JP2002213550A - Tensile force control method of continuously variable transmission - Google Patents

Tensile force control method of continuously variable transmission

Info

Publication number
JP2002213550A
JP2002213550A JP2001008625A JP2001008625A JP2002213550A JP 2002213550 A JP2002213550 A JP 2002213550A JP 2001008625 A JP2001008625 A JP 2001008625A JP 2001008625 A JP2001008625 A JP 2001008625A JP 2002213550 A JP2002213550 A JP 2002213550A
Authority
JP
Japan
Prior art keywords
belt
pulley
continuously variable
tension
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001008625A
Other languages
Japanese (ja)
Inventor
Kouji Ninkai
幸司 任介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2001008625A priority Critical patent/JP2002213550A/en
Publication of JP2002213550A publication Critical patent/JP2002213550A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a tensile force control method of a continuously variable transmission capable of controlling effective belt tensile force optimum by precisely finding a belt winding radius of a drive pulley. SOLUTION: The continuously variable transmission controls energizing force of a tensioner device 11 in accordance with the effective belt tensile force Te by winding a belt 5 between the drive pulley 2 and a driven pulley 4 and computing the effective belt tensile force Te by a ratio of input torque Mi to the drive pulley 2 and the belt winding radius R1 of the drive pulley 2. An axial rotational frequency ratio z is found form axial rotational frequency N1 of the drive pulley 2 and axial rotational frequency N2 of the driven pulley 4, and the belt winding radius R1 is found from overall length L of the belt, an inter-axis distance C of the drive pulley 2 and the driven pulley 4 and the axial rotational frequency ratio z.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は無段変速機の張力制
御方法、特にVベルト式無段変速機におけるベルト張力
を最適な値に制御する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the tension of a continuously variable transmission, and more particularly to a method for controlling the belt tension of a V-belt type continuously variable transmission to an optimum value.

【0002】[0002]

【従来の技術】車両用無段変速機として、Vベルト式無
段変速機が実用化されている。このうち、油圧サーボを
有する駆動プーリと油圧サーボを有する従動プーリとの
間にベルトを巻き掛け、ライン圧をいずれか一方のプー
リの油圧サーボに供給することによりベルト張力となる
挟持力を発生させるとともに、他方のプーリの油圧サー
ボにはライン圧を調圧した変速油圧を供給することによ
り、変速比を可変するようにした無段変速機が提案され
ている(特開平5−141514号公報)。
2. Description of the Related Art As a continuously variable transmission for vehicles, a V-belt type continuously variable transmission has been put to practical use. Among these, a belt is wound between a driving pulley having a hydraulic servo and a driven pulley having a hydraulic servo, and a line pressure is supplied to the hydraulic servo of one of the pulleys to generate a clamping force that becomes a belt tension. In addition, there has been proposed a continuously variable transmission in which the transmission ratio is varied by supplying a transmission hydraulic pressure adjusted to a line pressure to a hydraulic servo of the other pulley (Japanese Patent Application Laid-Open No. 5-141514). .

【0003】無段変速機のベルト伝達効率は、伝達トル
クに応じた最適張力条件で運転することにより、最大と
なる。そこで、プーリ比、伝達トルクなどに応じて最適
な張力に制御するためのパラメータを決定する必要があ
る。上記無段変速機の場合には、駆動プーリへの入力ト
ルクMiと駆動プーリのベルト巻き掛け半径R1 との比
によって実効ベルト張力Teを算出し、この実効ベルト
張力Teに応じてプーリ挟持力を制御している。すなわ
ち、実効ベルト張力Teを次式で求めている。 Te=Mi/R1
[0003] The belt transmission efficiency of a continuously variable transmission is maximized by operating under optimal tension conditions according to the transmission torque. Therefore, it is necessary to determine parameters for controlling the tension to an optimum value according to the pulley ratio, the transmission torque, and the like. In the case of the continuously variable transmission, and calculates the effective belt tension Te by the ratio of the input torque Mi and the belt winding radius R 1 of the drive pulley to the driven pulley, the pulley clamping force according to the effective belt tension Te Is controlling. That is, the effective belt tension Te is obtained by the following equation. Te = Mi / R 1

【0004】[0004]

【発明が解決しようとする課題】上式において、入力ト
ルクMiはエンジントルクから求めることができるが、
駆動プーリのベルト巻き掛け半径R1 は直接検出できな
い。通常は、プーリの幅を検出し、その幅から演算によ
りベルト巻き掛け半径R1 を求めているが、ベルトの幅
方向の弾性変形や摩耗により、誤差が生じやすい。この
傾向は、特に樹脂ベルトの場合に顕著に現れる。このよ
うに誤差の大きなベルト巻き掛け径R1 を用いて実効ベ
ルト張力Teを求め、プーリ挟持力を制御すると、最適
なベルト張力に制御できない。
In the above equation, the input torque Mi can be obtained from the engine torque.
Belt winding radius R 1 of the drive pulley can not be directly detected. Normally, to detect the width of the pulley, but seeking belt winding radius R 1 by calculation from the width, the width direction of the elastic deformation and wear of the belt, the error is likely to occur. This tendency is particularly noticeable in the case of a resin belt. Thus we determined the effective belt tension Te with large belt winding diameter R 1 of the error, by controlling the pulley clamping force can not be controlled to the optimum belt tension.

【0005】そこで、本発明の目的は、駆動プーリのベ
ルト巻き掛け半径を正確に求め、実効ベルト張力を最適
に制御できる無段変速機の張力制御方法を提供すること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a tension control method for a continuously variable transmission capable of accurately obtaining a belt winding radius of a driving pulley and optimally controlling an effective belt tension.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明は、駆動プーリと従動プーリ
との間にベルトを巻き掛け、駆動プーリへの入力トルク
Miと駆動プーリのベルト巻き掛け半径R1 との比によ
って実効ベルト張力Teを算出し、この実効ベルト張力
Teに応じてプーリの挟持力あるいはベルトテンショナ
の付勢力を制御する無段変速機において、上記駆動プー
リの軸回転数N1 と従動プーリの軸回転数N 2 とから軸
回転数比Zを求め、上記ベルト巻き掛け半径R1 を、ベ
ルトの全長Lと、駆動プーリと従動プーリとの軸間距離
Cと、上記軸回転数比Zとから求めることを特徴とする
無段変速機の張力制御方法を提供する。
In order to achieve the above object,
According to a first aspect of the present invention, there is provided a driving pulley and a driven pulley.
And the input torque to the drive pulley
Mi and the belt winding radius R of the drive pulley1 Depending on the ratio
To calculate the effective belt tension Te.
Pulling force or belt tensioner according to Te
In the continuously variable transmission that controls the urging force of the
Shaft rotation speed N1 And the rotational speed N of the driven pulley Two And the axis from
The rotational speed ratio Z is obtained, and the belt winding radius R is obtained.1 ,
The total length L of the belt and the distance between the shafts of the driving pulley and the driven pulley
C and the shaft rotational speed ratio Z.
Provided is a tension control method for a continuously variable transmission.

【0007】まず駆動プーリの軸回転数N1 と従動プー
リの軸回転数N2 とから軸回転数比Zを求める。次に、
ベルト巻き掛け半径R1 を、ベルトの全長Lと、駆動プ
ーリと従動プーリとの軸間距離Cと、上記軸回転数比Z
とから求める。半径R1 は後述するように計算で求める
ことができる。一般に、ベルトの幅寸法は経年変化によ
り摩耗によって変化するが、ベルト長さは殆ど変化しな
い。本発明のベルト巻き掛け半径の算出方法では、経年
変化のない要素(ベルトの全長L,軸間距離C,軸回転
数比Z)のみを用いて算出するので、正確な巻き掛け半
径を算出できる。その結果、この正確なベルト巻き掛け
径R1 を用いて実効ベルト張力Teを求め、プーリ挟持
力あるいはベルトテンショナの付勢力を制御すると、最
適なベルト張力に制御できる。
[0007] First Request axial rotation speed ratio Z from the axis rotating speed N 1 and the shaft rotation speed of the driven pulley N 2 Metropolitan driving pulley. next,
The belt winding radius R 1 is determined by the following formula: the total length L of the belt, the center distance C between the driving pulley and the driven pulley,
And ask from. Radius R 1 can be obtained by calculation as described below. Generally, the width of the belt changes due to abrasion due to aging, but the belt length hardly changes. In the method for calculating the belt winding radius according to the present invention, since the calculation is performed using only the elements that do not change over time (the overall length L of the belt, the distance between the shafts C, and the ratio of the number of shaft revolutions Z), the accurate winding radius can be calculated. . As a result, determine the effective belt tension Te using the exact belt winding diameter R 1, by controlling the urging force of the pulley clamping force or belt tensioner can be controlled to the optimum belt tension.

【0008】本発明の無段変速機としては、前述の特開
平5−141514号公報に記載のように、駆動プーリ
および従動プーリの双方に油圧サーボを設けたものに限
らず、双方のプーリ幅をモータおよびボールネジ機構な
どによって逆方向に可変制御できるようにし、これとは
別にベルトを押し付けて張力を得るベルトテンショナを
設けたもの(例えば特開平5−280613号公報参
照)でもよい。
The continuously variable transmission of the present invention is not limited to the one disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 5-141514, in which both a driving pulley and a driven pulley are provided with hydraulic servos. May be variably controlled in the reverse direction by a motor and a ball screw mechanism, and separately provided with a belt tensioner for pressing the belt to obtain tension (see, for example, JP-A-5-280613).

【0009】本発明は、請求項2のように、張力帯に複
数のブロックを長手方向に係止し、各ブロックのプーリ
との接触面をゴムあるいは樹脂材料で形成した乾式ベル
トを用いた場合に効果的である。Vベルト式無段変速機
には、金属ベルトを使用する湿式の無段変速機とゴムベ
ルトあるいは樹脂ベルトを使用する乾式の無段変速機と
がある。特に、後者のベルトは、張力帯に複数のブロッ
クを長手方向に係止し、ブロックのプーリとの接触面を
ゴムあるいは樹脂材料で形成したものであるが、このよ
うなベルトは新品のベルトであっても、プーリの挟持力
やベルトテンショナの付勢力により幅方向に弾性変形す
る性質をもつ。このようなVベルトを用いた場合には、
本発明の方法で最適張力を制御すると、高精度な制御が
可能となる。また、本発明の算出方法では、軸回転数比
Zからプーリのベルト巻き掛け径の比を求める関係上、
ベルトがプーリに対して滑らないことが条件となる。乾
式ベルトの場合、湿式ベルトに比べてプーリとの間の滑
りが非常に少ないので、ベルト巻き掛け径R1 を正確に
算出できる。
According to a second aspect of the present invention, there is provided a dry belt in which a plurality of blocks are engaged with a tension band in a longitudinal direction, and a contact surface of each block with a pulley is formed of rubber or resin material. It is effective for The V-belt type continuously variable transmission includes a wet type continuously variable transmission using a metal belt and a dry type continuously variable transmission using a rubber belt or a resin belt. In particular, the latter belt is formed by locking a plurality of blocks in the tension band in the longitudinal direction and forming the contact surface of the blocks with the pulleys of rubber or a resin material. Even if it does, it has the property of being elastically deformed in the width direction by the clamping force of the pulley and the urging force of the belt tensioner. When using such a V-belt,
When the optimum tension is controlled by the method of the present invention, high-precision control becomes possible. Further, according to the calculation method of the present invention, the relationship between the shaft rotation speed ratio Z and the ratio of the belt winding diameter of the pulley is determined.
The condition is that the belt does not slip on the pulley. For dry belt, since slippage between the pulley in comparison with a wet belt is very small, the belt winding diameter R 1 can be calculated accurately.

【0010】[0010]

【発明の実施の形態】図1,図2は本発明にかかる無段
変速機の一例の概略構造を示し、この例は車両用として
用いられる乾式の無段変速機の例を示す。この無段変速
機は、エンジンと発進機構(図示せず)を介して接続さ
れ、駆動プーリ2を有する駆動軸1と、車輪と連結さ
れ、従動プーリ4を有する従動軸3と、両プーリ2,4
間に巻き掛けられたVベルト5とを備えている。この実
施例のVベルト5は、樹脂ベルト(例えば実公平3−3
1870号公報参照)が用いられている。
1 and 2 show a schematic structure of an example of a continuously variable transmission according to the present invention. This example shows an example of a dry-type continuously variable transmission used for a vehicle. The continuously variable transmission is connected to the engine via a starting mechanism (not shown), and includes a drive shaft 1 having a drive pulley 2, a driven shaft 3 connected to wheels and having a driven pulley 4, , 4
And a V-belt 5 wound therearound. The V belt 5 of this embodiment is a resin belt (for example, 3-3
No. 1870).

【0011】駆動プーリ2および従動プーリ4は、それ
ぞれ軸1,3に固定された固定シーブ2a,4aと、軸
1,3に対して軸方向に移動可能な可動シーブ2b,4
bとを備えており、可動シーブ2b,4bの背後にはボ
ールネジ機構6,7が設けられている。ボールネジ機構
6,7にはそれぞれ変速ギヤ6a,7aが設けられてお
り、駆動プーリ2の変速ギヤ6aには変速用モータ8の
駆動ギヤ9が噛み合っている。また、変速ギヤ6aはア
イドラ軸10に設けられたアイドラギヤ10a,10b
を介して従動プーリ4の変速ギヤ7aと噛み合い、同期
回転する。そのため、変速用モータ8を駆動してボール
ネジ機構6,7を回転させると、例えば駆動プーリ2の
可動シーブ2bが開き方向に移動した時、従動プーリ4
の可動シーブ4bは閉じ方向へ移動する。つまり、駆動
プーリ2と従動プーリ4はそのベルト巻き掛け径が逆方
向にかつ同期して変化する。
The drive pulley 2 and the driven pulley 4 have fixed sheaves 2a and 4a fixed to the shafts 1 and 3, respectively, and movable sheaves 2b and 4 movable in the axial direction with respect to the shafts 1 and 3.
b, and ball screw mechanisms 6, 7 are provided behind the movable sheaves 2b, 4b. The ball screw mechanisms 6 and 7 are provided with transmission gears 6a and 7a, respectively, and the transmission gear 6a of the driving pulley 2 is engaged with the driving gear 9 of the transmission motor 8. The transmission gear 6a includes idler gears 10a and 10b provided on the idler shaft 10.
And the driven pulley 4 is meshed with the transmission gear 7a through the driven pulley 4 to rotate synchronously. Therefore, when the speed change motor 8 is driven to rotate the ball screw mechanisms 6 and 7, for example, when the movable sheave 2b of the drive pulley 2 moves in the opening direction, the driven pulley 4
Move the movable sheave 4b in the closing direction. That is, the belt pulling diameters of the driving pulley 2 and the driven pulley 4 change in opposite directions and synchronously.

【0012】上記のようにプーリ2,4のベルト巻き掛
け径(プーリ比)は変速用モータ8によって可変する
が、それだけではVベルト5とプーリ2,4との間に滑
りが発生してしまう。そこで、伝達トルクおよびベルト
巻き掛け径に応じたベルト張力を与えるため、図2に示
すテンショナ装置11が設けられている。テンショナ装
置11はVベルト5を外側から押し付けるテンションロ
ーラ12を備え、このテンションローラ12はリンク1
3によって揺動可能に支持されている。リンク13はス
プリング14によってVベルト5の押し付け方向に付勢
されている。そのため、テンションローラ12は所定の
荷重でVベルト5の緩み側を内側に向かって押し付けて
いる。このように外側から内側に向かってVベルト5を
押圧することで、所定のベルト推力を得るとともに、プ
ーリ2,4に対するVベルト5の巻き付け長さを長く
し、伝達効率を高めている。リンク13の先端部外周面
にはギヤ部13aが形成され、このギヤ部13aに張力
調整用アシストモータ15のピニオンギヤ16が噛み合
っている。上記スプリング14は初期推力を与えてお
り、アシストモータ15を正逆いずれかの方向に駆動す
ることによって、初期推力に対してモータ推力を加減
し、最適なベルト張力が得られるように調整している。
As described above, the belt winding diameter (pulley ratio) of the pulleys 2 and 4 can be varied by the speed change motor 8, but slippage occurs between the V-belt 5 and the pulleys 2 and 4 by itself. . Therefore, a tensioner device 11 shown in FIG. 2 is provided to apply a belt tension according to the transmission torque and the belt winding diameter. The tensioner device 11 has a tension roller 12 for pressing the V-belt 5 from the outside.
3 for swinging support. The link 13 is urged by a spring 14 in the direction in which the V-belt 5 is pressed. Therefore, the tension roller 12 presses the loose side of the V-belt 5 inward with a predetermined load. By pressing the V-belt 5 from the outside to the inside in this way, a predetermined belt thrust is obtained, and the length of the winding of the V-belt 5 around the pulleys 2 and 4 is increased, thereby increasing the transmission efficiency. A gear portion 13a is formed on the outer peripheral surface of the distal end portion of the link 13, and the pinion gear 16 of the assist motor 15 for tension adjustment meshes with the gear portion 13a. The spring 14 provides an initial thrust. By driving the assist motor 15 in either the forward or reverse direction, the motor thrust is adjusted with respect to the initial thrust so as to obtain an optimum belt tension. I have.

【0013】変速用モータ8および張力制御用モータ1
5は電子回路で構成されたコントローラ20によって制
御される。コントローラ20には、車両の運転信号(エ
ンジン回転数,スロットル開度,車速,シフトポジショ
ン信号,駆動軸1の回転数、従動軸3の回転数など)が
入力される。コントローラ20には、変速マップや張力
制御マップが予め設定されており、入力信号とこれら制
御マップとに応じて変速用モータ8および張力制御用モ
ータ15を制御している。
Transmission motor 8 and tension control motor 1
5 is controlled by a controller 20 composed of an electronic circuit. The controller 20 receives driving signals of the vehicle (engine speed, throttle opening, vehicle speed, shift position signal, rotation speed of the drive shaft 1, rotation speed of the driven shaft 3, etc.). A shift map and a tension control map are set in the controller 20 in advance, and control the shift motor 8 and the tension control motor 15 in accordance with the input signals and these control maps.

【0014】エンジンから発進機構を介して駆動軸1に
入力される入力トルクをMi、駆動プーリ2のベルト巻
き掛け半径をR1 とすると、実効ベルト張力Teは、次
式で与えられる。 Te=Mi/R1 この実効ベルト張力Teに応じてテンショナ装置11の
押し付け力、つまり張力制御用モータ15の電流が制御さ
れる。入力トルクMiは、エンジントルクから求める。
一方、駆動プーリ2のベルト巻き掛け半径R1 は次のよ
うにして求める。
Assuming that the input torque input to the drive shaft 1 from the engine via the starting mechanism is Mi, and the belt winding radius of the drive pulley 2 is R 1 , the effective belt tension Te is given by the following equation. Te = Mi / R 1 The pressing force of the tensioner device 11, that is, the current of the tension control motor 15 is controlled in accordance with the effective belt tension Te. The input torque Mi is obtained from the engine torque.
On the other hand, the belt winding radius R 1 of the drive pulley 2 is determined as follows.

【0015】図3は巻き掛け半径R1 を求めるための説
明図である。従動プーリ4の巻き掛け半径をR2 、ベル
ト5の全長をL、駆動プーリ2と従動プーリ4との軸間
距離をCとする。また、φは鉛直軸とO12 のなす角
度および鉛直軸とO23 のなす角度(ラジアン)であ
る。Zは駆動プーリ2と従動プーリ4との軸回転数比で
あり、それぞれの軸回転数N1 ,N2 との比である。
[0015] FIG. 3 is an explanatory view for determining the winding radius R 1. The winding radius of the driven pulley 4 is R 2 , the total length of the belt 5 is L, and the center distance between the driving pulley 2 and the driven pulley 4 is C. Φ is the angle between the vertical axis and O 1 P 2 and the angle (radian) between the vertical axis and O 2 P 3 . Z is the ratio between the shaft rotation speeds of the driving pulley 2 and the driven pulley 4, and is the ratio between the respective shaft rotation speeds N 1 and N 2 .

【0016】 [0016]

【0017】 [0017]

【0018】(9)式および(10)式より、R1 をパ
ラメータとして回帰演算を実行し、ベルト巻き掛け半径
1 を求めればよい。上記のようにして駆動プーリ2の
ベルト巻き掛け半径R1 を求めることで、次のような効
果が得られる。すなわち、Vベルト5は、幅方向には経
年変化や弾性変形などによって変化するが、ベルト長さ
Lは張力帯によって連結されているので、殆ど変化しな
い。上記のようなベルト巻き掛け半径R1 の算出方法で
は、経年変化などの影響を受けない要素、つまりベルト
の全長L、軸間距離C、軸回転数比Zを用いているの
で、正確なベルト巻き掛け半径R1 を求めることができ
る。
From the equations (9) and (10), a regression operation is performed using R 1 as a parameter to determine the belt winding radius R 1 . By obtaining the belt winding radius R 1 of the drive pulley 2 as described above, the following effects can be obtained. That is, the V belt 5 changes in the width direction due to aging, elastic deformation, and the like, but the belt length L is hardly changed because the belt length L is connected by the tension band. In the above-described method of calculating the belt winding radius R 1 , elements that are not affected by aging or the like, that is, the total length L of the belt, the center distance C, and the shaft speed ratio Z are used. it can be obtained winding radius R 1.

【0019】本発明は上記実施例に限定されるものでは
ない。上記実施例では乾式ベルトを用いた例について説
明したが、湿式ベルトを用いた無段変速機にも同様に適
用できる。湿式の無段変速機では、前述の特開平5−1
41514号公報のように、駆動プーリおよび従動プー
リの双方に油圧サーボを設け、一方のプーリに供給され
る油圧を実効ベルト張力に応じて制御すればよい。
The present invention is not limited to the above embodiment. In the above-described embodiment, an example using a dry belt has been described. In the wet type continuously variable transmission, the above-mentioned Japanese Patent Application Laid-Open No. 5-1 has been disclosed.
As disclosed in Japanese Patent No. 41514, a hydraulic servo may be provided to both the driving pulley and the driven pulley, and the hydraulic pressure supplied to one of the pulleys may be controlled according to the effective belt tension.

【0020】[0020]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、実効ベルト張力Teに応じてプーリの挟持力あ
るいはベルトテンショナの付勢力を制御する無段変速機
において、実効ベルト張力Teを算出するための駆動プ
ーリのベルト巻き掛け半径R1 を、ベルトの全長Lと、
駆動プーリと従動プーリとの軸間距離Cと、軸回転数比
Zとから求めるようにしたので、経年変化のない要素の
みを用いて算出することができ、正確な巻き掛け半径を
算出できる。そのため、このベルト巻き掛け径R1を用
いて実効ベルト張力Teを求め、プーリ挟持力あるいは
ベルトテンショナの付勢力を制御すれば、最大のベルト
伝達効率を持つ最適なベルト張力に制御できる。また、
同時に、Vベルトに滑りや過大な力を与えないで済むの
で、ベルトの耐久性向上が図れるという効果を有する。
As is apparent from the above description, according to the present invention, in the continuously variable transmission in which the clamping force of the pulley or the urging force of the belt tensioner is controlled according to the effective belt tension Te, the effective belt tension Te is controlled. The belt winding radius R 1 of the drive pulley for calculating the total length L of the belt,
Since it is determined from the distance C between the shaft between the driving pulley and the driven pulley and the ratio of the number of rotations Z, it is possible to calculate using only the element that does not change over time, and it is possible to calculate an accurate winding radius. Therefore, the calculated effective belt tension Te with the belt winding diameter R 1, by controlling the urging force of the pulley clamping force or belt tensioner can be controlled to the optimum belt tension with a maximum of belt transmission efficiency. Also,
At the same time, the V-belt does not need to be slid or applied with excessive force, so that the durability of the belt can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる無段変速機の一例の概略構造図
である。
FIG. 1 is a schematic structural diagram of an example of a continuously variable transmission according to the present invention.

【図2】図1の無段変速機の側面図である。FIG. 2 is a side view of the continuously variable transmission of FIG.

【図3】駆動プーリの巻き掛け半径R1 を求めるための
説明図である。
3 is an explanatory diagram for obtaining the winding radius R 1 of the drive pulley.

【符号の説明】[Explanation of symbols]

1 駆動軸 2 駆動プーリ 3 従動軸 4 従動プーリ 5 Vベルト 8 変速用モータ 11 テンショナ装置11 15 張力制御用モータ REFERENCE SIGNS LIST 1 drive shaft 2 drive pulley 3 driven shaft 4 driven pulley 5 V belt 8 speed change motor 11 tensioner device 11 15 tension control motor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】駆動プーリと従動プーリとの間にベルトを
巻き掛け、駆動プーリへの入力トルクMiと駆動プーリ
のベルト巻き掛け半径R1 との比によって実効ベルト張
力Teを算出し、この実効ベルト張力Teに応じてプー
リの挟持力あるいはベルトテンショナの付勢力を制御す
る無段変速機において、上記駆動プーリの軸回転数N1
と従動プーリの軸回転数N2 とから軸回転数比Zを求
め、上記ベルト巻き掛け半径R1 を、ベルトの全長L
と、駆動プーリと従動プーリとの軸間距離Cと、上記軸
回転数比Zとから求めることを特徴とする無段変速機の
張力制御方法。
1. A wound belt between the drive pulley and the driven pulley, to calculate the effective belt tension Te by the ratio of the input torque Mi and the belt winding radius R 1 of the drive pulley to the driven pulley, the effective In the continuously variable transmission that controls the pulling force of the pulley or the urging force of the belt tensioner according to the belt tension Te, the shaft rotation speed N 1 of the driving pulley is used.
And the shaft rotation speed ratio N 2 of the driven pulley, the shaft rotation speed ratio Z is determined, and the belt winding radius R 1 is determined by the total length L of the belt.
A tension control method for a continuously variable transmission, wherein the tension is obtained from a shaft distance C between a driving pulley and a driven pulley, and the shaft rotation speed ratio Z.
【請求項2】上記ベルトは、張力帯に複数のブロックを
長手方向に係止し、各ブロックのプーリとの接触面をゴ
ムあるいは樹脂材料で形成した乾式ベルトであることを
特徴とする請求項1に記載の無段変速機の張力制御方
法。
2. The belt according to claim 1, wherein the belt is a dry belt in which a plurality of blocks are locked in a tension band in a longitudinal direction, and a contact surface of each block with a pulley is formed of rubber or resin material. 2. A tension control method for a continuously variable transmission according to claim 1.
JP2001008625A 2001-01-17 2001-01-17 Tensile force control method of continuously variable transmission Pending JP2002213550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001008625A JP2002213550A (en) 2001-01-17 2001-01-17 Tensile force control method of continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001008625A JP2002213550A (en) 2001-01-17 2001-01-17 Tensile force control method of continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2002213550A true JP2002213550A (en) 2002-07-31

Family

ID=18876216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001008625A Pending JP2002213550A (en) 2001-01-17 2001-01-17 Tensile force control method of continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2002213550A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187295A (en) * 2006-01-16 2007-07-26 Yamaha Motor Co Ltd Continuously variable transmission control device and saddle riding type vehicle
JP2012117579A (en) * 2010-11-30 2012-06-21 Mitsuboshi Belting Ltd Pulley for continuously variable transmission and belt type continuously variable transmission
JP2014167326A (en) * 2013-02-28 2014-09-11 Kanzaki Kokyukoki Mfg Co Ltd Vehicle continuous variable speed change control system and operation vehicle
US20210348974A1 (en) * 2018-10-31 2021-11-11 Mitsubishi Electric Corporation Motor control device and belt tension state detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187295A (en) * 2006-01-16 2007-07-26 Yamaha Motor Co Ltd Continuously variable transmission control device and saddle riding type vehicle
JP2012117579A (en) * 2010-11-30 2012-06-21 Mitsuboshi Belting Ltd Pulley for continuously variable transmission and belt type continuously variable transmission
JP2014167326A (en) * 2013-02-28 2014-09-11 Kanzaki Kokyukoki Mfg Co Ltd Vehicle continuous variable speed change control system and operation vehicle
US20210348974A1 (en) * 2018-10-31 2021-11-11 Mitsubishi Electric Corporation Motor control device and belt tension state detection device
US11828665B2 (en) * 2018-10-31 2023-11-28 Mitsubishi Electric Corporation Motor control device and belt tension state detection device

Similar Documents

Publication Publication Date Title
US7806790B2 (en) Slippage detection system and method for continuously variable transmissions
JP2641011B2 (en) Control device for belt type continuously variable transmission
JPH0742799A (en) Auxiliary driving device
JP3552411B2 (en) V-belt type continuously variable transmission
JP2002213550A (en) Tensile force control method of continuously variable transmission
US6763602B2 (en) Method for measuring free-state diameter of metal ring
JP2008051134A (en) Vibration restraining device of power transmission mechanism
JPH05288261A (en) Variable speed device of auxiliary machine and detection method of belt-slip
JP3282578B2 (en) Pulley thrust control method for V-belt continuously variable transmission
JP3907261B2 (en) V belt type continuously variable transmission
JP4425040B2 (en) Control device for continuously variable transmission
JP3712345B2 (en) Continuously variable transmission
JP2005003142A (en) Belt tension control method for continuously variable transmission
JP4458793B2 (en) Belt tension control method for belt-type continuously variable transmission with tensioner
JP2019086130A (en) V-belt type continuous variable transmission for vehicle
JP2002161953A (en) Belt-type continuously variable transmission
JPH04347047A (en) Belt-driving type continuously variable transmission
JP4474832B2 (en) Control device for continuously variable transmission
JP4380170B2 (en) Control device for continuously variable transmission
JP2003254419A (en) Controller for continuously variable transmission
JP2004116537A (en) Control method of continuously variable transmission
KR200207525Y1 (en) A stepless speed change device
JP2004069047A (en) Controller of continuously variable transmission
JPH10103437A (en) Pulley thrust controlling method for v-belt type continuously variable transmission
JP2000081124A (en) Shift controller for v-belt type continuously variable transmission