JP2002214034A - Device and method for computing and confirming vibration level of high-speed rotary equipment - Google Patents

Device and method for computing and confirming vibration level of high-speed rotary equipment

Info

Publication number
JP2002214034A
JP2002214034A JP2001010747A JP2001010747A JP2002214034A JP 2002214034 A JP2002214034 A JP 2002214034A JP 2001010747 A JP2001010747 A JP 2001010747A JP 2001010747 A JP2001010747 A JP 2001010747A JP 2002214034 A JP2002214034 A JP 2002214034A
Authority
JP
Japan
Prior art keywords
vibration
mode
level
rotor
vibration level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001010747A
Other languages
Japanese (ja)
Inventor
Ryoji Koi
良治 小井
Takanori Fukuda
高則 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2001010747A priority Critical patent/JP2002214034A/en
Publication of JP2002214034A publication Critical patent/JP2002214034A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for easily and accurately computing the level of equipment self-vibration in cylindrical mode that high-speed rotary equipment causes by relatively high-speed rotation. SOLUTION: This vibration level computing and confirming device 1 has a rotational frequency detecting means 5, a vibration detecting means 6, a filter 7 which passes only a vibration output of the frequency band of vibration in conic mode, and an arithmetic means 8 which computes the vibration level of the equipment in the conic mode from the vibration output passed through the filter 7 and then linearly converts the vibration level in the conic mode to compute the vibration level of the equipment in the cylindrical mode. The vibration level in the cylindrical mode is computed according to linear correlation characteristics found between the vibration level in the conic mode and the vibration level in the cylindrical level. The rotary equipment needs not be placed in high-rotating operation wherein vibration in the cylindrical mode is caused and the vibration level in the cylindrical mode which is a problem regarding noise is easily and accurately confirmed and can be utilized for shipment management.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高速回転機器の自
励振動の大きさを演算し確認する装置及び方法に関す
る。
The present invention relates to an apparatus and method for calculating and confirming the magnitude of self-excited vibration of a high-speed rotating device.

【0002】[0002]

【従来の技術】従来から回転機器の振動及びそれに伴う
騒音を防止する目的で、フィールドバランスによる方法
や釣り合い試験機を用いる方法によってバランス調整が
実施されている。しかしながら、これらの方法には、例
えば前者については、効率が悪いこと、そして後者につ
いては、ロータの分解組立が必要な機器の場合等では、
ロータをハウジングに納める組立時にバランスが狂うた
め、精度の高いバランス修正が困難になること等の問題
がある。特に、ターボチャージャ等のように分解組立が
必要なロータで、回転数が毎分数十万回転以上に及ぶ場
合には、ロータが高速回転すると微少なアンバランスで
も遠心力が回転数の2乗で増すため、その周りのハウジ
ングに振動や騒音が発生する。そこで、これらの問題を
解決するために従来技術(特開平6−82328)で
は、ロータが回転機器に組み込まれた状態で効率的にア
ンバランス修正を行う方法が提案されている。それは、
支持ばねによって支持される剛性台に、バランス調整対
象の高速回転機器を搭載し、高速回転機器の回転による
剛性台の共振回転数近傍での振動量を検出することによ
って、アンバランス修正を行うものである。
2. Description of the Related Art Conventionally, for the purpose of preventing the vibration of a rotating device and the accompanying noise, balance adjustment has been carried out by a method using a field balance or a method using a balance tester. However, these methods are, for example, inefficient for the former, and for the latter in the case of equipment that requires disassembly and assembly of the rotor, etc.
When the rotor is put in the housing, the balance is out of order at the time of assembly, so that it is difficult to correct the balance with high accuracy. In particular, in the case of a rotor that requires disassembly and reassembly such as a turbocharger and the number of rotations exceeds several hundred thousand rotations per minute, if the rotor rotates at high speed, the centrifugal force becomes the square of the number of rotations even with a slight imbalance. As a result, vibration and noise are generated in the surrounding housing. In order to solve these problems, the prior art (Japanese Patent Laid-Open No. Hei 6-82328) proposes a method for efficiently correcting imbalance in a state where the rotor is incorporated in a rotating device. that is,
A high-speed rotating device to be balanced is mounted on a rigid table supported by a support spring, and the imbalance is corrected by detecting the amount of vibration of the rigid table near the resonance frequency due to the rotation of the high-speed rotating device. It is.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来技
術の手段では、アンバランス修正により回転一次の振動
(即ち、回転数と等しい周波数の振動)及びそれに伴う
騒音は低減することが出来るが、軸受の油膜の作用に起
因するロータの自励振動による振動及び騒音は管理出来
ておらず、車両等への搭載後にロータの自励振動による
騒音が問題となる場合がある。
However, in the prior art means, the primary vibration of rotation (i.e., the vibration having the frequency equal to the rotation speed) and the accompanying noise can be reduced by the imbalance correction, but the bearing is not capable of being rotated. The vibration and noise due to the self-excited vibration of the rotor due to the action of the oil film cannot be controlled, and the noise due to the self-excited vibration of the rotor may become a problem after mounting on a vehicle or the like.

【0004】高速回転機器のロータで発生する自励振動
には、比較的低回転で発生する円錐モードと比較的高回
転で発生する円筒モードの2種類があるが、主に円筒モ
ードの自励振動がホワール音等と呼ばれる騒音の原因と
なっている。このため、回転機器の出荷時に円筒モード
の振動レベル(例えば振幅等)を直接測定して管理しよ
うとすると、高回転まで運転することが必要となり、測
定装置の構成が複雑になる、あるいは測定に時間と手間
を要するという問題が発生する。
There are two types of self-excited vibration generated by a rotor of a high-speed rotating machine: a conical mode generated at a relatively low rotation speed and a cylindrical mode generated at a relatively high rotation speed. The vibration causes a noise called a whirling sound. For this reason, if it is attempted to directly measure and manage the vibration level (for example, amplitude, etc.) in the cylindrical mode at the time of shipment of the rotating equipment, it is necessary to operate up to a high rotation speed, which complicates the configuration of the measuring device or makes the measurement difficult. The problem that time and effort is required arises.

【0005】本発明では、上記問題点に鑑み、ロータの
自励振動、特に比較的高回転で発生する円筒モードの振
動に起因する機器の振動の振動レベルを簡便且つ正確に
算出することができ、出荷管理に利用し得る高速回転機
器の振動レベル演算確認装置及び方法を提供する。
In the present invention, in view of the above problems, it is possible to simply and accurately calculate the vibration level of self-excited vibration of the rotor, particularly the vibration of the equipment caused by the cylindrical mode vibration generated at a relatively high rotation speed. And a method and apparatus for checking and calculating the vibration level of a high-speed rotating device that can be used for shipping management.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に請求項1に記載の手段を採用することが出来る。
Means for Solving the Problems To solve the above problems, the means described in claim 1 can be adopted.

【0007】請求項1に記載の装置によれば、比較的低
回転で発生するロータの円錐モードの自励振動に起因す
る機器の振動の振動レベル(即ち、円錐モードでの機器
振動レベル)に基づいて比較的高回転で発生するロータ
の円筒モードの自励振動に起因する機器の振動の振動レ
ベル(即ち、円筒モードでの機器振動レベル)を算出す
ることが可能となる。これは、円錐モードでの機器振動
レベルと円筒モードでの機器振動レベルとの間に見出さ
れた、図2に示すような線形的な相関特性に基づいて算
出されるものである。
According to the first aspect of the present invention, the vibration level of the equipment vibration caused by the self-excited vibration in the conical mode of the rotor generated at a relatively low rotation (ie, the vibration level of the equipment in the conical mode) is reduced. Based on this, it is possible to calculate the vibration level of the device vibration caused by the self-excited vibration in the cylindrical mode of the rotor generated at a relatively high rotation (ie, the device vibration level in the cylindrical mode). This is calculated based on a linear correlation characteristic as shown in FIG. 2 found between the device vibration level in the conical mode and the device vibration level in the cylindrical mode.

【0008】従って、請求項1に記載の装置によって、
高速回転機器を実際に円筒モードの振動が発生するよう
な高回転で運転することなく、簡便且つ正確に騒音上問
題となる円筒モードでの振動レベルを確認することがで
き、これを出荷管理に利用することが出来る。
[0008] Therefore, by the device according to claim 1,
Without actually operating high-speed rotating equipment at high rotations that generate cylindrical mode vibrations, it is possible to easily and accurately check the vibration level in the cylindrical mode, which is a noise problem, and use this for shipping management. Can be used.

【0009】又、請求項4に記載の方法によっても同様
に、比較的低回転で発生するロータの円錐モードの自励
振動に起因する機器の振動の振動レベルに基づいて比較
的高回転で発生するロータの円筒モードの自励振動に起
因する機器の振動の振動レベルを算出するので、高速回
転機器を実際に円筒モードの振動が発生するような高回
転で運転することなく、簡便且つ正確に騒音上問題とな
る円筒モードでの振動レベルを確認することができ、こ
れを出荷管理に利用することが出来る。
In the same manner, according to the method of the fourth aspect, the motor is generated at a relatively high rotation speed based on the vibration level of the vibration of the equipment caused by the self-excited vibration in the conical mode of the rotor generated at a relatively low rotation speed. Calculates the vibration level of the vibration of the device caused by the self-excited vibration of the cylindrical mode of the rotor, so that the high-speed rotating device is simply and accurately operated without operating at a high rotation at which the vibration of the cylindrical mode actually occurs. The vibration level in the cylindrical mode, which is a problem in noise, can be confirmed, and this can be used for shipping management.

【0010】[0010]

【発明の実施の形態】本発明の実施形態の装置構成を説
明する前に、まず、本発明と極めて関わりの深い、ター
ボチャージャ等の高速回転機器で発生する振動及びそれ
に伴う騒音等に関する事項について説明する。図1は、
高速回転機器の振動の振動成分の周波数と高速回転機器
のロータ回転数との関係を例示的且つ概念的に示したも
のである。図中に示された直線及び曲線が振動の発生す
る回転数及び発生する振動の周波数の関係を示し、夫々
の直線及び曲線が通っている各円の大きさはその振動の
振動レベルの大きさ(例えば、振幅等)を相対的に示し
ている。表現上、これらの円は、図中で直線及び曲線に
沿って不連続的に示されているが、実際の振動レベルの
大きさは、隣り合う円の間において、その隣り合う円の
夫々の大きさが示す相対的な振動レベルの間の振動レベ
ルで連続的に変化する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing the configuration of the apparatus according to the embodiment of the present invention, first, matters related to vibration generated by a high-speed rotating device such as a turbocharger and noise associated therewith, which are very closely related to the present invention. explain. FIG.
FIG. 3 is a diagram illustratively and conceptually showing a relationship between the frequency of the vibration component of the vibration of the high-speed rotating device and the number of rotations of the rotor of the high-speed rotating device. The straight lines and curves shown in the figure show the relationship between the number of rotations at which the vibration occurs and the frequency of the generated vibration, and the size of each circle through which the straight line and the curve pass is the magnitude of the vibration level of the vibration. (For example, amplitude). For the sake of representation, these circles are shown discontinuously along the straight line and the curve in the figure, but the magnitude of the actual vibration level depends on each of the adjacent circles between the adjacent circles. It varies continuously at vibration levels between the relative vibration levels indicated by the magnitudes.

【0011】図1に示すように、高速回転機器から発生
する振動は、ロータのアンバランスに起因する回転一次
の振動、即ち回転数と等しい周波数の振動(「1次」の
直線で示される)と、軸受の油膜の作用によるロータの
自励振動に大別される。更に、自励振動には、比較的低
回転で発生する円錐モードと比較的高回転で発生する円
筒モードの2種類がある(円錐モードの自励振動は、更
に詳細には、円錐モードを生じる回転数の中での低回転
域で生ずるハーフホワール現象による円錐モードの振動
と、円錐モードを生じる回転数の中での高回転域でのオ
イルホイップ現象による円錐モードの振動に分けられる
が、本明細書では説明の便宜上、円錐モードの自励振動
といった場合には、後者の振動を指すものとする)。図
1に示すように、円錐モード及び円筒モードで発生する
振動の周波数は、同じ振動系(回転機器)に対しては各
モードにおいてその振動の発生する回転数に関わりなく
ほぼ一定であり、一般に円筒モードにおける振動の周波
数の方が円錐モードにおける振動の周波数よりも大き
い。そして上述したように、主に円筒モードの自励振動
がホワール音等と呼ばれる騒音の原因となっている。
As shown in FIG. 1, the vibration generated from the high-speed rotating equipment is a primary vibration of rotation caused by imbalance of the rotor, that is, a vibration having a frequency equal to the number of rotations (shown by a "primary" straight line). And self-excited vibration of the rotor due to the effect of the oil film of the bearing. Further, there are two types of self-excited vibrations: a conical mode generated at a relatively low rotation and a cylindrical mode generated at a relatively high rotation (the self-excited vibration of the conical mode generates the conical mode more specifically). Conical mode vibration caused by the half-whirl phenomenon that occurs in the low rotational speed range of rotational speed, and conical mode vibration caused by the oil whip phenomenon in the high rotational speed range that generates the conical mode. In the specification, for the sake of convenience of description, the case of self-excited vibration in a conical mode refers to the latter vibration). As shown in FIG. 1, the frequencies of the vibrations generated in the conical mode and the cylindrical mode are substantially constant for the same vibration system (rotating device) regardless of the number of rotations at which the vibration occurs in each mode. The frequency of vibration in the cylindrical mode is higher than the frequency of vibration in the conical mode. As described above, the self-excited vibration mainly in the cylindrical mode is a cause of noise called whirling noise or the like.

【0012】当然のことながら、同タイプの回転機器で
あっても、個々の機器毎に軸受クリアランスが異なるこ
と等からその自励振動による振動レベルは異なる。発明
者らは、ターボチャージャ等の高速回転機器において自
励振動により発生する振動に関し、ロータの円錐モード
の自励振動によって発生する機器の振動の振動レベル
(即ち、円錐モードでの機器振動レベル)とロータの円
筒モードの自励振動によって発生する機器の振動の振動
レベル(即ち、円筒モードでの機器振動レベル)との間
には、一般に図2に示すような線形的な相関関係がある
ことを見出した。図2は、複数の同タイプの回転機器に
ついて、機器毎に夫々円錐モードと円筒モードの自励振
動の生ずる回転数における振動を測定し、その測定され
た振動出力から各モードの振動に起因する各モードでの
振動レベルを求め、その値をプロットしたものである。
図2の場合は、9個の機器について測定を行い特性直線
を得ている。図2に示されたように、ロータが比較的高
回転の時に生ずる円筒モードでの機器振動レベルとロー
タが比較的低回転の時に生ずる円錐モードでの機器振動
レベルとは比例する。従って、対象となる振動系(即
ち、回転機器)についての図2のような相関特性を求め
ておけば、同タイプの振動系(即ち、同タイプの回転機
器)については、この相関特性を利用して、比較的低回
転時に発生する円錐モードでの機器振動レベルを測定す
ることによって、比較的高回転時に発生し、騒音の原因
となる円筒モードでの機器振動レベルを算出することが
出来る。
As a matter of course, even with the same type of rotating equipment, the vibration level due to self-excited vibration is different because the bearing clearance differs for each equipment. The inventors relate to vibration generated by self-excited vibration in a high-speed rotating device such as a turbocharger, and the vibration level of the device vibration generated by self-excited vibration in the conical mode of the rotor (that is, the device vibration level in the conical mode). In general, there is a linear correlation between the vibration level of the vibration of the device generated by the self-excited vibration of the rotor in the cylindrical mode (that is, the vibration level of the device in the cylindrical mode) as shown in FIG. Was found. FIG. 2 shows a plurality of rotating devices of the same type, in which the vibration at the rotation speed at which self-excited vibration in the conical mode and the cylindrical mode is measured for each device, and the vibration output in each mode is derived from the measured vibration output. The vibration level in each mode is obtained and the value is plotted.
In the case of FIG. 2, measurement is performed on nine devices to obtain a characteristic straight line. As shown in FIG. 2, the machine vibration level in the cylindrical mode that occurs when the rotor rotates at a relatively high speed is proportional to the machine vibration level that occurs in the conical mode when the rotor rotates at a relatively low speed. Accordingly, if the correlation characteristics as shown in FIG. 2 for the target vibration system (that is, the rotating device) are determined, the correlation characteristics are used for the same type of vibration system (that is, the same type of rotating device). Then, by measuring the device vibration level in the conical mode generated at a relatively low rotation speed, it is possible to calculate the device vibration level in the cylindrical mode generated at a relatively high rotation speed and causing noise.

【0013】本発明は、このような原理を利用したもの
であり、以下で本発明の一つの装置構成例としてターボ
チャージャの振動レベル演算確認装置について説明す
る。
The present invention utilizes such a principle, and a description will be given below of a turbocharger vibration level calculation confirmation device as an example of a device configuration of the present invention.

【0014】図3に本発明の一実施形態であるターボチ
ャージャの振動レベル演算確認装置1を示す。振動レベ
ル演算確認装置1は、測定対象機器である半組立状態の
ターボチャージャ3が止金4で固定される、図示しない
架台に固定された取付けハウジング2と、この半組立状
態のターボチャージャ3の回転数及び基準位相を検出す
る回転数検出手段5と、取付けハウジング2に取付けら
れ振動を測定する振動検出手段6と、この振動検出手段
6の出力(即ち振動出力)のうち、回転軸32の円錐モ
ードの自励振動による振動の周波数帯の出力のみを通す
フィルタ7と、フィルタ7を通して得られる円錐モード
での振動の出力に基づき円筒モードでの振動レベルを算
出する演算手段8とを有して構成される。より詳細に
は、演算手段8においては、フィルタ7を通して得られ
るロータの円錐モードの自励振動に起因するターボチャ
ージャ(機器)3の振動の振動出力に基づいて、まずロ
ータの円錐モードの振動に起因する機器の振動レベル
(振幅等)が算出され、次いでこの算出された円錐モー
ドでの振動レベルに基づき、予め求められ演算手段8に
入力された測定対象機器と同タイプの機器に対する円錐
モードでの機器振動レベルと円筒モードでの機器振動レ
ベルとの上述したような相関関係を利用して、円筒モー
ドでの機器振動レベルを算出する。
FIG. 3 shows an apparatus 1 for checking and calculating the vibration level of a turbocharger according to an embodiment of the present invention. The vibration level calculation confirmation device 1 includes a mounting housing 2 fixed to a stand (not shown) in which a turbocharger 3 in a semi-assembled state, which is a device to be measured, is fixed with a clasp 4, and a turbocharger 3 in the semi-assembled state. A rotational speed detecting means 5 for detecting a rotational speed and a reference phase, a vibration detecting means 6 attached to the mounting housing 2 for measuring vibration, and an output of the vibration detecting means 6 (that is, a vibration output), The filter 7 has a filter 7 that allows only the output of the frequency band of the vibration caused by the self-excited vibration in the conical mode, and a calculating unit 8 that calculates the vibration level in the cylindrical mode based on the output of the vibration in the conical mode obtained through the filter 7. It is composed. More specifically, the calculating means 8 first converts the vibration in the cone mode of the rotor based on the vibration output of the vibration of the turbocharger (device) 3 caused by the self-excited vibration in the cone mode of the rotor obtained through the filter 7. The vibration level (amplitude, etc.) of the device attributable to this is calculated. Then, based on the calculated vibration level in the conical mode, the vibration level is calculated in advance in the conical mode for the device of the same type as the device to be measured input to the calculating means 8 in advance. The apparatus vibration level in the cylindrical mode is calculated using the above-described correlation between the apparatus vibration level of the apparatus and the apparatus vibration level in the cylindrical mode.

【0015】上記半組立状態のターボチャージャ3は大
別して回転体とこれを回転自在に支持するハウジング部
からなる。回転体は、回転軸32と、回転軸32の一端
に接合されたタービンロータ31と、回転軸32の他端
に固定されたコンプレッサーロータ33とからなってお
り、コンプレッサーロータ33はその回転中心部を回転
軸32によって貫通され、ナット34によって締め付け
固定される。回転体はセンターハウジング35によって
支持されるが、実際に使用される場合はセンターハウジ
ング35の両側に夫々タービンハウジングとコンプレッ
サハウジングが装着されることになる。センターハウジ
ング35は2箇所に設けられた軸受36によって回転軸
32を支持するようになっている。これら軸受36に潤
滑用オイルを供給するように、オイル供給路35aに通
じる開口にはオイル供給源(図示無し)から延在するオ
イル供給管9aが配置され、下方のオイル排出口35b
にはオイル排出管9bが配置される。
The turbocharger 3 in the semi-assembled state is roughly composed of a rotating body and a housing for rotatably supporting the rotating body. The rotating body includes a rotating shaft 32, a turbine rotor 31 joined to one end of the rotating shaft 32, and a compressor rotor 33 fixed to the other end of the rotating shaft 32. Through the rotating shaft 32 and fastened and fixed by the nut 34. The rotating body is supported by the center housing 35. In actual use, the turbine housing and the compressor housing are mounted on both sides of the center housing 35, respectively. The center housing 35 supports the rotating shaft 32 by bearings 36 provided at two places. An oil supply pipe 9a extending from an oil supply source (not shown) is disposed at an opening communicating with the oil supply passage 35a so as to supply lubricating oil to these bearings 36, and a lower oil discharge port 35b is provided.
Is provided with an oil discharge pipe 9b.

【0016】次に図4のフローチャートに基づいて本実
施形態の円筒モードでの機器振動レベルの算出操作並び
に算出値の出荷可否判断への利用について説明する。な
お、図4の操作のスタートの時点において、演算手段8
には、測定対象機器と同タイプの機器に対する上述した
ような円錐モードでの機器振動レベルと円筒モードでの
機器振動レベルとの相関特性と、出荷可否の判定に使用
される測定対象機器の円筒モードでの機器振動レベルの
閾値とが既に入力されている。
Next, the operation of calculating the vibration level of the apparatus in the cylindrical mode and the use of the calculated value for determining whether or not the shipment is possible will be described with reference to the flowchart of FIG. At the start of the operation shown in FIG.
The correlation characteristics between the device vibration level in the conical mode and the device vibration level in the cylindrical mode as described above for devices of the same type as the device to be measured, and the cylindrical shape of the device to be measured used to determine whether shipment is possible. The threshold value of the device vibration level in the mode has already been input.

【0017】図4に示した操作がスタートすると、まず
ステップ1において、測定対象機器であるターボチャー
ジャを、その回転数をロータが円錐モードの振動を発生
する範囲(例えば、図1のような振動特性を有する機器
の場合には5万〜10万rpm)で変化(スイープ)させ
て運転し、回転軸32の回転により発生する機器の振動
を振動検出手段6により測定する。測定された振動出力
はフィルタ7へ送られる。次にステップ2において、振
動検出手段6により測定した振動出力のうち、ロータの
円錐モードの振動による機器の振動の周波数帯の振動出
力のみをフィルタ7により抽出する。フィルタ7は、例
えば、図1のような振動特性を有する機器の場合には、
好ましくは600Hz以下の振動出力を通すローパスフ
ィルタ、あるいは400〜600Hzを通すバンドパス
フィルタである。フィルタ7を通過した振動出力は演算
手段8へ送られる。次にステップ3において、演算手段
8がフィルタ7により抽出したロータの円錐モードの振
動による機器の振動の周波数帯の振動出力を周波数解析
し、ステップ4においてロータが円錐モードで自励振動
することに起因する機器の振動の振動レベル、即ち円錐
モードでの機器振動レベル(例えば、振幅等)を算出す
る。この円錐モードでの機器振動レベルの算出は、所定
のロータ回転数における振動出力に基づいて行い、そこ
で得られる最大振動レベル(周波数は任意)を円錐モー
ドでの機器振動レベルとすることが出来る。あるいは、
ロータ回転数を変化させて行った全ての測定で得られた
振動出力のうち、最大の振動レベル(周波数は任意)が
得られる回転数における振動出力に基づいて演算を行
い、その最大振動レベル(周波数は任意)を円錐モード
での機器振動レベルとしても良い(即ち、ロータ回転数
を変化させて行った全ての測定で得られた振動出力から
算出される振動レベルの中で最大である振動レベル(周
波数は任意)を円錐モードでの機器振動レベルとす
る)。好ましくは、これら2つの振動レベルのうち、実
際の使用状況下で問題となるロータの円筒モードの振動
による機器振動の振動レベルとより相関が高く、より正
確にロータの円筒モードの振動による機器振動の振動レ
ベルが算出可能なものを円筒モードでの機器振動レベル
算出のためのベース値として利用する。
When the operation shown in FIG. 4 is started, first, in step 1, the turbocharger, which is the device to be measured, is adjusted to its rotation speed within the range in which the rotor generates vibration in the conical mode (for example, vibration as shown in FIG. 1). In the case of a device having characteristics, the device is operated while changing (sweeping) at 50,000 to 100,000 rpm, and the vibration of the device generated by the rotation of the rotating shaft 32 is measured by the vibration detecting means 6. The measured vibration output is sent to the filter 7. Next, in step 2, of the vibration outputs measured by the vibration detecting means 6, only the vibration output in the frequency band of the vibration of the device due to the vibration in the conical mode of the rotor is extracted by the filter 7. For example, in the case of a device having a vibration characteristic as shown in FIG.
Preferably, a low-pass filter that passes vibration output of 600 Hz or less, or a band-pass filter that passes 400 to 600 Hz. The vibration output that has passed through the filter 7 is sent to the calculation means 8. Next, in step 3, the calculating means 8 frequency-analyzes the vibration output in the frequency band of the device vibration due to the conical mode vibration of the rotor extracted by the filter 7, and in step 4, the rotor self-oscillates in the conical mode. The vibration level of the resulting device vibration, that is, the device vibration level (for example, amplitude) in the conical mode is calculated. The calculation of the device vibration level in the conical mode is performed based on the vibration output at a predetermined rotor rotation speed, and the maximum vibration level (frequency is arbitrary) obtained therefrom can be used as the device vibration level in the conical mode. Or,
The calculation is performed based on the vibration output at the rotation speed at which the maximum vibration level (frequency is arbitrary) is obtained from among the vibration outputs obtained by all the measurements performed while changing the rotor rotation speed, and the maximum vibration level ( The frequency of the vibration may be arbitrary, and the device vibration level in the conical mode may be used (that is, the vibration level which is the largest among the vibration levels calculated from the vibration outputs obtained by all the measurements performed while changing the rotor speed). (The frequency is arbitrary) is the device vibration level in the conical mode.) Preferably, of these two vibration levels, there is a higher correlation with the vibration level of the machine vibration due to the cylindrical mode vibration of the rotor, which is a problem under actual use conditions, and more precisely the machine vibration due to the cylindrical mode vibration of the rotor. Is used as the base value for calculating the device vibration level in the cylindrical mode.

【0018】次にステップ5において、予め求めておき
演算手段8に入力しておいた、図2に示すようなロータ
の円錐モードでの機器振動レベルとロータの円筒モード
での機器振動レベルとの相関特性を用いて、ステップ4
において算出した円錐モードでの機器振動レベル(ベー
ス値)を線形変換し、円筒モードでの機器振動レベルを
算出する。
Next, in step 5, the apparatus vibration level in the conical mode of the rotor and the apparatus vibration level in the cylindrical mode of the rotor as shown in FIG. Step 4 using the correlation property
The apparatus vibration level (base value) in the conical mode calculated in the above is linearly converted to calculate the apparatus vibration level in the cylindrical mode.

【0019】最後にステップ6において、ステップ5で
算出した円筒モードでの機器振動レベルが、実際の使用
状況下で問題となる円筒モードでの機器振動レベルから
決められた閾値以下であるか否かを判定し、出荷可否を
判定する。
Finally, in step 6, it is determined whether or not the device vibration level in the cylindrical mode calculated in step 5 is equal to or less than a threshold value determined from the device vibration level in the cylindrical mode that poses a problem under actual use conditions. Is determined to determine whether shipment is possible.

【0020】以上のような手順に従い、本実施形態によ
って、回転軸32の円筒モードの自励振動に起因する振
動レベル及びそれに伴う騒音のレベルを算出又は推定
し、出荷管理を行うことが出来る。
According to the above-described procedure, according to the present embodiment, it is possible to calculate or estimate the vibration level caused by the self-excited vibration of the rotary shaft 32 in the cylindrical mode and the level of the accompanying noise, and manage the shipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、ターボチャージャ等の高速回転機器が
発生する各種振動の周波数とその高速回転機器のロータ
回転数との関係を例示的且つ概念的に示したものであ
る。
FIG. 1 is a diagram illustratively and conceptually showing the relationship between the frequency of various vibrations generated by a high-speed rotating device such as a turbocharger and the rotor speed of the high-speed rotating device.

【図2】図2は、高速回転機器のロータの円錐モードに
おける自励振動に起因する機器の振動の振動レベル(振
幅)とロータの円筒モードにおける自励振動に起因する
機器の振動の振動レベル(振幅)との相関関係を表す相
関特性の図である。
FIG. 2 is a diagram illustrating a vibration level (amplitude) of device vibration caused by self-excited vibration in a conical mode of a rotor of a high-speed rotating device and a vibration level of device vibration caused by self-excited vibration in a cylindrical mode of a rotor; FIG. 9 is a diagram of a correlation characteristic showing a correlation with (amplitude).

【図3】図3は、本発明の一実施形態であるターボチャ
ージャの振動レベル演算確認装置を示す図である。
FIG. 3 is a diagram showing a vibration level calculation confirmation device for a turbocharger according to an embodiment of the present invention.

【図4】図4は、本発明の実施形態による円筒モードで
の機器振動レベルの算出操作並びに算出値の出荷可否判
断への利用について示したフローチャートである。
FIG. 4 is a flowchart illustrating a calculation operation of a device vibration level in a cylindrical mode and a use of the calculated value for determining whether shipment is possible according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…振動レベル演算確認装置 2…取付けハウジング 3…半組立状態のターボチャージャ 4…止金 5…回転数検出手段 6…振動検出手段 7…フィルタ 8…演算手段 9a…オイル供給管 9b…オイル排出管 31…タービンロータ 32…回転軸 33…コンプレッサーロータ 34…ナット 35…センターハウジング 35a…オイル供給路 35b…オイル排出口 36…軸受 DESCRIPTION OF SYMBOLS 1 ... Vibration level calculation confirmation device 2 ... Mounting housing 3 ... Turbocharger in a semi-assembled state 4 ... Clamp 5 ... Rotation speed detecting means 6 ... Vibration detecting means 7 ... Filter 8 ... Calculating means 9a ... Oil supply pipe 9b ... Oil discharge Pipe 31 Turbine rotor 32 Rotary shaft 33 Compressor rotor 34 Nut 35 Center housing 35 a Oil supply path 35 b Oil outlet 36 Bearing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 高則 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 2G024 AD04 BA15 CA13 DA09 FA02 FA06 2G064 AA17 AB02 AB15 AB22 BA02 BD17 CC06 CC13 CC41 CC47 CC57 DD32 3G005 EA16 FA12 FA27 GB55 GB73 JA40  ────────────────────────────────────────────────── ─── Continued from the front page (72) Inventor Takanori Fukuda 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F-term (reference) 2G024 AD04 BA15 CA13 DA09 FA02 FA06 2G064 AA17 AB02 AB15 AB22 BA02 BD17 CC06 CC13 CC41 CC47 CC57 DD32 3G005 EA16 FA12 FA27 GB55 GB73 JA40

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高速回転機器のロータの円筒モードでの
自励振動に起因する前記機器の振動の振動レベルを演算
し確認する装置であって、 前記ロータの回転数及び基準位相を検出する回転数検出
手段と、 前記機器に取付けられて機器の振動を測定し、振動出力
を発信する振動検出手段と、 前記振動検出手段に接続され、該振動検出手段からの前
記振動出力のうち、ロータの円錐モードでの自励振動に
起因する前記機器の振動の周波数帯の振動出力のみを通
すフィルタと、 前記フィルタに接続され、前記フィルタを通して得られ
た振動出力に基づいて、前記ロータの円錐モードでの自
励振動に起因する機器の振動の振動レベルを算出し、次
いで該円錐モードでの振動レベルを線形変換することに
よって前記ロータの円筒モードでの自励振動に起因する
前記機器の振動の振動レベルを算出する演算手段と、 を有する、振動レベル演算確認装置。
1. A device for calculating and confirming a vibration level of vibration of a high-speed rotating device caused by self-excited vibration of a rotor in a cylindrical mode, wherein the rotating speed and the reference phase of the rotor are detected. A number detection unit, a vibration detection unit attached to the device for measuring the vibration of the device, and transmitting a vibration output; and a vibration output unit connected to the vibration detection unit, among the vibration outputs from the vibration detection unit, A filter that passes only vibration output in the frequency band of the vibration of the device caused by self-excited vibration in the conical mode, and connected to the filter, based on the vibration output obtained through the filter, Calculating the vibration level of the vibration of the device caused by the self-excited vibration of the rotor, and then linearly converting the vibration level in the conical mode to the self-excited vibration of the rotor in the cylindrical mode. A calculating means for calculating the vibration level of the vibration of the device to cause the vibration level calculation check unit.
【請求項2】 前記ロータの円錐モードでの自励振動に
起因する機器の振動の振動レベルが、前記フィルタを通
して得られた振動出力のうち、前記ロータの所定回転数
における振動出力に基づいて算出される、請求項1に記
載の装置。
2. A vibration level of vibration of a device caused by self-excited vibration in a conical mode of the rotor is calculated based on a vibration output at a predetermined rotation speed of the rotor among vibration outputs obtained through the filter. The device of claim 1, wherein
【請求項3】 前記ロータの円錐モードでの自励振動に
起因する機器の振動の振動レベルが、前記フィルタを通
して得られた振動出力のうち、該振動レベルが最大とな
る前記ロータの回転数における振動出力に基づいて算出
される、請求項1に記載の装置。
3. The vibration level of the vibration of the device caused by self-excited vibration in the conical mode of the rotor is determined by the rotation speed of the rotor at which the vibration level becomes the maximum among the vibration outputs obtained through the filter. The device according to claim 1, wherein the device is calculated based on the vibration output.
【請求項4】 高速回転機器のロータの円筒モードでの
自励振動に起因する前記機器の振動の振動レベルを演算
し確認する方法であって、 前記ロータが円錐モードで振動する回転数において機器
の振動を測定し、 前記測定により得られた振動出力から前記ロータの円錐
モードでの振動に起因する振動の周波数帯の振動出力の
みを抽出し、 前記抽出された振動出力に基づき、前記ロータの円錐モ
ードでの自励振動に起因する機器の振動の振動レベルを
算出し、次いで該円錐モードでの振動レベルを線形変換
することによって前記ロータの円筒モードでの自励振動
に起因する前記機器の振動の振動レベルを算出する、 各ステップを有する振動レベル演算確認方法。
4. A method for calculating and confirming a vibration level of vibration of a high-speed rotating device caused by self-excited vibration of a rotor in a cylindrical mode, wherein the device has a rotation speed at which the rotor vibrates in a conical mode. Measuring only the vibration output of the frequency band of the vibration caused by the vibration in the conical mode of the rotor from the vibration output obtained by the measurement, based on the extracted vibration output, Calculate the vibration level of the vibration of the device caused by the self-excited vibration in the conical mode, and then linearly convert the vibration level in the conical mode to linearly convert the vibration of the device due to the self-excited vibration of the rotor in the cylindrical mode. A vibration level calculation / confirmation method including the steps of calculating a vibration level of vibration.
JP2001010747A 2001-01-18 2001-01-18 Device and method for computing and confirming vibration level of high-speed rotary equipment Withdrawn JP2002214034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001010747A JP2002214034A (en) 2001-01-18 2001-01-18 Device and method for computing and confirming vibration level of high-speed rotary equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001010747A JP2002214034A (en) 2001-01-18 2001-01-18 Device and method for computing and confirming vibration level of high-speed rotary equipment

Publications (1)

Publication Number Publication Date
JP2002214034A true JP2002214034A (en) 2002-07-31

Family

ID=18878008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001010747A Withdrawn JP2002214034A (en) 2001-01-18 2001-01-18 Device and method for computing and confirming vibration level of high-speed rotary equipment

Country Status (1)

Country Link
JP (1) JP2002214034A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178347A (en) * 2005-12-28 2007-07-12 Fujifilm Corp Method for detecting minute flaw in bearing for coating machine rotating at low speed, and device therefor
JP2007183203A (en) * 2006-01-10 2007-07-19 Ishikawajima Harima Heavy Ind Co Ltd Rotation balance test apparats and rotation balance correcting method for supercharger with motor
JP2013508599A (en) * 2009-10-16 2013-03-07 ボーグワーナー インコーポレーテッド How to determine the bearing play of an exhaust gas turbocharger friction bearing
WO2014167905A1 (en) * 2013-04-12 2014-10-16 株式会社Ihi Impeller fastening inspection method, impeller fastening method, impeller fastening inspection device, and impeller fastening device
CN105606203A (en) * 2015-09-22 2016-05-25 中国船舶重工集团公司第七�三研究所 Direct test method used for rotation gear wheel disk vibration
CN113043116A (en) * 2021-04-13 2021-06-29 罗俊涛 Optical lens polishing device and polishing process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178347A (en) * 2005-12-28 2007-07-12 Fujifilm Corp Method for detecting minute flaw in bearing for coating machine rotating at low speed, and device therefor
JP2007183203A (en) * 2006-01-10 2007-07-19 Ishikawajima Harima Heavy Ind Co Ltd Rotation balance test apparats and rotation balance correcting method for supercharger with motor
JP4662155B2 (en) * 2006-01-10 2011-03-30 株式会社Ihi Rotation balance correction method and rotation balance test apparatus for supercharger with electric motor
JP2013508599A (en) * 2009-10-16 2013-03-07 ボーグワーナー インコーポレーテッド How to determine the bearing play of an exhaust gas turbocharger friction bearing
WO2014167905A1 (en) * 2013-04-12 2014-10-16 株式会社Ihi Impeller fastening inspection method, impeller fastening method, impeller fastening inspection device, and impeller fastening device
JPWO2014167905A1 (en) * 2013-04-12 2017-02-16 株式会社Ihi Impeller fastening inspection method, impeller fastening method, impeller fastening inspection device, and impeller fastening device
US9891123B2 (en) 2013-04-12 2018-02-13 Ihi Corporation Wheel fastening inspection method, wheel fastening method, wheel fastening inspection device and wheel fastening device
CN105606203A (en) * 2015-09-22 2016-05-25 中国船舶重工集团公司第七�三研究所 Direct test method used for rotation gear wheel disk vibration
CN113043116A (en) * 2021-04-13 2021-06-29 罗俊涛 Optical lens polishing device and polishing process

Similar Documents

Publication Publication Date Title
US9453760B2 (en) Device and method for evaluation of vibrations
JP5073533B2 (en) How to detect damage to engine bearings
CN105426644B (en) Modal damping recognition methods, device and system
JP6221652B2 (en) Life prediction method, life prediction device, life prediction system, life calculation device, and rotating machine
CN105092255B (en) Fanjet fan complete machine Calculate Ways and system
JP5418805B2 (en) Method and apparatus for calculating unbalance amount of rotating body
CN104101464B (en) Multi-wheel-disc rotor dynamic balancing test method based on rotating coordinate system
US9593998B2 (en) Method for determining current eccentricity of rotating rotor and method of diagnostics of eccentricity of rotating rotor
CN102966582B (en) For determining the method and apparatus of the mass change of draught fan impeller
JP2009236880A (en) Standard exciter
JP2002214034A (en) Device and method for computing and confirming vibration level of high-speed rotary equipment
JP3941615B2 (en) Internal torsional vibration measuring device for internal pump
EP1424280A2 (en) Determination of adjustments to optimize shaft balance
JP6554515B2 (en) Vibration detection method for machine tools
Tao A Practical One Shot Method to Balance Single-Plane Rotor
JP2003194653A (en) Measuring method and correction method of unbalance of body of rotation device therefor
JP2011106845A (en) Method and device for measuring amount of unbalance
KR101214229B1 (en) Apparatus and method for measuring vibration displacement of rotating shaft
CN115244374A (en) Method for adjusting a piezoelectric torque sensor
JP5930190B2 (en) Engine tachometer
JP6961513B2 (en) Bearing monitoring device and rotating machine equipped with this bearing monitoring device
CN112710429A (en) Dynamic balance correction method and device based on material reduction
JP2011080894A (en) Unbalance measuring apparatus, standard vibration exciter and unbalance measuring method
JP5645066B2 (en) Influence coefficient acquisition method and device
JP5257762B2 (en) Apparatus and method for measuring rotational balance of high-speed rotating body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401