JP2002212130A - Organotitanium compound, raw material solution containing the same and titanium-containing dielectric thin film - Google Patents

Organotitanium compound, raw material solution containing the same and titanium-containing dielectric thin film

Info

Publication number
JP2002212130A
JP2002212130A JP2001004627A JP2001004627A JP2002212130A JP 2002212130 A JP2002212130 A JP 2002212130A JP 2001004627 A JP2001004627 A JP 2001004627A JP 2001004627 A JP2001004627 A JP 2001004627A JP 2002212130 A JP2002212130 A JP 2002212130A
Authority
JP
Japan
Prior art keywords
raw material
thin film
compound
dielectric thin
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001004627A
Other languages
Japanese (ja)
Inventor
Shingo Okamura
信吾 岡村
Hideyuki Hirakoso
英之 平社
Atsushi Sai
篤 齋
Katsumi Ogi
勝実 小木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001004627A priority Critical patent/JP2002212130A/en
Publication of JP2002212130A publication Critical patent/JP2002212130A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an organotitanium compound having a high solubility in an organic solvent, capable of obtaining a high film-forming rate, and excellent in heat stability and vaporization stability, and a raw material solution containing the same compound. SOLUTION: This organotitanium compound is expressed by formula (1): [Ti(O-iPr)2(dmhd)2] [wherein, dmhd is 2,6-dimethyl-3,5-heptanedione residue expressed by formula (2)].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、DRAM(ダイナ
ミックランダムアクセスメモリー)等の誘電体メモリ
ー、誘電体フィルター等に用いられる複合酸化物系誘電
体薄膜を有機金属化学蒸着法(Metal Organic Chemical
Vapor Deposition、以下、MOCVD法という。)に
より形成するための原料として好適な有機チタン化合物
に関する。更に詳しくはこの有機チタン化合物を含む溶
液原料並びにこれから作られたチタン含有誘電体薄膜に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a composite oxide dielectric thin film used for a dielectric memory such as a DRAM (Dynamic Random Access Memory) or a dielectric filter by a metal organic chemical vapor deposition method.
Vapor Deposition, hereinafter referred to as MOCVD method. The present invention relates to an organotitanium compound suitable as a raw material for forming the compound according to (1). More specifically, the present invention relates to a solution raw material containing the organic titanium compound and a titanium-containing dielectric thin film produced therefrom.

【0002】[0002]

【従来の技術】DRAMの集積度が急ピッチで増大する
につれて、キャパシタとして用いられる誘電体薄膜は、
従来のSiO2では対応が難しくなりつつあり、より誘
電率の高い誘電体材料が求められている。かかる誘電体
材料の例としては、チタン酸鉛(PT)、チタン酸ジル
コン酸鉛(PZT)、チタン酸ジルコン酸ランタン鉛
(PLZT)、チタン酸ストロンチウム(ST)、チタ
ン酸バリウム(BT)、チタン酸バリウムストロンチウ
ム(BST)等が挙げられる。
2. Description of the Related Art As the degree of integration of DRAMs increases at a rapid pace, dielectric thin films used as capacitors have become
Conventional SiO 2 is becoming difficult to cope with, and a dielectric material having a higher dielectric constant is required. Examples of such dielectric materials include lead titanate (PT), lead zirconate titanate (PZT), lead lanthanum zirconate titanate (PLZT), strontium titanate (ST), barium titanate (BT), titanium Barium strontium acid (BST) and the like.

【0003】このような複合酸化物系誘電体薄膜の形成
方法については、金属アルコキシド原料を用いてスピン
コートで基板上に成膜するゾルゲル法がこれまで盛んに
研究されてきた。ゾルゲル法は、金属成分を気化させな
いため、膜の組成制御は容易である。しかし、DRAM
のキャパシタ用電極は段差があり、集積度が高くなるほ
ど段差が大きく、かつ複雑になるので、スピンコート法
では基板となる電極状に均一に誘電体薄膜を形成するこ
とが難しい。
As a method of forming such a complex oxide-based dielectric thin film, a sol-gel method of forming a film on a substrate by spin coating using a metal alkoxide raw material has been actively studied. Since the sol-gel method does not vaporize metal components, it is easy to control the composition of the film. But DRAM
The capacitor electrode has a step, and the higher the degree of integration, the larger the step and the more complicated it becomes. Therefore, it is difficult to form a dielectric thin film uniformly on the electrode serving as a substrate by the spin coating method.

【0004】そのため、ここ数年は、デバイスの高集積
度を見越して、段差被覆性(=ステップカバレッジ性、
段差のある複雑形状の表面への付き回り性)に優れたM
OCVD法による誘電体薄膜の作製の研究が活性化して
きた。原料の有機金属化合物としては、ジピバロイルメ
タン(DPM)等のβ−ジケトン化合物を配位子とする
有機金属錯体や金属アルコキシドが一般に使用されてい
る。Ti、Zr、Ta等の金属の原料にはアルコキシド
とβ−ジケトン錯体の両方が使用され、SrやBaの原
料としては主にβ−ジケトン錯体が使用される。
Therefore, in recent years, in view of the high degree of integration of devices, step coverage (= step coverage,
M with excellent step coverage on complex shaped surfaces with steps)
Research on the production of dielectric thin films by the OCVD method has been activated. As a raw material organometallic compound, an organometallic complex or a metal alkoxide having a β-diketone compound such as dipivaloylmethane (DPM) as a ligand is generally used. Both alkoxides and β-diketone complexes are used as raw materials for metals such as Ti, Zr, and Ta, and β-diketone complexes are mainly used as raw materials for Sr and Ba.

【0005】MOCVD法は、金属原料を減圧下で加熱
して気化させ、その蒸気を成膜室に輸送して基板上で熱
分解させることにより、生成した金属酸化物を基板上に
付着させる方法である。このMOCVD法による誘電体
薄膜の形成において、当初は、原料の有機金属化合物を
そのまま加熱して気化させ、発生した蒸気を成膜室に送
って成膜させていた。しかし、原料の有機金属化合物、
特にMOCVD法に推奨されているDPM錯体のような
化合物は安定性や気化性が悪く、使用中に気化性が低下
したり、或いは気化性を高めるために加熱温度を上げる
と、原料化合物の蒸気が成膜室に達する前に熱分解する
ことがある。そのため、原料を成膜室に安定して輸送す
ることが困難であり、高価な原料が一回の成膜ごとに使
い捨てになり、また膜の組成制御の困難で、良好な誘電
特性を持つ薄膜を安定して成膜できないという問題があ
った。
[0005] The MOCVD method is a method in which a metal material is heated under reduced pressure to be vaporized, and the vapor is transported to a film forming chamber and thermally decomposed on the substrate, whereby the generated metal oxide is deposited on the substrate. It is. In the formation of a dielectric thin film by the MOCVD method, initially, an organic metal compound as a raw material is directly heated and vaporized, and the generated vapor is sent to a film forming chamber to form a film. However, the raw material organometallic compound,
In particular, compounds such as the DPM complex recommended for the MOCVD method have poor stability and vaporization properties. If the vaporization properties decrease during use, or if the heating temperature is increased in order to increase the vaporization properties, the vapor of the raw material compounds will increase. May be thermally decomposed before reaching the film forming chamber. For this reason, it is difficult to stably transport the raw materials to the film forming chamber, and expensive raw materials are thrown away after each film formation, and the film composition is difficult to control and the thin film has good dielectric properties. There was a problem that it was not possible to form a film stably.

【0006】そのため、原料を安定して供給できる溶液
気化CVD法が現在広く用いられている。この溶液気化
CVD法はMOCVD法の改良であり、固体のCVD原
料を各種有機溶媒に溶解し、液体としてCVD装置に供
給する方法である。Ti含有誘電体薄膜形成用のCVD
原料としてはビスイソプロポキシビスジビバロイルメタ
ナートチタン(以下、[Ti(O-i-Pr)2(DPM)2
という。)が一般に知られている。
Therefore, a solution vaporization CVD method capable of stably supplying a raw material is widely used at present. This solution vaporization CVD method is an improvement of the MOCVD method, in which a solid CVD raw material is dissolved in various organic solvents and supplied as a liquid to a CVD apparatus. CVD for forming Ti-containing dielectric thin film
As a raw material, bisisopropoxybisdibivaloyl methanate titanium (hereinafter, [Ti (Oi-Pr) 2 (DPM) 2 ])
That. ) Is generally known.

【0007】[0007]

【発明が解決しようとする課題】しかし、この[Ti
(O-i-Pr)2(DPM)2]を溶液気化CVD材料に用い
る場合、[Ti(O-i-Pr)2(DPM)2]は有機溶媒へ
の溶解度が1.0mol/L以下と低いため、原料の供
給量が制限されてしまう問題があった。また、[Ti
(O-i-Pr)2(DPM)2]は500℃未満の成膜温度で
は成膜速度が小さいという問題もあった。
However, this [Ti
When (Oi-Pr) 2 (DPM) 2 ] is used for a solution vaporized CVD material, the solubility of [Ti (Oi-Pr) 2 (DPM) 2 ] in an organic solvent is 1.0 mol / L or less. Therefore, there is a problem that the supply amount of the raw material is limited. Also, [Ti
(Oi-Pr) 2 (DPM) 2 ] has a problem that the film formation rate is low at a film formation temperature of less than 500 ° C.

【0008】本発明の目的は、有機溶媒への溶解度が高
い有機チタン化合物を提供することにある。本発明の別
の目的は、高い成膜速度が得られ、熱安定性、気化安定
性に優れた有機チタン化合物及びこれを含む溶液原料を
提供することにある。
An object of the present invention is to provide an organic titanium compound having high solubility in an organic solvent. Another object of the present invention is to provide an organotitanium compound capable of obtaining a high film forming rate, having excellent thermal stability and vaporization stability, and a solution raw material containing the same.

【0009】[0009]

【課題を解決するための手段】請求項1に係る発明は、
次の式(1)に示される有機チタン化合物である。
According to the first aspect of the present invention,
An organic titanium compound represented by the following formula (1).

【化4】 但し、結合基O-i-Prは次の式(2)で表されるイソ
プロポキシド基であり、dmhdは次の式(3)で表さ
れる2,6−ジメチル−3,5−ヘプタンジオン残基で
ある。
Embedded image Here, the bonding group Oi-Pr is an isopropoxide group represented by the following formula (2), and dmhd is 2,6-dimethyl-3,5-heptane represented by the following formula (3). It is a dione residue.

【0010】[0010]

【化5】 Embedded image

【0011】[0011]

【化6】 本発明の化合物は従来用いられてきたDPM化合物のメ
チル基の1つを水素に置き換えることにより、有機溶媒
との親和性を増加させたため、有機溶媒への溶解度が向
上する。
Embedded image The compound of the present invention has increased affinity for an organic solvent by replacing one of the methyl groups of a conventionally used DPM compound with hydrogen, thereby improving the solubility in the organic solvent.

【0012】請求項2に係る発明は、請求項1記載の有
機チタン化合物を有機溶媒に溶解した溶液原料である。
請求項3に係る発明は、請求項2に係る発明であって、
有機溶媒がテトラヒドロフラン(以下、THFとい
う。)、メチルテトラヒドロフラン、n−オクタン、イ
ソオクタン、ヘキサン、シクロヘキサン、ピリジン、ル
チジン、酢酸ブチル又は酢酸アミルからなる群より選ば
れた1種又は2種以上の溶媒である溶液原料である。請
求項1に係る有機チタン化合物と上記溶媒とを混合した
溶液原料は上記溶媒を混合しない場合と比較して原料を
安定に供給できるためMOCVD法により成膜したとき
に更に一層堆積速度、即ち成膜速度が大きくなる。ま
た、高い溶解度が得られるため、この溶液原料を用いて
MOCVD法により成膜することにより大量にMOCV
D装置に原料を供給できる。
The invention according to claim 2 is a solution raw material in which the organic titanium compound according to claim 1 is dissolved in an organic solvent.
The invention according to claim 3 is the invention according to claim 2,
The organic solvent is one or more solvents selected from the group consisting of tetrahydrofuran (hereinafter referred to as THF), methyltetrahydrofuran, n-octane, isooctane, hexane, cyclohexane, pyridine, lutidine, butyl acetate or amyl acetate; This is a solution raw material. The solution raw material in which the organic titanium compound according to claim 1 is mixed with the solvent can supply the raw material more stably as compared with the case where the solvent is not mixed. The film speed increases. Further, since high solubility can be obtained, a large amount of MOCV can be formed by forming a film by MOCVD using this solution raw material.
Raw materials can be supplied to the D apparatus.

【0013】[0013]

【発明の実施の形態】本発明の有機チタン化合物は、前
述した式(1)に示される化合物である。式(1)に示
されるO-i-Prは前述した式(2)で表されるイソプ
ロポキシド基であり、dmhdは前述した式(3)で表
される2,6−ジメチル−3,5−ヘプタンジオン残基
である。
BEST MODE FOR CARRYING OUT THE INVENTION The organic titanium compound of the present invention is a compound represented by the above formula (1). Oi-Pr represented by the formula (1) is an isopropoxide group represented by the formula (2), and dmhd is 2,6-dimethyl-3, represented by the formula (3). 5-heptanedione residue.

【0014】また、本発明の溶液原料は、請求項1記載
の有機チタン化合物を有機溶媒に溶解することにより調
製される。有機溶媒はTHF、メチルテトラヒドロフラ
ン、n−オクタン、イソオクタン、ヘキサン、シクロヘ
キサン、ピリジン、ルチジン、酢酸ブチル又は酢酸アミ
ルからなる群より選ばれた1種又は2種以上の溶媒であ
る。更に、本発明のチタン含有誘電体薄膜は、請求項2
又は3記載の溶液原料を用いてMOCVD法により作製
される。上記溶媒を用いることにより、溶液原料をより
安定して気化室や成膜室まで送込むことができ、結果と
してMOCVDにおける薄膜の成長速度が促進される。
The solution raw material of the present invention is prepared by dissolving the organic titanium compound according to claim 1 in an organic solvent. The organic solvent is one or more solvents selected from the group consisting of THF, methyltetrahydrofuran, n-octane, isooctane, hexane, cyclohexane, pyridine, lutidine, butyl acetate or amyl acetate. Further, the titanium-containing dielectric thin film of the present invention is characterized in that:
Alternatively, it is manufactured by the MOCVD method using the solution raw material described in 3. By using the above-mentioned solvent, the solution raw material can be more stably sent to the vaporization chamber or the film formation chamber, and as a result, the growth rate of the thin film in MOCVD is accelerated.

【0015】固体である原料化合物をそのまま減圧下で
加熱し、気化させる方法では配管全てを加熱しておく必
要があり、加熱されていない部分があると析出してしま
い、配管が閉塞する。また、加熱された状態で長時間保
存されるため、材質の変質が起こり、気化しにくくな
り、原料の供給量が減少してしまう。この結果、成膜速
度が減少してしまう。固体原料化合物を溶媒に溶解して
溶液とした場合は、室温で気化室まで原料を供給できる
ため、配管の閉塞が少なくなり、原料が加熱されている
時間が短く、原料の変質が抑制できるので安定して原料
を供給でき、成膜速度は促進される。
In a method in which a solid raw material compound is directly heated under reduced pressure and vaporized, it is necessary to heat the entire pipe, and if there is an unheated portion, it precipitates and the pipe is blocked. In addition, since the material is stored for a long time in a heated state, the quality of the material is changed, it is difficult to vaporize, and the supply amount of the raw material is reduced. As a result, the film forming speed decreases. In the case where the solid raw material compound is dissolved in a solvent to form a solution, the raw material can be supplied to the vaporization chamber at room temperature. Raw materials can be supplied stably, and the film formation speed is accelerated.

【0016】[0016]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>有機チタン化合物として[Ti(O-i-P
r)2(dmhd)2]を次の方法により合成した。先ずテ
トライソプロポキシチタン[Ti(O-i-Pr)4]を出
発原料として用い、これを有機溶媒としてトルエンに1
〜5重量%となるように溶解した。次いでこの溶解液に
[Ti(O-i-Pr)4]に対して2倍モル量のHdmh
dを加え、この溶液を有機溶媒の沸点より高い温度で2
時間加熱還流することにより、反応させた。この反応液
を減圧下で濃縮し、白色結晶を得た。次にこの白色結晶
をトルエンを用いて再結晶後、減圧下で昇華させる精製
を繰返し行うことにより精製した結晶を得た。得られた
結晶の同定は1H-NMR(C66)、質量分析及び元素
分析により行った。1H-NMR分析の結果ではδ=5.
4360(s、1H、dmhd-CH)、2.4053
(m、1H、dmhd-CH)、2.2761(m、1
H、dmhd-CH)、1.2348(d、6H、dm
hd-CH3)、1.1019(d、3H、dmhd-C
3)、1.0213(d、3H、dmhd-CH3)、
1.9463(d、6H、iPrO-CH3)、3.98
62(m、1H、iPrO-CH)であった。元素分析
の結果では、Ti9.7%(理論値10.0)、C6
0.3%(理論値60.0)、H9.8%(理論値1
0.0)、O20.2%(理論値20.0)であった。
質量分析ではm/Z=417[Ti(O-i-Pr)(dm
hd)2]、358[TiO(dmhd)2]、321[T
i(O-i-Pr)2(dmhd)2]であった。
Next, examples of the present invention will be described together with comparative examples. <Example 1> [Ti (OiP) was used as an organic titanium compound.
r) 2 (dmhd) 2 ] was synthesized by the following method. First, tetraisopropoxy titanium [Ti (Oi-Pr) 4 ] was used as a starting material, and this was used as an organic solvent in toluene.
-5% by weight. Next, a twice molar amount of Hdmh with respect to [Ti (Oi-Pr) 4 ] was added to this solution.
d and add the solution at a temperature above the boiling point of the organic solvent.
The reaction was carried out by heating and refluxing for an hour. The reaction solution was concentrated under reduced pressure to obtain white crystals. Next, the white crystals were recrystallized using toluene, and then repeatedly purified by sublimation under reduced pressure to obtain purified crystals. The obtained crystals were identified by 1 H-NMR (C 6 H 6 ), mass spectrometry and elemental analysis. As a result of 1 H-NMR analysis, δ = 5.
4360 (s, 1H, dmhd-CH), 2.4053
(M, 1H, dmhd-CH), 2.2761 (m, 1
H, dmhd-CH), 1.2348 (d, 6H, dm
hd-CH 3 ), 1.109 (d, 3H, dmhd-C
H 3), 1.0213 (d, 3H, dmhd-CH 3),
1.9463 (d, 6H, iPrO- CH 3), 3.98
62 (m, 1H, iPrO-CH). According to the result of elemental analysis, Ti 9.7% (theoretical value 10.0), C6
0.3% (theoretical 60.0), H9.8% (theoretical 1
0.0) and O20.2% (theoretical 20.0).
In mass spectrometry, m / Z = 417 [Ti (Oi-Pr) (dm
hd) 2 ], 358 [TiO (dmhd) 2 ], 321 [T
i (Oi-Pr) 2 (dmhd) 2 ].

【0017】<実施例2>有機チタン化合物として実施
例1で合成した[Ti(O-i-Pr)2(dmhd)2]を用
意した。この有機チタン化合物をTHFに0.1mol
/Lの濃度で溶解して溶液原料を得た。また、有機チタ
ン化合物の他に、有機ストロンチウム化合物としてビス
(ジピバロイルメタナト)ストロンチウム錯体[Sr
(DPM)2]、有機バリウム化合物としてビス(ジピバ
ロイルメタナト)バリウム錯体[Ba(DPM)2]をそ
れぞれ用意し、これらの化合物をTHFにそれぞれ0.
1mol/Lの濃度で溶解して2つの溶液原料を得た。
上記3種の化合物の溶液原料を用いて、Sr原料を0.
3ml/min、Ba原料を0.3ml/min、Ti
原料を0.6ml/minとなるように、それぞれ各流
量を制御しながら混合室に送って混合し、この混合溶液
を気化室で気化させ、気化した蒸気を成膜室に搬送し
て、MOCVD法によりTi含有誘電体薄膜を成膜し
た。基板として、シリコン基板を用い、基板温度を45
0℃とした。[Sr(DPM)2]、[Ba(DPM)2]及
び[Ti(O-i-Pr)2(dmhd)2]の気化温度をそれ
ぞれ250℃にした。また、反応圧力を2Torrにそ
れぞれ設定した。キャリアガスとしてHeガスを用い、
その流量を250sccmとした。また、反応ガスとし
て、O2を用い、その流量を1.0slmとした。
Example 2 [Ti (Oi-Pr) 2 (dmhd) 2 ] synthesized in Example 1 was prepared as an organic titanium compound. 0.1 mol of this organic titanium compound in THF
/ L to obtain a solution raw material. In addition to the organotitanium compound, a bis (dipivaloylmethanato) strontium complex [Sr
(DPM) 2 ] and a bis (dipivaloylmethanato) barium complex [Ba (DPM) 2 ] as an organic barium compound, respectively, and these compounds were added to THF in an amount of 0.1% respectively.
It was dissolved at a concentration of 1 mol / L to obtain two solution raw materials.
Using the solution raw materials of the above three compounds, the Sr raw material was reduced to 0.
3ml / min, Ba raw material 0.3ml / min, Ti
The raw materials are fed to the mixing chamber while controlling the respective flow rates so as to be 0.6 ml / min, and mixed, the mixed solution is vaporized in the vaporization chamber, and the vaporized vapor is transported to the film formation chamber, and is subjected to MOCVD. A Ti-containing dielectric thin film was formed by the method. A silicon substrate was used as the substrate, and the substrate temperature was set to 45.
0 ° C. [Sr (DPM) 2 ], [Ba (DPM) 2 ] and [Ti (Oi-Pr) 2 (dmhd) 2 ] were each set to a vaporization temperature of 250 ° C. The reaction pressure was set to 2 Torr. Using He gas as a carrier gas,
The flow rate was 250 sccm. In addition, O 2 was used as a reaction gas, and the flow rate was 1.0 slm.

【0018】<比較例1>有機チタン化合物として[T
i(O-i-Pr)2(DPM)2]を用いた以外は実施例2と
同様にして成膜した。 <比較評価1>基板温度450℃で成膜した実施例2及
び比較例1のTi含有誘電体薄膜の成膜速度を測定し
た。表1にそれぞれ示す。
<Comparative Example 1> [T] was used as an organotitanium compound.
i (Oi-Pr) 2 (DPM) 2 ] was used in the same manner as in Example 2. <Comparative Evaluation 1> The film forming rates of the Ti-containing dielectric thin films of Example 2 and Comparative Example 1 formed at a substrate temperature of 450 ° C. were measured. The results are shown in Table 1.

【0019】[0019]

【表1】 表1より明らかなように、比較例1に比べて実施例2で
は低温での成膜においても大きな成膜速度を有している
ことがわかる。これにより、基板温度を低く設定するこ
とができる。
[Table 1] As is clear from Table 1, it can be seen that Example 2 has a higher film formation rate even in film formation at a lower temperature than Comparative Example 1. Thereby, the substrate temperature can be set low.

【0020】<実施例3>有機チタン化合物として実施
例1で合成した[Ti(O-i-Pr)2(dmhd)2]を用
い、基板温度を550℃とした以外は実施例2と同様に
して成膜した。 <比較例2>有機チタン化合物として[Ti(O-i-P
r)2(DPM)2]を用い、基板温度を550℃とした以
外は実施例2と同様にして成膜した。 <比較評価2>基板温度550℃で成膜した実施例3及
び比較例2のTi含有誘電体薄膜の成膜速度を測定し
た。表2にそれぞれ示す。
Example 3 Same as Example 2 except that [Ti (Oi-Pr) 2 (dmhd) 2 ] synthesized in Example 1 was used as the organotitanium compound and the substrate temperature was changed to 550 ° C. To form a film. <Comparative Example 2> [Ti (OiP)
r) 2 (DPM) 2 ], and a film was formed in the same manner as in Example 2 except that the substrate temperature was 550 ° C. <Comparative Evaluation 2> The film forming rates of the Ti-containing dielectric thin films of Example 3 and Comparative Example 2 formed at a substrate temperature of 550 ° C. were measured. The results are shown in Table 2.

【0021】[0021]

【表2】 表2により明らかなように、比較例2に比べ実施例3で
は高温での成膜においても成膜速度を大きくすることが
できることが判る。
[Table 2] As is clear from Table 2, it can be seen that the film forming rate in Example 3 can be increased even in film formation at a high temperature as compared with Comparative Example 2.

【0022】<実施例4>有機チタン化合物として実施
例1で合成した[Ti(O-i-Pr)2(dmhd)2]を用
意した。また有機溶媒としてTHF、n−オクタン、酢
酸ブチル及びピリジンをそれぞれ用意し、これら有機溶
媒に有機チタン化合物をそれぞれ溶解して溶液原料を調
製した。
Example 4 [Ti (Oi-Pr) 2 (dmhd) 2 ] synthesized in Example 1 was prepared as an organic titanium compound. Further, THF, n-octane, butyl acetate, and pyridine were prepared as organic solvents, and organic titanium compounds were dissolved in these organic solvents to prepare solution raw materials.

【0023】<比較例3>有機チタン化合物として[T
i(O-i-Pr)2(DPM)2]を用いた以外は実施例4と
同様にして溶解した。 <比較評価3>実施例4及び比較例3の有機チタン化合
物の各有機溶媒における溶解度を測定した。表3にそれ
ぞれ示す。
<Comparative Example 3> [T] was used as an organotitanium compound.
i (Oi-Pr) 2 (DPM) 2 ], except that i was dissolved in the same manner as in Example 4. <Comparative Evaluation 3> The solubility of the organic titanium compounds of Example 4 and Comparative Example 3 in each organic solvent was measured. The results are shown in Table 3.

【0024】[0024]

【表3】 表3より明らかなように、比較例3の溶解度に比べ、実
施例4の溶解度はそれぞれ大きく、各種有機溶媒への溶
解度も大きいことが判った。また溶解度が大きいことか
ら原料を大量に供給できるために成膜が効率よく行える
点で優れていることが判る。
[Table 3] As is clear from Table 3, the solubility of Example 4 was higher than that of Comparative Example 3, and the solubility in various organic solvents was higher. In addition, since the solubility is high, a large amount of the raw material can be supplied, so that it is excellent in that the film can be efficiently formed.

【0025】[0025]

【発明の効果】以上述べたように、本発明の一般式[T
i(O-i-Pr)2(dmhd)2]からなる有機チタン化合
物は、この化合物を原料としてMOCVD法により成膜
すると、従来の[Ti(O-i-Pr)2(DPM)2]に代表
される有機チタン化合物と比べて、有機溶媒への溶解度
が高いため、MOCVD装置に大量に原料を供給するこ
とができる。本発明の有機チタン化合物を有機溶媒に溶
解した溶液原料は高い成膜速度でチタン含有誘電体薄膜
が得られる。また、熱安定性、気化安定性に優れるた
め、高い純度の薄膜が得られる。
As described above, as described above, the general formula [T
When an organic titanium compound composed of i (Oi-Pr) 2 (dmhd) 2 ] is formed by MOCVD using this compound as a raw material, conventional [Ti (Oi-Pr) 2 (DPM) 2 ] The organic titanium compound has a higher solubility in an organic solvent than a typical organic titanium compound, so that a large amount of raw material can be supplied to the MOCVD apparatus. From the solution raw material obtained by dissolving the organic titanium compound of the present invention in an organic solvent, a titanium-containing dielectric thin film can be obtained at a high film forming rate. In addition, a high-purity thin film can be obtained because of its excellent thermal stability and vaporization stability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 齋 篤 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 (72)発明者 小木 勝実 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 Fターム(参考) 4H006 AA01 AB78 AB91 4H049 VN05 VP01 VQ24 VR44 VU24 VW02 4K030 AA11 BA42 LA01 5F083 AD00 JA13 JA14 JA15 PR21 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Atsushi Sai 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Inside the Mitsubishi Materials Research Institute (72) Inventor Katsumi Ogi 1-297 Kitabukurocho Omiya City, Saitama Mitsubishi Materials F-term in the Research Institute, Inc. (reference) 4H006 AA01 AB78 AB91 4H049 VN05 VP01 VQ24 VR44 VU24 VW02 4K030 AA11 BA42 LA01 5F083 AD00 JA13 JA14 JA15 PR21

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 次の式(1)に示される有機チタン化合
物。 【化1】 但し、結合基O-i-Prは次の式(2)で表されるイソ
プロポキシド基であり、dmhdは次の式(3)で表さ
れる2,6−ジメチル−3,5−ヘプタンジオン残基で
ある。 【化2】 【化3】
An organotitanium compound represented by the following formula (1): Embedded image Here, the bonding group Oi-Pr is an isopropoxide group represented by the following formula (2), and dmhd is 2,6-dimethyl-3,5-heptane represented by the following formula (3). It is a dione residue. Embedded image Embedded image
【請求項2】 請求項1記載の有機チタン化合物を有機
溶媒に溶解した溶液原料。
2. A solution raw material obtained by dissolving the organic titanium compound according to claim 1 in an organic solvent.
【請求項3】 有機溶媒がテトラヒドロフラン、メチル
テトラヒドロフラン、n−オクタン、イソオクタン、ヘ
キサン、シクロヘキサン、ピリジン、ルチジン、酢酸ブ
チル又は酢酸アミルからなる群より選ばれた1種又は2
種以上の溶媒である請求項2記載の溶液原料。
3. The organic solvent is one or two selected from the group consisting of tetrahydrofuran, methyltetrahydrofuran, n-octane, isooctane, hexane, cyclohexane, pyridine, lutidine, butyl acetate and amyl acetate.
3. The solution raw material according to claim 2, which is at least one kind of solvent.
【請求項4】 請求項2又は3記載の溶液原料を用いて
有機金属化学蒸着法により作製されたチタン含有誘電体
薄膜。
4. A titanium-containing dielectric thin film produced by a metal organic chemical vapor deposition method using the solution raw material according to claim 2.
JP2001004627A 2001-01-12 2001-01-12 Organotitanium compound, raw material solution containing the same and titanium-containing dielectric thin film Withdrawn JP2002212130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001004627A JP2002212130A (en) 2001-01-12 2001-01-12 Organotitanium compound, raw material solution containing the same and titanium-containing dielectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004627A JP2002212130A (en) 2001-01-12 2001-01-12 Organotitanium compound, raw material solution containing the same and titanium-containing dielectric thin film

Publications (1)

Publication Number Publication Date
JP2002212130A true JP2002212130A (en) 2002-07-31

Family

ID=18872785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004627A Withdrawn JP2002212130A (en) 2001-01-12 2001-01-12 Organotitanium compound, raw material solution containing the same and titanium-containing dielectric thin film

Country Status (1)

Country Link
JP (1) JP2002212130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872419B2 (en) * 2002-01-21 2005-03-29 Kabushikikaisha Kojundokagaku Kenkyusho Method or process for producing PZT films at low substrate temperatures by chemical vapor deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872419B2 (en) * 2002-01-21 2005-03-29 Kabushikikaisha Kojundokagaku Kenkyusho Method or process for producing PZT films at low substrate temperatures by chemical vapor deposition

Similar Documents

Publication Publication Date Title
KR100577698B1 (en) Ruthenium thin film
JPH06158328A (en) Starting material for cvd for thin oxide dielectric film and capacitor for memory
JP2002252286A (en) Semiconductor capacitor with tantalum oxide film and its fabrication method
JP3499804B2 (en) Method for growing metal oxide thin film on substrate
JP2003501360A (en) Tetrahydrofuran-added Group II .BETA.-diketonate complexes as starting reagents for chemical vapor deposition
US6280518B1 (en) Organic titanium compound suitable for MOCVD
JPH09246214A (en) Thin film formation, semiconductor device and manufacture thereof
JP2002212130A (en) Organotitanium compound, raw material solution containing the same and titanium-containing dielectric thin film
JP2001524981A (en) Chemical vapor deposition precursor
US6355097B2 (en) Organic titanium compound suitable for MOCVD
JP2006063352A (en) Raw material solution for cvd used for producing lanthanoid-based metal-containing thin film and method for producing thin film using the same
JPH0940683A (en) Highly pure titanium complex, its production and liquid composition for forming bst membrane
JP2002212129A (en) Metal chelate complex and method for synthesizing the same
JP3095727B2 (en) CVD raw material for titanium oxide based dielectric thin film and capacitor for memory
JP4356242B2 (en) Organic titanium compound and solution raw material containing the same
KR20000071869A (en) Organometallic complex, process for the preparation thereof and metal organic chemical vapor deposition using same
JP4211300B2 (en) ORGANIC TITANIUM COMPOUND, SOLUTION MATERIAL CONTAINING THE SAME, AND TITANIUM-CONTAINING DIELECTRIC THIN FILM PRODUCED THEREFROM
JP4243171B2 (en) Method for forming metal oxide thin film
JP4296756B2 (en) Method for producing titanium-containing dielectric thin film from organic titanium compound and solution raw material containing the same
JP3793118B2 (en) Lanthanum complex and method for producing BLT film using the same
JP4451050B2 (en) Zirconium raw material for CVD and method for producing lead zirconate titanate thin film using the same
JP2007197804A (en) Raw material for metal organic chemical vapor deposition and method for producing metal-containing film using the raw material
JP2003300925A (en) Organic titanium compound, solution raw material containing the same and titanium-containing dielectric material thin film produced from the same material
KR100480501B1 (en) Process for the formation of pzt thin film by metal-organic chemical vapor deposition
JP2000053422A (en) Bismuth-containing multiple metal oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090205