JP2002213926A - Instrument and method for measuring space, method of manufacturing optical system, and interferometer - Google Patents

Instrument and method for measuring space, method of manufacturing optical system, and interferometer

Info

Publication number
JP2002213926A
JP2002213926A JP2001013545A JP2001013545A JP2002213926A JP 2002213926 A JP2002213926 A JP 2002213926A JP 2001013545 A JP2001013545 A JP 2001013545A JP 2001013545 A JP2001013545 A JP 2001013545A JP 2002213926 A JP2002213926 A JP 2002213926A
Authority
JP
Japan
Prior art keywords
light
optical path
optical system
optical
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001013545A
Other languages
Japanese (ja)
Inventor
Jun Kawakami
潤 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001013545A priority Critical patent/JP2002213926A/en
Publication of JP2002213926A publication Critical patent/JP2002213926A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a space measuring instrument capable of measuring a space at high accuracy compared with the prior art. SOLUTION: In this space measuring instrument provided with an interferometer for light-guiding a light emitted from a light source to an optical system to be examined and an optical path-length-variable optical path, and for light-guiding measuring light reflected in an optional face in the optical system to be examined and reference light following the optical path onto a photoreceiving face of a photodetector, and provided with a displacement detector for detecting a displacement amount of an optical path length of the reference light, a beam diameter magnifying system for magnifying a beam diameter is inserted into either of the optical path of the measuring light incident into the photoreceiving face or the optical path of the reference light incident into the photoreceiving face. Since a difference is generated between a spot diameter by the beam of the measuring light and a spot diameter by the beam of the reference light, in the photoreceiving face, the spots are surely overlapped even when an optical axis of the measuring light is shifted by some extents. Significant information indicating an interference signal is surely obtained thereby based on an output from the photodetector.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、干渉計を利用して
被検光学系内の光学素子の面間隔を測定するための間隔
測定装置、間隔測定方法、及び光学系の製造方法、並び
に干渉計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interval measuring apparatus, an interval measuring method, an optical system manufacturing method, and an interference measuring method for measuring a surface interval of an optical element in a test optical system using an interferometer. About the total.

【0002】[0002]

【従来の技術】カメラレンズなどの光学系内の光学素子
の間隔や、光学素子の厚み、光学素子の表面の段差な
ど、2面間の距離を高精度に測定する際には、干渉計が
適用される(以下、これら2面間の距離を単に「間隔」
という。)。この間隔測定では、測定対象距離が光の波
長と比較して長いので(数mm)、多くの場合、光源と
して、レーザ光とは異なり太陽光や蛍光灯の光に近い白
色光源(山形の波長スペクトルを有しており「低コヒー
レンス光源」と呼ばれる。)が使用される。
2. Description of the Related Art When measuring the distance between two surfaces, such as the distance between optical elements in an optical system such as a camera lens, the thickness of an optical element, and the level difference on the surface of an optical element, an interferometer is used. Applied (hereinafter the distance between these two surfaces is simply referred to as
That. ). In this interval measurement, the distance to be measured is longer than the wavelength of light (several mm), and therefore, in many cases, a white light source (wavelength of mountain shape) different from laser light and close to sunlight or fluorescent light is used as a light source. Which has a spectrum and is called a "low coherence light source").

【0003】なお、低コヒーレンス光源による干渉(低
コヒーレンス干渉)は、可干渉距離が短く、2つの光の
光路差が十分に短い範囲でしか生起しないが、その範囲
における光路差−干渉光強度曲線の包絡線は、一般に光
路差が0であるときにピークをとる。間隔測定では、こ
の性質を利用する(因みに、レンズの検査などに用いら
れるニュートンリングも、この性質を利用してい
る。)。
[0003] The interference by the low coherence light source (low coherence interference) occurs only in a range where the coherence distance is short and the optical path difference between the two lights is sufficiently short, but an optical path difference-interference light intensity curve in that range. Generally has a peak when the optical path difference is zero. This property is used in the interval measurement. (By the way, Newton rings used for lens inspection and the like also use this property.)

【0004】図5は、低コヒーレンス干渉計を利用した
間隔測定装置を示す図である。以下では、間隔測定の対
象を、被検光学系80内の光学素子804と光学素子8
05との間隔(面8042と面8051との間隔)とす
る。また、間隔測定の対象となるこれら2つの面804
2,8051が曲面である場合について説明する。
FIG. 5 is a diagram showing an interval measuring apparatus using a low coherence interferometer. In the following, the distance measurement targets are the optical element 804 and the optical element 8 in the test optical system 80.
05 (the interval between the surface 8042 and the surface 8051). In addition, these two surfaces 804 to be measured for the distance are used.
The case where 2,8051 is a curved surface will be described.

【0005】図5において、光源101から出射され、
測定光路301を介して被検光学系80へ入射した測定
光は、その被検光学系80内の各面8041,804
2,8051,8052においてそれぞれ反射された
後、測定光路301、ビームスプリッタ103を介して
受光素子107に入射する。なお、本明細書では、光源
101から出射された光のうち、測定光路301−被検
光学系80−測定光路301−受光素子107の経路を
辿る光を「測定光」と称す。
In FIG. 5, light is emitted from a light source 101,
The measurement light that has entered the test optical system 80 via the measurement optical path 301 is applied to the respective surfaces 8041 and 804 in the test optical system 80.
After being reflected at 2, 8051 and 8052, the light enters the light receiving element 107 via the measurement optical path 301 and the beam splitter 103. In the present specification, of the light emitted from the light source 101, light that follows the path of the measurement optical path 301, the test optical system 80, the measurement optical path 301, and the light receiving element 107 is referred to as “measurement light”.

【0006】一方、光源101から出射され、参照光路
302を介して参照光偏向用光学素子108に入射した
光は、参照光偏向用光学素子108の参照面(ミラー
面)1081において反射された後、参照光路302、
ビームスプリッタ103を介して受光素子107に入射
する。なお、本明細書では、光源101から出射された
光のうち、参照光路302−参照光偏向用光学素子10
8−参照光路302−受光素子107の経路を辿る光を
「参照光」と称す。
On the other hand, light emitted from the light source 101 and incident on the reference light deflecting optical element 108 via the reference light path 302 is reflected on a reference surface (mirror surface) 1081 of the reference light deflecting optical element 108. , Reference light path 302,
The light enters the light receiving element 107 via the beam splitter 103. In this specification, among the light emitted from the light source 101, the reference light path 302 and the reference light deflecting optical element 10
The light that follows the path from 8-reference optical path 302 to light receiving element 107 is referred to as “reference light”.

【0007】ここで、参照光偏向用光学素子108は、
光軸方向に移動可能なステージ206に固設されている
ので、参照光路302の光路長は可変となっている。ま
た、間隔測定の対象の面8051,8042は曲面であ
るので、測定光路301には、曲面の頂点に測定光の光
束を集光させてキャッツアイ反射状態を生起させるため
の集光用光学素子901が配置されている。また、参照
光路302には、参照面1081上に参照光の光束を集
光させる集光用光学素子902が挿入される(集光用光
学素子902は、その集光点が参照面1081上に一致
するよう予め位置合わせされた状態で、参照光偏向用光
学素子108と共にステージ206に固設される。)。
Here, the reference beam deflecting optical element 108 is
The optical path length of the reference optical path 302 is variable because it is fixed to the stage 206 movable in the optical axis direction. In addition, since the surfaces 8051 and 8042 for which the distance measurement is to be performed are curved surfaces, the measuring optical path 301 includes a condensing optical element for converging the light flux of the measuring light at the apex of the curved surface to generate a cat's eye reflection state. 901 are arranged. In the reference optical path 302, a condensing optical element 902 for condensing the light beam of the reference light on the reference surface 1081 is inserted (the condensing point of the condensing optical element 902 is on the reference surface 1081). It is fixed to the stage 206 together with the reference beam deflecting optical element 108 in a state where it is previously aligned so as to match.)

【0008】さらに、集光用光学素子901の集光点に
ついては、間隔測定の対象の各面(面8051,804
2)に適宜一致させる必要があるので、集光用光学素子
901は、光軸方向に移動可能なステージ201に固設
されている。因みに、集光用光学素子901の集光点が
面8042上に位置しているときには、面8042にお
いて反射した測定光は、その集光用光学素子901にお
いて平行光となって受光素子107に向かう。また、集
光用光学素子901の集光点が面8051上に位置して
いるときには、面8051において反射した測定光は、
その集光用光学素子901において平行光となって受光
素子107に向かう。
Further, regarding the light-converging point of the light-collecting optical element 901, each surface (surfaces 8051, 804) of which the distance is to be measured
Since it is necessary to appropriately match 2), the condensing optical element 901 is fixed to the stage 201 that can move in the optical axis direction. Incidentally, when the converging point of the condensing optical element 901 is located on the surface 8042, the measurement light reflected on the surface 8042 becomes parallel light at the condensing optical element 901 and travels toward the light receiving element 107. . When the light-converging point of the light-collecting optical element 901 is located on the surface 8051, the measurement light reflected on the surface 8051 is
The condensing optical element 901 turns to parallel light and travels to the light receiving element 107.

【0009】以上の構成の間隔測定装置では、測定対象
の一方の面8042に集光用光学素子901の集光点を
合わせた状態と、他方の面8051に集光用光学素子9
01の集光点を合わせた状態とのそれぞれにおいて、測
定が行われる(以下、前者の測定を「面8042の測
定」といい、後者の測定を「面8051の測定」とい
う。)。
In the distance measuring apparatus having the above-described configuration, the state where the light-collecting point of the light-collecting optical element 901 is aligned with one surface 8042 of the measurement object and the light-collecting optical element 9
The measurement is performed in each of the states where the light-collecting points 01 are aligned (hereinafter, the former measurement is referred to as “measurement of surface 8042”, and the latter measurement is referred to as “measurement of surface 8051”).

【0010】なお、各測定は、ステージ206を移動さ
せることにより参照光路302の光路長を変化させ、こ
のときにスケール206aの出力が示す位置情報信号4
06と、受光素子107の出力が示す受光光量信号40
7とをサンプリングして行われる。図6は、位置情報信
号406と受光光量信号407との関係を示す図(概念
図)である。図6において、横軸がステージ206の位
置、縦軸が受光素子107の受光強度である。
In each measurement, the optical path length of the reference optical path 302 is changed by moving the stage 206, and the position information signal 4 indicated by the output of the scale 206a at this time.
06 and the received light amount signal 40 indicated by the output of the light receiving element 107.
7 is sampled. FIG. 6 is a diagram (conceptual diagram) showing a relationship between the position information signal 406 and the received light amount signal 407. 6, the horizontal axis represents the position of the stage 206, and the vertical axis represents the light receiving intensity of the light receiving element 107.

【0011】受光強度は、ほとんどのステージ位置にお
いて平坦な(DC成分のみの)信号しか示さないが、部
分的にコントラストを有した(AC成分を含む)干渉信
号を示している。因みに、面8042の測定で得られる
干渉信号、及び面8051の測定で得られる干渉信号
は、それぞれ、図6の左から2番目の干渉信号、左から
3番目の干渉信号である。
The received light intensity shows only a flat (only DC component) signal at most of the stage positions, but shows an interference signal (including an AC component) partially having a contrast. Incidentally, the interference signal obtained by measuring the surface 8042 and the interference signal obtained by measuring the surface 8051 are the second interference signal from the left and the third interference signal from the left in FIG. 6, respectively.

【0012】したがって、面8042と面8051との
間隔は、左から2番目の干渉信号の包絡線がピークをと
るステージ位置と、左から3番目の干渉信号の包絡線が
ピークをとるステージ位置との差により求めることがで
きる。
Therefore, the distance between the surface 8042 and the surface 8051 is determined by the stage position at which the envelope of the second interference signal from the left has a peak and the stage position at which the envelope of the third interference signal from the left has a peak. Can be determined by the difference between

【0013】[0013]

【発明が解決しようとする課題】しかしながら、被検光
学系80の製造誤差などにより、被検光学系80内に配
置された光学素子804と光学素子805との間に僅か
でも位置ずれが生じている場合には、以上説明した間隔
測定が困難となり得る。
However, due to a manufacturing error of the test optical system 80, even a slight displacement occurs between the optical element 804 and the optical element 805 disposed in the test optical system 80. In such a case, the above-described interval measurement may be difficult.

【0014】この位置ずれの種類が、光軸のずれ(横シ
フト)であったとしても、光軸の傾斜(チルト)であっ
たとしても、双方であったとしても同様である。なぜな
ら、間隔測定に先立ち、通常は、被検光学系80と間隔
測定装置とがアライメントされるが、光学素子804と
光学素子805とに位置ずれが生じていると、せいぜい
面8051、面8042の何れか一方の面についてしか
十分にアライメントすることはできない。このアライメ
ントの問題は、被検光学系80内に備えられる光学素子
の枚数が多くなるほど顕著となる。
The same applies regardless of whether the type of the positional shift is a shift (lateral shift) of the optical axis, a tilt (tilt) of the optical axis, or both. This is because, before the distance measurement, the test optical system 80 and the distance measuring device are usually aligned, but if the optical element 804 and the optical element 805 are misaligned, at most the surfaces 8051 and 8042 Only one of the surfaces can be sufficiently aligned. This alignment problem becomes more remarkable as the number of optical elements provided in the test optical system 80 increases.

【0015】なお、アライメントを、面8042の測定
と面8051の測定とのそれぞれにおいて行うことも考
えられるが、間隔測定を高精度に行う際には、面804
2の測定と面8051の測定との間における環境の差異
を無くすために、被検光学系80を固定させておく方が
望ましいので、そのような方法を採用すると不利な測定
条件となる。
It is conceivable to perform the alignment on each of the measurement of the surface 8042 and the measurement of the surface 8051. However, when performing the interval measurement with high accuracy, the surface 804 is required.
In order to eliminate the difference in environment between the measurement of No. 2 and the measurement of the surface 8051, it is desirable to fix the optical system 80 to be measured.

【0016】ところで、アライメントが不十分である
と、以下のような問題が生じる(面8042の測定を例
に挙げて説明する。)。このときには、間隔測定装置の
光軸に面8042が正対しないため、集光用光学素子9
01の集光点が面8042の頂点からずれた位置とな
る。そうすると、キャッツアイ反射状態が生起せず、面
8042において反射した測定光は、その反射方向を変
移させ、集光用光学素子901において平行光に戻るも
のの、面8042に入射するときと比較するとその光軸
にずれが生じ、その結果、参照光の光軸との間でも光軸
のずれが生じてしまう。
By the way, if the alignment is insufficient, the following problem occurs (the measurement of the surface 8042 will be described as an example). At this time, since the surface 8042 does not directly face the optical axis of the distance measuring device, the condensing optical element 9
01 is a position shifted from the vertex of the surface 8042. Then, the cat's-eye reflection state does not occur, and the measurement light reflected on the surface 8042 changes its reflection direction and returns to parallel light in the light-collecting optical element 901, but as compared with the case where the measurement light is incident on the surface 8042. The optical axis shifts, and as a result, the optical axis shifts even with the optical axis of the reference light.

【0017】この光軸のずれが生じていると、受光素子
107の受光面上では、図7(a)に示すように、測定
光の光束によるスポット301aと参照光の光束による
スポット302aとが一致しなくなり、両者の重複領域
は小さくなる。このときに受光素子107から出力され
る信号には、干渉信号を示す情報が、少ししか含まれな
くなる。
When this optical axis shift occurs, on the light receiving surface of the light receiving element 107, as shown in FIG. 7A, a spot 301a due to the light beam of the measuring light and a spot 302a due to the light beam of the reference light are formed. They no longer match, and the overlapping area between the two becomes smaller. At this time, the signal output from the light receiving element 107 contains little information indicating the interference signal.

【0018】この結果、干渉信号からその包絡線のピー
クを峻別することが困難となり、間隔測定の精度が低下
する。さらに、この光軸のずれが大きければ、図7
(b)に示すように、測定光の光束によるスポット30
1aと参照光の光束によるスポット302aとの重複領
域が無くなることもある。このときに受光素子107か
ら出力される信号には、干渉信号を示す情報が全く含ま
れなくなるため、間隔測定が不可能となる。
As a result, it becomes difficult to distinguish the peak of the envelope from the interference signal, and the accuracy of the interval measurement decreases. Furthermore, if the deviation of the optical axis is large, FIG.
As shown in (b), the spot 30 due to the luminous flux of the measurement light
In some cases, the overlapping area of the spot 1a and the spot 302a due to the light beam of the reference light may disappear. At this time, the signal output from the light receiving element 107 does not include any information indicating the interference signal, so that the interval measurement cannot be performed.

【0019】なお、前述したとおりこの光軸のずれは被
検光学系80の製造誤差に起因するので、被検光学系8
0内の光学素子の枚数が多いときほど、間隔測定の精度
が低下したり、間隔測定が不可能となったりする可能性
は高くなる。本発明は、上述のような問題に鑑みてなさ
れたもので、従来よりも高い確度で間隔測定をすること
ができる間隔測定装置、間隔測定方法、及び、従来より
も性能の高い光学系の製造方法、並びに干渉計を提供す
ることを目的とする。
As described above, this deviation of the optical axis is caused by a manufacturing error of the optical system 80 to be inspected.
The greater the number of optical elements in 0, the higher the possibility that the accuracy of the interval measurement is reduced or the interval measurement becomes impossible. SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has been made in consideration of the above problems, and has provided an interval measuring apparatus and an interval measuring method capable of measuring an interval with higher accuracy than before, and manufacturing of an optical system with higher performance than before. It is an object to provide a method, as well as an interferometer.

【0020】[0020]

【課題を解決するための手段】請求項1に記載の間隔測
定装置は、光源から出射された光を、複数の面を有し、
前記面の間隔が計測される被検光学系、及び光路長可変
の光路へと導光すると共に、前記被検光学系内の任意の
面において反射した測定光と前記光路を辿った参照光と
を光検出器の受光面上に導光する干渉計と、前記参照光
の光路長の変化量を検出する変位検出器とを備えた間隔
測定装置において、前記受光面に入射する前記測定光の
光路と、前記受光面に入射する前記参照光の光路との何
れか一方に、光束径を拡大する光束径拡大光学系を挿入
したことを特徴とする。
According to a first aspect of the present invention, there is provided an interval measuring apparatus having a plurality of surfaces for emitting light emitted from a light source.
The test optical system in which the distance between the surfaces is measured, and light guided to an optical path having a variable optical path length, and measurement light reflected on an arbitrary surface in the test optical system and reference light following the optical path. An interferometer that guides the light on the light receiving surface of the light detector, and a displacement measuring device that includes a displacement detector that detects an amount of change in the optical path length of the reference light. A light beam diameter expanding optical system for expanding a light beam diameter is inserted into one of an optical path and an optical path of the reference light incident on the light receiving surface.

【0021】このとき、前記受光面においては、測定光
の光束によるスポットの径と参照光の光束によるスポッ
トの径とのどちらか一方が広くなるので、測定光の光軸
が多少ずれてもそれらのスポットは確実に重なる。した
がって、前記光検出器の出力から、干渉信号を示す有意
な情報を確実に得ることができる。請求項2に記載の間
隔測定装置は、光源から出射された光を、複数の面を有
し、前記面の間隔が計測される被検光学系、及び光路長
可変の光路へと導光すると共に、前記被検光学系内の任
意の面において反射した測定光と前記光路を辿った参照
光とを光検出器の受光面上に導光する干渉計と、前記参
照光の光路長の変化量を検出する変位検出器とを備えた
間隔測定装置において、前記受光面に入射する前記参照
光の光路に、その参照光の光束径を拡大する光束径拡大
光学系を挿入したことを特徴とする。
At this time, on the light receiving surface, either the diameter of the spot due to the luminous flux of the measurement light or the diameter of the spot due to the luminous flux of the reference light becomes wider. Spots will definitely overlap. Therefore, significant information indicating the interference signal can be reliably obtained from the output of the photodetector. The distance measuring device according to claim 2 guides the light emitted from the light source to a test optical system having a plurality of surfaces and measuring the distance between the surfaces, and an optical path having a variable optical path length. An interferometer that guides the measurement light reflected on an arbitrary surface in the test optical system and the reference light that has followed the optical path onto a light receiving surface of a photodetector; and a change in the optical path length of the reference light. In a distance measuring device provided with a displacement detector for detecting the amount, in the optical path of the reference light incident on the light receiving surface, a light beam diameter expanding optical system for expanding the light beam diameter of the reference light is inserted, characterized in that I do.

【0022】このとき、前記受光面においては、測定光
の光束によるスポットの径に比べ参照光の光束によるス
ポットの径が広いので、測定光の光軸が多少ずれてもそ
れらのスポットは確実に重なる。したがって、前記光検
出器の出力から、干渉信号を示す有意な情報を確実に得
ることができる。また、請求項3に記載の間隔測定装置
では、請求項2に記載の間隔測定装置において、更に前
記光束径が拡大された参照光と前記測定光との重複部分
のみ受光することを特徴とする。
At this time, on the light receiving surface, the spot diameter of the reference light beam is larger than the spot diameter of the measurement light beam, so that even if the optical axis of the measurement light is slightly shifted, those spots are surely formed. Overlap. Therefore, significant information indicating the interference signal can be reliably obtained from the output of the photodetector. According to a third aspect of the present invention, in the distance measuring apparatus according to the second aspect, only the overlapping portion between the reference light having the increased light beam diameter and the measuring light is received. .

【0023】レンズ等の透明物体の面間隔を計測する場
合、光源からの光を測定光と参照光とに均等配分し、更
に参照光路に全反射ミラーを用いると、光検出器上での
測定光と参照光との強度差が大きくなってしまう。この
ときには、測定光と参照光との干渉信号のコントラスト
が小さくなる。そこで、この間隔測定装置では、干渉信
号のコントラスト低下を防ぐために、参照光のスポット
径を大きくすることで、参照光と測定光との重複領域で
の測定光と参照光との強度差は小さくなる。したがっ
て、参照光と測定光の重複部分のみ光検出器で受光すれ
ば、光検出器が出力する干渉信号のコントラストは大き
くなる。その結果、前記間隔は精度高く求められる。
When measuring the surface interval of a transparent object such as a lens, the light from the light source is equally distributed to the measuring light and the reference light, and if a total reflection mirror is used in the reference light path, the measurement on the photodetector can be performed. The intensity difference between the light and the reference light increases. At this time, the contrast of the interference signal between the measurement light and the reference light decreases. Therefore, in this interval measuring device, in order to prevent a decrease in the contrast of the interference signal, by increasing the spot diameter of the reference light, the intensity difference between the measurement light and the reference light in the overlapping region of the reference light and the measurement light is reduced. Become. Therefore, if only the overlapping portion of the reference light and the measurement light is received by the photodetector, the contrast of the interference signal output from the photodetector increases. As a result, the interval is determined with high accuracy.

【0024】請求項4又は請求項5に記載の間隔測定方
法は、光源から出射された光を、複数の面を有し、前記
面の間隔が計測される被検光学系、及び光路長可変の光
路へと導光すると共に、前記被検光学系内の任意の面に
おいて反射した測定光と前記光路を辿った参照光とを光
検出器の受光面上に導光する干渉計と、前記参照光の光
路長の変化量を検出する変位検出器とを備えた間隔測定
方法であって、前記受光面上に形成される前記測定光の
スポット径又は前記参照光のスポット径の何れか一方を
拡大させ、前記参照光の光路長を変化させ、そのときの
前記光検出器の出力、及び前記変位検出器の出力を参照
し、前記参照した前記出力に基づいて、前記任意の面の
間隔を求めることを特徴とする。
According to a fourth aspect of the present invention, there is provided a distance measuring method, comprising: a light emitted from a light source; a test optical system having a plurality of surfaces, the distance between the surfaces being measured; An interferometer that guides the measurement light reflected on an arbitrary surface in the test optical system and the reference light that has followed the optical path onto a light receiving surface of a photodetector, and A displacement detector for detecting an amount of change in the optical path length of the reference light, wherein one of the spot diameter of the measurement light or the spot diameter of the reference light formed on the light receiving surface Is enlarged, the optical path length of the reference light is changed, the output of the photodetector at that time, and the output of the displacement detector are referred to, based on the output referred to, the interval between the arbitrary surfaces Is obtained.

【0025】このとき、前記受光面においては、測定光
の光束によるスポットの径又は参照光の光束によるスポ
ットの径のどちらか一方が広くなるので、測定光の光軸
が多少ずれてもそれらのスポットは確実に重なる。した
がって、前記光検出器の出力から、干渉信号を示す有意
な情報を確実に得ることができ、その結果、前記間隔は
確度高く得られる。
At this time, on the light receiving surface, either the diameter of the spot due to the luminous flux of the measurement light or the diameter of the spot due to the luminous flux of the reference light is widened. The spots will definitely overlap. Therefore, significant information indicating the interference signal can be reliably obtained from the output of the photodetector, and as a result, the interval can be obtained with high accuracy.

【0026】請求項5に記載の間隔測定方法では、前記
受光面上に形成される前記測定光のスポット径と、前記
参照光のスポット径とでは、後者の方が大きく設定され
る。請求項6に記載の光学系の製造方法は、光学系内に
配置された光学素子の任意の面の間隔を、請求項4又は
請求項5に記載の間隔測定方法により測定し、前記測定
した面間隔に応じて、前記光学系の調整を行うことを特
徴とする。前記間隔の測定が確度高く行われる分だけ、
高い性能を光学系に付与することができる。
In the distance measuring method according to the fifth aspect, the spot diameter of the measurement light and the spot diameter of the reference light formed on the light receiving surface are set to be larger in the latter. According to a sixth aspect of the present invention, in the method of manufacturing an optical system, an interval between arbitrary surfaces of the optical element disposed in the optical system is measured by the interval measuring method according to the fourth or fifth aspect, and the measurement is performed. The optical system is adjusted according to a surface distance. As long as the measurement of the interval is performed with high accuracy,
High performance can be imparted to the optical system.

【0027】請求項7に記載の干渉計では、同一光源か
ら放射され、異なる光路を通過した複数の光の干渉像を
受光する干渉計において、前記光路のうち少なくとも一
方に、光束径を拡大する光束径拡大光学系を挿入した。
前述の間隔測定装置によらず、何らかの原因により複数
の光のスポットが受光位置でズレてしまう場合にも、少
なくとも一方の光束の径を拡大することで、受光位置に
おいて複数の光のスポットが重なり合う。したがって、
干渉信号を示す有意義な情報を得ることができる。
According to a seventh aspect of the present invention, in the interferometer for receiving an interference image of a plurality of lights emitted from the same light source and passing through different optical paths, the light beam diameter is enlarged to at least one of the optical paths. A beam diameter expanding optical system was inserted.
Regardless of the distance measuring device described above, even when a plurality of light spots are shifted at the light receiving position for some reason, by expanding the diameter of at least one light beam, the plurality of light spots overlap at the light receiving position. . Therefore,
Significant information indicating the interference signal can be obtained.

【0028】[0028]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態について説明する。 [第1実施形態]先ず、図1、図2、図3を参照して本
発明の第1実施形態について説明する。図1は、本実施
形態の間隔測定装置を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating an interval measuring device according to the present embodiment.

【0029】以下では、間隔測定の対象を、被検光学系
80内の光学素子804と光学素子805との間隔(面
8042と面8051との間隔)とする。また、本実施
形態では、間隔測定の対象となるこれら2つの面804
2,8051が曲面である場合について説明する(な
お、平面であるときには、ステージ201、集光用光学
素子901が不要となる。)。
In the following, the distance measurement target is the distance between the optical element 804 and the optical element 805 in the test optical system 80 (the distance between the surfaces 8042 and 8051). Further, in the present embodiment, these two surfaces 804 to be subjected to the interval measurement are used.
The case where 2,8051 is a curved surface will be described (when the surface is a flat surface, the stage 201 and the condensing optical element 901 become unnecessary).

【0030】本実施形態の間隔測定装置は、図5に示し
た間隔測定装置において、参照光の光束を拡大するビー
ムエキスパンダなどの光束径拡大用光学系903を備え
たものである。この光束径拡大用光学系903により、
参照光は、その光束径が拡大された平行光となって受光
素子107に入射する。また、この光束径拡大用光学系
903を挿入する光路を確保するために、本実施形態に
おいては、参照光の光路は、参照光路303(往路)と
参照光路304(復路)とに分離されている。
The distance measuring apparatus of this embodiment is different from the distance measuring apparatus shown in FIG. 5 in that a light beam diameter expanding optical system 903 such as a beam expander for expanding the light beam of the reference light is provided. With the optical system 903 for expanding the light beam diameter,
The reference light is incident on the light receiving element 107 as parallel light whose light beam diameter is enlarged. In addition, in order to secure an optical path into which the light beam diameter expanding optical system 903 is inserted, in the present embodiment, the optical path of the reference light is separated into a reference optical path 303 (outgoing path) and a reference optical path 304 (return path). I have.

【0031】これは、図5に示した参照光偏向用光学素
子108に代えて、参照光を入射光路とは異なる方向へ
反射させるレトロリフレクター、コーナーキューブプリ
ズムなどの参照光偏向用光学素子106を備えることで
実現されている。また、この参照光偏向用光学素子10
6から出射した参照光を、測定光と同じ光路に導くため
に、ビームスプリッタ109が備えられる。
In this configuration, instead of the reference light deflecting optical element 108 shown in FIG. 5, a reference light deflecting optical element 106 such as a retroreflector or corner cube prism for reflecting reference light in a direction different from the incident light path is used. It is realized by preparing. Further, the reference light deflecting optical element 10
A beam splitter 109 is provided to guide the reference light emitted from 6 to the same optical path as the measurement light.

【0032】ここで、図1では、光束径拡大用光学系9
03が参照光路304に挿入されているが、挿入箇所
は、参照光路303、参照光路304の何れであっても
よい。但し、参照光偏向用光学素子106の反射面のサ
イズを抑えられる点で、参照光路304の方がより好ま
しい。また、スペースを節約するために、参照光路30
3と参照光路304とが平行となるよう参照光偏向用光
学素子106を設計・配置することが好ましい。
Here, in FIG. 1, an optical system 9 for expanding the light beam diameter is used.
03 is inserted into the reference optical path 304, the insertion location may be either the reference optical path 303 or the reference optical path 304. However, the reference light path 304 is more preferable in that the size of the reflection surface of the reference light deflection optical element 106 can be suppressed. Also, to save space, the reference light path 30
It is preferable to design and arrange the reference beam deflecting optical element 106 so that the reference beam path 3 and the reference optical path 304 are parallel to each other.

【0033】なお、本実施形態では、集光用光学素子9
02(図5参照)が省略されているので、参照光偏向用
光学素子106の反射面は平行光束を反射できるよう十
分に大きく採られることとする。また、本実施形態にお
けるステージ206は、そのような参照光偏向用光学素
子106を確実に固設できるようなサイズを有してい
る。
In this embodiment, the condensing optical element 9 is used.
Since reference numeral 02 (see FIG. 5) is omitted, the reflecting surface of the reference light deflecting optical element 106 is assumed to be large enough to reflect a parallel light beam. Further, the stage 206 in the present embodiment has such a size that such a reference light deflecting optical element 106 can be securely fixed.

【0034】以上のとおり、本実施形態の間隔測定装置
の主な構成要素は、光源101、光源101から出射さ
れた光を平行光束に整える光束径変換光学系102、そ
の平行光束を測定光と参照光との2つの光束に分離する
ビームスプリッタ103、参照光路303を辿って入射
した参照光を参照光路304の方向へ反射させる参照光
偏向用光学素子106、参照光偏向用光学素子106を
固設しかつ参照光路303,304が伸縮する方向に移
動可能なステージ206、測定光路301−被検光学系
80−測定光路301の経路を辿った測定光と参照光路
303−参照光偏向用光学素子106−光束径拡大用光
学系903を辿った参照光とを同一の光路に導くビーム
スプリッタ109、その光路に配置され測定光と参照光
とによる干渉光を受光する受光素子107などである。
As described above, the main components of the distance measuring apparatus of the present embodiment are a light source 101, a light beam diameter conversion optical system 102 for adjusting the light emitted from the light source 101 into a parallel light beam, and the parallel light beam as a measurement light. A beam splitter 103 for splitting into two light beams with the reference light, a reference light deflecting optical element 106 for reflecting the reference light incident along the reference light path 303 in the direction of the reference light path 304, and a reference light deflecting optical element 106 are fixed. A stage 206 which is provided and is movable in a direction in which the reference light paths 303 and 304 expand and contract, a measurement light and a reference light path 303 which follow a path of the measurement light path 301, the test optical system 80, and the measurement light path 301; 106—Beam splitter 109 that guides the reference light tracing the light beam diameter enlarging optical system 903 to the same optical path, and arranges interference light generated by the measurement light and the reference light in the optical path. Receiving element 107 to the light, and the like.

【0035】また、間隔測定装置には、測定光路301
に配置されかつ被検光学系80内の各面に測定光を集光
する集光用光学素子901、その集光用光学素子901
を光軸方向に移動させるステージ201、ステージ20
6の位置を検出するスケール206a、受光素子107
から出力される受光光量信号407とスケール206a
から出力される位置情報信号406とを取り込んで演算
処理を施す処理系500(コンピュータなど)も備えら
れる。
The interval measuring device has a measuring optical path 301.
And a condensing optical element 901 for converging the measurement light on each surface in the test optical system 80.
201 and stage 20 for moving the lens in the optical axis direction
6, scale 206a for detecting the position of light receiving element 107
Received light amount signal 407 output from the device and scale 206a
And a processing system 500 (computer or the like) that takes in the position information signal 406 output from the CPU and performs arithmetic processing.

【0036】なお、図1と特許請求の範囲との対応関係
は、光源101、光束径変換光学系102、ビームスプ
リッタ103、集光用光学素子901、参照光偏向用光
学素子106、ステージ206、ビームスプリッタ10
9、及び受光素子107は、干渉計に対応し、スケール
206aは変位検出器に対応し、光束径拡大用光学系9
03は光束径拡大光学系に対応する。
The correspondence between FIG. 1 and the claims is as follows: the light source 101, the light beam diameter conversion optical system 102, the beam splitter 103, the condensing optical element 901, the reference light deflecting optical element 106, the stage 206, Beam splitter 10
Reference numeral 9 and the light receiving element 107 correspond to an interferometer, the scale 206a corresponds to a displacement detector, and the
03 corresponds to a light beam diameter expanding optical system.

【0037】図2は、受光素子107の受光面に入射す
る各光を説明する図である。本実施形態では、光束径拡
大用光学系903の挿入により、参照光の光束によるス
ポット303aの径と、測定光の光束によるスポット3
01aの径は、違っている。
FIG. 2 is a diagram for explaining each light incident on the light receiving surface of the light receiving element 107. In the present embodiment, the diameter of the spot 303a due to the reference light beam and the spot 3a due to the measurement light beam are changed by inserting the light beam diameter expanding optical system 903.
The diameter of 01a is different.

【0038】そして、光束径拡大用光学系903が挿入
されるのは特に参照光路304(又は参照光路303)
であるので、参照光の光束によるスポット303aの方
が大きい。以上の構成の間隔測定装置においても、図5
に示す構成の間隔測定装置による間隔測定と同様に、面
8042の測定、及び面8051の測定が行われる。
The light beam diameter expanding optical system 903 is inserted particularly in the reference light path 304 (or the reference light path 303).
Therefore, the spot 303a due to the luminous flux of the reference light is larger. In the interval measuring apparatus having the above configuration, FIG.
The measurement of the surface 8042 and the measurement of the surface 8051 are performed in the same manner as the interval measurement by the interval measuring device having the configuration shown in FIG.

【0039】面8042の測定では、ステージ201の
位置を調整することにより、集光用光学素子901の集
光点を面8042に合わせ、この状態で、ステージ20
6を移動させることにより参照光路303,304の光
路長を変化させる。処理系500は、このときにスケー
ル206aから得られる位置情報信号406と、受光素
子107から得られる受光光量信号407とを対応づけ
てサンプリングする。
In the measurement of the surface 8042, the position of the stage 201 is adjusted so that the converging point of the condensing optical element 901 is aligned with the surface 8042.
6, the optical path lengths of the reference optical paths 303 and 304 are changed. At this time, the processing system 500 samples the positional information signal 406 obtained from the scale 206a and the received light amount signal 407 obtained from the light receiving element 107 in association with each other.

【0040】また、面8051の測定では、ステージ2
01の位置を調整することにより、集光用光学素子90
1の集光点を面8051に合わせ、この状態で、ステー
ジ206を移動させることにより参照光路303,30
4の光路長を変化させる。処理系500は、このときに
スケール206aから得られる位置情報信号406と受
光素子107から得られる受光光量信号407とを対応
づけてサンプリングする。
In the measurement of the surface 8051, the stage 2
By adjusting the position of the light condensing optical element 90,
1 is focused on the surface 8051, and in this state, the stage 206 is moved to thereby obtain the reference optical paths 303 and 30.
4 is changed. At this time, the processing system 500 samples the positional information signal 406 obtained from the scale 206a and the received light amount signal 407 obtained from the light receiving element 107 in association with each other.

【0041】ここで、仮に、被検光学系80の製造誤差
などにより受光素子107の受光面に入射する測定光の
光軸にずれが生じていたとする。しかし、本実施形態で
は、図2に示したように、スポット303aとスポット
301aとに格差が設けられているので、この光軸が多
少ずれていても、スポット301aは、スポット303
aに包含される。
Here, it is assumed that the optical axis of the measuring light incident on the light receiving surface of the light receiving element 107 is shifted due to a manufacturing error of the optical system to be tested 80 or the like. However, in the present embodiment, as shown in FIG. 2, since there is a difference between the spot 303a and the spot 301a, even if the optical axis is slightly shifted, the spot 301a is
a.

【0042】したがって、面8042の測定、面805
1の測定の何れにおいても、前記サンプリングされたデ
ータには、干渉信号を示す有意な情報が確実に含まれて
いる。したがって、処理系500は、後述する演算処理
において、面8051と面8042との間隔を確実に求
めることができる。
Therefore, measurement of surface 8042, surface 805
In any one of the measurements, the sampled data reliably contains significant information indicative of the interference signal. Therefore, the processing system 500 can reliably determine the distance between the surface 8051 and the surface 8042 in the arithmetic processing described later.

【0043】図3は、本実施形態の間隔測定装置により
得られる、位置情報信号406と受光光量信号407と
の関係を示す図(概念図)である。図3において、横軸
がステージ206の位置、縦軸が受光素子107の受光
強度である(それぞれ、ステージ位置情報406、受光
光量信号407から得られる)。
FIG. 3 is a diagram (conceptual diagram) showing the relationship between the position information signal 406 and the received light amount signal 407 obtained by the interval measuring device of the present embodiment. 3, the horizontal axis represents the position of the stage 206, and the vertical axis represents the received light intensity of the light receiving element 107 (obtained from the stage position information 406 and the received light amount signal 407, respectively).

【0044】上記面8042の測定で得られる干渉信
号、及び面8051の測定で得られる干渉信号は、それ
ぞれ、図3の左から2番目の干渉信号、左から3番目の
干渉信号である。なお、図3では、4つの干渉信号を表
したが、これらは、集光用光学素子901の集光点を被
検光学系80内の各面8041,8042,8051,
8052に一致させて行われる各測定で得られるもので
ある。
The interference signal obtained by measuring the surface 8042 and the interference signal obtained by measuring the surface 8051 are a second interference signal from the left and a third interference signal from the left in FIG. 3, respectively. In FIG. 3, four interference signals are shown, and these are obtained by setting the converging point of the converging optical element 901 to each of the surfaces 8041, 8042, 8051,
It is obtained by each measurement performed in accordance with the data of the data 8052.

【0045】また、4つの干渉信号に対応する4つのス
テージ位置の関係は、面8041,8042,805
1,8052の位置関係に等しい。処理系500は、例
えば特願2000−264247に記載された方法によ
り面8042の測定と面8051の測定とでサンプリン
グしたデータを解析し、図3の左から2番目の干渉信号
の包絡線がピークをとるステージ位置X2と、左から3
番目の干渉信号の包絡線がピークをとるステージ位置X
3とを求める。さらに、処理系500は、その差分|X
3−X2|を算出し、差分|X3−X2|の値を、面8
051と面8042との間隔として出力する。
The relationship between the four stage positions corresponding to the four interference signals is as follows: surfaces 8041, 8042, 805
1,8052. The processing system 500 analyzes data sampled by the measurement of the surface 8042 and the measurement of the surface 8051 by the method described in Japanese Patent Application No. 2000-264247, for example, and the envelope of the second interference signal from the left in FIG. Stage position X2 to take and 3 from the left
Stage position X at which the envelope of the second interference signal has a peak
Ask for 3. Further, the processing system 500 calculates the difference | X
3-X2 |, and the value of the difference | X3-X2 |
The distance is output as the distance between 051 and the surface 8042.

【0046】ところで、従来の間隔測定装置では、干渉
信号に寄与する測定光の強度と参照光の強度とを比較す
ると、ビームスプリッタ103の反射率・透過率に特別
な偏りを設けない限り、参照光の強度の方が高くなって
いた。なぜなら、測定光は、被検光学系80内の各光学
素子における反射や吸収によって、光量の損失があるの
に対し、参照光はそのような損失が殆ど無いからであ
る。
By the way, in the conventional distance measuring apparatus, when the intensity of the measuring light contributing to the interference signal and the intensity of the reference light are compared, unless the reference and the reflectance of the beam splitter 103 have a special bias, the reference The light intensity was higher. This is because the measurement light has a loss of light amount due to reflection or absorption in each optical element in the test optical system 80, whereas the reference light has almost no such loss.

【0047】一方、本実施形態では、参照光の光束によ
るスポット303aの方を拡大しており、測定光と参照
光のそれぞれのスポットが重なり合う部分については、
それらの強度はほぼ等しく成っている。従って、測定光
と参照光が重なり合う範囲だけ受光した場合、干渉信号
のコントラストは、参照光の光束を拡大しない場合より
も良好な状態になっている。
On the other hand, in the present embodiment, the spot 303a due to the luminous flux of the reference light is enlarged, and a portion where the spots of the measurement light and the reference light overlap each other is:
Their strength is almost equal. Therefore, when the measurement light and the reference light are received only in the overlapping range, the contrast of the interference signal is in a better state than when the light flux of the reference light is not enlarged.

【0048】但し、参照光のスポットのうち測定光と重
なり合わない部分も、受光素子107が受光している場
合は、この部分の強度も出力される信号に反映されてし
まうので、干渉信号のコントラストが良好にならない。
そこで、本実施形態では、測定光と参照光とが重なり合
う部分のみ受光素子107の受光面に入射し、参照光だ
けしか到達しない部分については、マスク等により覆う
ことで、参照光を一部遮ることが好ましい。
However, when the light receiving element 107 receives a portion of the spot of the reference light that does not overlap with the measurement light, the intensity of this portion is also reflected in the output signal. The contrast is not good.
Therefore, in the present embodiment, only the portion where the measurement light and the reference light overlap with each other is incident on the light receiving surface of the light receiving element 107, and the portion where only the reference light only reaches is covered with a mask or the like to partially block the reference light. Is preferred.

【0049】ここで、測定光のスポット位置は、被測定
物の面形状により変わるので、このように参照光を遮る
場合、マスクの被遮蔽領域は、測定光のスポット位置に
応じて変えられるものを適用することが好ましい。例え
ば、マスクの位置を決める支持機構を動かして、マスク
の被遮蔽領域を変えるなどの機構を適用する。
Here, since the spot position of the measurement light changes depending on the surface shape of the object to be measured, when the reference light is blocked in this way, the masked area of the mask can be changed according to the spot position of the measurement light. Is preferably applied. For example, a mechanism for moving the support mechanism for determining the position of the mask to change the masked area of the mask is applied.

【0050】以上説明したとおり、本実施形態によれ
ば、参照光と測定光の一方が拡大されるので、間隔測定
の確度は高くなる。また、拡大する対象を参照光として
いるので、間隔測定の精度までもが高くなる。なお、光
学素子804および光学素子805の群屈折率が既知で
あれば、差分|X2−X1|を群屈折率で除したものが
光学素子804の厚さである。処理系500は、必要に
応じてこの厚さを求めて出力する。
As described above, according to the present embodiment, since one of the reference light and the measurement light is enlarged, the accuracy of the interval measurement is increased. Further, since the object to be enlarged is the reference light, the accuracy of the interval measurement is also improved. If the group refractive index of the optical element 804 and the optical element 805 is known, the thickness of the optical element 804 is obtained by dividing the difference | X2−X1 | by the group refractive index. The processing system 500 calculates and outputs this thickness as needed.

【0051】また、図3の左から3番目の干渉信号の包
絡線がピークをとるステージ位置X3と、左から4番目
の干渉信号の包絡線がピークをとるステージ位置X4と
の差分|X4−X3|を、群屈折率で除したものが光学
素子805の厚さとなる。処理系500は、必要に応じ
てこの厚さを求めて出力する。また、本実施形態では、
間隔測定の一部又は全部の処理を、自動化してもよい。
自動化する場合には、図1に示す間隔測定装置において
必要な要素(例えばステージ201、ステージ206、
受光素子107など)をモータなどにより電動化すると
共に、その処理が実行されるようにその要素を駆動制御
する制御回路を備えればよい。
The difference | X4− between the stage position X3 where the envelope of the third interference signal from the left in FIG. 3 has a peak and the stage position X4 where the envelope of the fourth interference signal from the left has a peak. The thickness of the optical element 805 is obtained by dividing X3 | by the group refractive index. The processing system 500 calculates and outputs this thickness as needed. In this embodiment,
Some or all processes of the interval measurement may be automated.
In the case of automation, necessary elements (for example, stage 201, stage 206,
The light receiving element 107 and the like may be electrically driven by a motor or the like, and a control circuit for driving and controlling the elements so that the processing is executed may be provided.

【0052】また、ステージ201を移動させる処理
(集光点を面上に合わせる処理)を自動化する場合、制
御回路は、集光点を合わせるべき2つの面(面805
1,8042)のおおよその位置(これは、被検光学系
80の設計データ、及び被検光学系80の配置などによ
り決まる。)を予め記憶しているとする。また、制御回
路の代わりに、間隔測定装置専用の制御ボードが実装さ
れたコンピュータを使用してもよい。
When automating the process of moving the stage 201 (the process of aligning the focal point on the surface), the control circuit determines the two surfaces (surface 805) at which the focal point should be adjusted.
(1,8042) (this is determined by the design data of the test optical system 80 and the arrangement of the test optical system 80, etc.) in advance. Further, instead of the control circuit, a computer on which a control board dedicated to the interval measuring device is mounted may be used.

【0053】[第2実施形態]次に、図4を参照して本
発明の第2実施形態について説明する。図4は、本実施
形態の間隔測定装置を示す図である。本実施形態では、
第1実施形態との相違点についてのみ説明する。本実施
形態と第1実施形態との相違点は、光束径拡大用光学系
903の挿入箇所が測定光の光路となっている点にあ
る。すなわち、測定光の光束を拡大している。
[Second Embodiment] Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a diagram illustrating the interval measuring device according to the present embodiment. In this embodiment,
Only differences from the first embodiment will be described. The difference between the present embodiment and the first embodiment is that the insertion point of the optical system 903 for expanding the light beam diameter is an optical path of the measurement light. That is, the luminous flux of the measurement light is expanded.

【0054】この場合、参照光によるスポット303a
よりも測定光によるスポット301aの方が大きくなる
ので、間隔測定の確度が高くなるという効果は、第1実
施形態と同様に得られる。 [その他]なお、上記各実施形態では、測定対象となる
2つの面を曲面であるとしているが、測定対象となる面
の一方又は双方が平面である場合にも、本発明は適用可
能である。
In this case, the spot 303a by the reference light
Since the spot 301a due to the measuring light is larger than the spot light, the effect of increasing the accuracy of the interval measurement can be obtained as in the first embodiment. [Others] In the above embodiments, the two surfaces to be measured are curved surfaces. However, the present invention is applicable to a case where one or both of the surfaces to be measured are flat surfaces. .

【0055】また、上記各実施形態を、光学系の製造に
適用することもできる。すなわち、複数の光学素子から
なる光学系の製造工程において、それら光学素子の組み
付けの工程以降に、前記した各実施形態の何れかによっ
てそれら光学素子の面間隔を測定し、測定された面間隔
に応じて、光学素子の位置調整や、光学素子の表面の研
磨など、光学系の調整を行う。
Each of the above embodiments can be applied to the manufacture of an optical system. That is, in the manufacturing process of the optical system composed of a plurality of optical elements, after the step of assembling the optical elements, the surface spacing of the optical elements is measured by any of the above-described embodiments, and the measured surface spacing is calculated. Accordingly, the optical system is adjusted, such as adjusting the position of the optical element and polishing the surface of the optical element.

【0056】仮に、測定された面間隔に応じて行われる
前記調整の方法に、公知の技術の何れかを適用したとし
ても、前記したように間隔測定が確度高く行われる分だ
け、高い性能を光学系に対して付与することが可能であ
る。
Even if any of the well-known techniques are applied to the adjustment method performed in accordance with the measured surface spacing, high performance is achieved by the high accuracy of the spacing measurement as described above. It can be applied to an optical system.

【0057】[0057]

【発明の効果】以上説明したとおり、本発明によれば、
従来よりも高い確度で間隔測定をすることができる間隔
測定装置、間隔測定方法、及び、従来よりも性能の高い
光学系の製造方法、並びに干渉計が実現する。
As described above, according to the present invention,
An interval measuring apparatus, an interval measuring method, a method of manufacturing an optical system with higher performance than before, and an interferometer capable of measuring an interval with higher accuracy than before are realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態の間隔測定装置を示す図である。FIG. 1 is a diagram illustrating an interval measuring device according to a first embodiment.

【図2】第1実施形態の間隔測定装置において、受光素
子107の受光面に入射する各光を説明する図である。
FIG. 2 is a diagram illustrating each light incident on a light receiving surface of a light receiving element 107 in the distance measuring device according to the first embodiment.

【図3】第1実施形態の間隔測定装置により得られる、
位置情報信号406と受光光量信号407との関係を示
す図である。
FIG. 3 is obtained by the distance measuring device of the first embodiment;
FIG. 4 is a diagram showing a relationship between a position information signal 406 and a received light amount signal 407.

【図4】第2実施形態の間隔測定装置を示す図である。FIG. 4 is a diagram illustrating an interval measuring device according to a second embodiment.

【図5】低コヒーレンス干渉計を利用した間隔測定装置
を示す図である。
FIG. 5 is a diagram showing an interval measuring device using a low coherence interferometer.

【図6】従来の間隔測定装置により得られる、位置情報
信号406と受光光量信号407との関係を示す図であ
る。
FIG. 6 is a diagram showing a relationship between a position information signal 406 and a received light amount signal 407 obtained by a conventional interval measuring device.

【図7】低コヒーレンス干渉計において、受光素子10
7の受光面に入射する各光を説明する図である。
FIG. 7 shows a light receiving element 10 in a low coherence interferometer.
FIG. 7 is a diagram illustrating each light incident on a light receiving surface of No. 7;

【符号の説明】[Explanation of symbols]

101 光源 102 光束径変換光学系 103,109 ビームスプリッタ 106,108 参照光偏向用光学素子 107 受光素子 407 受光光量信号 500 処理系 201,206 ステージ 206a スケール 301 測定光路 302,303 参照光路 301a,303a スポット 80 被検光学系 406 位置情報信号 805,804 光学素子 8041,8042,8051,8052 面 901,902 集光用光学素子 Reference Signs List 101 light source 102 beam diameter conversion optical system 103, 109 beam splitter 106, 108 reference light deflection optical element 107 light receiving element 407 received light amount signal 500 processing system 201, 206 stage 206a scale 301 measurement optical path 302, 303 reference optical path 301a, 303a spot Reference Signs List 80 optical system to be inspected 406 position information signal 805, 804 optical element 8041, 8042, 8051, 8052 surface 901 902 light-collecting optical element

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光源から出射された光を、複数の面を有
し、前記面の間隔が計測される被検光学系、及び光路長
可変の光路へと導光すると共に、前記被検光学系内の任
意の面において反射した測定光と前記光路を辿った参照
光とを光検出器の受光面上に導光する干渉計と、 前記参照光の光路長の変化量を検出する変位検出器とを
備えた間隔測定装置であって、 前記受光面に入射する前記測定光の光路と、前記受光面
に入射する前記参照光の光路との何れか一方に、光束径
を拡大する光束径拡大光学系を挿入したことを特徴とす
る間隔測定装置。
1. An optical system according to claim 1, wherein the light emitted from the light source is guided to a test optical system having a plurality of surfaces, the distance between the surfaces being measured, and an optical path having a variable optical path length. An interferometer that guides measurement light reflected on an arbitrary surface in the system and reference light that has followed the optical path onto a light receiving surface of a photodetector, and displacement detection that detects an amount of change in the optical path length of the reference light. A distance measuring apparatus comprising: a light beam path for enlarging a light beam diameter on one of an optical path of the measurement light incident on the light receiving surface and an optical path of the reference light incident on the light receiving surface. An interval measuring device having an enlarged optical system inserted therein.
【請求項2】 光源から出射された光を、複数の面を有
し、前記面の間隔が計測される被検光学系、及び光路長
可変の光路へと導光すると共に、前記被検光学系内の任
意の面において反射した測定光と前記光路を辿った参照
光とを光検出器の受光面上に導光する干渉計と、 前記参照光の光路長の変化量を検出する変位検出器とを
備えた間隔測定装置であって、 前記受光面に入射する前記参照光の光路に、その参照光
の光束径を拡大する光束径拡大光学系を挿入したことを
特徴とする間隔測定装置。
2. The optical system according to claim 1, wherein the light emitted from the light source is guided to a test optical system having a plurality of surfaces, the distance between the surfaces being measured, and an optical path having a variable optical path length. An interferometer that guides measurement light reflected on an arbitrary surface in the system and reference light that has followed the optical path onto a light receiving surface of a photodetector, and displacement detection that detects an amount of change in the optical path length of the reference light. A distance measuring apparatus comprising: a light beam diameter expanding optical system that expands a light beam diameter of the reference light in an optical path of the reference light incident on the light receiving surface. .
【請求項3】 更に前記光検出器は、前記光束径が拡大
された参照光と前記測定光との重複部分のみ受光するこ
とを特徴とする請求項2に記載の間隔測定装置。
3. The distance measuring apparatus according to claim 2, wherein the photodetector receives only an overlapping portion between the reference light having the enlarged light beam diameter and the measurement light.
【請求項4】 光源から出射された光を、複数の面を有
し、前記面の間隔が計測される被検光学系、及び光路長
可変の光路へと導光すると共に、前記被検光学系内の任
意の面において反射した測定光と前記光路を辿った参照
光とを光検出器の受光面上に導光する干渉計と、前記参
照光の光路長の変化量を検出する変位検出器とを備えた
間隔測定方法であって、 前記受光面上に形成される前記測定光のスポット径又は
前記参照光のスポット径の何れか一方を拡大させ、 前記参照光の光路長を変化させ、そのときの前記光検出
器の出力、及び前記変位検出器の出力を参照し、 前記参照した前記出力に基づいて、前記任意の面の間隔
を求めることを特徴とする間隔測定方法。
4. The optical system according to claim 1, wherein the light emitted from the light source is guided to a test optical system having a plurality of surfaces, the distance between the surfaces being measured, and an optical path having a variable optical path length. An interferometer that guides measurement light reflected on an arbitrary surface in the system and reference light that has followed the optical path onto a light receiving surface of a photodetector, and displacement detection that detects an amount of change in the optical path length of the reference light A distance measuring method comprising: enlarging one of a spot diameter of the measurement light or a spot diameter of the reference light formed on the light receiving surface, and changing an optical path length of the reference light. And an output of the photodetector and an output of the displacement detector at that time, and obtaining an interval between the arbitrary surfaces based on the output referred to.
【請求項5】 請求項4に記載の間隔測定方法におい
て、 前記受光面上に形成される前記測定光のスポット径と、
前記参照光のスポット径とでは、後者の方を大きく設定
することを特徴とする間隔測定方法。
5. The distance measuring method according to claim 4, wherein: a spot diameter of the measurement light formed on the light receiving surface;
An interval measuring method, wherein the spot diameter of the reference light is set larger in the latter.
【請求項6】 光学系内に配置された光学素子の任意の
面の間隔を、請求項4又は請求項5に記載の間隔測定方
法により測定し、 前記測定した面間隔に応じて、前記光学系の調整を行う
ことを特徴とする光学系の製造方法。
6. An interval between arbitrary surfaces of an optical element arranged in an optical system is measured by the interval measuring method according to claim 4 or 5, and the optical system is provided according to the measured surface interval. A method for manufacturing an optical system, comprising adjusting a system.
【請求項7】 同一光源から放射され、異なる光路を通
過した複数の光の干渉像を受光する干渉計において、 前記光路のうち少なくとも一方に、光束径を拡大する光
束径拡大光学系を挿入したことを特徴とする干渉計。
7. An interferometer for receiving interference images of a plurality of lights emitted from the same light source and passing through different light paths, wherein a light beam diameter expanding optical system for expanding a light beam diameter is inserted into at least one of the light paths. An interferometer characterized in that:
JP2001013545A 2001-01-22 2001-01-22 Instrument and method for measuring space, method of manufacturing optical system, and interferometer Pending JP2002213926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001013545A JP2002213926A (en) 2001-01-22 2001-01-22 Instrument and method for measuring space, method of manufacturing optical system, and interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001013545A JP2002213926A (en) 2001-01-22 2001-01-22 Instrument and method for measuring space, method of manufacturing optical system, and interferometer

Publications (1)

Publication Number Publication Date
JP2002213926A true JP2002213926A (en) 2002-07-31

Family

ID=18880382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013545A Pending JP2002213926A (en) 2001-01-22 2001-01-22 Instrument and method for measuring space, method of manufacturing optical system, and interferometer

Country Status (1)

Country Link
JP (1) JP2002213926A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458321A1 (en) * 2010-11-29 2012-05-30 Trioptics GmbH Method and device for measuring distances between optical areas of an optical system
CN111487041A (en) * 2020-01-20 2020-08-04 长春精仪光电技术有限公司 Non-contact mirror surface interval measuring method based on matrix optical calculation
EP4339553A1 (en) * 2022-09-13 2024-03-20 Canon Kabushiki Kaisha Acquiring apparatus, acquiring method, and optical system manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458321A1 (en) * 2010-11-29 2012-05-30 Trioptics GmbH Method and device for measuring distances between optical areas of an optical system
CN111487041A (en) * 2020-01-20 2020-08-04 长春精仪光电技术有限公司 Non-contact mirror surface interval measuring method based on matrix optical calculation
CN111487041B (en) * 2020-01-20 2021-09-07 长春精仪光电技术有限公司 Non-contact mirror surface interval measuring method based on matrix optical calculation
EP4339553A1 (en) * 2022-09-13 2024-03-20 Canon Kabushiki Kaisha Acquiring apparatus, acquiring method, and optical system manufacturing method

Similar Documents

Publication Publication Date Title
US5103106A (en) Reflective optical instrument for measuring surface reflectance
EP0208276A1 (en) Optical measuring device
JPH0145973B2 (en)
US10989524B2 (en) Asymmetric optical interference measurement method and apparatus
JP2003232989A (en) Automatic focusing module for system of microscopic base, microscopic system having automatic focusing module and automatic focusing method for system of microscopic base
CN102043352A (en) Focusing and leveling detection device
WO2002093567A2 (en) Focus error correction method and apparatus
JP2002213926A (en) Instrument and method for measuring space, method of manufacturing optical system, and interferometer
JP2002333305A (en) Interference measuring apparatus and lateral coordinate measuring method
TWI658289B (en) Focusing and leveling device
KR100878425B1 (en) Surface measurement apparatus
CN113138022B (en) Spectral reflectance detection method, system, device and computer-readable storage medium
JP2003050109A (en) Surface shape measuring device and measuring method
CN112857263A (en) Oblique illumination type color confocal measurement system and detection method
US6288841B1 (en) Optical mechanism for precisely controlling the angle of an incident light beam within a large incident angle range
JP2003097924A (en) Shape measuring system and method using the same
JP2000018912A (en) Oblique incidence interferometer
JP2001336919A (en) Inspection system of integrated circuit with lead
JP2002250609A (en) Gap-measuring device, gap-measuring method, and manufacturing method of optical system
JP2003344219A (en) Method and instrument for measuring eccentricity, manufacturing method for projection optical system, and projection optical system
JPH11304640A (en) Inspection apparatus for optical element
JPH10133117A (en) Microscope equipped with focus detecting device
JP3320249B2 (en) Photoelectric detection method and photoelectric detection device using the same
CN117238785A (en) Detection device and detection equipment
JP2002257525A (en) Wave front conversion optical system, surface shape measuring device, and surface shape measuring method