光源による光波断層画像測定用高空間分解能
合成光源。
3. A high-resolution spatial light source according to claim 1, wherein said optical coupler is an optical fiber coupler. 3. The multi-wavelength light source according to claim 1, wherein said optical coupler is an optical fiber coupler. For high spatial resolution synthetic light source.
【請求項4】 請求項1記載の多光波光源による光波断
層画像測定用高空間分解能合成光源において、前記複数
個の光源からなる多光波光源の場合、コヒーレンス関数
γ(x)を以下の式とする多光波光源による光波断層画
像測定用高空間分解能合成光源。 【数1】
4. A high spatial resolution synthetic light source for measuring an optical tomographic image by a multi-light source according to claim 1, wherein in the case of a multi-light source comprising a plurality of light sources, a coherence function γ (x) is represented by the following equation. High spatial resolution synthetic light source for light wave tomographic image measurement using a multi-wave light source. (Equation 1)
【請求項5】 請求項4記載の多光波光源による光波断
層画像測定用高空間分解能合成光源において、中心波長
λが700nm〜830nm、光強度がI1=1、I
2,3 =0.2〜5、コヒーレンス長Lc が40nm以下
であることを特徴とする多光波光源による光波断層画像
測定用高空間分解能合成光源。
5. A high spatial resolution synthetic light source for lightwave tomographic image measurement using a multi-lightwave light source according to claim 4, wherein the center wavelength λ is 700 nm to 830 nm, the light intensity is I 1 = 1, and I
2,3 = 0.2-5, high spatial resolution synthetic light source lightwave tomography measurement with multiwave source, wherein the coherence length L c is 40nm or less.
【請求項6】 請求項5記載の多光波光源による光波断
層画像測定用高空間分解能合成光源において、光強度I
1 =1.00、I2 =2.17、I3 =0.65、中心
波長λ1 =700nm、λ2 =730nm、λ3 =77
0nm、コヒーレンス長LC1=14.7μm、LC2=1
2.4μm、LC3=13.2μmからなる最適パラメー
タを有することを特徴とする多光波光源による光波断層
画像測定用高空間分解能合成光源。
6. A high spatial resolution synthetic light source for measuring a tomographic image of a light wave by the multi-wave light source according to claim 5, wherein
1 = 1.00, I 2 = 2.17, I 3 = 0.65, center wavelength λ 1 = 700 nm, λ 2 = 730 nm, λ 3 = 77
0 nm, coherence length L C1 = 14.7 μm, L C2 = 1
A high spatial resolution combined light source for lightwave tomographic image measurement by a multi-lightwave light source, having an optimum parameter of 2.4 μm and L C3 = 13.2 μm.
JP2001007501A 2001-01-16 2001-01-16 Light wave tomogram measuring high space resolution composite light source by multiple light wave light source Pending JP2002214125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001007501A JP2002214125A (en) 2001-01-16 2001-01-16 Light wave tomogram measuring high space resolution composite light source by multiple light wave light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001007501A JP2002214125A (en) 2001-01-16 2001-01-16 Light wave tomogram measuring high space resolution composite light source by multiple light wave light source

Publications (1)

Publication Number Publication Date
JP2002214125A true JP2002214125A (en) 2002-07-31

Family

ID=18875242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007501A Pending JP2002214125A (en) 2001-01-16 2001-01-16 Light wave tomogram measuring high space resolution composite light source by multiple light wave light source

Country Status (1)

Country Link
JP (1) JP2002214125A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212428A (en) * 2006-01-11 2007-08-23 Fujifilm Corp Light source apparatus and optical tomography imaging apparatus
US7538884B2 (en) 2006-12-07 2009-05-26 Fujifilm Corporation Optical tomographic imaging apparatus
US7570364B2 (en) 2006-12-07 2009-08-04 Fujifilm Corporation Optical tomographic imaging apparatus
US7751056B2 (en) 2006-11-17 2010-07-06 Fujifilm Corporation Optical coherence tomographic imaging apparatus
US7830524B2 (en) 2006-11-17 2010-11-09 Fujifilm Corporation Optical tomograph using a plurality of wavelength-swept light beams
US7852484B2 (en) 2006-12-07 2010-12-14 Fujifilm Corporation Light control unit, optical tomographic imaging method and apparatus
US7864331B2 (en) 2006-11-17 2011-01-04 Fujifilm Corporation Optical coherence tomographic imaging apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212428A (en) * 2006-01-11 2007-08-23 Fujifilm Corp Light source apparatus and optical tomography imaging apparatus
US7423761B2 (en) 2006-01-11 2008-09-09 Fujifilm Corporation Light source apparatus and optical tomography imaging apparatus
JP4727517B2 (en) * 2006-01-11 2011-07-20 富士フイルム株式会社 Light source device and optical tomographic imaging device
US7751056B2 (en) 2006-11-17 2010-07-06 Fujifilm Corporation Optical coherence tomographic imaging apparatus
US7830524B2 (en) 2006-11-17 2010-11-09 Fujifilm Corporation Optical tomograph using a plurality of wavelength-swept light beams
US7864331B2 (en) 2006-11-17 2011-01-04 Fujifilm Corporation Optical coherence tomographic imaging apparatus
US7538884B2 (en) 2006-12-07 2009-05-26 Fujifilm Corporation Optical tomographic imaging apparatus
US7570364B2 (en) 2006-12-07 2009-08-04 Fujifilm Corporation Optical tomographic imaging apparatus
US7852484B2 (en) 2006-12-07 2010-12-14 Fujifilm Corporation Light control unit, optical tomographic imaging method and apparatus

Similar Documents

Publication Publication Date Title
JP4727517B2 (en) Light source device and optical tomographic imaging device
JP3796550B2 (en) Optical interference tomography device
US7570364B2 (en) Optical tomographic imaging apparatus
JP4362631B2 (en) Variable wavelength light generator
US7576866B2 (en) Optical tomography system
US7864331B2 (en) Optical coherence tomographic imaging apparatus
US7830524B2 (en) Optical tomograph using a plurality of wavelength-swept light beams
US7852484B2 (en) Light control unit, optical tomographic imaging method and apparatus
US7751056B2 (en) Optical coherence tomographic imaging apparatus
JP5203951B2 (en) Spectral and frequency encoded fluorescence imaging
US7538884B2 (en) Optical tomographic imaging apparatus
US8836951B2 (en) Imaging device for optical coherence tomographic image and imaging method
US20070086012A1 (en) Optical tomography system
JP2005125092A (en) En-face functional imaging using multiple wave length
JP2008145429A (en) Optical tomographic imaging system
WO2017181259A1 (en) Multi-fiber optical probe and optical coherence tomography system
JP2002214125A (en) Light wave tomogram measuring high space resolution composite light source by multiple light wave light source
JP2007212376A (en) Optical tomographic imaging device
US20150077757A1 (en) Optical tomographic image acquiring device
CN211381296U (en) OCT imaging system
JP3626149B2 (en) High spatial resolution synthetic light source for optical tomographic image measurement
TW201827865A (en) Light source and optical coherence tomography using the same
JP2013182915A (en) Light source device and optical interference tomographic imaging apparatus using the same
JP2009094372A (en) Optical semiconductor element, and optical interference tomographic image device using the same
KR20150057325A (en) Apparatus for Broadband and Multiband Wavelength-Swept Resonator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130