JP2002208692A - Solid-state image-pickup device - Google Patents

Solid-state image-pickup device

Info

Publication number
JP2002208692A
JP2002208692A JP2001004379A JP2001004379A JP2002208692A JP 2002208692 A JP2002208692 A JP 2002208692A JP 2001004379 A JP2001004379 A JP 2001004379A JP 2001004379 A JP2001004379 A JP 2001004379A JP 2002208692 A JP2002208692 A JP 2002208692A
Authority
JP
Japan
Prior art keywords
transfer
solid
imaging device
state imaging
transfer register
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001004379A
Other languages
Japanese (ja)
Inventor
Keita Suzuki
啓太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001004379A priority Critical patent/JP2002208692A/en
Publication of JP2002208692A publication Critical patent/JP2002208692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the amount of charges handled by a transfer register, without deteriorating transfer efficiency of signal charges. SOLUTION: In a vertical transfer register 130, a region which serves as an accumulation portion 132 is additionally doped with an N-type impurity. By utilizing the potential well generated by this doping, the potential of the accumulation portion 132 is made deeper to generate a potential difference between the accumulation portion 132 and a transfer portion 134. Since the N-type impurity has less heat diffusion than that of a P-type impurity, diffusion of the impurity added to generate the potential difference under an electrode having a difference phase can be prevented. As a result, not potential barrier is formed, and the accumulation portion can be doped with the N-type impurity at a high concentration. Since the potential difference between the accumulation portion 132 and the transfer portion 134 can be increased, amount of charges handled can be increased without deteriorating the transfer efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の画素センサ
部の信号電荷を転送レジスタ部によって転送し、撮像信
号として出力する固体撮像素子に関し、転送レジスタ部
の転送効率を劣化させることなく取扱い電荷量を増加で
きる固体撮像素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device in which signal charges of a plurality of pixel sensors are transferred by a transfer register and output as an image signal, and the charge handled without deteriorating the transfer efficiency of the transfer register. The present invention relates to a solid-state imaging device whose amount can be increased.

【0002】[0002]

【従来の技術】図2は、CCD固体撮像素子のセンサ部
と転送レジスタの配置を説明するための概略平面図であ
る。このCCD固体撮像素子は、半導体基板10上に、
それぞれ撮像画素を構成する複数のセンサ部20をマト
リクス状に配列するとともに、各センサ部20の垂直方
向の配列に沿って複数の垂直(V)転送レジスタ部30
を設け、さらに、各垂直レジスタ部30の一方の端部の
外側に水平(H)転送レジスタ部40を設けたものであ
る。
2. Description of the Related Art FIG. 2 is a schematic plan view for explaining the arrangement of a sensor section and a transfer register of a CCD solid-state imaging device. This CCD solid-state imaging device is provided on a semiconductor substrate 10.
A plurality of sensor units 20 each forming an imaging pixel are arranged in a matrix, and a plurality of vertical (V) transfer register units 30 are arranged along the vertical arrangement of the sensor units 20.
And a horizontal (H) transfer register section 40 is provided outside one end of each vertical register section 30.

【0003】各センサ部20は、例えばフォトダイオー
ドの構成を有しており、受光面から入射した光をその光
量に応じた信号電荷に変換する。垂直転送レジスタ部3
0では、このセンサ部20に蓄積された信号電荷を後述
する読出しゲート部を通して取り込んで垂直方向に転送
し、水平転送レジスタ部40では、垂直転送レジスタ部
30からの信号電荷を水平方向に転送し、画像信号とし
て出力部50より出力する。
Each sensor unit 20 has, for example, a structure of a photodiode, and converts light incident from a light receiving surface into a signal charge corresponding to the amount of light. Vertical transfer register 3
At 0, the signal charges accumulated in the sensor section 20 are taken in through a read gate section described later and transferred in the vertical direction. The horizontal transfer register section 40 transfers the signal charges from the vertical transfer register section 30 in the horizontal direction. Are output from the output unit 50 as image signals.

【0004】ところで、上述のような従来のCCD固体
撮像素子において、垂直転送レジスタ部を後述するよう
なN型の埋め込みチャネルによって構成し、この垂直転
送レジスタ部を2相クロックで駆動する場合、垂直転送
レジスタ部の取扱い電荷量を決定する大きな要因として
は、垂直転送レジスタ部自体の面積の大小と、N型埋め
込みチャネルを構成する蓄積部と転送部との間のポテン
シャル差の2つが挙げられる。したがって、取扱い電荷
量を大きくする方法としては、垂直転送レジスタ部の面
積を広げる方法と、N型埋め込みチャネルの蓄積部と転
送部との間のポテンシャル差を大きくする方法が考えら
れる。
In the above-mentioned conventional CCD solid-state image pickup device, when the vertical transfer register section is constituted by an N-type buried channel as described later, and this vertical transfer register section is driven by a two-phase clock, There are two major factors that determine the amount of charge handled by the transfer register unit: the size of the area of the vertical transfer register unit itself, and the potential difference between the storage unit and the transfer unit that constitute the N-type buried channel. Therefore, as a method of increasing the amount of handled charges, a method of increasing the area of the vertical transfer register unit and a method of increasing the potential difference between the accumulation unit and the transfer unit of the N-type buried channel can be considered.

【0005】しかし、垂直転送レジスタ部の面積を広げ
る方法では、垂直転送レジスタ部の面積を広げた分だ
け、固体撮像素子全体の面積を大きくするか、あるい
は、固体撮像素子全体の面積を変えない場合には、セン
サ部の開口面積を狭くする必要がある。したがって、固
体撮像素子全体の面積を大きくすると、この固体撮像素
子が設けられる撮像装置全体の大型化を招いてしまい、
また、センサ部の開口面積を狭くした場合には、センサ
部の感度が低下するという問題がある。
However, in the method of enlarging the area of the vertical transfer register, the area of the entire solid-state image sensor is increased or the area of the entire solid-state image sensor is not changed by the amount of the area of the vertical transfer register. In this case, it is necessary to reduce the opening area of the sensor unit. Therefore, if the area of the entire solid-state imaging device is increased, the size of the entire imaging device provided with the solid-state imaging device is increased.
Further, when the opening area of the sensor unit is reduced, there is a problem that the sensitivity of the sensor unit is reduced.

【0006】そこで、N型埋め込みチャネルの蓄積部と
転送部との間のポテンシャル差を大きくする方法を採用
することが有効であり、その具体的な方法としては、N
型の蓄積部にP型の不純物を添加することにより、ポテ
ンシャルウエル領域を設ける方法が知られている。図3
は、このようなN型埋め込みチャネルの蓄積部にP型の
不純物添加領域を設けた垂直転送レジスタ部を説明する
図であり、図3(A)は垂直転送レジスタ部の構造を示
す断面図、図3(B)は信号電荷転送時のポテンシャル
の状態を示す説明図である。
Therefore, it is effective to employ a method of increasing the potential difference between the accumulation section and the transfer section of the N-type buried channel.
There is known a method of providing a potential well region by adding a P-type impurity to a type accumulation portion. FIG.
FIG. 3A is a view for explaining a vertical transfer register section in which a P-type impurity-added region is provided in the accumulation section of such an N-type buried channel. FIG. 3A is a cross-sectional view showing the structure of the vertical transfer register section. FIG. 3B is an explanatory diagram showing a potential state at the time of signal charge transfer.

【0007】図3(A)において、N型半導体基板10
の中にP型層12が設けられ、その上層に垂直転送レジ
スタ部30のN型埋め込みチャネル層が形成されてい
る。垂直転送レジスタ部30の上面には、2相の転送ク
ロックΦV1、ΦV2が印加される2相の転送電極3
6、38が設けられている。なお、図3(B)は、転送
電極36に転送電極38より低い電圧を印加して転送電
極36から転送電極38に信号電荷を転送する場合のN
型埋め込みチャネルのポテンシャルの状態を示してい
る。そして、各転送電極36、38に対応して、N型埋
め込みチャネル層による蓄積部32と転送部34が交互
に設けられている。また、転送部34には、ポテンシャ
ルウエル領域を得るためのP型不純物添加領域34Aが
設けられている。
In FIG. 3A, an N-type semiconductor substrate 10
Is provided with a P-type layer 12, and an N-type buried channel layer of the vertical transfer register section 30 is formed thereon. On the upper surface of the vertical transfer register section 30, the two-phase transfer electrodes 3 to which the two-phase transfer clocks ΦV1 and ΦV2 are applied.
6, 38 are provided. Note that FIG. 3B shows N in the case where a signal charge is transferred from the transfer electrode 36 to the transfer electrode 38 by applying a voltage lower than that of the transfer electrode 38 to the transfer electrode 36.
2 shows the state of the potential of the mold buried channel. In addition, storage sections 32 and transfer sections 34 of N-type buried channel layers are provided alternately corresponding to the transfer electrodes 36 and 38. The transfer section 34 is provided with a P-type impurity-added region 34A for obtaining a potential well region.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述の
ように蓄積部32と転送部34のポテンシャル差を得る
ために、N型埋め込みチャネル層による転送部34にP
型不純物添加領域34Aを設けてポテンシャルウエル領
域を得るようにした場合、プロセスにおいて加わる熱に
よる不純物の拡散(図中破線Aで示す領域)が大きいた
めに、隣接した位相の異なる転送電極の下にも不純物が
広がりやすい。その結果、図3(B)に点Bで示すよう
に、転送電極36と転送電極38の間に不要なポテンシ
ャルバリア(あるいは、ポテンシャルディップ)が形成
されてしまい、このポテンシャルバリアによって信号電
荷の転送残しが発生するので、蓄積部32と転送部34
のポテンシャル差が制限され、取扱い電荷量を増加させ
ることができなくなるという問題があった。
However, as described above, in order to obtain a potential difference between the storage section 32 and the transfer section 34, the transfer section 34 using the N-type buried channel layer needs to be
When the potential well region is obtained by providing the type impurity added region 34A, the diffusion of the impurity due to the heat applied in the process (the region indicated by the broken line A in the figure) is large, so that it is located below the adjacent transfer electrodes having different phases. The impurities are also easy to spread. As a result, as shown by a point B in FIG. 3B, an unnecessary potential barrier (or potential dip) is formed between the transfer electrode 36 and the transfer electrode 38, and the potential barrier transfers the signal charge. Since a residue occurs, the accumulation unit 32 and the transfer unit 34
Has a problem in that the potential difference is limited, and the amount of electric charges handled cannot be increased.

【0009】そこで本発明の目的は、信号電荷を転送す
る埋め込みチャネル領域の蓄積部と転送部のポテンシャ
ル差を大きくすることができ、信号電荷の転送効率を劣
化させることなく取扱い電荷量を増加させることができ
る固体撮像素子を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to increase the potential difference between a storage portion and a transfer portion of a buried channel region for transferring signal charges, thereby increasing the amount of handled charges without deteriorating the transfer efficiency of signal charges. It is an object of the present invention to provide a solid-state imaging device that can perform the above-described operations.

【0010】[0010]

【課題を解決するための手段】本発明は前記目的を達成
するため、複数の画素センサ部の信号電荷を転送レジス
タ部によって転送し、撮像信号として出力する固体撮像
素子において、前記転送レジスタ部は、半導体型基板の
上面に前記信号電荷の転送方向に沿って所定間隔で設け
られた複数の転送電極の各転送電極に対応して、前記半
導体型基板に信号電荷の転送方向に交互にN型埋め込み
チャネル領域よりなる蓄積部と転送部とを有し、かつ、
前記蓄積部は、蓄積部と転送部とのポテンシャル差を得
るためのポテンシャルウエル領域を有し、前記ポテンシ
ャルウエル領域が前記蓄積部にN型不純物添加によって
形成されていることを特徴とする。
According to the present invention, in order to achieve the above object, in a solid-state imaging device in which signal charges of a plurality of pixel sensors are transferred by a transfer register and output as an image pickup signal, the transfer register includes Corresponding to each of a plurality of transfer electrodes provided on the upper surface of the semiconductor-type substrate at predetermined intervals along the transfer direction of the signal charge, the N-type is alternately provided in the transfer direction of the signal charge on the semiconductor-type substrate. Having a storage unit and a transfer unit composed of a buried channel region, and
The accumulation unit has a potential well region for obtaining a potential difference between the accumulation unit and the transfer unit, and the potential well region is formed by adding an N-type impurity to the accumulation unit.

【0011】本発明の固体撮像素子では、複数の画素セ
ンサ部の信号電荷を読み出しパルスによって転送レジス
タ部に読み出し、これを転送クロックに基づいて順次転
送していく。そして、このような固体撮像素子におい
て、転送レジスタ部を構成するN型埋め込みチャネル領
域の蓄積部に不純物添加によってポテンシャルウエル領
域を設けることにより、蓄積部と転送部とのポテンシャ
ル差を得る。ここで、本発明では、この不純物添加をN
型不純物添加によって行なうことから、隣接した位相の
異なる転送電極下への不純物の熱拡散が抑制されるた
め、急峻な不純物分布を得ることができ、蓄積部と転送
部とのポテンシャル差を大きくすることができる。この
結果、転送レジスタの面積を広げることなく、取扱い電
荷量を増加することができる。
In the solid-state imaging device according to the present invention, the signal charges of the plurality of pixel sensors are read out to the transfer register by the read pulse, and are sequentially transferred based on the transfer clock. In such a solid-state imaging device, a potential difference between the accumulation unit and the transfer unit is obtained by providing a potential well region by adding an impurity to the accumulation unit of the N-type buried channel region forming the transfer register unit. Here, in the present invention, this impurity addition is
Since thermal diffusion of impurities below the adjacent transfer electrodes having different phases is suppressed by doping with the type impurity, a steep impurity distribution can be obtained, and the potential difference between the accumulation portion and the transfer portion is increased. be able to. As a result, the amount of charge handled can be increased without increasing the area of the transfer register.

【0012】[0012]

【発明の実施の形態】以下、本発明による固体撮像素子
の実施の形態について説明する。図1は、本発明の実施
の形態によるCCD固体撮像素子の垂直転送レジスタ部
を説明する図であり、図1(A)は垂直転送レジスタ部
の構造を示す断面図、図1(B)は信号電荷転送時のポ
テンシャルの状態を示す説明図である。なお、固体撮像
素子の全体構造は、例えば図2に示すものと同様である
ものとする。図1(A)において、N型半導体基板11
0の中にP型層112が設けられ、その上層に垂直転送
レジスタ部130のN型埋め込みチャネル層が形成され
ている。垂直転送レジスタ部130の上面には、2相の
転送クロックΦV1、ΦV2が印加される2相の転送電
極136、138が設けられている。このような垂直転
送レジスタ部130では、センサ部の蓄積電荷を読み出
しパルスによって垂直転送レジスタ部130に読み出
し、その後、2相の転送クロックΦV1、ΦV2によっ
て垂直方向に順次転送していくものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the solid-state imaging device according to the present invention will be described below. FIG. 1 is a diagram illustrating a vertical transfer register section of a CCD solid-state imaging device according to an embodiment of the present invention. FIG. 1A is a cross-sectional view illustrating the structure of the vertical transfer register section, and FIG. FIG. 4 is an explanatory diagram showing a potential state at the time of transferring signal charges. The overall structure of the solid-state imaging device is, for example, the same as that shown in FIG. In FIG. 1A, an N-type semiconductor substrate 11
0, a P-type layer 112 is provided, and an N-type buried channel layer of the vertical transfer register section 130 is formed thereon. On the upper surface of the vertical transfer register section 130, two-phase transfer electrodes 136 and 138 to which two-phase transfer clocks ΦV1 and ΦV2 are applied are provided. In such a vertical transfer register section 130, charges accumulated in the sensor section are read out to the vertical transfer register section 130 by a read pulse, and then sequentially transferred in the vertical direction by two-phase transfer clocks ΦV1 and ΦV2.

【0013】また、図1(B)では、転送電極136に
転送電極138より低い電圧を印加して転送電極136
から転送電極138に信号電荷を転送する場合のN型埋
め込みチャネルのポテンシャルの状態を示している。そ
して、各転送電極136、138に対応して、N型埋め
込みチャネル層による蓄積部132と転送部134が交
互に設けられている。また、蓄積部132には、蓄積部
と転送部とのポテンシャル差を得るためのポテンシャル
ウエル領域を生成するためのN+型不純物添加領域13
2Aが設けられている。このN+型不純物添加領域13
2Aは、N型不純物イオンのイオン注入によって蓄積部
132に設けられたものである。
In FIG. 1B, a voltage lower than that of the transfer electrode 138 is applied to the transfer electrode 136 to transfer the transfer electrode 136.
5 shows the state of the potential of the N-type buried channel when the signal charge is transferred to the transfer electrode 138. In addition, storage sections 132 and transfer sections 134 of N-type buried channel layers are provided alternately corresponding to the transfer electrodes 136 and 138. In addition, the accumulating portion 132 has an N + type impurity-added region 13 for generating a potential well region for obtaining a potential difference between the accumulating portion and the transfer portion.
2A is provided. This N + type impurity added region 13
2A is provided in the storage section 132 by ion implantation of N-type impurity ions.

【0014】すなわち、本例の垂直転送レジスタ部13
0においては、まず、このレジスタ部全体が転送部13
4のポテンシャルとなるように形成した後、蓄積部13
2となる領域のみにN型不純物をドーピングする工程を
追加するようにしたものである。そして、この追加工程
によって生じるポテンシャルウエルを利用して蓄積部1
32のポテンシャルを深くし、蓄積部132と転送部1
34との間のポテンシャル差を形成する。ここで、N型
不純物は、一般にP型不純物に比較して熱拡散が少ない
という特徴があるので、ポテンシャル差を形成するため
に追加した不純物が、位相の異なる電極の下層に拡散す
るのを抑制することが可能である。
That is, the vertical transfer register unit 13 of this embodiment
0, first, the entire register section is transferred to the transfer section 13.
4 so as to have a potential of 4.
In this embodiment, a step of doping an N-type impurity only in the region No. 2 is added. Then, the storage unit 1 is made using a potential well generated by this additional step.
32, the storage unit 132 and the transfer unit 1
To form a potential difference between them. Here, since the N-type impurity generally has a characteristic that thermal diffusion is smaller than that of the P-type impurity, the diffusion of the impurity added for forming the potential difference to the lower layer of the electrode having a different phase is suppressed. It is possible to

【0015】したがって、図3(B)に示すような転送
効率を下げる原因となるポテンシャルディップ、ないし
はポテンシャルバリアが形成されることなく、高濃度で
N型不純物をドーピングすることが可能となり、蓄積部
132と転送部134とのポテンシャル差を大きくする
ことができるので、転送効率を下げることなく、取扱い
電荷量を増加させることが可能である。また、固体撮像
素子における画素(セル)サイズの微細化に伴い、レジ
スタ部の電荷蓄積面積が狭くなるので、取扱い電荷量を
大きくするために、蓄積部と転送部との間のポテンシャ
ル差を大きくする必要性が増大している。したがって、
例えば図1(B)に示すように、急峻な不純物プロファ
イルを形成できる本発明の固体撮像素子は、セルサイズ
の微細化に有効な構造を提供できるものである。
Therefore, it is possible to dope the N-type impurity at a high concentration without forming a potential dip or a potential barrier which may lower the transfer efficiency as shown in FIG. Since the potential difference between 132 and the transfer unit 134 can be increased, it is possible to increase the amount of charge handled without lowering the transfer efficiency. Further, as the pixel (cell) size in the solid-state imaging device becomes finer, the charge storage area of the register section becomes smaller. Therefore, the potential difference between the storage section and the transfer section is increased in order to increase the amount of charge handled. The need to do so is increasing. Therefore,
For example, as shown in FIG. 1B, the solid-state imaging device of the present invention capable of forming a steep impurity profile can provide a structure effective for miniaturizing the cell size.

【0016】なお、以上の例は、マトリクス状に配置さ
れた画素センサ部の信号電荷を垂直転送レジスタ部と水
平転送レジスタ部によって転送し、撮像信号として出力
する固体撮像素子において、垂直転送レジスタ部に本発
明を適用した場合について説明したが、本発明はこれに
限定されず、例えばラインセンサの転送レジスタ部に適
用することも可能である。
In the above example, the solid-state image pickup device in which the signal charges of the pixel sensor units arranged in a matrix are transferred by the vertical transfer register unit and the horizontal transfer register unit and output as an image pickup signal is provided. Although the present invention has been described with reference to the case where the present invention is applied, the present invention is not limited to this. For example, the present invention can be applied to a transfer register of a line sensor.

【0017】[0017]

【発明の効果】以上説明したように本発明の固体撮像素
子では、転送レジスタ部の蓄積部と転送部とのポテンシ
ャル差を得るためのポテンシャルウエル領域を蓄積部に
設ける場合に、蓄積部に熱拡散の小さいN型不純物を添
加することによって形成するようにした。このため、隣
接した位相の異なる転送電極下への不純物の熱拡散が抑
制されるため、急峻な不純物分布を得ることができ、蓄
積部と転送部とのポテンシャル差を大きくすることがで
きる。この結果、転送レジスタの面積を広げることな
く、取扱い電荷量を増加することができる効果がある。
特に、近年の固体撮像素子における画素(セル)サイズ
の微細化に伴い、レジスタ部の電荷蓄積面積が狭くなる
傾向があることから、急峻な不純物プロファイルを形成
して蓄積部と転送部との間のポテンシャル差を大きくす
ることにより、取扱い電荷量を大きくできるという本発
明の構成は特に顕著な効果を奏するものとなる。
As described above, in the solid-state imaging device according to the present invention, when a potential well region for obtaining a potential difference between the storage section of the transfer register section and the transfer section is provided in the storage section, heat is applied to the storage section. It is formed by adding an N-type impurity with small diffusion. For this reason, thermal diffusion of impurities below the adjacent transfer electrodes having different phases is suppressed, so that a steep impurity distribution can be obtained, and a potential difference between the accumulation unit and the transfer unit can be increased. As a result, there is an effect that the amount of handled charges can be increased without increasing the area of the transfer register.
In particular, since the charge accumulation area of the register section tends to be narrowed with the recent miniaturization of the pixel (cell) size in the solid-state imaging device, a steep impurity profile is formed to form a gap between the accumulation section and the transfer section. The configuration of the present invention, in which the amount of electric charges handled can be increased by increasing the potential difference of the present invention, has a particularly remarkable effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態によるCCD固体撮像素子
の垂直転送レジスタ部を説明する図であり、図1(A)
は垂直転送レジスタ部の構造を示す断面図、図1(B)
は信号電荷転送時のポテンシャルの状態を示す説明図で
ある。
FIG. 1 is a diagram illustrating a vertical transfer register section of a CCD solid-state imaging device according to an embodiment of the present invention;
FIG. 1B is a cross-sectional view showing the structure of the vertical transfer register section, and FIG.
FIG. 4 is an explanatory diagram showing a potential state at the time of signal charge transfer.

【図2】従来のCCD固体撮像素子のセンサ部と転送レ
ジスタの配置を説明するための概略平面図である。
FIG. 2 is a schematic plan view for explaining an arrangement of a sensor unit and a transfer register of a conventional CCD solid-state imaging device.

【図3】従来のCCD固体撮像素子における垂直転送レ
ジスタ部を説明する図であり、図3(A)は垂直転送レ
ジスタ部の構造を示す断面図、図3(B)は信号電荷転
送時のポテンシャルの状態を示す説明図である。
3A and 3B are diagrams for explaining a vertical transfer register unit in a conventional CCD solid-state imaging device. FIG. 3A is a cross-sectional view showing the structure of the vertical transfer register unit, and FIG. It is explanatory drawing which shows the state of a potential.

【符号の説明】[Explanation of symbols]

110……N型半導体基板、112……P型層、130
……垂直転送レジスタ部、132……蓄積部、132A
……N+型不純物添加領域、134……転送部、13
6、138……転送電極。
110 ... N-type semiconductor substrate, 112 ... P-type layer, 130
... Vertical transfer register section 132 132 Storage section 132A
..., N + type impurity added region, 134,.
6, 138... Transfer electrodes.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の画素センサ部の信号電荷を転送レ
ジスタ部によって転送し、撮像信号として出力する固体
撮像素子において、 前記転送レジスタ部は、半導体型基板の上面に前記信号
電荷の転送方向に沿って所定間隔で設けられた複数の転
送電極の各転送電極に対応して、前記半導体型基板に信
号電荷の転送方向に交互にN型埋め込みチャネル領域よ
りなる蓄積部と転送部とを有し、 かつ、前記蓄積部は、蓄積部と転送部とのポテンシャル
差を得るためのポテンシャルウエル領域を有し、 前記ポテンシャルウエル領域が前記蓄積部にN型不純物
添加によって形成されている、 ことを特徴とする固体撮像素子。
1. A solid-state imaging device that transfers signal charges of a plurality of pixel sensor units by a transfer register unit and outputs the signal charges as an image signal, wherein the transfer register unit is disposed on an upper surface of a semiconductor substrate in a transfer direction of the signal charges. Corresponding to each of a plurality of transfer electrodes provided at a predetermined interval along the semiconductor substrate, the semiconductor-type substrate has a storage portion and a transfer portion formed of an N-type buried channel region alternately in a signal charge transfer direction. And the accumulation unit has a potential well region for obtaining a potential difference between the accumulation unit and the transfer unit, and the potential well region is formed by adding an N-type impurity to the accumulation unit. Solid-state imaging device.
【請求項2】 前記ポテンシャルウエル領域は、N型不
純物をイオン注入によって形成されていることを特徴と
する請求項2記載の固体撮像素子。
2. The solid-state imaging device according to claim 2, wherein said potential well region is formed by ion implantation of an N-type impurity.
【請求項3】 前記ポテンシャルウエル領域は、前記蓄
積部に対して高濃度のN型不純物の添加によって形成さ
れていることを特徴とする請求項1記載の固体撮像素
子。
3. The solid-state imaging device according to claim 1, wherein the potential well region is formed by adding a high-concentration N-type impurity to the accumulation section.
【請求項4】 前記転送レジスタ部は、各転送電極に1
つおきに異なる位相の転送クロックを印加する2相駆動
型垂直転送レジスタであることを特徴とする請求項1記
載の固体撮像素子。
4. The transfer register section includes one transfer electrode for each transfer electrode.
2. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is a two-phase drive type vertical transfer register that applies transfer clocks having different phases every other time.
【請求項5】 マトリクス状に配置された画素センサ部
の信号電荷を垂直方向に転送する垂直転送レジスタ部
と、前記垂直転送レジスタ部によって転送された信号電
荷を水平方向に転送し、撮像信号として出力する水平転
送レジスタ部とを有し、前記垂直転送レジスタ部に蓄積
部に前記N型不純物添加によるポテンシャルウエル領域
を設けたことを特徴とする請求項1記載の固体撮像素
子。
5. A vertical transfer register unit for vertically transferring signal charges of a pixel sensor unit arranged in a matrix, and a signal charge transferred by the vertical transfer register unit is transferred in a horizontal direction to obtain an image signal. 2. The solid-state imaging device according to claim 1, further comprising: a horizontal transfer register section for outputting, wherein the vertical transfer register section is provided with a potential well region in the storage section by adding the N-type impurity.
JP2001004379A 2001-01-12 2001-01-12 Solid-state image-pickup device Pending JP2002208692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001004379A JP2002208692A (en) 2001-01-12 2001-01-12 Solid-state image-pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004379A JP2002208692A (en) 2001-01-12 2001-01-12 Solid-state image-pickup device

Publications (1)

Publication Number Publication Date
JP2002208692A true JP2002208692A (en) 2002-07-26

Family

ID=18872576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004379A Pending JP2002208692A (en) 2001-01-12 2001-01-12 Solid-state image-pickup device

Country Status (1)

Country Link
JP (1) JP2002208692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096084A (en) * 2005-09-29 2007-04-12 Nec Electronics Corp Solid-state imaging device and its driving method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465133A (en) * 1990-07-05 1992-03-02 Toshiba Corp Charge coupled device
JPH05226378A (en) * 1992-02-17 1993-09-03 Sony Corp Manufacture of charge transfer element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465133A (en) * 1990-07-05 1992-03-02 Toshiba Corp Charge coupled device
JPH05226378A (en) * 1992-02-17 1993-09-03 Sony Corp Manufacture of charge transfer element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096084A (en) * 2005-09-29 2007-04-12 Nec Electronics Corp Solid-state imaging device and its driving method

Similar Documents

Publication Publication Date Title
EP1081766A1 (en) CCD image sensor using amplification by secondary electron generation
JPH0578946B2 (en)
KR900005875B1 (en) Solid state image device
US20060072026A1 (en) Solid-state image pickup device and method for driving the same
JPH08181300A (en) Image pickup device
JP2000340784A (en) Solid-state image pickup device
US9117729B2 (en) Depleted charge-multiplying CCD image sensor
US6760073B1 (en) Solid-state image sensor
JP2005109021A (en) Solid state imaging device
JP2002208692A (en) Solid-state image-pickup device
JP2002151673A (en) Solid-state image pickup element
JP2011198790A (en) Solid-state imaging apparatus, and imaging apparatus
JP2877047B2 (en) Solid-state imaging device
JP2894235B2 (en) Solid-state imaging device
JP3047965B2 (en) Solid-state imaging device
JPS61188965A (en) Solid-state image sensor
JP2006319184A (en) Solid-state imaging device and camera
JP3179080B2 (en) Charge coupled device and solid-state imaging device provided with the device
KR0155783B1 (en) Charge coupled device and the fabrication thereof
JPH08279608A (en) Charge transfer element and its drive method
JPH06339081A (en) Driving method for solid-state image pickup element
JPH08293592A (en) Solid state imaging apparatus
JP2010080791A (en) Solid-state image sensing device and electronic instrument
JPH07226497A (en) Solid-state image pickup element
KR100724144B1 (en) method for fabricating Charge Coupled Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426