JP2002209382A - Dc-dc converter - Google Patents
Dc-dc converterInfo
- Publication number
- JP2002209382A JP2002209382A JP2001004977A JP2001004977A JP2002209382A JP 2002209382 A JP2002209382 A JP 2002209382A JP 2001004977 A JP2001004977 A JP 2001004977A JP 2001004977 A JP2001004977 A JP 2001004977A JP 2002209382 A JP2002209382 A JP 2002209382A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- semiconductor switch
- switch element
- output
- transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、直流電源から変
圧器を介して任意の直流出力に変換する直流−直流変換
装置、特に入力電圧の変化や負荷の変化に対してパルス
幅変調制御により出力電圧を一定にすることができ、か
つ入力電圧の変化に対して発振周波数を変える機能を持
つ直流−直流変換装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC-DC converter for converting a DC power supply into an arbitrary DC output via a transformer, and more particularly to an output by pulse width modulation control with respect to a change in input voltage or a change in load. The present invention relates to a DC-DC converter capable of keeping a voltage constant and having a function of changing an oscillation frequency in response to a change in an input voltage.
【0002】[0002]
【従来の技術】図6に従来例を示す。図示のように、直
流電源1、半導体スイッチ素子121、変圧器2の一次
巻線21およびコンデンサ4が直列に接続され、半導体
スイッチ素子122とコンデンサ5との並列回路が変圧
器一次巻線21とコンデンサ4との間に並列に接続さ
れ、変圧器二次巻線22,23にはダイオード111,
112および平滑用コンデンサ3が接続され、直流出力
から出力電圧検出回路6,出力電圧調節回路7およびパ
ルス幅変調回路8に、発振回路9がパルス幅変調回路8
に、パルス幅変調回路8から半導体スイッチ素子12
1,122の各ゲートにそれぞれ接続されている。2. Description of the Related Art FIG. 6 shows a conventional example. As shown, the DC power supply 1, the semiconductor switch element 121, the primary winding 21 of the transformer 2 and the capacitor 4 are connected in series, and the parallel circuit of the semiconductor switch element 122 and the capacitor 5 is connected to the transformer primary winding 21 The secondary windings 22 and 23 are connected in parallel with the capacitor 4 and the diodes 111 and
112 and the smoothing capacitor 3 are connected, and the DC voltage output to the output voltage detection circuit 6, the output voltage adjustment circuit 7 and the pulse width modulation circuit 8, and the oscillation circuit 9 includes the pulse width modulation circuit 8
The pulse width modulation circuit 8 to the semiconductor switch element 12
1, 122 are connected to the respective gates.
【0003】図7に、図6における動作で特に入力電圧
が低い場合の例を示す。なお、v121,v122はそ
れぞれ半導体スイッチ素子121,122のドレイン−
ソース間電圧波形、i121,i122はそれぞれ半導
体スイッチ素子121,122のドレイン電流波形、v
4はコンデンサ4の電圧波形、v21は変圧器一次巻線
21の電圧波形、i111,i112はそれぞれダイオ
ード111,112の電流波形、v3は平滑用コンデン
サ3の電圧波形(出力電圧波形)を示す。FIG. 7 shows an example in which the input voltage is particularly low in the operation shown in FIG. Note that v121 and v122 are drains of the semiconductor switch elements 121 and 122, respectively.
A source-to-source voltage waveform, i121 and i122 are drain current waveforms of the semiconductor switch elements 121 and 122, respectively, and v
Reference numeral 4 denotes a voltage waveform of the capacitor 4, v21 denotes a voltage waveform of the transformer primary winding 21, i111 and i112 denote current waveforms of the diodes 111 and 112, respectively, and v3 denotes a voltage waveform (output voltage waveform) of the smoothing capacitor 3.
【0004】まず、半導体スイッチ素子121をオンす
ることにより、直流電源1−半導体スイッチ素子121
−変圧器一次巻線21−コンデンサ4を介して共振電流
i121が流れ、コンデンサ4を充電する。このとき、
変圧器一次巻線21には、直流電源電圧とコンデンサ4
との差電圧が印加され、ダイオード111を介して平滑
用コンデンサ3を充電するとともに負荷に電力を供給す
る。次に、半導体スイッチ素子121をオフすることに
より、それまで流れていた共振電流は、コンデンサ5お
よび半導体スイッチ素子121,122の出力容量に転
流し、半導体スイッチ素子121,122の電圧は徐々
に上昇または下降する。First, when the semiconductor switch element 121 is turned on, the DC power supply 1-semiconductor switch element 121 is turned on.
The transformer primary winding 21; the resonance current i121 flows through the capacitor 4 to charge the capacitor 4; At this time,
The DC primary voltage and the capacitor 4 are connected to the primary winding 21 of the transformer.
Is applied to charge the smoothing capacitor 3 via the diode 111 and supply power to the load. Next, when the semiconductor switching element 121 is turned off, the resonance current that has been flowing up to that time is diverted to the capacitor 5 and the output capacitance of the semiconductor switching elements 121 and 122, and the voltages of the semiconductor switching elements 121 and 122 gradually increase. Or descend.
【0005】半導体スイッチ素子121の電圧が直流電
源電圧に達すると、共振電流は半導体スイッチ素子12
2の寄生ダイオードに転流する。この時、半導体スイッ
チ素子122をオンすることにより、コンデンサ4−半
導体スイッチ素子122−変圧器一次巻線21を介して
共振電流i122が流れ、コンデンサ4を放電する。こ
の時変圧器一次巻線21には、コンデンサ4の電圧が印
加され、ダイオード112を介して平滑用コンデンサ3
を充電するとともに負荷に電力を供給する。When the voltage of the semiconductor switch element 121 reaches the DC power supply voltage, the resonance current
Commutation to the second parasitic diode. At this time, when the semiconductor switching element 122 is turned on, a resonance current i122 flows through the capacitor 4−the semiconductor switching element 122−the transformer primary winding 21 to discharge the capacitor 4. At this time, the voltage of the capacitor 4 is applied to the primary winding 21 of the transformer, and the smoothing capacitor 3 is
And supply power to the load.
【0006】次いで、半導体スイッチ素子122をオフ
することにより、それまで流れていた共振電流はコンデ
ンサ5および半導体スイッチ素子121,122の出力
容量に転流し、半導体スイッチ素子121,122の電
圧は徐々に上昇または下降する。次に半導体スイッチ素
子122の電圧が直流電源電圧に達すると、共振電流は
半導体スイッチ素子121の寄生ダイオードに転流す
る。このとき、半導体スイッチ素子121をオンする。
このような動作を繰り返すことにより、直流電源から絶
縁された直流電力を供給する。Next, when the semiconductor switching element 122 is turned off, the resonance current that has been flowing up to that time is diverted to the capacitor 5 and the output capacitance of the semiconductor switching elements 121 and 122, and the voltages of the semiconductor switching elements 121 and 122 gradually increase. Ascend or descend. Next, when the voltage of the semiconductor switch element 122 reaches the DC power supply voltage, the resonance current commutates to the parasitic diode of the semiconductor switch element 121. At this time, the semiconductor switch element 121 is turned on.
By repeating such an operation, the isolated DC power is supplied from the DC power supply.
【0007】図8に、図6における動作で特に入力電圧
が高い場合の例を示す。動作原理は図7の場合と同様で
あるが、入力電圧が高い場合、半導体スイッチ素子12
1がオンしている期間に変圧器一次巻線21に印加され
る電圧が高くなるため出力電圧が上昇しようとする。こ
れに対し、出力電圧検出回路6,出力電圧調節回路7,
パルス幅変調回路8は出力電圧が一定となるように動作
し、半導体スイッチ素子121のパルス幅(オンデュー
ティ)を狭くすることにより出力電圧を一定とする。こ
の動作の結果、図8に示すように、半導体スイッチ素子
121がオンしている期間から二次側に電力を供給する
割合が増加し、半導体スイッチ素子121およびダイオ
ード111に流れる電流のピーク値が上昇する。FIG. 8 shows an example in which the input voltage is particularly high in the operation in FIG. The operation principle is the same as that of FIG. 7, but when the input voltage is high,
Since the voltage applied to the primary winding 21 of the transformer during the period when 1 is on increases, the output voltage tends to increase. On the other hand, the output voltage detecting circuit 6, the output voltage adjusting circuit 7,
The pulse width modulation circuit 8 operates so that the output voltage becomes constant, and makes the output voltage constant by reducing the pulse width (on duty) of the semiconductor switch element 121. As a result of this operation, as shown in FIG. 8, the rate of supplying power to the secondary side increases while the semiconductor switch element 121 is on, and the peak value of the current flowing through the semiconductor switch element 121 and the diode 111 decreases. To rise.
【0008】[0008]
【発明が解決しようとする課題】すなわち、図6の従来
例では、入力電圧の変化に対し半導体スイッチ素子のオ
ンデューティを変えることにより、出力電圧を一定とし
ている。この場合、入力電圧が高くなった場合、一方の
半導体スイッチ素子,ダイオードおよび変圧器二次巻線
の責務が大きくなる。その結果、半導体スイッチ素子の
スイッチング損失やダイオード導通損失などが増加し、
装置変換効率が低下する。したがって、この発明の課題
は、入力電圧が高くなった場合の変換効率を低下させな
いようにすることにある。That is, in the prior art shown in FIG. 6, the output voltage is kept constant by changing the on-duty of the semiconductor switch element with respect to the change in the input voltage. In this case, when the input voltage increases, the responsibility of one of the semiconductor switch element, the diode, and the secondary winding of the transformer increases. As a result, switching loss and diode conduction loss of the semiconductor switch element increase,
The device conversion efficiency decreases. Therefore, an object of the present invention is to prevent the conversion efficiency when the input voltage becomes high from being lowered.
【0009】[0009]
【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、直流電源から変圧器を介
して別の直流出力に変換する直流−直流変換装置におい
て、前記直流電源に対し第1の半導体スイッチ素子,変
圧器一次巻線および第1のコンデンサを直列に接続し、
第2の半導体スイッチ素子と第2のコンデンサとの並列
回路を、前記変圧器一次巻線と前記第1のコンデンサと
の間に並列に接続し、前記変圧器二次巻線にはダイオー
ドと平滑用コンデンサとを接続し、直流出力側には出力
電圧検出回路および出力電圧調節回路を介してパルス幅
変調回路を接続し、このパルス幅変調制御回路の入力側
は発振回路および入力電圧検出回路を介して直流入力に
接続し、かつ、その出力側は前記第1の半導体スイッチ
素子および第2の半導体スイッチ素子の各ゲート端子に
それぞれ接続し、前記パルス幅変調回路は前記出力電圧
調節回路からの出力結果にもとづき前記第1の半導体ス
イッチ素子および第2の半導体スイッチ素子へ出力する
パルス幅を調整するとともに、前記入力電圧検出回路か
らの出力結果にもとづき前記発振回路の発振周波数を変
えることを特徴とする。In order to solve such a problem, according to the first aspect of the present invention, there is provided a DC-DC converter for converting a DC power supply to another DC output via a transformer. A first semiconductor switch element, a transformer primary winding and a first capacitor are connected in series,
A parallel circuit of a second semiconductor switch element and a second capacitor is connected in parallel between the transformer primary winding and the first capacitor, and a diode and a smoothing element are connected to the transformer secondary winding. And a pulse width modulation circuit connected to the DC output side via an output voltage detection circuit and an output voltage adjustment circuit, and the input side of the pulse width modulation control circuit includes an oscillation circuit and an input voltage detection circuit. And the output side thereof is connected to each of the gate terminals of the first semiconductor switch element and the second semiconductor switch element, and the pulse width modulation circuit is connected to the output voltage adjustment circuit. The pulse width to be output to the first semiconductor switch element and the second semiconductor switch element is adjusted based on the output result, and the output result from the input voltage detection circuit is also adjusted. Wherein the Hazuki varying the oscillation frequency of the oscillation circuit.
【0010】請求項2の発明では、直流電源から変圧器
を介して別の直流出力に変換する直流−直流変換装置に
おいて、前記直流電源に対し第1の半導体スイッチ素
子,変圧器一次巻線および第1のコンデンサを直列に接
続し、第2の半導体スイッチ素子と第2のコンデンサと
の並列回路を、前記変圧器一次巻線と前記第1のコンデ
ンサとの間に並列に接続し、第1の変圧器二次巻線の一
方の端子には、変圧器一次巻線に正電圧が印加されると
きに電力を供給するように第1のダイオードを接続し、
第2の変圧器二次巻線の一方の端子には、変圧器一次巻
線に負電圧が印加されるときに電力を供給するように第
2のダイオードを接続し、前記第1,第2のダイオード
の各カソードはともに平滑用コンデンサの一方の端子に
接続し、前記第1,第2の変圧器二次巻線の他方の端子
はともに前記平滑用コンデンサの他方の端子に接続し、
直流出力側には出力電圧検出回路および出力電圧調節回
路を介してパルス幅変調回路を接続し、このパルス幅変
調制御回路の入力側は発振回路および入力電圧検出回路
を介して直流入力に接続し、かつ、その出力側は前記第
1の半導体スイッチ素子および第2の半導体スイッチ素
子の各ゲート端子にそれぞれ接続し、前記パルス幅変調
回路は前記出力電圧調節回路からの出力結果にもとづき
前記第1の半導体スイッチ素子および第2の半導体スイ
ッチ素子へ出力するパルス幅を調整するとともに、前記
入力電圧検出回路からの出力結果にもとづき前記発振回
路の発振周波数を変えることを特徴とする。According to a second aspect of the present invention, in a DC-DC converter for converting a DC power supply to another DC output via a transformer, a first semiconductor switch element, a transformer primary winding, and A first capacitor connected in series, a parallel circuit of a second semiconductor switch element and a second capacitor connected in parallel between the transformer primary winding and the first capacitor, A first diode is connected to one terminal of the transformer secondary winding so as to supply power when a positive voltage is applied to the transformer primary winding,
A second diode is connected to one terminal of the second transformer secondary winding so as to supply power when a negative voltage is applied to the transformer primary winding. Both cathodes of the diode are connected to one terminal of a smoothing capacitor, and the other terminals of the first and second transformer secondary windings are both connected to the other terminal of the smoothing capacitor.
A pulse width modulation circuit is connected to the DC output side via an output voltage detection circuit and an output voltage adjustment circuit, and an input side of the pulse width modulation control circuit is connected to a DC input via an oscillation circuit and an input voltage detection circuit. The output side is connected to each of the gate terminals of the first semiconductor switch element and the second semiconductor switch element, and the pulse width modulation circuit outputs the first and second semiconductor switch elements based on an output result from the output voltage adjustment circuit. And adjusting the pulse width output to the semiconductor switch element and the second semiconductor switch element, and changing the oscillation frequency of the oscillation circuit based on the output result from the input voltage detection circuit.
【0011】[0011]
【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す構成図で、1は直流電源、2は変圧器、21は
変圧器一次巻線、22,23は変圧器二次巻線、3は平
滑用コンデンサ、4,5はコンデンサ、6は出力電圧検
出回路、7は出力電圧調節回路、8はパルス幅変調回
路、9は発振回路、10は入力電圧検出回路、111,
112はダイオード、121,122は半導体スイッチ
素子である。すなわち、直流電源1、半導体スイッチ素
子121、変圧器一次巻線21およびコンデンサ4が直
列に接続され、半導体スイッチ素子122とコンデンサ
5との並列回路が、変圧器一次巻線21とコンデンサ4
との間に並列に接続され、変圧器2の二次巻線22,2
3にはダイオード111,112および平滑コンデンサ
3が接続され、直流出力から出力電圧検出回路6,出力
電圧調節回路7を介してパルス幅変調回路8に、直流入
力から入力電圧検出回路10,発振回路9を介してパル
ス幅変調回路8に接続し、パルス幅変調回路8から半導
体スイッチ素子121,122の各ゲートに接続されて
いる。FIG. 1 is a block diagram showing a first embodiment of the present invention, in which 1 is a DC power supply, 2 is a transformer, 21 is a primary winding of a transformer, and 22 and 23 are transformers. The next winding, 3 is a smoothing capacitor, 4 and 5 are capacitors, 6 is an output voltage detection circuit, 7 is an output voltage adjustment circuit, 8 is a pulse width modulation circuit, 9 is an oscillation circuit, 10 is an input voltage detection circuit, 111 ,
112 is a diode, and 121 and 122 are semiconductor switching elements. That is, the DC power supply 1, the semiconductor switch element 121, the transformer primary winding 21 and the capacitor 4 are connected in series, and the parallel circuit of the semiconductor switch element 122 and the capacitor 5 is connected to the transformer primary winding 21 and the capacitor 4
And the secondary windings 22 and 2 of the transformer 2
Diodes 111 and 112 and a smoothing capacitor 3 are connected to the DC power supply 3, the output voltage detection circuit 6 is provided from the DC output via the output voltage adjustment circuit 7, the input voltage detection circuit 10 is provided from the DC input, and the oscillation circuit is provided. The pulse width modulation circuit 8 is connected to the gates of the semiconductor switch elements 121 and 122 via the pulse width modulation circuit 8.
【0012】入力電圧検出回路10は直流入力電圧を検
出し、その結果を発振回路9に入力する。発振回路9
は、入力電圧検出回路10の出力結果にもとづき、入力
電圧が低い場合は発振周波数を低く、入力電圧が高い場
合は発振周波数を高くするように動作する。図3は図1
における動作を説明するための波形図である。入力電圧
が低い場合における動作は図7と同じであるが、入力電
圧が高い場合における動作は図8と異なり、動作周波数
を高くすることにより、オンデューティはほとんど変化
しない。これにより、入力電圧が高い場合においても一
方の半導体スイッチ素子,ダイオードおよび変圧器の責
務が大きくなることはなく、半導体スイッチ素子のスイ
ッチング損失,ダイオード導通損失などは、周波数が高
くなった結果による増加分だけであり、僅かである。An input voltage detection circuit 10 detects a DC input voltage and inputs the result to an oscillation circuit 9. Oscillation circuit 9
Operates based on the output result of the input voltage detection circuit 10 to lower the oscillation frequency when the input voltage is low and to increase the oscillation frequency when the input voltage is high. FIG. 3 is FIG.
FIG. 6 is a waveform diagram for explaining the operation in FIG. The operation when the input voltage is low is the same as that in FIG. 7, but the operation when the input voltage is high is different from FIG. 8, and the on-duty hardly changes by increasing the operating frequency. As a result, even when the input voltage is high, the responsibility of one of the semiconductor switching element, the diode and the transformer does not increase, and the switching loss and the diode conduction loss of the semiconductor switching element increase due to the higher frequency. It's only a minute, a little.
【0013】また、負荷が軽負荷の状態になった場合
は、出力電圧が上昇しようとする。これに対し、出力電
圧検出回路6,出力電圧調節回路7およびパルス幅変調
回路8は出力電圧が一定となるように動作し、半導体ス
イッチ素子121のパルス幅(オンデューティ)を狭く
することにより出力電圧を一定とする。この場合、半導
体スイッチ素子121およびダイオード111の電流
は、半導体スイッチ素子122およびダイオード112
の電流よりも多く流れるが、軽負荷であるためその絶対
値は小さく、発生損失の増加は僅かである。When the load is lightly loaded, the output voltage tends to increase. On the other hand, the output voltage detection circuit 6, the output voltage adjustment circuit 7, and the pulse width modulation circuit 8 operate so that the output voltage is constant, and the output is reduced by reducing the pulse width (on duty) of the semiconductor switch element 121. Keep the voltage constant. In this case, the currents of the semiconductor switching element 121 and the diode 111
However, since the load is light, the absolute value is small, and the increase in the generated loss is small.
【0014】図2に図1の変形例を示す。これは、直流
電源1の正極側端子を半導体スイッチ素子122に、負
極側端子を半導体スイッチ素子121にそれぞれ接続し
た点が特徴であり、機能的には図1と全く同じなので説
明は省略する。FIG. 2 shows a modification of FIG. This is characterized in that the positive terminal of the DC power supply 1 is connected to the semiconductor switch element 122 and the negative terminal is connected to the semiconductor switch element 121, respectively, and their functions are exactly the same as those in FIG.
【0015】図4はこの発明の第2の実施の形態を示す
構成図である。図1との相違点は、変圧器二次巻線23
およびダイオード112を省略した点にあり、従って、
変圧器二次巻線22のみから電力が供給されることにな
る。その結果、半導体スイッチ素子122がオンしてい
る期間に、負荷に電力が供給されることはない。FIG. 4 is a block diagram showing a second embodiment of the present invention. The difference from FIG. 1 is that the transformer secondary winding 23
And the elimination of the diode 112,
Power will be supplied only from the transformer secondary winding 22. As a result, no power is supplied to the load while the semiconductor switch element 122 is on.
【0016】図5に図4の変形例を示す。これは、直流
電源1の正極側端子を半導体スイッチ素子122に、負
極側端子を半導体スイッチ素子121にそれぞれ接続し
た点が特徴であり、機能的には図4と全く同じなので説
明は省略する。FIG. 5 shows a modification of FIG. This is characterized in that the positive terminal of the DC power supply 1 is connected to the semiconductor switching element 122 and the negative terminal thereof is connected to the semiconductor switching element 121, and the function is completely the same as that of FIG.
【0017】[0017]
【発明の効果】この発明によれば、入力電圧の変化に対
して動作周波数を変えるようにしたので、半導体スイッ
チ素子,ダイオードおよび変圧器二次巻線の責務をバラ
ンス良く分担でき、スイッチング損失やダイオードの導
通損失の増加が少なく、高効率を維持できるという利点
が得られる。According to the present invention, the operating frequency is changed with respect to the change in the input voltage, so that the duties of the semiconductor switch element, the diode, and the secondary winding of the transformer can be shared in a well-balanced manner, and the switching loss and the switching loss can be reduced. The advantage is obtained that the increase in the conduction loss of the diode is small and high efficiency can be maintained.
【図1】この発明の第1の実施の形態を示す構成図であ
る。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
【図2】図1の変形例を示す構成図である。FIG. 2 is a configuration diagram showing a modification of FIG.
【図3】図1の動作を説明するための波形図である。FIG. 3 is a waveform chart for explaining the operation of FIG. 1;
【図4】この発明の第2の実施の形態を示す構成図であ
る。FIG. 4 is a configuration diagram showing a second embodiment of the present invention.
【図5】図4の変形例を示す構成図である。FIG. 5 is a configuration diagram showing a modification of FIG. 4;
【図6】従来例を示す構成図である。FIG. 6 is a configuration diagram showing a conventional example.
【図7】図6の動作を説明するための波形図である。FIG. 7 is a waveform chart for explaining the operation of FIG. 6;
【図8】図6で入力電圧が高くなった場合の動作を説明
するための波形図である。FIG. 8 is a waveform chart for explaining an operation when the input voltage is increased in FIG.
1…直流電源、2…変圧器、21…変圧器一次巻線、2
2,23…変圧器二次巻線、3…平滑用コンデンサ、
4,5…コンデンサ、6…出力電圧検出回路、7…出力
電圧調節回路、8…パルス幅変調回路、9…発振回路、
10…入力電圧検出回路、111,112…ダイオー
ド、121,122…半導体スイッチ素子。DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... Transformer, 21 ... Transformer primary winding, 2
2, 23 ... Transformer secondary winding, 3 ... Smoothing capacitor,
4, 5 capacitor, 6 output voltage detection circuit, 7 output voltage adjustment circuit, 8 pulse width modulation circuit, 9 oscillation circuit,
10: input voltage detection circuit, 111, 112: diode, 121, 122: semiconductor switch element.
Claims (2)
力に変換する直流−直流変換装置において、 前記直流電源に対し第1の半導体スイッチ素子,変圧器
一次巻線および第1のコンデンサを直列に接続し、第2
の半導体スイッチ素子と第2のコンデンサとの並列回路
を、前記変圧器一次巻線と前記第1のコンデンサとの間
に並列に接続し、前記変圧器二次巻線にはダイオードと
平滑用コンデンサとを接続し、直流出力側には出力電圧
検出回路および出力電圧調節回路を介してパルス幅変調
回路を接続し、このパルス幅変調制御回路の入力側は発
振回路および入力電圧検出回路を介して直流入力に接続
し、かつ、その出力側は前記第1の半導体スイッチ素子
および第2の半導体スイッチ素子の各ゲート端子にそれ
ぞれ接続し、前記パルス幅変調回路は前記出力電圧調節
回路からの出力結果にもとづき前記第1の半導体スイッ
チ素子および第2の半導体スイッチ素子へ出力するパル
ス幅を調整するとともに、前記入力電圧検出回路からの
出力結果にもとづき前記発振回路の発振周波数を変える
ことを特徴とする直流−直流変換装置。1. A DC-DC converter for converting a DC power supply to another DC output via a transformer, comprising: a first semiconductor switch element, a transformer primary winding, and a first capacitor with respect to the DC power supply. Connected in series, the second
A parallel circuit of a semiconductor switch element and a second capacitor is connected in parallel between the transformer primary winding and the first capacitor, and a diode and a smoothing capacitor are connected to the transformer secondary winding. The DC output side is connected to a pulse width modulation circuit via an output voltage detection circuit and an output voltage adjustment circuit, and the input side of this pulse width modulation control circuit is connected via an oscillation circuit and an input voltage detection circuit. The pulse width modulation circuit is connected to a DC input, and its output side is connected to each of the gate terminals of the first semiconductor switch element and the second semiconductor switch element, and the pulse width modulation circuit outputs an output result from the output voltage adjustment circuit. And adjusting the pulse width output to the first semiconductor switch element and the second semiconductor switch element based on the output result from the input voltage detection circuit. DC and wherein varying the oscillation frequency of the oscillation circuit - DC converter.
力に変換する直流−直流変換装置において、 前記直流電源に対し第1の半導体スイッチ素子,変圧器
一次巻線および第1のコンデンサを直列に接続し、第2
の半導体スイッチ素子と第2のコンデンサとの並列回路
を、前記変圧器一次巻線と前記第1のコンデンサとの間
に並列に接続し、第1の変圧器二次巻線の一方の端子に
は、変圧器一次巻線に正電圧が印加されるときに電力を
供給するように第1のダイオードを接続し、第2の変圧
器二次巻線の一方の端子には、変圧器一次巻線に負電圧
が印加されるときに電力を供給するように第2のダイオ
ードを接続し、前記第1,第2のダイオードの各カソー
ドはともに平滑用コンデンサの一方の端子に接続し、前
記第1,第2の変圧器二次巻線の他方の端子はともに前
記平滑用コンデンサの他方の端子に接続し、直流出力側
には出力電圧検出回路および出力電圧調節回路を介して
パルス幅変調回路を接続し、このパルス幅変調制御回路
の入力側は発振回路および入力電圧検出回路を介して直
流入力に接続し、かつ、その出力側は前記第1の半導体
スイッチ素子および第2の半導体スイッチ素子の各ゲー
ト端子にそれぞれ接続し、前記パルス幅変調回路は前記
出力電圧調節回路からの出力結果にもとづき前記第1の
半導体スイッチ素子および第2の半導体スイッチ素子へ
出力するパルス幅を調整するとともに、前記入力電圧検
出回路からの出力結果にもとづき前記発振回路の発振周
波数を変えることを特徴とする直流−直流変換装置。2. A DC-DC converter for converting a DC power supply to another DC output via a transformer, comprising: a first semiconductor switch element, a transformer primary winding, and a first capacitor for the DC power supply. Connected in series, the second
A parallel circuit of a semiconductor switch element and a second capacitor is connected in parallel between the primary winding of the transformer and the first capacitor, and is connected to one terminal of the secondary winding of the first transformer. Connects a first diode to supply power when a positive voltage is applied to the transformer primary winding, and has one terminal of the transformer primary winding connected to one terminal of the second transformer secondary winding. A second diode is connected to supply power when a negative voltage is applied to the line, and the respective cathodes of the first and second diodes are both connected to one terminal of a smoothing capacitor. 1, the other terminal of the second transformer secondary winding is connected to the other terminal of the smoothing capacitor, and the pulse width modulation circuit is connected to the DC output side via an output voltage detection circuit and an output voltage adjustment circuit. Connected to the input side of the pulse width modulation control circuit. And an input voltage detection circuit connected to a DC input, and its output side is connected to each of the gate terminals of the first semiconductor switch element and the second semiconductor switch element, and the pulse width modulation circuit is The pulse width to be output to the first semiconductor switch element and the second semiconductor switch element is adjusted based on the output result from the output voltage adjustment circuit, and the oscillation of the oscillation circuit is adjusted based on the output result from the input voltage detection circuit. A DC-DC converter characterized by changing a frequency.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001004977A JP4534354B2 (en) | 2001-01-12 | 2001-01-12 | DC-DC converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001004977A JP4534354B2 (en) | 2001-01-12 | 2001-01-12 | DC-DC converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002209382A true JP2002209382A (en) | 2002-07-26 |
JP4534354B2 JP4534354B2 (en) | 2010-09-01 |
Family
ID=18873082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001004977A Expired - Fee Related JP4534354B2 (en) | 2001-01-12 | 2001-01-12 | DC-DC converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4534354B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008022607A (en) * | 2006-07-11 | 2008-01-31 | Sanken Electric Co Ltd | Resonance switching power unit |
JP2009055691A (en) * | 2007-08-24 | 2009-03-12 | Panasonic Electric Works Co Ltd | Switching power supply unit |
WO2013132727A1 (en) * | 2012-03-05 | 2013-09-12 | 富士電機株式会社 | Dc-dc conversion device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05344722A (en) * | 1992-06-11 | 1993-12-24 | Origin Electric Co Ltd | Resonant dc-dc converter |
JPH10136647A (en) * | 1996-11-01 | 1998-05-22 | Toshiba Corp | Power circuit |
-
2001
- 2001-01-12 JP JP2001004977A patent/JP4534354B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05344722A (en) * | 1992-06-11 | 1993-12-24 | Origin Electric Co Ltd | Resonant dc-dc converter |
JPH10136647A (en) * | 1996-11-01 | 1998-05-22 | Toshiba Corp | Power circuit |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008022607A (en) * | 2006-07-11 | 2008-01-31 | Sanken Electric Co Ltd | Resonance switching power unit |
JP2009055691A (en) * | 2007-08-24 | 2009-03-12 | Panasonic Electric Works Co Ltd | Switching power supply unit |
WO2013132727A1 (en) * | 2012-03-05 | 2013-09-12 | 富士電機株式会社 | Dc-dc conversion device |
JPWO2013132727A1 (en) * | 2012-03-05 | 2015-07-30 | 富士電機株式会社 | DC-DC converter |
Also Published As
Publication number | Publication date |
---|---|
JP4534354B2 (en) | 2010-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6215286B1 (en) | Step-up/step-down switching regulator operation | |
US6191957B1 (en) | Extended range boost converter circuit | |
US7915876B2 (en) | Power converter with snubber | |
US6812682B2 (en) | Switching power supply unit and semiconductor device for switching power supply | |
US6919713B2 (en) | Switching power supply unit | |
US7486055B2 (en) | DC-DC converter having a diode module with a first series circuit and a second series with a flywheel diode | |
US7688600B2 (en) | Multi-Resonance converter | |
US7872879B2 (en) | Switched mode power converter and method of operation thereof | |
US7026800B2 (en) | Feed-forward method for improving a transient response for a DC—DC power conversion and DC—DC voltage converter utilizing the same | |
US20030026115A1 (en) | Switching-type DC-DC converter | |
US6294903B1 (en) | Switching power supply | |
JP2007523587A (en) | DC-DC voltage regulator whose switching frequency is responsive to the load | |
US6900996B2 (en) | Method and apparatus for controlling a DC-DC converter | |
JP3591635B2 (en) | DC-DC converter | |
JPH11332226A (en) | Synchronous commutation dc-dc converter | |
JPH08154379A (en) | Dc power supply device | |
JP2002209382A (en) | Dc-dc converter | |
US7095158B2 (en) | A/D converter with adjustable internal connection and method for the sameoperating | |
JPH11341797A (en) | Method of controlling step-down chopper type dc-dc converter | |
KR100359709B1 (en) | Switching mode power supply | |
JP4217821B2 (en) | Switching power supply | |
JP2002171755A (en) | Dc-dc converter | |
JPH05344722A (en) | Resonant dc-dc converter | |
JP2004166420A (en) | Multi-output switching power supply | |
JP3374836B2 (en) | Power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031225 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040121 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040205 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070614 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20091112 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20091112 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20091112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100525 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100607 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4534354 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |