JP2002208424A - Micro short circuit detecting method for fuel cell - Google Patents

Micro short circuit detecting method for fuel cell

Info

Publication number
JP2002208424A
JP2002208424A JP2001005492A JP2001005492A JP2002208424A JP 2002208424 A JP2002208424 A JP 2002208424A JP 2001005492 A JP2001005492 A JP 2001005492A JP 2001005492 A JP2001005492 A JP 2001005492A JP 2002208424 A JP2002208424 A JP 2002208424A
Authority
JP
Japan
Prior art keywords
cell
short
current
anode
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001005492A
Other languages
Japanese (ja)
Other versions
JP4779205B2 (en
Inventor
Yoshiaki Matsumoto
恵明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001005492A priority Critical patent/JP4779205B2/en
Publication of JP2002208424A publication Critical patent/JP2002208424A/en
Application granted granted Critical
Publication of JP4779205B2 publication Critical patent/JP4779205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a micro short circuit detecting method for a fuel cell which can detect precisely micro short circuit of a cell without applying large current to the cell. SOLUTION: The micro short-circuit detecting method comprises a process in which fuel gas is applied to an anode, as a cathode side is controlled to be more than 100 mV, either oxidizing gas in the cell is consumed while oxidizing gas is blocked when electrical load 34 is added to a cell 30, or inactive gas is supplied when electrical load is not added to the cell, a process of calculating a slope (x) of current change/voltage change between constant potential conditions by connecting an external measurement circuit 31 to the anode and cathode terminals of the cell 30, making electrical potentials of the cathode terminal changed to two or more points in a range from 120 mV to 1230 mV against the anode terminal and measuring the current carried by the external measurement circuit 31 at each constant potential condition, and a process of judging generation of micro short circuits in the cell 30 when the slope (x) is more than the given value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池、とくに
固体高分子電解質型燃料電池の、単セルまたは複数セル
の、アノード、カソード間の微短(電気的微量短絡また
はマイクロショートともいう)の発生、または発生微短
のレベルを検出する、燃料電池用微短検出方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, particularly a solid polymer electrolyte fuel cell, in which a single cell or a plurality of cells has a very short (also referred to as an electrical micro-short or micro-short) between an anode and a cathode. The present invention relates to a very short detection method for a fuel cell, which detects the level of occurrence or minuteness of occurrence.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は、イオン
交換膜からなる電解質膜(基本的には電気絶縁体)とこ
の電解質膜の一面に配置された触媒層および拡散層から
なる電極(アノード、燃料極)および電解質膜の他面に
配置された触媒層および拡散層からなる電極(カソー
ド、空気極)とからなる膜−電極アッセンブリ(ME
A:Membrane-Electrode Assembly )と、アノード、カ
ソードに燃料ガス(水素)および酸化ガス(酸素、通常
は空気)を供給するための流体通路を形成するセパレー
タとからセルを構成し、複数のセルを積層してモジュー
ルとし、モジュールを積層してモジュール群を構成し、
モジュール群のセル積層方向両端に、ターミナル、イン
シュレータ、エンドプレートを配置してスタックを構成
し、スタックをセル積層体積層方向に延びる締結部材
(たとえば、テンションプレート)にて締め付け、固定
したものからなる。固体高分子電解質型燃料電池では、
アノード側では、水素を水素イオンと電子にする反応が
行われ、水素イオンは電解質膜中をカソード側に移動
し、カソード側では酸素と水素イオンおよび電子(隣り
のMEAのアノードで生成した電子がセパレータを通し
てくる、または外部電気的負荷を通してくる)から水を
生成する反応が行われる。 アノード側:H2 →2H+ +2e- カソード側:2H+ +2e- +(1/2)O2 →H2 O 電解質膜は電気絶縁性を維持しなければならない。しか
し、電極を構成要素である炭素粒子のうち比較的大きな
粒子が電解質膜をクリープさせてアノードとカソードと
の間に微短を生じさせたり、燃料電池の使用中にガス流
路配管からのイオン成分等(Feイオン、Niイオン
等)が溶出して電解質膜中にブリッジを形成してアノー
ドとカソードとの間に微短を生じさせることが起こり得
るので、燃料電池は、初期品質検査や経時劣化の検査
で、電解質膜の微短発生の有無や発生微短のレベル(微
短抵抗の大きさ)が検出される。従来の電解質膜の微短
検出には、特開昭63−117277号公報に開示の方
法や、図8に示すような4端子法(電流計(A)101
と直流電源(E)102の直列回路を接続するための2
つの端子104、105と電圧計(V)103を接続す
るための2つの端子106、107の合計4つの端子を
もつ回路によってセルの微短抵抗を測定する方法)によ
る微短抵抗測定がある。
2. Description of the Related Art A solid polymer electrolyte fuel cell comprises an electrolyte membrane (basically an electric insulator) composed of an ion exchange membrane and an electrode (anode) composed of a catalyst layer and a diffusion layer disposed on one surface of the electrolyte membrane. , Fuel electrode) and an electrode (cathode, air electrode) comprising a catalyst layer and a diffusion layer disposed on the other surface of the electrolyte membrane (ME).
A: A Membrane-Electrode Assembly) and a separator that forms a fluid passage for supplying fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) to the anode and cathode constitute a cell. Laminate to form a module, stack the modules to form a module group,
A terminal, an insulator, and an end plate are arranged at both ends in the cell stacking direction of the module group to form a stack, and the stack is fastened and fixed by a fastening member (for example, a tension plate) extending in the cell stacking stacking direction. . In solid polymer electrolyte fuel cells,
On the anode side, a reaction is performed to convert hydrogen into hydrogen ions and electrons. The hydrogen ions move through the electrolyte membrane to the cathode side, and on the cathode side, oxygen and hydrogen ions and electrons (electrons generated at the anode of the next MEA are generated). (Either through the separator or through an external electrical load). Anode side: H 2 → 2H + + 2e Cathode side: 2H + + 2e + (1 /) O 2 → H 2 O The electrolyte membrane must maintain electrical insulation. However, relatively large particles of the carbon particles that make up the electrode may cause the electrolyte membrane to creep, causing a minute short between the anode and the cathode, or cause ions from the gas flow path piping during use of the fuel cell. Since the components (Fe ions, Ni ions, etc.) may elute and form a bridge in the electrolyte membrane to cause a minute short between the anode and the cathode, the fuel cell may be subjected to an initial quality inspection or a aging test. In the deterioration inspection, the presence / absence of minute generation of the electrolyte membrane and the level of minute generation (magnitude of minute resistance) are detected. A conventional technique for detecting a minute length of an electrolyte membrane is disclosed in JP-A-63-117277 or a four-terminal method (Ammeter (A) 101) as shown in FIG.
For connecting a series circuit of the DC power supply (E) 102 and
(A method of measuring the micro-short resistance of a cell by a circuit having a total of four terminals, ie, two terminals 106 and 107 for connecting the two terminals 104 and 105 and a voltmeter (V) 103).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の従来方
法の何れの方法も、燃料電池のセルに外部から電圧
(E)を印加し、回路に流れる電流を測定して微短抵抗
(=電圧÷電流)を求める方法である。その場合、抵抗
値が小さい(たとえば、100オーム以下)微短の場
合、検出できる電流変化を生じさせるには、セルにかけ
る外部電圧(E)を1セル当りの理論最大電圧(=1.
23V)以上に上げてセルに大きな電流を流すことが必
要であり、セルに大きな電流を流すと電解質膜の形成さ
れていた微量短絡のブリッジが切れて、微短があったに
もかかわらず微短無しと測定しまうので、精度の高い微
短検出ができないという問題がある。また、外部電圧
(E)を1セル当りの理論最大電圧(=1.23V)以
上に上げて大きな電流をセルにかけると、MEAを破壊
するおそれもある。本発明の目的は、セルに大きな電流
をかけることなくセルの微短を精度よく検出できる燃料
電池用微短検出方法を提供することにある。
However, in any of the above-mentioned conventional methods, a voltage (E) is externally applied to the cells of the fuel cell, the current flowing through the circuit is measured, and the very short resistance (= voltage) is measured. (Current). In this case, when the resistance value is small (for example, 100 ohms or less) and very short, in order to cause a detectable current change, the external voltage (E) applied to the cell is changed to the theoretical maximum voltage per cell (= 1.
It is necessary to pass a large current through the cell by raising the voltage to 23 V) or more. Since there is no short measurement, there is a problem that it is not possible to detect minute and short distances with high accuracy. Further, if the external voltage (E) is raised to a value higher than the theoretical maximum voltage per cell (= 1.23 V) and a large current is applied to the cells, the MEA may be destroyed. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for detecting a minute length of a fuel cell, which can accurately detect the minute length of a cell without applying a large current to the cell.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明はつぎの通りである。 (1) セルのアノード端子、カソード端子に外部測定
回路を接続し、前記アノード端子に対し前記カソード端
子の電位を変化させその時に前記外部測定回路に流れる
電流を測定することにより、前記セルの微短を検出す
る、燃料電池用微短検出方法。 (2) セルのアノード端子、カソード端子に外部測定
回路を接続し、前記アノード端子に対し前記カソード端
子の電位をセルの最大起電力以下の範囲で変化させその
時に前記外部測定回路に流れる電流を測定することによ
り、前記セルの微短を検出する、燃料電池用微短検出方
法。 (3) アノードに燃料ガスを流し、カソード側は、1
セル当り100mV以下にならないように制御しつつ、
セルに電気的負荷をかけた場合は酸化ガスを閉塞してセ
ル内の酸化ガスを消費するか、またはセルに電気的負荷
をかけない場合は不活性ガスを流す工程と、前記セルの
アノード端子、カソード端子に外部測定回路を接続し、
前記アノード端子に対し前記カソード端子の電位を12
0mV〜1230mVの範囲で2点以上で定電位状態に
変化させ、それぞれの定電位状態で前記外部測定回路に
流れる電流を測定し、定電位状態間の電流変化/電圧変
化の傾きを求める工程と、前記傾きが所定値以上の場合
に前記セルに微短が生じたと判定する工程と、からなる
燃料電池用微短検出方法。 (4) アノードに燃料ガスを流し、カソード側は、1
セル当り100mV以下にならないように制御しつつ、
セルに電気的負荷をかけた場合は酸化ガスを閉塞してセ
ル内の酸化ガスを消費するか、またはセルに電気的負荷
をかけない場合は不活性ガスを流す工程と、前記セルの
アノード端子、カソード端子に外部測定回路を接続し、
前記アノード端子に対し前記カソード端子の電位を12
0mV〜1230mVの範囲で2点以上で定電位状態に
変化させ、それぞれの定電位状態で前記外部測定回路に
流れる電流を測定し、定電位状態間の電流変化/電圧変
化の傾きを求める工程と、既知の抵抗の値と、該既知の
抵抗を短絡抵抗にみたたて該既知の抵抗を微短の無いセ
ルに並列接続した場合の電流変化/電圧変化の傾きの値
とから、検量線図をあらかじめ作成しておき、前記検量
線図から前記定電位状態間の電流変化/電圧変化の傾き
に対応する抵抗値を求めて微短のレベルを求める工程
と、からなる燃料電池用微短検出方法。
The present invention to achieve the above object is as follows. (1) An external measurement circuit is connected to the anode terminal and the cathode terminal of the cell, and the potential of the cathode terminal is changed with respect to the anode terminal. A short detection method for a fuel cell that detects shortness. (2) An external measuring circuit is connected to the anode terminal and the cathode terminal of the cell, and the potential of the cathode terminal is changed with respect to the anode terminal within a range equal to or less than the maximum electromotive force of the cell. A minute-short detection method for a fuel cell, wherein the minute-shortness of the cell is detected by measuring. (3) Flow fuel gas to the anode, and
While controlling not to be less than 100 mV per cell,
A step of closing the oxidizing gas when an electric load is applied to the cell and consuming the oxidizing gas in the cell, or flowing an inert gas when not applying an electric load to the cell; and an anode terminal of the cell. , Connect an external measurement circuit to the cathode terminal,
The potential of the cathode terminal is 12 with respect to the anode terminal.
A step of changing to a constant potential state at two or more points in the range of 0 mV to 1230 mV, measuring a current flowing through the external measuring circuit in each constant potential state, and calculating a slope of a current change / voltage change between the constant potential states; Determining whether or not the cell is slightly short when the inclination is greater than or equal to a predetermined value. (4) Flow fuel gas to the anode, and
While controlling not to be less than 100 mV per cell,
A step of closing the oxidizing gas when an electric load is applied to the cell to consume the oxidizing gas in the cell, or flowing an inert gas when not applying an electric load to the cell; and an anode terminal of the cell. , Connect an external measurement circuit to the cathode terminal,
The potential of the cathode terminal is 12 with respect to the anode terminal.
A step of changing to a constant potential state at two or more points in a range of 0 mV to 1230 mV, measuring a current flowing through the external measuring circuit in each of the constant potential states, and calculating a gradient of a current change / voltage change between the constant potential states; , A calibration curve diagram based on the value of the known resistance and the value of the slope of the current change / voltage change when the known resistance is viewed as a short-circuit resistance and the known resistance is connected in parallel to a cell having no short-circuit. And calculating a resistance value corresponding to a gradient of a current change / voltage change between the constant potential states from the calibration curve to obtain a minute level. Method.

【0005】上記(1)、(2)の燃料電池用微短検出
方法では、外部測定回路でアノード端子に対しカソード
端子の電位をセルの最大起電力以下の範囲で変位させそ
の時に外部測定回路に流れる電流を検出するので、微短
のような微量な短絡でも直接電流値として検出できる
(微短があれば電流が流れ、微短がなければ電流は流れ
ない)。この場合は、セルにかかる電圧は120mV〜
1230mVの範囲であって燃料電池運転時にかかる電
圧程度以下であるため、セルに微短があってもその微短
に、燃料電池運転時に微短に流れる電流以上の電流は流
れず、従来の電流を変えて電圧を測定する場合のように
セルに大きな電流を微短にかけることがなく、したがっ
て大きな電流によって微短が切れる(微短を飛ばす)こ
とがないので、セルの微短(の有無位)を精度よく(確
実に)検出できる。上記(3)の燃料電池用微短検出方
法では、定電位状態間の電流変化/電圧変化の傾きを求
める。この傾きとセルの微短抵抗との間にはある相関関
係がある。そして、該傾きが、所定値(許容微短抵抗に
対応する傾き値)以上の場合にセルに微短が生じている
と判定する。この方法では、上記(1)、(2)の作用
に加えて、セルに発生している微短の抵抗値が、予め定
めた許容微短抵抗値以上か未満かまで判定できる。上記
(4)の燃料電池用微短検出方法では、定電位状態間の
電流変化/電圧変化の傾きを求める。この傾きとセルの
微短抵抗との間にはある相関関係がある。そして、予め
作成しておいた検量線図から前記傾きに対応する微短抵
抗の大きさを求める。この方法では、上記(1)、
(2)の作用に加えて、セルの微短発生時の微短のレベ
ル(微短の抵抗値の大きさ)まで求める(推定する)こ
とができる。
In the minute and short detection methods for a fuel cell according to the above (1) and (2), the potential of the cathode terminal is displaced with respect to the anode terminal by the external measuring circuit within the range of not more than the maximum electromotive force of the cell. Since the current flowing through the short circuit is detected, even a minute short circuit such as a short circuit can be directly detected as a current value (a current flows if there is a minute short, and no current flows if there is no minute short). In this case, the voltage applied to the cell is between 120 mV and
Since it is in the range of 1230 mV and not more than the voltage applied during fuel cell operation, even if the cell is minutely short, the current that does not exceed the minutely flowing current during fuel cell operation does not flow. As in the case where voltage is measured by changing the voltage, a large current is not applied to the cell very slightly, and therefore the small current is not cut off (skipped) by a large current. Position) can be detected accurately (reliably). In the method (3) for detecting the shortness of the fuel cell, the gradient of the current change / voltage change between the constant potential states is obtained. There is a correlation between this inclination and the micro-short resistance of the cell. Then, when the inclination is equal to or more than a predetermined value (inclination value corresponding to the allowable micro-short resistance), it is determined that the micro-shortness has occurred in the cell. According to this method, in addition to the effects of the above (1) and (2), it is possible to determine whether the minute resistance value generated in the cell is equal to or greater than a predetermined allowable minute resistance value. In the above-described method (4), the inclination of the current change / voltage change between the constant potential states is obtained. There is a correlation between this inclination and the micro-short resistance of the cell. Then, the magnitude of the micro-short resistance corresponding to the inclination is obtained from a calibration curve created in advance. In this method, the above (1),
In addition to the effect of (2), it is possible to obtain (estimate) even a minute level (magnitude of a minute resistance value) at the time of minute occurrence of a cell.

【0006】[0006]

【発明の実施の形態】以下に、本発明実施例の燃料電池
用微短検出方法を、図1〜図7を参照して、説明する。
本発明実施例の燃料電池用微短検出方法が適用される燃
料電池は、固体高分子電解質型燃料電池10であり、燃
料電池を分解することなく組立てられたままで(オンボ
ードで)適用される。この燃料電池10は、たとえば燃
料電池自動車に搭載される。ただし、自動車以外に用い
られてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for detecting a minute length of a fuel cell according to an embodiment of the present invention will be described with reference to FIGS.
The fuel cell to which the method for detecting a micro-shortness for a fuel cell according to the embodiment of the present invention is applied is a solid polymer electrolyte fuel cell 10, which is applied as assembled (on-board) without disassembling the fuel cell. . The fuel cell 10 is mounted on, for example, a fuel cell vehicle. However, it may be used other than a car.

【0007】固体高分子電解質型燃料電池10は、図
6、図7に示すように、イオン交換膜からなる電解質膜
11(基本的には、電気絶縁体)とこの電解質膜11の
一面に配置された触媒層12および拡散層13からなる
電極14(アノード、燃料極)および電解質膜11の他
面に配置された触媒層15および拡散層16からなる電
極17(カソード、空気極)とからなる膜−電極アッセ
ンブリ(MEA:Membrane-Electrode Assembly )と、
電極14、17に燃料ガス(水素)および酸化ガス(酸
素、通常は空気)を供給するための反応ガス流路27
(単に、ガス流路ともいう)および燃料電池冷却用の冷
媒(通常は冷却水)が流れる冷媒流路26(冷却水流路
ともいう)を形成するセパレータ18とからセル30を
形成し、該セル30を複数積層してモジュール19と
し、モジュール19を積層してモジュール群を構成し、
モジュール19群のセル積層方向両端に、ターミナル2
0、インシュレータ21、エンドプレート22を配置し
てスタック23を構成し、スタック23を積層方向に締
め付けスタック23の外側で燃料電池積層体積層方向に
延びる締結部材24(たとえば、テンションプレート)
とボルト25で固定したものからなる。
As shown in FIGS. 6 and 7, a solid polymer electrolyte fuel cell 10 has an electrolyte membrane 11 (basically an electric insulator) formed of an ion exchange membrane and a surface disposed on one surface of the electrolyte membrane 11. And an electrode 17 (cathode, air electrode) composed of the catalyst layer 15 and the diffusion layer 16 disposed on the other surface of the electrolyte membrane 11. A membrane-electrode assembly (MEA: Membrane-Electrode Assembly);
Reaction gas flow path 27 for supplying fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) to electrodes 14 and 17
A cell 30 is formed from a separator 18 forming a coolant passage 26 (also referred to as a cooling water passage) through which a coolant for cooling the fuel cell (usually, cooling water) flows. The module 19 is formed by stacking a plurality of modules 30 to form a module 19, and the module 19 is stacked to form a module group.
Terminals 2 are provided at both ends of the module 19 group in the cell stacking direction.
0, an insulator 21, and an end plate 22 are arranged to form a stack 23, and the stack 23 is tightened in the stacking direction, and a fastening member 24 (for example, a tension plate) extending outside the stack 23 in the stacking direction of the fuel cell stack.
And bolts 25.

【0008】本発明実施例の燃料電池用微短検出方法
は、図2、図3に示すように、セル30のアノード端子
36(アノードに導通するセパレータ、または該セパレ
ータに設けられた端子)、カソード端子37(カソード
に導通するセパレータ、または該セパレータに設けられ
た端子)に外部測定回路31を接続し、外部測定回路3
1でアノード端子36に対しカソード端子37の電位を
変位させて、望ましくはセルの最大起電力以下の範囲
(120mV〜1230mVの範囲)で変位させてその
時に外部測定回路31に流れる電流を測定することによ
り、セル30の微短を検出する方法からなる。「123
0mV以下」とする理由は、セル30に理論電圧以上の
電圧をかけないようにするためであり、もしもそれ以上
の電圧をかけると燃料電池運転時に存在した電解質膜中
の微短を微短測定時に飛ばすおそれがあるので、それを
防止するためである。セル30の発電電圧は実際には約
1Vであるから、燃料電池運転時に存在した電解質膜中
の微短を微短測定時に飛ばすおそれがないようにするに
は、1Vに対してさらにマージンを見込んで、「123
0mV以下」を「900mV以下」に設定することが望
ましい。また、「120mV以上」とする理由は、たと
えばセルのカソードに不活性ガスを流してセルの発電条
件を止めた場合、カソードのアノードに対する電位が1
20mV程度で安定する(不活性ガス中に酸素等の不純
物がなければさらに低下するであろう)ので、それ以上
とするためである。ただし、下限に対してマージンを見
込んで、「120mV以上」は「200mV以上」に設
定することが望ましい。したがって、上限、下限にマー
ジンを見込んだ場合は、上記の「120mV〜1230
mVの範囲」は、「200mV〜900mVの範囲」と
なる。
As shown in FIGS. 2 and 3, the method for detecting a micro-shortness for a fuel cell according to an embodiment of the present invention includes an anode terminal 36 (a separator connected to the anode or a terminal provided on the separator) of the cell 30; The external measurement circuit 31 is connected to the cathode terminal 37 (a separator connected to the cathode or a terminal provided on the separator), and the external measurement circuit 3
In step 1, the potential of the cathode terminal 37 is displaced with respect to the anode terminal 36, and is desirably displaced within the range of the maximum electromotive force of the cell (range of 120 mV to 1230 mV), and the current flowing to the external measurement circuit 31 at that time is measured. Thus, the method for detecting the minuteness of the cell 30 is provided. "123
The reason for setting the voltage to 0 mV or less is to prevent a voltage higher than the theoretical voltage from being applied to the cell 30. If a voltage higher than the theoretical voltage is applied, the micro-shortness in the electrolyte membrane existing during fuel cell operation is measured. This is to prevent it from being sometimes skipped. Since the power generation voltage of the cell 30 is actually about 1 V, a margin for 1 V is further taken into consideration in order to avoid the possibility of the micro-shorts in the electrolyte membrane present during the operation of the fuel cell being skipped during the micro-short measurement. Then, "123
It is desirable to set “0 mV or less” to “900 mV or less”. The reason for setting “120 mV or more” is that, for example, when an inert gas is flowed into the cathode of the cell to stop the power generation condition of the cell, the potential of the cathode with respect to the anode becomes 1
This is because the temperature is stabilized at about 20 mV (it will be further reduced if there is no impurity such as oxygen in the inert gas). However, it is desirable to set “120 mV or more” to “200 mV or more” in consideration of a margin with respect to the lower limit. Therefore, when a margin is expected in the upper limit and the lower limit, the above “120 mV to 1230”
The “range of mV” is “a range of 200 mV to 900 mV”.

【0009】外部測定回路31は単一のセル30の電解
質膜両側のアノード端子36、カソード端子37に接続
されてもよいし、あるいは複数セル積層体の両端のアノ
ード端子、カソード端子に接続されてもよい。単一のセ
ル30に接続される場合は、その単一セルの微短が検出
され、複数セル積層体に接続される場合は、その複数セ
ル積層体を構成するセルの微短抵抗の合計が検出され
る。外部測定回路31は、出力電圧可変の直流電源32
(出力電圧可変バッテリ)と、電流計33の直列回路か
らなる。出力電圧可変の直流電源32は、セルのカソー
ド端子37のアノード端子36に対する電位を、セル当
り、120mV〜1230mVの範囲で変位させること
ができ、上記のように上限、下限にマージンを見込む場
合は、200mV〜900mVの範囲で変位させること
ができる。また、本発明の方法は、従来の4端子法のよ
うに、電流を変化させてその時の電圧を測定するのでは
なく、外部電源32の出力電圧(セル30に外部から印
加される電圧)を変化させてその時に外部測定回路31
に流れる電流を測定する方法である。
The external measuring circuit 31 may be connected to the anode terminal 36 and the cathode terminal 37 on both sides of the electrolyte membrane of the single cell 30, or may be connected to the anode terminal and the cathode terminal on both ends of the multi-cell laminate. Is also good. When connected to a single cell 30, the short / shortness of the single cell is detected, and when connected to a multiple cell stack, the sum of the short / short resistances of the cells constituting the multiple cell stack is Is detected. The external measurement circuit 31 includes a DC power supply 32 having a variable output voltage.
(Variable output voltage battery) and a series circuit of an ammeter 33. The variable output voltage DC power supply 32 is capable of displacing the potential of the cathode terminal 37 of the cell with respect to the anode terminal 36 in the range of 120 mV to 1230 mV per cell. , 200 mV to 900 mV. Further, the method of the present invention does not measure the voltage at that time by changing the current as in the conventional four-terminal method, but instead uses the output voltage of the external power supply 32 (the voltage applied to the cell 30 from the outside). The external measuring circuit 31
This is a method of measuring the current flowing through the device.

【0010】さらに詳しくは、本発明実施例の燃料電池
用微短検出方法は、図1に示すように、燃料電池のアノ
ードに燃料ガスを流し、カソード側は、1セル当り10
0mV以下にならないように制御しつつ、セル30に電
気的負荷34をかけた場合は酸化ガスを閉塞してセル内
の酸化ガスを消費するか、またはセルに電気的負荷をか
けない場合は不活性ガスを流す第1工程と、図2に示す
ように、セル30のアノード端子36、カソード端子3
7に外部測定回路31を接続し、出力電圧可変の直流電
源32の出力電圧を変えることによりアノード端子36
に対しカソード端子37の電位を120mV〜1230
mV(マージンを見込む場合は、200mV〜900m
V)の範囲で2点以上の定電位状態に変化させ、それぞ
れの定電位状態で外部測定回路31に流れる電流を測定
し、定電位状態間の電流変化/電圧変化の傾き(x)を
求める第2工程と、傾き(x)が所定値以上の場合にセ
ル30に微短が生じたと判定する第3工程と、からな
る。
[0010] More specifically, the method for detecting a micro-shortness for a fuel cell according to the embodiment of the present invention, as shown in FIG.
When an electric load 34 is applied to the cell 30 while controlling so as not to be 0 mV or less, the oxidizing gas is blocked and the oxidizing gas in the cell is consumed, or when the electric load is not applied to the cell, it is not. A first step of flowing an active gas, and as shown in FIG.
7 is connected to an external measuring circuit 31 to change an output voltage of a DC power supply 32 having a variable output voltage so that an anode terminal 36 is connected.
The potential of the cathode terminal 37 from 120 mV to 1230
mV (200mV to 900m when margin is expected)
V), the state is changed to two or more constant potential states, the current flowing through the external measurement circuit 31 is measured in each constant potential state, and the gradient (x) of the current change / voltage change between the constant potential states is obtained. The second step includes a third step of determining that the cell 30 is slightly short when the inclination (x) is equal to or more than a predetermined value.

【0011】第1工程は、酸化ガスが供給されるとセル
30が発電体として作動して微短測定不能となるため、
測定中にセル30が発電体として作動することを止める
工程である。電気的負荷34がある場合は、カソードへ
の酸素の供給を閉塞することにより、セル内の酸素が消
費されて、発電体として作動しなくなり、不活性ガスが
利用できる場合はカソードに流しているエアを不活性ガ
スに切り替えることにより、セルは発電体として作動し
なくなる。電気的負荷34がある場合は、酸化ガスの閉
塞と電気的負荷34により、酸素が消費されて、セル3
0の端子電圧は低下していくが、100mVに近づくと
電気的負荷34を絞って、または電気的負荷34を切っ
て、1セル当り100mV以下にならないように制御し
つつ、約120mV程度にする。電気的負荷34がない
場合は、カソードに不活性ガスを流すが、その場合はセ
ル30の端子電圧は低下していき、やがて約120mV
で安定する。理論上は0Vまで低下する筈であるにかか
わらず約120mVで安定する理由は、不活性ガス中に
不純物として酸素が存在しているからであると思われ
る。第1工程中に1セル当り100mV以下にならない
ようにするのは、100mV以下になると、測定中に外
部電圧をかけた時にセル30に負の電圧がかかって水の
電気分解が生じ、セルの電解質膜を壊すおそれがあるの
で、それを防止するためである。第1工程における「1
00mV」、「120mV」は、セルのアノード端子、
カソード端子間に図示略の電圧計(図2の可変電圧電源
32とは別物)を接続して測定する。
In the first step, when the oxidizing gas is supplied, the cell 30 operates as a power generator and the minute measurement becomes impossible.
This is a step of stopping the cell 30 from operating as a power generator during the measurement. When the electric load 34 is present, the supply of oxygen to the cathode is blocked, so that the oxygen in the cell is consumed and the cell does not operate as a power generator. When an inert gas is available, the gas is supplied to the cathode. By switching the air to an inert gas, the cell will not operate as a generator. When there is an electric load 34, oxygen is consumed by the blockage of the oxidizing gas and the electric load 34, and the cell 3
Although the terminal voltage of 0 decreases, when the voltage approaches 100 mV, the electric load 34 is reduced or cut off to control the electric load 34 to about 120 mV while controlling so as not to become 100 mV or less per cell. . When there is no electric load 34, an inert gas is flowed through the cathode. In this case, the terminal voltage of the cell 30 is reduced to about 120 mV.
And stabilized. The reason why it stabilizes at about 120 mV although it should theoretically drop to 0 V seems to be due to the presence of oxygen as an impurity in the inert gas. The reason why the voltage does not become 100 mV or less per cell during the first step is that if the voltage becomes 100 mV or less, a negative voltage is applied to the cell 30 when an external voltage is applied during measurement, and water electrolysis occurs, and This is for preventing the electrolyte membrane from being broken. "1" in the first step
00mV "and" 120mV "are the anode terminals of the cell,
A voltmeter (not shown) (not shown) is connected between the cathode terminals for measurement.

【0012】第2工程は電流測定による微短検出工程で
ある。第2工程では、セルのアノード端子36(アノー
ドに導通するセパレータ、または該セパレータに設けら
れた端子)、カソード端子37(カソードに導通するセ
パレータまたは該セパレータに設けられた端子)に外部
接続回路31を接続し、120mV程度に低下している
端子間電圧を、出力電圧可変の直流電源32の電圧を変
化させることにより、カソードのアノードに対する電位
を、120mV〜1230mV(マージンを見込む場合
は、200mV〜900mV)の範囲で、少なくとも2
点(図4の、、・・・の点)の定電位状態を作り、
それぞれの定電位状態で外部接続回路31を流れる電流
を測定する。セル30の端子間電圧を、セル当り120
mV〜1230mV(マージンを見込む場合は、200
mV〜900mV)の範囲とする理由は、セル30に燃
料電池運転中にかかる電圧以上の電圧をかけないように
するためであり、これによって、電解質膜に生じている
かもしれない微短に大きな電流がかかって微短を破壊し
ないようにするためである。各々の定電位状態の維持時
間は、安定した測定値を得るために、10秒以上が望ま
しい。その理由は、電位を変化させると、電位、電流が
大きくなってやがて安定するが、安定するのに数秒かか
るので、10秒以上定電位状態に維持し、安定したとこ
ろで測定して信頼度のある測定結果を得るためである。
ついで、測定点、、・・・間での、定電位状態間の
電流変化/電圧変化の傾き(x)を次式(1)により求
める。 傾き(x)=(電圧の時の電流−電圧の時の電流)/(電圧−電圧) ……… (1) この傾き(x)を求める理由は、後述するように、傾き
(x)と微短抵抗との間に相関関係があるので、傾き
(x)を介して測定電流を微短抵抗に関係づけるためで
ある。なお、微短がない場合(微短抵抗値が無限大の場
合)は、定電位状態間の電流変化/電圧変化の傾き
(x)は0である。
The second step is a minute short detection step by current measurement. In the second step, the external connection circuit 31 is connected to an anode terminal 36 (a separator connected to the anode or a terminal provided on the separator) and a cathode terminal 37 (a separator connected to the cathode or a terminal provided on the separator) of the cell. And the voltage between the terminals lowered to about 120 mV and the voltage of the output voltage variable DC power supply 32 are changed to change the potential of the cathode to the anode from 120 mV to 1230 mV (200 mV to 900 mV) and at least 2
A constant potential state of a point (the point of... In FIG. 4) is created,
The current flowing through the external connection circuit 31 in each constant potential state is measured. The terminal voltage of the cell 30 is set to 120
mV to 1230 mV (If margin is expected, 200
(mV to 900 mV) in order to prevent a voltage higher than the voltage applied during the operation of the fuel cell from being applied to the cell 30, whereby a very small voltage that may be generated in the electrolyte membrane may be generated. This is to prevent a minute current from being destroyed due to current. The maintenance time of each constant potential state is preferably 10 seconds or more in order to obtain a stable measurement value. The reason is that, when the potential is changed, the potential and the current increase and become stable soon, but it takes several seconds to stabilize. This is for obtaining a measurement result.
Then, the gradient (x) of the current change / voltage change between the measurement points,... Between the constant potential states is obtained by the following equation (1). Slope (x) = (current in voltage−current in voltage) / (voltage−voltage) (1) The reason for obtaining the slope (x) is that the slope (x) is This is because the measured current is related to the micro-short resistance via the slope (x) because there is a correlation with the micro-short resistance. Note that when there is no minute short (when the minute short resistance value is infinite), the gradient (x) of the current change / voltage change between the constant potential states is zero.

【0013】第3工程は、微短判定工程である。第3工
程では、第2工程で求めた定電位状態間の電流変化/電
圧変化の傾き(x)が、所定値以上の場合に、セル30
に微短が発生していると判定する。後述するように、傾
き(x)と微短抵抗との間には相関関係があるので、上
記の所定値は許容微短抵抗値に対応する傾き値としてお
く。たとえば、傾き(x)が0.09以上の時に微短抵
抗が100オーム以下で、100オームを許容微短抵抗
値とした場合、所定値は0.09で、傾き(x)が所定
値0.09以上の時に微短が発生していると判定する。
傾き(x)と微短抵抗との相関関係は、セルの形状、構
造が変わると変化するので、セルの形状、構造が変わっ
た場合には、所定値の0.09を新たに求める。
The third step is a minute / short judgment step. In the third step, when the gradient (x) of the current change / voltage change between the constant potential states obtained in the second step is equal to or more than a predetermined value, the cell 30
Is determined to be slightly short. As will be described later, since there is a correlation between the slope (x) and the micro-short resistance, the above-mentioned predetermined value is set as a slope value corresponding to the allowable micro-short resistance value. For example, when the micro-short resistance is 100 ohms or less when the gradient (x) is 0.09 or more, and 100 ohms is an allowable micro-short resistance value, the predetermined value is 0.09 and the gradient (x) is a predetermined value 0. When it is greater than or equal to 0.09, it is determined that a minute short has occurred.
Since the correlation between the gradient (x) and the micro-short resistance changes when the shape and structure of the cell changes, a predetermined value of 0.09 is newly obtained when the shape and structure of the cell change.

【0014】本発明実施例の燃料電池用微短検出方法
は、上記第3工程をつぎの第3’工程のように変えるこ
とにより、微短のレベルまで求めることができる燃料電
池用微短検出方法(以下、微短レベル判定可能燃料電池
用微短検出方法という)とすることができる。この微短
レベル判定可能燃料電池用微短検出方法は、アノードに
燃料ガスを流し、カソード側は、1セル当り100mV
以下にならないように制御しつつ、セル30に電気的負
荷34をかけた場合は酸化ガスを閉塞してセル内の酸化
ガスを消費するか、またはセルに電気的負荷をかけない
場合は不活性ガスを流す第1工程と、セル30のアノー
ド端子、カソード端子に外部測定回路31を接続し、ア
ノード端子に対しカソード端子の電位を120mV〜1
230mV(マージンを見込む場合は、200mV〜9
00mV)の範囲で2点以上の定電位状態に変化させ、
それぞれの定電位状態で外部測定回路31に流れる電流
を測定し、電流変化/電圧変化の傾き(x)を求める第
2工程と、図3に示すように、既知の抵抗35の値と、
該既知の抵抗35を短絡抵抗にみたたて該既知の抵抗3
5をセル30に並列接続した場合の電流変化/電圧変化
の傾きの値とから検量線図(図5に示した線図)をあら
かじめ作成しておき、検量線図から上記第2工程の定電
位状態間の電流変化/電圧変化の傾き(x)に対応する
抵抗値(y)を求めて微短のレベルを求める第3’工程
と、からなる。
In the method for detecting short and short distances for a fuel cell according to the embodiment of the present invention, the third step is changed to the next step 3 'so that the short and short distance detection for a fuel cell can be performed to a very short level. (Hereinafter, referred to as a fuel cell minute / short detection method capable of determining a minute / short level). According to this method for detecting a minute and short level of a fuel cell, a fuel gas is supplied to the anode, and the cathode side is set to 100 mV / cell.
When the electric load 34 is applied to the cell 30, the oxidizing gas is blocked and the oxidizing gas in the cell is consumed while the electric load is not applied to the cell 30, or when the electric load is not applied to the cell 30, the cell 30 is inactive. A first step of flowing gas; connecting an external measurement circuit 31 to an anode terminal and a cathode terminal of the cell 30;
230mV (200mV ~ 9 when margin is expected)
00mV) in the range of two or more constant potentials,
A second step of measuring a current flowing through the external measuring circuit 31 in each of the constant potential states to obtain a current change / voltage change gradient (x), and as shown in FIG.
The known resistor 35 is formed by converting the known resistor 35 into a short-circuit resistor.
5 is prepared in advance from the current / voltage change gradient values when the cell 5 is connected in parallel to the cell 30, and the second step is determined from the calibration curve. A 3 ′ step of obtaining a resistance value (y) corresponding to a gradient (x) of a current change / voltage change between potential states to obtain a minute level.

【0015】第1、第2工程は、前記の第1、第2工程
と同じである。第3’工程における、あらかじめ作成す
る検量線図は、つぎのようにして作成される。すなわ
ち、抵抗値yが既知の抵抗35を短絡抵抗にみたててセ
ル30に図3に示すように並列接続し、120mV〜1
230mV(マージンを見込む場合は、200mV〜9
00mV)の範囲で2点以上の定電位状態に変化させて
それぞれの定電位状態での電流を測定し、電流変化/電
圧変化の傾き(x)を求め、この抵抗値yと傾き値
(x)に対応する点を、図5に示すように、y/xグラ
フ上にプロットする。これを、抵抗値yを種々に変えて
複数回行い、複数の点をy/xグラフ上にプロットし、
プロットした点を線で結んで検量線を得る。図5の例で
は、プロットした点を結んだ線(検量線)の式は、y=
0.8449x-1.4812として得られる。ただし、セル
形状が異なれば、検量線の式が変わるので、セル形状が
変わる毎に、検量線を作り直す。
The first and second steps are the same as the first and second steps. The calibration curve created in advance in the 3 ′ step is created as follows. That is, a resistor 35 having a known resistance value y is connected in parallel to the cell 30 as shown in FIG.
230mV (200mV ~ 9 when margin is expected)
(MV) in a range of two or more constant potentials, the current in each constant potential state is measured, and the slope (x) of the current change / voltage change is obtained. The resistance y and the slope (x) are obtained. ) Are plotted on the y / x graph as shown in FIG. This is performed a plurality of times by changing the resistance y variously, and a plurality of points are plotted on a y / x graph,
A standard curve is obtained by connecting the plotted points with a line. In the example of FIG. 5, the equation of the line connecting the plotted points (calibration curve) is represented by y =
0.8449x -1.4812 . However, since the equation of the calibration curve changes if the cell shape is different, the calibration curve is re-created every time the cell shape changes.

【0016】そして、第2工程で求めた電流変化/電圧
変化の傾き(x)を図5のグラフの横軸上に入れ、その
点から横軸に垂直に上方に直線を延ばし、該直線と検量
線との交点から横軸に平行に直線を縦軸まで延ばして縦
軸との交点のy値(抵抗値)を求めると、そのy値(抵
抗値)が今測定しているセル30の微短抵抗値を示す。
これによって、微短のレベル(微短抵抗の大きさ)まで
測定可能となる。なお、図5からわかるように、傾き
(x)と微短抵抗との間には相関関係(検量線で示され
た関係)がある。第3’工程のように検量線まで求めな
くても、許容微短抵抗値に対応する傾き値を求めてそれ
を所定値としておくことにより、第2工程で求めた傾き
の値が該所定値以上であれば、微短が発生していると判
定でき、その判定が前記の第3工程である。
Then, the gradient (x) of the current change / voltage change obtained in the second step is plotted on the horizontal axis of the graph of FIG. 5, and a straight line is extended upward from that point perpendicularly to the horizontal axis. When a straight line is extended from the intersection with the calibration curve to the vertical axis in parallel with the horizontal axis, and the y value (resistance value) at the intersection with the vertical axis is obtained, the y value (resistance value) of the cell 30 currently measured is obtained. Shows the short resistance value.
As a result, it is possible to measure to a minute level (the magnitude of the minute resistance). As can be seen from FIG. 5, there is a correlation (relation shown by a calibration curve) between the gradient (x) and the micro-short resistance. Even if the calibration curve is not obtained as in the 3 ′ step, the slope value corresponding to the permissible minute resistance value is obtained and set as a predetermined value, so that the slope value obtained in the second step becomes the predetermined value. If it is above, it can be determined that the minute shortness has occurred, and the determination is the above-described third step.

【0017】本発明実施例の燃料電池用微短検出方法の
作用はつぎの通りである。本発明実施例の燃料電池用微
短検出方法では、カソードのアノードに対する電位を外
部測定回路31で120mV〜1230mVの範囲で変
化させその時に外部測定回路31に流れる電流を検出す
るので、微短のような微量な短絡でも直接電流値として
検出できる。微短がなければ外部測定回路31に電流は
流れず、微短があれば流れる。この場合、電位を120
mV〜1230mVの範囲で変化させるので、従来の電
流を変えて電圧を測定する場合のようにセル30に、電
極間に燃料電池運転時より大きな電流をかけることがな
く、したがって大きな電流によって微短が切れることが
ないので、セル30の微短を確実に(精度よく)検出で
きる。
The operation of the method for detecting a minute length of a fuel cell according to the embodiment of the present invention is as follows. In the method for detecting a very short cell for a fuel cell according to the embodiment of the present invention, the potential of the cathode with respect to the anode is changed in the range of 120 mV to 1230 mV by the external measurement circuit 31 and the current flowing through the external measurement circuit 31 at that time is detected. Even such a minute short circuit can be directly detected as a current value. If there is no minute length, no current flows to the external measurement circuit 31, and if there is a minute length, the current flows. In this case, the potential is set to 120
Since the voltage is changed in the range of mV to 1230 mV, a larger current is not applied to the cell 30 between the electrodes as in the conventional case where the voltage is measured by changing the current. Is not cut off, so that the minuteness of the cell 30 can be reliably (accurately) detected.

【0018】また、定電位状態間の電流変化/電圧変化
の傾き(x)を求め、傾き(x)が、所定値(許容微短
抵抗に対応する傾き値)以上の場合にセルに微短が生じ
たと判定するので、外部測定回路31に電流が流れる場
合に、セル30に発生している微短の抵抗値が、予め定
めた許容微短抵抗値以上か未満かまで判定できる。
Further, the slope (x) of the current change / voltage change between the constant potential states is obtained, and when the slope (x) is equal to or more than a predetermined value (slope value corresponding to the allowable micro-short resistance), the cell is slightly short-circuited. Is determined, it is possible to determine whether the minute resistance value generated in the cell 30 is equal to or greater than or less than a predetermined allowable minute resistance value when a current flows through the external measurement circuit 31.

【0019】また、抵抗値既知の並列抵抗と電流変化/
電圧変化の傾きとの関係から予め作成しておいた検量線
図から、定電位状態間の電流変化/電圧変化の傾き
(x)に対応する微短抵抗の大きさが求められ、微短の
レベルまで求められる。
Further, a parallel resistance having a known resistance value and a current change /
From the calibration curve prepared in advance from the relationship with the slope of the voltage change, the magnitude of the micro-short resistance corresponding to the current change / voltage change slope (x) between the constant potential states is obtained. Required up to the level.

【0020】[0020]

【発明の効果】請求項1、2の燃料電池用微短検出方法
によれば、外部測定回路でアノード端子に対しカソード
端子の電位を変位させ、詳しくはセルの最大起電力以下
の範囲(120mV〜1230mVの範囲)で変位させ
その時に外部測定回路に流れる電流を検出するので、微
短のような微量な短絡でも直接電流値として検出でき
る。また、セルにかかる電圧はセルの最大起電力以下の
範囲(120mV〜1230mVの範囲)であるため、
従来の電流を変えて電圧を測定する場合のようにセルに
大きな電流をかけることがなく、したがって大きな電流
によって微短が切れることがなく、セルの微短を精度よ
く検出できる。請求項3の燃料電池用微短検出方法によ
れば、電流変化/電圧変化の傾きを求め、該傾きが、所
定値(許容微短抵抗に対応する傾き値)以上の場合にセ
ルに微短が生じたと判定するので、請求項1、2の効果
に加えて、セルに発生している微短の抵抗値が、予め定
めた許容微短抵抗値以上か未満かまで判定できる。請求
項4の燃料電池用微短検出方法によれば、電流変化/電
圧変化の傾きを求め、予め作成しておいた検量線図から
前記傾きに対応する微短抵抗の大きさを求めるので、請
求項1、2の効果に加えて、セルの微短のレベルまで推
定することができる。
According to the minute and short detection methods for fuel cells of the first and second aspects, the potential of the cathode terminal is displaced with respect to the anode terminal by the external measurement circuit. (In the range of 121230 mV), and the current flowing in the external measuring circuit at that time is detected, so that even a minute short circuit such as a minute short can be directly detected as a current value. Further, since the voltage applied to the cell is in a range equal to or less than the maximum electromotive force of the cell (a range of 120 mV to 1230 mV),
A large current is not applied to a cell unlike a conventional case where a voltage is measured by changing a current, and therefore, a short current is not cut off by a large current, and a minute length of a cell can be accurately detected. According to the minute detection method for a fuel cell according to the third aspect, the slope of the current change / voltage change is obtained, and when the slope is equal to or more than a predetermined value (slope value corresponding to the allowable minute resistance), the cell is minutely short-circuited. Is determined, it is possible to determine, in addition to the effects of the first and second aspects, whether the minute resistance value generated in the cell is equal to or more than a predetermined allowable minute resistance value. According to the minute detection method for a fuel cell according to the fourth aspect, the slope of the current change / voltage change is determined, and the magnitude of the minute resistance corresponding to the slope is determined from the calibration curve created in advance. In addition to the effects of the first and second aspects, it is possible to estimate even a very short cell level.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の燃料電池用微短検出方法の、セ
ルの発電体としての作動を止める工程の、斜視図であ
る。
FIG. 1 is a perspective view of a step of stopping the operation of a cell as a power generator in a method for detecting a micro-shortness for a fuel cell according to an embodiment of the present invention.

【図2】本発明実施例の燃料電池用微短検出方法の、セ
ル端子間の電圧を変化させた時の電流を測定する工程の
回路図である。
FIG. 2 is a circuit diagram of a process of measuring a current when a voltage between cell terminals is changed in the method for detecting a short-circuit for a fuel cell according to the embodiment of the present invention.

【図3】本発明実施例の燃料電池用微短検出方法の、抵
抗値既知の抵抗をセルに並列接続した場合における、セ
ル端子間の電圧を変化させた時の電流を測定する工程の
回路図である。
FIG. 3 is a circuit diagram of a step of measuring a current when a voltage between cell terminals is changed in a case where a resistor having a known resistance value is connected in parallel to a cell in the minute and short detection method for a fuel cell according to the embodiment of the present invention. FIG.

【図4】本発明実施例の燃料電池用微短検出方法の、セ
ル端子間の電圧を変化させた時の電流を測定する工程に
おける、2点以上の定電位状態を作る時の電圧/時間の
グラフである。
FIG. 4 is a diagram showing a voltage / time when two or more constant potential states are formed in a step of measuring a current when a voltage between cell terminals is changed, in the method for detecting a short-circuit for a fuel cell according to the embodiment of the present invention. It is a graph of.

【図5】本発明実施例の燃料電池用微短検出方法の、電
流変化/電圧変化の傾きと並列抵抗との相関を示す検量
線図である。
FIG. 5 is a calibration diagram showing the correlation between the slope of current change / voltage change and the parallel resistance in the method for detecting a very short length of a fuel cell according to the embodiment of the present invention.

【図6】本発明実施例の燃料電池用微短検出方法が適用
される燃料電池の正面図である。
FIG. 6 is a front view of a fuel cell to which the method for detecting a micro shortness of a fuel cell according to an embodiment of the present invention is applied.

【図7】本発明実施例の燃料電池用微短検出方法が適用
される燃料電池の、一部拡大断面図である。
FIG. 7 is a partially enlarged cross-sectional view of a fuel cell to which the method for detecting a micro-shortness for a fuel cell according to the embodiment of the present invention is applied.

【図8】従来の4端子法による燃料電池用微短検出用回
路図である。
FIG. 8 is a circuit diagram of a conventional fuel cell using a four-terminal method.

【符号の説明】[Explanation of symbols]

10 (固体高分子電解質型)燃料電池 11 電解質膜 12 触媒層 13 拡散層 14 電極(アノード、燃料極) 15 触媒層 16 拡散層 17 電極(カソード、空気極) 18 セパレータ 19 モジュール 20 ターミナル 21 インシュレータ 22 エンドプレート 23 スタック 24 テンションプレート 25 ボルト 26 冷媒流路 27 燃料ガス流路 28 酸化ガス流路 30 セル 31 外部測定回路 32 可変電圧計 33 電流計 34 電気的負荷 35 並列抵抗 36 アノード端子 37 カソード端子 DESCRIPTION OF SYMBOLS 10 (Solid polymer electrolyte type) fuel cell 11 Electrolyte membrane 12 Catalyst layer 13 Diffusion layer 14 Electrode (anode, fuel electrode) 15 Catalyst layer 16 Diffusion layer 17 Electrode (cathode, air electrode) 18 Separator 19 Module 20 Terminal 21 Insulator 22 End plate 23 Stack 24 Tension plate 25 Volt 26 Refrigerant flow path 27 Fuel gas flow path 28 Oxidizing gas flow path 30 Cell 31 External measurement circuit 32 Variable voltmeter 33 Ammeter 34 Electrical load 35 Parallel resistance 36 Anode terminal 37 Cathode terminal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セルのアノード端子、カソード端子に外
部測定回路を接続し、前記アノード端子に対し前記カソ
ード端子の電位を変化させその時に前記外部測定回路に
流れる電流を測定することにより、前記セルの微短を検
出する、燃料電池用微短検出方法。
An external measuring circuit is connected to an anode terminal and a cathode terminal of a cell, and a potential of the cathode terminal is changed with respect to the anode terminal, and a current flowing through the external measuring circuit at that time is measured. A method for detecting minute length of a fuel cell, which detects the minute length of a fuel cell.
【請求項2】 セルのアノード端子、カソード端子に外
部測定回路を接続し、前記アノード端子に対し前記カソ
ード端子の電位をセルの最大起電力以下の範囲で変化さ
せその時に前記外部測定回路に流れる電流を測定するこ
とにより、前記セルの微短を検出する、燃料電池用微短
検出方法。
2. An external measuring circuit is connected to an anode terminal and a cathode terminal of a cell, and the potential of the cathode terminal is changed with respect to the anode terminal within a range of not more than a maximum electromotive force of the cell, and then flows to the external measuring circuit. A minute-shortness detection method for a fuel cell, wherein the minuteness of the cell is detected by measuring a current.
【請求項3】 アノードに燃料ガスを流し、カソード側
は、1セル当り100mV以下にならないように制御し
つつ、セルに電気的負荷をかけた場合は酸化ガスを閉塞
してセル内の酸化ガスを消費するか、またはセルに電気
的負荷をかけない場合は不活性ガスを流す工程と、 前記セルのアノード端子、カソード端子に外部測定回路
を接続し、前記アノード端子に対し前記カソード端子の
電位を120mV〜1230mVの範囲で2点以上で定
電位状態に変化させ、それぞれの定電位状態で前記外部
測定回路に流れる電流を測定し、定電位状態間の電流変
化/電圧変化の傾きを求める工程と、 前記傾きが所定値以上の場合に前記セルに微短が生じた
と判定する工程と、からなる燃料電池用微短検出方法。
3. A fuel gas is supplied to the anode, and the cathode side is controlled so as not to be less than 100 mV per cell. When an electric load is applied to the cell, the oxidizing gas is closed and the oxidizing gas in the cell is closed. Or when an electric load is not applied to the cell, a step of flowing an inert gas; and connecting an external measurement circuit to an anode terminal and a cathode terminal of the cell, and a potential of the cathode terminal with respect to the anode terminal. Is changed to a constant potential state at two or more points in the range of 120 mV to 1230 mV, and a current flowing through the external measurement circuit is measured in each constant potential state, and a gradient of a current change / voltage change between the constant potential states is obtained. And a step of determining that the cell is slightly short when the inclination is equal to or more than a predetermined value.
【請求項4】 アノードに燃料ガスを流し、カソード側
は、1セル当り100mV以下にならないように制御し
つつ、セルに電気的負荷をかけた場合は酸化ガスを閉塞
してセル内の酸化ガスを消費するか、またはセルに電気
的負荷をかけない場合は不活性ガスを流す工程と、 前記セルのアノード端子、カソード端子に外部測定回路
を接続し、前記アノード端子に対し前記カソード端子の
電位を120mV〜1230mVの範囲で2点以上で定
電位状態に変化させ、それぞれの定電位状態で前記外部
測定回路に流れる電流を測定し、定電位状態間の電流変
化/電圧変化の傾きを求める工程と、 既知の抵抗の値と、該既知の抵抗を短絡抵抗にみたたて
該既知の抵抗を微短の無いセルに並列接続した場合の電
流変化/電圧変化の傾きの値とから、検量線図をあらか
じめ作成しておき、前記検量線図から前記定電位状態間
の電流変化/電圧変化の傾きに対応する抵抗値を求めて
微短のレベルを求める工程と、からなる燃料電池用微短
検出方法。
4. A fuel gas is supplied to the anode, and the cathode side is controlled so as not to be less than 100 mV per cell. When an electric load is applied to the cell, the oxidizing gas is closed and the oxidizing gas in the cell is blocked. Or when an electric load is not applied to the cell, a step of flowing an inert gas; and connecting an external measurement circuit to an anode terminal and a cathode terminal of the cell, and a potential of the cathode terminal with respect to the anode terminal. Is changed to a constant potential state at two or more points in the range of 120 mV to 1230 mV, and a current flowing through the external measurement circuit is measured in each constant potential state, and a gradient of a current change / voltage change between the constant potential states is obtained. And the value of the known resistance and the value of the slope of the current change / voltage change when the known resistance is viewed as a short-circuit resistance and the known resistance is connected in parallel to a cell having no short-circuit. Obtaining a resistance value corresponding to the gradient of the current change / voltage change between the constant potential states from the calibration curve in advance to obtain a minute level. Short detection method.
JP2001005492A 2001-01-12 2001-01-12 Fine detection method for fuel cell Expired - Fee Related JP4779205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001005492A JP4779205B2 (en) 2001-01-12 2001-01-12 Fine detection method for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001005492A JP4779205B2 (en) 2001-01-12 2001-01-12 Fine detection method for fuel cell

Publications (2)

Publication Number Publication Date
JP2002208424A true JP2002208424A (en) 2002-07-26
JP4779205B2 JP4779205B2 (en) 2011-09-28

Family

ID=18873537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001005492A Expired - Fee Related JP4779205B2 (en) 2001-01-12 2001-01-12 Fine detection method for fuel cell

Country Status (1)

Country Link
JP (1) JP4779205B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005087A (en) * 2003-06-11 2005-01-06 Toyota Motor Corp Fuel cell system
WO2011074034A1 (en) 2009-12-16 2011-06-23 トヨタ自動車株式会社 Control for a fuel cell
DE102012002211A1 (en) 2012-02-04 2013-08-08 Volkswagen Aktiengesellschaft Method for identifying and locating macroscopic and/or microscopic short circuit of fuel cell or cell stack to drive motor car, involves monitoring gradient based on time point, and identifying and locating short circuit within stack
JP2016115460A (en) * 2014-12-12 2016-06-23 トヨタ自動車株式会社 Inspection method for fuel cell
JP2019169372A (en) * 2018-03-23 2019-10-03 本田技研工業株式会社 Fuel cell current leak inspection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117277A (en) * 1986-11-05 1988-05-21 Hitachi Ltd Diagnosis of fuel cell
JPH04301376A (en) * 1991-03-29 1992-10-23 Toshiba Corp Fuel cell generating system
JPH08180887A (en) * 1994-12-21 1996-07-12 Toyota Motor Corp Manufacture of connected body of electrolytic film and electrode
WO1999062134A1 (en) * 1998-05-27 1999-12-02 Toray Industries, Inc. Carbon fiber paper for solid polymer fuel cells
WO2001022509A1 (en) * 1999-09-22 2001-03-29 Toray Industries, Inc. Porous, electrically conductive sheet and method for production thereof
JP2002090346A (en) * 2000-09-13 2002-03-27 Nippon Shokubai Co Ltd Ceramic sheet through hole inspection method and ceramic sheet inspected by the method
JP2002184412A (en) * 2000-10-05 2002-06-28 Matsushita Electric Ind Co Ltd Gas diffusion layer, electrolyte film/electrode joint using the same and polyelectrolyte fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117277A (en) * 1986-11-05 1988-05-21 Hitachi Ltd Diagnosis of fuel cell
JPH04301376A (en) * 1991-03-29 1992-10-23 Toshiba Corp Fuel cell generating system
JPH08180887A (en) * 1994-12-21 1996-07-12 Toyota Motor Corp Manufacture of connected body of electrolytic film and electrode
WO1999062134A1 (en) * 1998-05-27 1999-12-02 Toray Industries, Inc. Carbon fiber paper for solid polymer fuel cells
WO2001022509A1 (en) * 1999-09-22 2001-03-29 Toray Industries, Inc. Porous, electrically conductive sheet and method for production thereof
JP2002090346A (en) * 2000-09-13 2002-03-27 Nippon Shokubai Co Ltd Ceramic sheet through hole inspection method and ceramic sheet inspected by the method
JP2002184412A (en) * 2000-10-05 2002-06-28 Matsushita Electric Ind Co Ltd Gas diffusion layer, electrolyte film/electrode joint using the same and polyelectrolyte fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005087A (en) * 2003-06-11 2005-01-06 Toyota Motor Corp Fuel cell system
WO2011074034A1 (en) 2009-12-16 2011-06-23 トヨタ自動車株式会社 Control for a fuel cell
US9065099B2 (en) 2009-12-16 2015-06-23 Toyota Jidosha Kabushiki Kaisha Controlling fuel cell
DE102012002211A1 (en) 2012-02-04 2013-08-08 Volkswagen Aktiengesellschaft Method for identifying and locating macroscopic and/or microscopic short circuit of fuel cell or cell stack to drive motor car, involves monitoring gradient based on time point, and identifying and locating short circuit within stack
JP2016115460A (en) * 2014-12-12 2016-06-23 トヨタ自動車株式会社 Inspection method for fuel cell
US10297843B2 (en) 2014-12-12 2019-05-21 Toyota Jidosha Kabushiki Kaisha Inspection method of fuel cell
DE102015121543B4 (en) 2014-12-12 2023-03-23 Toyota Jidosha Kabushiki Kaisha Test method for a fuel cell
JP2019169372A (en) * 2018-03-23 2019-10-03 本田技研工業株式会社 Fuel cell current leak inspection method
JP6990610B2 (en) 2018-03-23 2022-02-03 本田技研工業株式会社 Fuel cell current leak inspection method

Also Published As

Publication number Publication date
JP4779205B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
US6949920B2 (en) Apparatus for measuring current density of fuel cell
EP2269257B1 (en) Fuel cell system and operating method of a fuel cell
US8470486B2 (en) Fuel cell system
JP4887708B2 (en) Fuel cell system
US10020525B2 (en) Method and system for diagnosing state of fuel cell stack
US20080197832A1 (en) Electrical Leakage Detection Apparatus and Electrical Leakage Detection Method For Fuel Cell
JP4852854B2 (en) Fuel cell system
CN112582652B (en) Method for monitoring reverse pole degree of proton exchange membrane fuel cell
US9496573B2 (en) Intact method of evaluating unit cells in a fuel cell stack and a device using the same
US7527882B2 (en) Method for detecting undersupply of fuel gas and method for controlling fuel cell
JP2009170229A (en) Manufacturing method of fuel cell, fuel cell system, and the fuel cell
KR101841328B1 (en) Inspection method of fuel cell
JP2002208424A (en) Micro short circuit detecting method for fuel cell
CN114628740A (en) Method and device for detecting fluid distribution consistency of fuel cell stack
EP2597712A1 (en) Fuel cell system
JP2006278246A (en) Control method of fuel cell stack
CN213903748U (en) Anti-antipole test system of membrane electrode
JP2006228608A (en) Fuel cell system and its control method
KR102142447B1 (en) Method of controlling fuel cell measurement voltage and apparatus performing the same
JP6517898B2 (en) Fuel cell output inspection method
JP2004335448A (en) Operating method for polymer electrolyte fuel cell
JP5463800B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2014049266A (en) Method and device for measuring electrolyte membrane of fuel cell
JP2009289547A (en) Fuel cell stack
KR20210069135A (en) Fuel cell deterioration diagnosis system and diagnosis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees