JP2002207097A - Method and device for decontaminating radioactive substances - Google Patents

Method and device for decontaminating radioactive substances

Info

Publication number
JP2002207097A
JP2002207097A JP2001001378A JP2001001378A JP2002207097A JP 2002207097 A JP2002207097 A JP 2002207097A JP 2001001378 A JP2001001378 A JP 2001001378A JP 2001001378 A JP2001001378 A JP 2001001378A JP 2002207097 A JP2002207097 A JP 2002207097A
Authority
JP
Japan
Prior art keywords
carbon dioxide
fluid
radioactive
liquid
radioactive substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001001378A
Other languages
Japanese (ja)
Inventor
Tadahiro Yoshimura
忠宏 吉村
Akira Tanaka
皓 田中
Katsunori Shinohara
勝則 篠原
Osamu Kanehira
修 兼平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001001378A priority Critical patent/JP2002207097A/en
Publication of JP2002207097A publication Critical patent/JP2002207097A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cleaning In General (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and efficiently recover a radioactive substance adhering to a decontaminated object. SOLUTION: A method for decontaminating a radioactive substance includes a pretreatment process 11 where the decontaminated object to which a powdery radioactive substance adheres is put into contact with carbon dioxide in a supercritical or liquid state and a separation process 12 where the radioactive substance is separated from the contaminated object by decompressing carbon dioxide to convert it into a gaseous state. This method has a washing process 13 where carbon dioxide in a liquid state is supplied to the separated radioactive substance to flush it, a first recovery process 14 where the washed fluid is separated into an aggregate of the radioactive substance and a fluid and the aggregate is recovered, a decompression process 16 where the separated fluid is decompressed to convert carbon dioxide in a liquid state to that in a gaseous state, expand the volume of the carbon dioxide and give a flow velocity to the fluid, a second recovery process 17 where the radioactive substance is separated into fine grains and carbon dioxide in a gaseous state to recover the fine grains and a pressurizing process 18 where the separated carbon dioxide in a gaseous state is pressurized to convert the carbon dioxide into a supercritical or liquid state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被汚染物である放
射性廃棄物に付着した放射性物質を除去し得る放射性物
質の除染方法及び装置に関する。更に詳しくは、超臨界
又は液体状態の二酸化炭素の性質を利用した放射性物質
の除染方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for decontaminating radioactive substances which can remove radioactive substances attached to radioactive wastes as contaminants. More specifically, the present invention relates to a method and an apparatus for decontaminating radioactive substances using the properties of carbon dioxide in a supercritical or liquid state.

【0002】[0002]

【従来の技術】原子力施設で発生する放射性廃棄物は処
分に当たってできるだけ除染することにより放射能レベ
ルを低下させるとともに、可能な限りリサイクルするこ
とにより発生量自体を低減化することが望ましい。放射
性廃棄物に付着している元素のうち、例えばプルトニウ
ム等は数mgという微量の付着量であっても放射線量が
高く、廃棄物としての長期保管が困難な場合があるた
め、十分な除染が必要である。
2. Description of the Related Art It is desirable that radioactive waste generated in nuclear facilities be decontaminated as much as possible during disposal to reduce the radioactivity level, and that the amount of generated radioactive waste be reduced by recycling as much as possible. Of the elements attached to radioactive waste, for example, plutonium, etc., even with a very small amount of a few mg, has a high radiation dose, and long-term storage as waste may be difficult. is necessary.

【0003】放射性廃棄物の表面状態は様々で、表面の
微細な溝等に付着した放射性物質は拭き取りによる洗浄
では期待する除染効果が得られない。またアルミナ粉末
等の除染媒体により廃棄物表面を研磨しつつ除染する方
法もあるが、除染した放射性物質が再付着したり、除染
媒体が接近できない部分が多い等、除染の程度には限界
がある。これに対して硝酸を用いた洗浄では、被汚染物
である放射性廃棄物の表面状態に係らず除染効果が期待
できるため、表面の微細な溝等に付着した放射性物質を
除去する場合に有効である。しかしこの硝酸を用いた洗
浄方法では、除染した廃液が生じるため廃液の処理が必
要であるだけでなく、プルトニウムの酸化物など硝酸で
溶けにくい物質に対しては十分な効果が期待できない。
電解槽で2価の銀イオンを含む硝酸溶液を生成してこの
イオンの酸化作用により溶解するという方法もあるが、
特殊かつ複雑なシステムとなる。更に溶液を用いた除染
では、放射性物質がプルトニウム等臨界管理が必要な物
質である場合、除染装置での取扱量が制限されたり、除
染装置の大きさが制限される。上述したように放射性廃
棄物の除染方法にはいくつかの方法があるが、それぞれ
期待する除染効果を得ることが困難であったり、付帯設
備が必要であったり、また臨界管理の観点から放射性廃
棄物の取扱量や装置の大きさに制限が付加されていた。
[0003] The surface condition of radioactive waste varies, and radioactive substances adhering to fine grooves and the like on the surface cannot achieve the expected decontamination effect by wiping. There is also a method of decontamination while polishing the waste surface with a decontamination medium such as alumina powder.However, the degree of decontamination such as re-adhering radioactive substances that have been decontaminated Has limitations. In contrast, cleaning with nitric acid can be expected to have a decontamination effect irrespective of the surface condition of radioactive waste, which is a contaminated material, and is effective when removing radioactive substances attached to fine grooves on the surface. It is. However, this cleaning method using nitric acid generates waste liquid after decontamination, so that it is not only necessary to treat the waste liquid, but also it is not possible to expect a sufficient effect on substances which are hardly soluble in nitric acid such as plutonium oxide.
There is also a method in which a nitric acid solution containing divalent silver ions is generated in an electrolytic cell and dissolved by the oxidizing action of these ions.
It is a special and complicated system. Furthermore, in the decontamination using a solution, when the radioactive substance is a substance requiring criticality control such as plutonium, the handling amount in the decontamination apparatus is limited, and the size of the decontamination apparatus is restricted. As mentioned above, there are several methods for decontamination of radioactive waste, but it is difficult to obtain the expected decontamination effect, or additional facilities are required, and from the viewpoint of criticality management There were restrictions on the amount of radioactive waste handled and the size of the equipment.

【0004】これら上記方法の問題点を解決する方法と
して、超臨界又は液体状態の二酸化炭素を用いて除染す
る方法がある。この方法は超臨界又は液体状態の二酸化
炭素の有する高拡散性と、圧力低下により容易に気化す
る二酸化炭素の性質とを利用するものであり、先ず放射
性廃棄物の表面や微細部に存在する放射性物質に対して
超臨界又は液体状態の二酸化炭素を浸透させ、続いて圧
力を低下して二酸化炭素を瞬時に気化させ、二酸化炭素
が急激に膨張することにより放射性物質を被汚染物であ
る放射性廃棄物から分離させる。
As a method of solving these problems of the above methods, there is a method of decontaminating carbon dioxide in a supercritical or liquid state. This method makes use of the high diffusivity of carbon dioxide in supercritical or liquid state and the property of carbon dioxide that easily evaporates due to pressure drop. Infiltrate supercritical or liquid carbon dioxide into the substance, then reduce the pressure, instantaneously vaporize the carbon dioxide, and rapidly expand the carbon dioxide to convert the radioactive substance into contaminated radioactive waste Separate from objects.

【0005】この方法を用いた放射性物質の除染装置は
図3に示すように、密閉され所定温度及び圧力に耐え得
る洗浄装置1を有する。洗浄装置1の一方には供給口1
aが他方には排出口1bがそれぞれ設けられる。排出口
1bは管路2を介してフィルタ3頂部の供給口3aに接
続される。管路2の途中にはバルブ2aが設けられる。
フィルタ3側部には排出口3bが設けられる。排出口3
bは管路4を介してコンプレッサ6に接続される。管路
4の途中にはバルブ4a、バッファタンク4bが設けら
れる。コンプレッサ6は管路7を介して洗浄装置1の供
給口1aに接続される。管路7の途中にはバルブ7a、
バッファタンク7b及びバルブ7cが上流側からこの順
に設けられる。
As shown in FIG. 3, an apparatus for decontaminating radioactive substances using this method has a washing apparatus 1 that is sealed and can withstand a predetermined temperature and pressure. One of the cleaning devices 1 has a supply port 1
a is provided on the other side with an outlet 1b. The discharge port 1b is connected to the supply port 3a at the top of the filter 3 via the pipe line 2. A valve 2 a is provided in the middle of the pipe 2.
An outlet 3b is provided on the side of the filter 3. Outlet 3
b is connected to the compressor 6 via the pipe 4. A valve 4a and a buffer tank 4b are provided in the middle of the pipeline 4. The compressor 6 is connected to a supply port 1 a of the cleaning device 1 via a pipe 7. In the middle of the pipe 7, a valve 7a,
The buffer tank 7b and the valve 7c are provided in this order from the upstream side.

【0006】このように構成された装置では洗浄装置1
内に供給した粉末状の放射性物質が付着した被汚染物を
超臨界又は液体状態の二酸化炭素と接触させる。次いで
バルブ2aを解放して洗浄装置1内の圧力を低下させ、
二酸化炭素を瞬時に気化することにより放射性物質を被
汚染物である放射性廃棄物から分離させる。この洗浄に
より洗浄装置や循環パイプ等の内部に粉末状の放射性物
質が残留し、繰返し洗浄を行っていくと粉末状の放射性
物質がパイプ等に蓄積しこれらを閉塞するおそれがあ
る。そのため洗浄後の二酸化炭素と放射性物質を含む流
体から放射性物質のみをフィルタ3により分離、捕集す
る。放射性物質を捕集した後の二酸化炭素はコンプレッ
サ6により圧縮して洗浄装置1へ再供給される。このよ
うに二酸化炭素はリサイクルされているため環境に対す
る配慮がなされているばかりでなく、臨界管理上の制限
から水や硝酸等の水素原子を含む洗浄剤を使用できない
か、或いは使用に制限がある区域(禁水区域等という)
での放射性廃棄物の除染方法として使用される。フィル
タにより粉末状の放射性物質を捕集した後は、定期的に
フィルタ等は取外して新品と交換される。
[0006] In the apparatus configured as described above, the cleaning apparatus 1 is used.
The contaminated substance to which the powdered radioactive substance attached to the inside is brought into contact with carbon dioxide in a supercritical or liquid state. Next, the valve 2a is opened to reduce the pressure in the cleaning device 1,
By instantaneously evaporating carbon dioxide, radioactive materials are separated from radioactive waste as contaminated material. This cleaning leaves powdered radioactive substances inside the cleaning device, circulation pipes, and the like. If the cleaning is performed repeatedly, the powdered radioactive substances may accumulate in pipes and the like and block them. Therefore, only the radioactive substance is separated and collected by the filter 3 from the fluid containing the carbon dioxide and the radioactive substance after washing. After capturing the radioactive material, the carbon dioxide is compressed by the compressor 6 and supplied to the cleaning device 1 again. As described above, since carbon dioxide is recycled, not only environmental considerations are taken, but also cleaning agents containing hydrogen atoms such as water and nitric acid cannot be used due to restrictions on criticality management, or use is restricted. Area (referred to as water-free area)
Is used as a method for decontamination of radioactive waste in the country. After the powdery radioactive material is collected by the filter, the filter or the like is periodically removed and replaced with a new one.

【0007】[0007]

【発明が解決しようとする課題】しかし、このフィルタ
の交換は除染装置全体がグローブボックス等の放射性物
質を閉じ込める機器に収納されているため、交換作業が
繁雑であった。また捕集したフィルタより放射性物質を
回収する作業が必要であり、回収後のフィルタ自体が放
射性廃棄物となってしまう問題があった。本発明の目的
は、被汚染物に付着した放射性物質を簡便かつ効率的に
回収し得る放射性物質の除染方法及び装置を提供するこ
とにある。
However, this replacement of the filter is complicated because the entire decontamination apparatus is housed in a device such as a glove box for confining radioactive substances. In addition, it is necessary to recover the radioactive material from the collected filter, and there is a problem that the recovered filter itself becomes radioactive waste. An object of the present invention is to provide a method and an apparatus for decontaminating radioactive substances that can easily and efficiently collect radioactive substances attached to contaminated substances.

【0008】[0008]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、粉末状の放射性物質が付着した被汚
染物を超臨界又は液体状態の二酸化炭素に接触させる前
処理工程11と、超臨界又は液体状態の二酸化炭素を減
圧して超臨界又は液体状態の二酸化炭素を気体状態にす
ることにより放射性物質を被汚染物から分離させる分離
工程12とを含む放射性物質の除染方法において、分離
工程12で分離した放射性物質に液体状態の二酸化炭素
を供給して前記放射性物質を洗浄する洗浄工程13と、
洗浄工程13で洗浄された放射性物質と液体状態の二酸
化炭素とを含む流体を放射性物質の凝集体と流体とに分
離して放射性物質の凝集体を回収する第1回収工程14
と、第1回収工程14で分離した流体を減圧して流体に
含まれる液体状態の二酸化炭素を気体状態にして体積を
増大させることにより流体に流速を与える減圧工程16
と、流体を放射性物質の微粒子と気体状態の二酸化炭素
とに分離して放射性物質の微粒子を回収する第2回収工
程17と、第2回収工程17で分離した気体状態の二酸
化炭素を加圧して、超臨界又は液体状態の二酸化炭素に
する加圧工程18とを有することを特徴とする放射性物
質の除染方法である。請求項1に係る発明では、前処理
工程11、分離工程12及び洗浄工程13を経ることに
より、超臨界又は液体状態の二酸化炭素の有する高拡散
性と、圧力低下により容易に気化する二酸化炭素の性質
とを利用して被汚染物より放射性物質を分離し、第1回
収工程14で粒径の大きい放射性物質の凝集体を流体よ
り分離して放射性物質の凝集体を回収する。減圧工程1
6及び第2回収工程17では二酸化炭素を気体状態にし
て流体に流速を与え、粒径の小さい放射性物質の微粒子
を流体より分離して放射性物質の微粒子を回収する。加
圧工程18では気体状態の二酸化炭素を超臨界又は液体
状態の二酸化炭素にする。このように上記工程を経るこ
とにより被汚染物より放射性物質を効率的に除染する。
According to the first aspect of the present invention,
As shown in FIG. 1, a pretreatment step 11 in which a contaminated substance to which a powdered radioactive substance is attached is brought into contact with carbon dioxide in a supercritical or liquid state, Or a separation step 12 of separating the radioactive substance from the contaminant by converting the carbon dioxide in a liquid state into a gaseous state, wherein the radioactive substance separated in the separation step 12 is converted into carbon dioxide in a liquid state. A washing step 13 for washing the radioactive material by supplying
A first recovery step 14 of separating the fluid containing the radioactive substance and the carbon dioxide in a liquid state washed in the cleaning step 13 into an aggregate of the radioactive substance and a fluid to collect the aggregate of the radioactive substance
And a pressure reducing step 16 in which the fluid separated in the first recovery step 14 is decompressed to convert the liquid carbon dioxide contained in the fluid into a gaseous state to increase the volume, thereby giving a flow rate to the fluid.
And a second recovery step 17 for separating the fluid into radioactive particles and gaseous carbon dioxide to recover the radioactive particles, and pressurizing the gaseous carbon dioxide separated in the second recovery step 17 And a pressurizing step 18 for converting carbon dioxide into a supercritical or liquid state. In the invention according to claim 1, by passing through the pretreatment step 11, the separation step 12, and the washing step 13, the high diffusivity of carbon dioxide in a supercritical or liquid state and the carbon dioxide that is easily vaporized due to a pressure drop The radioactive substance is separated from the contaminated material by utilizing the properties, and the radioactive substance aggregate having a large particle diameter is separated from the fluid in the first recovery step 14 to collect the radioactive substance aggregate. Decompression step 1
In step 6 and the second recovery step 17, carbon dioxide is converted into a gaseous state, a flow rate is given to the fluid, and fine particles of radioactive substance having a small particle diameter are separated from the fluid to recover fine particles of radioactive substance. In the pressurizing step 18, gaseous carbon dioxide is converted into supercritical or liquid carbon dioxide. In this way, the radioactive substance is efficiently decontaminated from the contaminated material by passing through the above steps.

【0009】請求項2に係る発明は、請求項1に係る発
明であって、第1回収工程が固液分離又は沈降分離によ
り行われる放射性物質の除染方法である。請求項2に係
る発明では、第1回収工程では固液分離又は沈降分離に
より流体から粒径が大きい放射性物質の凝集体を分離し
て放射性物質の凝集体を回収する。
The invention according to claim 2 is the invention according to claim 1, which is a method for decontaminating radioactive substances, wherein the first recovery step is performed by solid-liquid separation or sedimentation separation. According to the second aspect of the invention, in the first recovery step, aggregates of the radioactive substance having a large particle size are separated from the fluid by solid-liquid separation or sedimentation separation to collect the radioactive substance aggregates.

【0010】請求項3に係る発明は、請求項1に係る発
明であって、第2回収工程が固気分離により行われる放
射性物質の除染方法である。請求項3に係る発明では、
第2回収工程では固気分離により流体から粒径の小さい
微粒子を分離して放射性物質の微粒子を回収する。
[0010] The invention according to claim 3 is the invention according to claim 1, which is a method for decontaminating radioactive substances, wherein the second recovery step is performed by solid-gas separation. In the invention according to claim 3,
In the second recovery step, fine particles having a small particle diameter are separated from the fluid by solid-gas separation to recover fine particles of a radioactive substance.

【0011】請求項4に係る発明は、請求項1ないし3
いずれかに係る発明であって、加圧工程で得られた超臨
界又は液体状態の二酸化炭素を前処理工程へ供給すると
ともに超臨界又は液体状態の二酸化炭素の一部を第2回
収工程に逆洗供給する放射性物質の除染方法である。請
求項4に係る発明では、加圧工程で得られた超臨界又は
液体状態の二酸化炭素を前処理工程へリサイクルする。
また、超臨界又は液体状態の二酸化炭素の一部を第2回
収工程に逆洗供給して第2回収工程におけるフィルタの
目詰まりを防ぎ、効果的に分離回収する。
The invention according to claim 4 is the invention according to claims 1 to 3
The invention according to any one of the above, wherein the supercritical or liquid carbon dioxide obtained in the pressurizing step is supplied to the pretreatment step and a part of the supercritical or liquid carbon dioxide is reversed to the second recovery step. This is a method of decontaminating radioactive materials to be supplied and washed. In the invention according to claim 4, the supercritical or liquid carbon dioxide obtained in the pressurizing step is recycled to the pretreatment step.
In addition, a part of carbon dioxide in a supercritical or liquid state is backwashed and supplied to the second recovery step to prevent clogging of the filter in the second recovery step and to separate and recover effectively.

【0012】請求項5に係る発明は、図2に示すよう
に、粉末状の放射性物質が付着した被汚染物を超臨界又
は液体状態の二酸化炭素により洗浄して放射性物質を被
汚染物から分離させて除去する洗浄装置21と、洗浄装
置21で除去した放射性物質と液体状態の二酸化炭素と
を含む流体を放射性物質の凝集体と流体とに分離する固
液分離器23と、固液分離器23で分離した流体を減圧
して流体に含まれる液体状態の二酸化炭素を気体状態に
して体積を増大させることにより流体に流速を与えるベ
ンチュリ27と、流体を放射性物質の微粒子と気体状態
の二酸化炭素とに分離する固気分離器26と、固気分離
器26で分離した気体状態の二酸化炭素を加圧するコン
プレッサ29とを備えた放射性物質の除染装置である。
請求項5に係る発明では、洗浄装置21で放射性物質を
被汚染物から分離させ、固液分離器23で粒径の大きな
放射性物質の凝集体を流体より分離する。ベンチュリ2
7で流体を減圧して気化させることにより、流体に流速
を与えて粒径の小さい放射性物質の微粒子を分離し易く
し、固気分離器26で放射性物質の微粒子を分離する。
このように2段階による分離を施すため、放射性物質の
回収率が向上できる。また、ベンチュリ27で流体に含
まれる液体状態の二酸化炭素を減圧して気体状態の二酸
化炭素としたため、超臨界又は液体状態の二酸化炭素に
よる固気分離器26の逆洗が可能となる。従って、フィ
ルタの目詰まりを防ぐとともに、フィルタの交換頻度を
低減できる。
According to a fifth aspect of the present invention, as shown in FIG. 2, the radioactive material is separated from the contaminated material by washing the contaminated material to which the powdered radioactive material adheres with supercritical or liquid carbon dioxide. A cleaning device 21 for removing the fluid, a solid-liquid separator 23 for separating a fluid containing the radioactive substance removed in the cleaning device 21 and carbon dioxide in a liquid state into an aggregate of radioactive substances and a fluid, and a solid-liquid separator A venturi 27 that reduces the pressure of the fluid separated in 23 to convert the liquid carbon dioxide contained in the fluid into a gaseous state to increase its volume to increase the flow rate of the fluid, and to convert the fluid into fine particles of radioactive material and carbon dioxide in a gaseous state. This is a decontamination apparatus for radioactive substances, comprising: a solid-gas separator 26 that separates the gas into carbon dioxide; and a compressor 29 that pressurizes the gaseous carbon dioxide separated by the solid-gas separator 26.
In the invention according to claim 5, the radioactive substance is separated from the contaminated material by the cleaning device 21, and the radioactive substance aggregate having a large particle diameter is separated from the fluid by the solid-liquid separator 23. Venturi 2
By decompressing and evaporating the fluid in step 7, the flow rate is given to the fluid to facilitate separation of radioactive particles having a small particle size, and the solid-gas separator 26 separates radioactive particles.
Since the separation is performed in two stages as described above, the recovery rate of the radioactive substance can be improved. Further, since the carbon dioxide in the liquid state contained in the fluid is reduced to the carbon dioxide in the gas state by the venturi 27, the solid-gas separator 26 can be backwashed with the carbon dioxide in the supercritical or liquid state. Therefore, clogging of the filter can be prevented, and the frequency of replacement of the filter can be reduced.

【0013】[0013]

【発明の実施の形態】放射性廃棄物に付着した粉末状の
放射性物質はサブミクロンと呼ばれる1μm未満の極め
て微細な粒子から数mm以上の粉末の凝集体まで極めて
広い粒径分布を有する。本発明における放射性物質の凝
集体の粒径は100μm〜30mmであり、放射性物質
の微粒子の粒径は0.1〜500μmである。
BEST MODE FOR CARRYING OUT THE INVENTION The powdery radioactive substance attached to radioactive waste has a very wide particle size distribution from extremely fine particles of less than 1 μm called submicron to agglomerates of powder of several mm or more. The particle size of the aggregate of the radioactive substance in the present invention is 100 μm to 30 mm, and the particle size of the fine particles of the radioactive substance is 0.1 to 500 μm.

【0014】次に本発明の除染方法について図1に基づ
いて説明する。先ず、粉末状の放射性物質が付着した被
汚染物を超臨界又は液体状態の二酸化炭素に接触させる
(前処理工程11)。この工程11では洗浄溶媒として
超臨界又は液体状態の二酸化炭素を被汚染物と接触させ
る。この工程11での超臨界又は液体状態の二酸化炭素
の温度及び圧力条件は10〜150℃、4.5〜25M
Paである。温度及び圧力条件は被汚染物、放射性物質
など様々な条件によって異なるが、より好ましくは20
〜50℃、5.7〜10MPaである。処理の開始時に
は図1の破線に示すように外部より超臨界又は液体状態
の二酸化炭素を供給する。この外部からの供給は後述す
る加圧工程18で得られる超臨界又は液体状態の二酸化
炭素が前処理工程11の洗浄溶媒としてリサイクルされ
るまで行われる。次いで、被汚染物に接触させた超臨界
又は液体状態の二酸化炭素を減圧して気体状態の二酸化
炭素にして放射性物質を被汚染物から分離させる(分離
工程12)。この工程12では二酸化炭素の圧力を0.
05〜1MPaの範囲まで減圧することにより二酸化炭
素を気体状態に変化させ、気体状態に変化する際の急激
な体積膨張を利用して放射性物質を被汚染物から分離さ
せる。
Next, the decontamination method of the present invention will be described with reference to FIG. First, the contaminated substance to which the powdered radioactive substance has adhered is brought into contact with carbon dioxide in a supercritical or liquid state (pretreatment step 11). In this step 11, supercritical or liquid carbon dioxide is brought into contact with the contaminant as a cleaning solvent. The temperature and pressure conditions of the supercritical or liquid carbon dioxide in this step 11 are 10 to 150 ° C., 4.5 to 25 M
Pa. The temperature and pressure conditions vary depending on various conditions such as contaminants and radioactive materials, but more preferably 20
5050 ° C., 5.7 to 10 MPa. At the start of the process, carbon dioxide in a supercritical or liquid state is supplied from the outside as shown by a broken line in FIG. The supply from the outside is performed until the supercritical or liquid carbon dioxide obtained in the pressurizing step 18 described below is recycled as a cleaning solvent in the pretreatment step 11. Next, the pressure of the supercritical or liquid carbon dioxide contacted with the contaminated substance is reduced to gaseous carbon dioxide to separate the radioactive substance from the contaminated substance (separation step 12). In this step 12, the pressure of carbon dioxide is reduced to 0.
By reducing the pressure to a range of from 0.5 to 1 MPa, the carbon dioxide is changed to a gaseous state, and the radioactive substance is separated from the contaminated material by utilizing rapid volume expansion when changing to the gaseous state.

【0015】次に、分離した放射性物質に液体状態の二
酸化炭素を供給して放射性物質を洗浄(フラッシング:
flushing)する(洗浄工程13)。この工程13では被
汚染物より分離した放射性物質が洗浄装置等に残留する
のを防止するため洗浄装置に液体状態の二酸化炭素を供
給して放射性物質をフラッシングする。洗浄に用いる液
体状態の二酸化炭素の温度及び圧力条件は10〜25
℃、4.5〜6.5MPaがよい。この洗浄により放射
性物質は二酸化炭素とスラリーを形成する。洗浄工程1
3で洗浄された放射性物質と液体状態の二酸化炭素とを
含む流体を放射性物質の凝集体と流体とに分離して放射
性物質の凝集体を回収する(第1回収工程14)。この
工程14では固液分離又は沈降分離により分離が行わ
れ、比較的粒径の大きい放射性物質の凝集体を回収す
る。分離される放射性物質の凝集体の粒径は100μm
〜30mm程度である。
Next, carbon dioxide in a liquid state is supplied to the separated radioactive substance to wash the radioactive substance (flushing:
flushing) (washing step 13). In this step 13, in order to prevent the radioactive substance separated from the contaminated material from remaining in the cleaning device or the like, the radioactive material is flushed by supplying carbon dioxide in a liquid state to the cleaning device. Temperature and pressure conditions of carbon dioxide in a liquid state used for cleaning are 10 to 25.
C., 4.5 to 6.5 MPa is good. By this washing, the radioactive material forms a slurry with carbon dioxide. Cleaning process 1
The fluid containing the radioactive substance and the carbon dioxide in the liquid state washed in 3 is separated into the radioactive substance aggregate and the fluid to collect the radioactive substance aggregate (first recovery step 14). In this step 14, separation is performed by solid-liquid separation or sedimentation separation, and an aggregate of a radioactive substance having a relatively large particle size is recovered. The particle size of the aggregate of radioactive material to be separated is 100 μm
It is about 30 mm.

【0016】次に、流体に含まれる液体状態の二酸化炭
素の圧力を減圧して気体状態の二酸化炭素にする(減圧
工程16)。この工程16では液体状態の二酸化炭素を
減圧して気体状態にすることにより、流体の体積を膨張
させて流体に流速を与える。流速を増大させることによ
り後述する第2分離工程17において放射性物質の微粒
子を流体より分離し易くする。圧力条件は0.05〜1
MPaの範囲に調整する。次に、流体を放射性物質の微
粒子と気体状態の二酸化炭素とに分離して放射性物質の
微粒子を回収する(第2回収工程17)。この工程17
では前述した減圧工程16において増大させた流速を利
用して流体を粒径0.1〜500μmの放射性物質の微
粒子と気体状態の二酸化炭素とに分離する。最後に、分
離した気体状態の二酸化炭素の圧力を加圧して超臨界又
は液体状態の二酸化炭素にする(加圧工程18)。この
工程18では第2回収工程17において分離された気体
状態の二酸化炭素を加圧して超臨界又は液体状態の二酸
化炭素にする。この工程での圧力条件は4.5〜25M
Paである。得られた超臨界又は液体状態の二酸化炭素
は前処理工程11の洗浄溶媒としてリサイクルされる。
また、超臨界又は液体状態の二酸化炭素の一部は第2回
収工程17に送られて逆洗するための洗浄溶媒として使
用される。第2回収工程17は粒径が小さい微粒子を分
離する工程であるため、フィルタが目詰まりする。逆洗
を行うことによりフィルタの目詰まりを解消する。第2
回収工程における二酸化炭素の圧力は加圧工程の圧力よ
り低いため、逆洗が可能となる。
Next, the pressure of the liquid carbon dioxide contained in the fluid is reduced to gaseous carbon dioxide (decompression step 16). In this step 16, the carbon dioxide in a liquid state is decompressed to a gaseous state, thereby expanding the volume of the fluid and giving a flow velocity to the fluid. Increasing the flow rate makes it easier to separate the radioactive substance particles from the fluid in the second separation step 17 described later. Pressure condition is 0.05-1
Adjust to the range of MPa. Next, the fluid is separated into radioactive substance fine particles and gaseous carbon dioxide to collect the radioactive substance fine particles (second recovery step 17). This step 17
In the above, the fluid is separated into fine particles of radioactive substance having a particle size of 0.1 to 500 μm and carbon dioxide in a gaseous state by using the flow rate increased in the above-described decompression step 16. Finally, the pressure of the separated gaseous carbon dioxide is increased to supercritical or liquid carbon dioxide (pressure step 18). In this step 18, the gaseous carbon dioxide separated in the second recovery step 17 is pressurized into supercritical or liquid carbon dioxide. The pressure condition in this step is 4.5-25M
Pa. The obtained supercritical or liquid carbon dioxide is recycled as a washing solvent in the pretreatment step 11.
A part of the supercritical or liquid carbon dioxide is sent to the second recovery step 17 and used as a washing solvent for backwashing. Since the second recovery step 17 is a step of separating fine particles having a small particle diameter, the filter is clogged. By performing back washing, clogging of the filter is eliminated. Second
Since the pressure of carbon dioxide in the recovery step is lower than the pressure in the pressurization step, backwashing is possible.

【0017】次に、本発明の除染装置について図2に基
づいて説明する。放射性物質の除染装置20は、密閉さ
れ所定温度及び圧力に耐え得る洗浄装置21を有する。
洗浄装置21の一方には供給口21aが他方には排出口
21bがそれぞれ設けられる。排出口21bは管路22
を介して固液分離器23側部の供給口23aに接続され
る。管路22の途中にはバルブ22aが設けられる。固
気分離器23底部には放射性物質の凝集体の回収口23
bが、頂部には排出口23cがそれぞれ設けられる。排
出口23cは管路24を介して固気分離器26側部の供
給口26aに接続される。管路24途中にはベンチュリ
27が設けられる。固気分離器26底部には放射性物質
の微粒子の回収口26bが、頂部には逆洗供給口26c
が、側部には排出口26dがそれぞれ設けられる。排出
口26dは管路28を介してコンプレッサ29に接続さ
れる。管路28途中にはバッファタンク31が設けられ
る。コンプレッサ29は管路32を介して洗浄装置21
の供給口21aに接続される。管路32の途中には三方
弁32a,32bがそれぞれ設けられる。三方弁32a
は管路33を介して固気分離器26頂部の逆洗供給口2
6cに接続され、三方弁32bは管路34を介して管路
24の途中に接続される。管路34の途中には圧力調整
槽36、バルブ37がそれぞれ備えられる。
Next, the decontamination apparatus of the present invention will be described with reference to FIG. The radioactive substance decontamination device 20 has a cleaning device 21 that is sealed and can withstand a predetermined temperature and pressure.
One of the cleaning devices 21 is provided with a supply port 21a and the other is provided with a discharge port 21b. The outlet 21b is connected to the pipe 22
Is connected to the supply port 23a on the side of the solid-liquid separator 23. A valve 22 a is provided in the middle of the pipe 22. At the bottom of the solid-gas separator 23, a recovery port 23 for the aggregate of radioactive material is provided.
b, and a discharge port 23c is provided at the top. The discharge port 23c is connected to a supply port 26a on the side of the solid-gas separator 26 via a pipe 24. A venturi 27 is provided in the middle of the pipe 24. At the bottom of the solid-gas separator 26, there is provided a recovery port 26b for radioactive particles, and at the top, a backwash supply port 26c.
However, a discharge port 26d is provided on each side. The discharge port 26d is connected to a compressor 29 via a pipe 28. A buffer tank 31 is provided in the middle of the pipe 28. The compressor 29 is connected to the cleaning device 21 via a pipe 32.
Is connected to the supply port 21a. Three-way valves 32a and 32b are provided in the middle of the pipe 32, respectively. Three-way valve 32a
Is the backwash feed port 2 at the top of the solid-gas separator 26 via line 33
6c, and the three-way valve 32b is connected to the middle of the pipe 24 via the pipe 34. A pressure adjusting tank 36 and a valve 37 are provided in the middle of the pipe 34.

【0018】このように構成された装置では、先ず洗浄
装置21内に供給した粉末状の放射性物質が付着した被
汚染物を超臨界又は液体状態の二酸化炭素と接触させ
る。次いでバルブ22aを解放して洗浄装置21内の圧
力を低下させる。この圧力低下により二酸化炭素を瞬時
に気化させ、二酸化炭素が急激に膨張することにより放
射性物質を被汚染物である放射性廃棄物から分離させ
る。バルブ22aを閉じて気体状態にした二酸化炭素を
液体状態の二酸化炭素に戻し、この液体状態の二酸化炭
素により洗浄装置内をフラッシングする。フラッシング
した液体状態の二酸化炭素と放射性物質を含む流体は洗
浄装置21より管路22を介して固液分離器23に送ら
れる。次いで、固液分離器23に送られた流体はここで
粒径100μm〜30mmの放射性物質の凝集体が分離
される。分離された放射性物質の凝集体は固液分離器2
3底部の回収口23bより回収される。流体は頂部の排
出口23cより排出されてベンチュリ27に送られる。
ベンチュリ27では減圧されて流体に含まれる二酸化炭
素を気体状態にして流体を膨張させ、流体の流速を増大
させる。膨張した流体は固気分離器に送られ、ここで流
体は粒径0.1〜500μmの放射性物質の微粒子と気
体状態の二酸化炭素とに分離される。放射性物質の微粒
子は固気分離器底部の回収口26bより回収され、気体
状態の二酸化炭素は側部の排出口26dよりバッファタ
ンク31に送られる。
In the apparatus configured as described above, first, the contaminated substance supplied with the powdered radioactive substance supplied into the cleaning apparatus 21 is brought into contact with supercritical or liquid carbon dioxide. Next, the pressure in the cleaning device 21 is reduced by opening the valve 22a. Due to this pressure drop, carbon dioxide is instantaneously vaporized, and the carbon dioxide expands abruptly to separate radioactive substances from radioactive waste which is a contaminated substance. The gaseous carbon dioxide is returned to the liquid carbon dioxide by closing the valve 22a, and the inside of the cleaning device is flushed with the liquid carbon dioxide. The flushed liquid containing carbon dioxide in the liquid state and the radioactive substance is sent from the washing device 21 to the solid-liquid separator 23 via the pipe 22. Next, in the fluid sent to the solid-liquid separator 23, an aggregate of radioactive substances having a particle size of 100 μm to 30 mm is separated. The separated radioactive material aggregates are separated into a solid-liquid separator 2
3 Collected from the collecting port 23b at the bottom. The fluid is discharged from the top outlet 23c and sent to the venturi 27.
In the venturi 27, the pressure is reduced and the carbon dioxide contained in the fluid is turned into a gaseous state to expand the fluid and increase the flow velocity of the fluid. The expanded fluid is sent to a solid-gas separator, where the fluid is separated into fine particles of radioactive material having a particle size of 0.1 to 500 μm and gaseous carbon dioxide. The fine particles of the radioactive substance are recovered from the recovery port 26b at the bottom of the solid-gas separator, and the gaseous carbon dioxide is sent to the buffer tank 31 from the discharge port 26d at the side.

【0019】次に、バッファタンク31に貯えられた気
体状態の二酸化炭素はコンプレッサ29に送られ、二酸
化炭素はコンプレッサ29で4.5〜10MPaまで加
圧されて超臨界又は液体状態の二酸化炭素になる。加圧
された超臨界又は液体状態の二酸化炭素は再び洗浄装置
21の供給口21aに送られてリサイクルされる。この
超臨界又は液体状態の二酸化炭素の一部は三方弁32a
で流路を切替えて、管路33を介して固気分離器26頂
部の逆洗供給口26cより供給して固気分離器を逆洗さ
せる。また、三方弁32bで流路を切替えることによ
り、ベンチュリ27で減圧された流体の圧力を圧力調整
槽36とバルブ37とで調整する。なお、本発明の実施
の形態では流体を減圧するためにベンチュリ27を用い
たが、オリフィスやチョーク等を用いて減圧してもよ
い。また、洗浄装置21の一方に供給口21cを設け、
この供給口21cに管路38を介して液体二酸化炭素供
給手段39を接続し、管路38途中にはバルブ41が設
けてもよい。これによりバルブ41を解放して液体二酸
化炭素供給手段39から液体状態の二酸化炭素を洗浄装
置21に供給して洗浄装置内をフラッシングすることも
できる。
Next, the gaseous carbon dioxide stored in the buffer tank 31 is sent to the compressor 29, and the carbon dioxide is pressurized to 4.5 to 10 MPa by the compressor 29 and converted into supercritical or liquid carbon dioxide. Become. The pressurized supercritical or liquid carbon dioxide is sent to the supply port 21a of the cleaning device 21 again and recycled. A part of the supercritical or liquid carbon dioxide is supplied to the three-way valve 32a.
To switch the flow path and supply the gas through the backflow supply port 26c at the top of the solid-gas separator 26 via the pipe line 33 to backwash the solid-gas separator. Further, by switching the flow path by the three-way valve 32b, the pressure of the fluid depressurized by the venturi 27 is adjusted by the pressure adjusting tank 36 and the valve 37. In the embodiment of the present invention, the venturi 27 is used to reduce the pressure of the fluid. However, the pressure may be reduced by using an orifice, a choke, or the like. Further, a supply port 21c is provided on one side of the cleaning device 21,
Liquid carbon dioxide supply means 39 may be connected to the supply port 21c via a pipe 38, and a valve 41 may be provided in the middle of the pipe 38. Thus, the valve 41 can be opened to supply the liquid carbon dioxide from the liquid carbon dioxide supply means 39 to the cleaning device 21 to flush the inside of the cleaning device.

【0020】[0020]

【実施例】次に本発明の実施例を説明する。 <実施例1>先ず、粉末状の放射性物質が付着した被汚
染物の模擬物質としてウランの酸化物100mgが付着
した被汚染物を用意した。先ずこの被汚染物を図2に示
す除染装置の洗浄装置内に供給して温度20℃、圧力
5.7MPaの二酸化炭素と接触させた。次いで洗浄装
置内の圧力を0.2MPaに低下させて付着しているウ
ラン酸化物を被汚染物から分離させた。次いで、液体状
態の二酸化炭素とウラン酸化物を含む流体を固液分離器
23に送り、ウラン酸化物の凝集体を分離した。次に、
流体をベンチュリ27で減圧して流体に含まれる二酸化
炭素を気体状態にして固気分離器に送り、ウラン酸化物
の微粒子を分離した。最後に固液分離器及び固気分離器
により分離したウラン酸化物をそれぞれ回収した。
Next, embodiments of the present invention will be described. <Example 1> First, a contaminated substance to which 100 mg of uranium oxide had been adhered was prepared as a simulated substance of the contaminated substance to which a powdered radioactive substance had adhered. First, this contaminated material was supplied into the cleaning device of the decontamination device shown in FIG. 2 and was brought into contact with carbon dioxide at a temperature of 20 ° C. and a pressure of 5.7 MPa. Next, the pressure in the cleaning device was reduced to 0.2 MPa to separate the attached uranium oxide from contaminants. Next, a liquid containing carbon dioxide and uranium oxide in a liquid state was sent to the solid-liquid separator 23 to separate the uranium oxide aggregates. next,
The fluid was depressurized by a venturi 27 to convert carbon dioxide contained in the fluid into a gaseous state and sent to a solid-gas separator to separate fine particles of uranium oxide. Finally, uranium oxides separated by the solid-liquid separator and the solid-gas separator were respectively recovered.

【0021】<実施例2>コバルトの酸化物50mgが
付着した被汚染物を模擬物質として用いた以外は実施例
1と同一の除染装置を使用し、実施例1と同様の条件で
コバルトの酸化物を回収した。 <実施例3>ルテニウムの酸化物75mgが付着した被
汚染物を模擬物質として用いた以外は実施例1と同一の
除染装置を使用し、実施例1と同様の条件でルテニウム
の酸化物を回収した。 <実施例4>ストロンチウムの酸化物40mgが付着し
た被汚染物を模擬物質として用いた以外は実施例1と同
一の除染装置を使用し、実施例1と同様の条件でストロ
ンチウムの酸化物を回収した。
Example 2 The same decontamination apparatus as in Example 1 was used except that a contaminant to which 50 mg of cobalt oxide had adhered was used as a simulated substance. The oxide was recovered. <Example 3> The same decontamination apparatus as in Example 1 was used except that a contaminant to which 75 mg of ruthenium oxide had adhered was used as a simulated substance. Collected. <Example 4> The same decontamination apparatus as in Example 1 was used except that a contaminant to which 40 mg of strontium oxide had adhered was used as a simulated substance, and strontium oxide was used under the same conditions as in Example 1. Collected.

【0022】<比較例1>実施例1と同一の模擬物質を
用意した。先ずこの模擬物質を図3に示す除染装置の洗
浄装置内に供給して温度20℃、圧力10MPaの二酸
化炭素と接触させた。次いで洗浄装置内の圧力を0.2
MPaに低下させて付着しているウラン酸化物を模擬物
質から分離させた。次に、液体状態の二酸化炭素とウラ
ン酸化物を含む流体をフィルタに送り、ウラン酸化物を
分離、回収した。 <比較評価1>実施例1〜4及び比較例1における被汚
染物からの元素の除去率及び残存率を表1に示す。な
お、表1中の元素付着量は酸化物形態における放射性物
質の重量を示す。
Comparative Example 1 The same simulated substance as in Example 1 was prepared. First, this simulated substance was supplied into the cleaning apparatus of the decontamination apparatus shown in FIG. 3 and was brought into contact with carbon dioxide at a temperature of 20 ° C. and a pressure of 10 MPa. Next, the pressure in the cleaning device is set to 0.2.
The uranium oxide adhering to the reduced MPa was separated from the simulated substance. Next, a fluid containing carbon dioxide and uranium oxide in a liquid state was sent to a filter to separate and collect uranium oxide. <Comparative Evaluation 1> Table 1 shows removal rates and residual rates of elements from contaminated substances in Examples 1 to 4 and Comparative Example 1. In addition, the amount of element attachment in Table 1 shows the weight of the radioactive substance in an oxide form.

【0023】[0023]

【表1】 [Table 1]

【0024】表1より明らかなように、比較例1では元
素の残存率が高く洗浄装置内に残存しているものと考え
られる。これに対して実施例1〜4ではそれぞれ高い回
収率となっていた。また除去したウラン酸化物のうち、
約95%が固液分離器から回収され、残りの約5%が固
気分離器から回収された。固液分離器から回収されたウ
ラン酸化物の粒径は約200μm〜10mm、固気分離
器から回収されたウラン酸化物の粒径は約1μmから3
00μmであった。
As is clear from Table 1, in Comparative Example 1, it is considered that the residual ratio of the elements was high and remained in the cleaning device. In contrast, in Examples 1 to 4, the recovery rates were high. Of the removed uranium oxide,
About 95% was recovered from the solid-liquid separator, and the remaining about 5% was recovered from the solid-gas separator. The particle size of the uranium oxide recovered from the solid-liquid separator is approximately 200 μm to 10 mm, and the particle size of the uranium oxide recovered from the solid-gas separator is approximately 1 μm to 3 μm.
It was 00 μm.

【0025】[0025]

【発明の効果】以上述べたように、本発明によれば、先
ず前処理工程で粉末状の放射性物質が付着した被汚染物
を超臨界又は液体状態の二酸化炭素に接触させ、分離工
程で超臨界又は液体状態の二酸化炭素を減圧して超臨界
又は液体状態の二酸化炭素を気体状態にすることにより
放射性物質を被汚染物から分離させる。次いで洗浄工程
で分離した放射性物質に液体状態の二酸化炭素によりフ
ラッシングして残留している放射性物質を洗い流し、第
1回収工程で洗浄された放射性物質と液体状態の二酸化
炭素とを含む流体を粒径が100μm〜30mmの放射
性物質の凝集体と流体とに分離して放射性物質の凝集体
を回収する。次に減圧工程で分離した流体を減圧して流
体に含まれる液体状態の二酸化炭素を気体状態にして体
積を増大させることにより流体に流速を与え、続く第2
回収工程で粒径が0.1〜500μmの放射性物質の微
粒子と気体状態の二酸化炭素とに分離して放射性物質の
微粒子を回収する。最後に加圧工程で分離した気体状態
の二酸化炭素を加圧して、超臨界又は液体状態の二酸化
炭素にする。加圧工程で加圧した二酸化炭素は第2回収
工程に送られて逆洗をするため、フィルタの目詰まりを
解消するとともに、フィルタの交換を大幅に減らし、交
換したフィルタより放射性物質を回収する作業を省くこ
とができる。被汚染物に付着した放射性物質を簡便かつ
効率的に回収できる。
As described above, according to the present invention, first, the contaminated substance to which the powdered radioactive substance has adhered is brought into contact with carbon dioxide in supercritical or liquid state in the pretreatment step, The radioactive substance is separated from the contaminant by decompressing the carbon dioxide in the critical or liquid state to convert the carbon dioxide in the supercritical or liquid state into a gaseous state. Next, the radioactive substance separated in the washing step is flushed with liquid carbon dioxide to wash out the remaining radioactive substance, and the fluid containing the radioactive substance washed in the first recovery step and the liquid carbon dioxide is subjected to particle size reduction. Separates into a radioactive substance aggregate having a size of 100 μm to 30 mm and a fluid, and collects the radioactive substance aggregate. Next, the fluid separated in the depressurizing step is decompressed to convert the liquid carbon dioxide contained in the fluid into a gaseous state to increase the volume, thereby giving a flow rate to the fluid.
In the recovery step, the radioactive substance fine particles having a particle size of 0.1 to 500 μm are separated into gaseous carbon dioxide and the radioactive substance fine particles are recovered. Finally, the gaseous carbon dioxide separated in the pressurizing step is pressurized to be supercritical or liquid carbon dioxide. The carbon dioxide pressurized in the pressurization step is sent to the second recovery step for backwashing, thereby eliminating clogging of the filter, drastically reducing filter replacement, and recovering radioactive substances from the replaced filter. Work can be omitted. Radioactive substances attached to contaminated materials can be collected simply and efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の放射性物質の除染方法の工程順を示す
図。
FIG. 1 is a diagram showing the order of steps in a method for decontaminating radioactive substances of the present invention.

【図2】本実施の形態の放射性物質の除染装置の概略
図。
FIG. 2 is a schematic diagram of a radioactive substance decontamination apparatus of the present embodiment.

【図3】従来の放射性物質の除染装置の概略図。FIG. 3 is a schematic diagram of a conventional radioactive substance decontamination apparatus.

【符号の説明】[Explanation of symbols]

11 前処理工程 12 分離工程 13 洗浄工程 14 第1回収工程 16 減圧工程 17 第2回収工程 18 加圧工程 21 洗浄装置 23 固液分離器 26 固気分離器 27 ベンチュリ 29 コンプレッサ Reference Signs List 11 Pretreatment step 12 Separation step 13 Cleaning step 14 First recovery step 16 Depressurization step 17 Second recovery step 18 Pressurization step 21 Cleaning device 23 Solid-liquid separator 26 Solid-gas separator 27 Venturi 29 Compressor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 勝則 東京都文京区小石川1丁目3番25号 三菱 マテリアル株式会社システム事業センター 内 (72)発明者 兼平 修 東京都文京区小石川1丁目3番25号 三菱 マテリアル株式会社システム事業センター 内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Katsunori Shinohara 1-3-3 Koishikawa, Bunkyo-ku, Tokyo Mitsubishi Materials Corporation System Business Center (72) Inventor Osamu Kanehira 1-3-25 Koishikawa, Bunkyo-ku, Tokyo No. Mitsubishi Materials Corporation System Business Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粉末状の放射性物質が付着した被汚染物
を超臨界又は液体状態の二酸化炭素に接触させる前処理
工程(11)と、 前記超臨界又は液体状態の二酸化炭素を減圧して前記超
臨界又は液体状態の二酸化炭素を気体状態にすることに
より前記放射性物質を前記被汚染物から分離させる分離
工程(12)とを含む放射性物質の除染方法において、 前記分離工程(12)で分離した放射性物質に液体状態の二
酸化炭素を供給して前記放射性物質を洗浄する洗浄工程
(13)と、 前記洗浄工程(13)で洗浄された放射性物質と液体状態の
二酸化炭素とを含む流体を放射性物質の凝集体と流体と
に分離して放射性物質の凝集体を回収する第1回収工程
(14)と、 前記第1回収工程(14)で分離した前記流体を減圧して前
記流体に含まれる液体状態の二酸化炭素を気体状態にし
て体積を増大させることにより前記流体に流速を与える
減圧工程(16)と、 前記流体を放射性物質の微粒子と気体状態の二酸化炭素
とに分離して放射性物質の微粒子を回収する第2回収工
程(17)と、 前記第2回収工程(17)で分離した前記気体状態の二酸化
炭素を加圧して、超臨界又は液体状態の二酸化炭素にす
る加圧工程(18)とを有することを特徴とする放射性物質
の除染方法。
1. A pretreatment step (11) in which a contaminated substance to which a powdery radioactive substance is attached is brought into contact with carbon dioxide in a supercritical or liquid state; A separation step (12) of separating the radioactive substance from the contaminated substance by converting carbon dioxide in a supercritical or liquid state into a gaseous state, wherein the radioactive substance is separated in the separation step (12). Washing step of supplying liquid-state carbon dioxide to the washed radioactive material to wash the radioactive material
(13) a first method of separating the fluid containing the radioactive substance and the liquid carbon dioxide washed in the cleaning step (13) into an aggregate of the radioactive substance and a fluid to collect the aggregate of the radioactive substance; Collection process
(14), and decompressing the fluid separated in the first recovery step (14) to increase the volume of carbon dioxide in a liquid state contained in the fluid in a gaseous state to increase the volume, thereby providing a flow rate to the fluid. Step (16), a second recovery step (17) of separating the fluid into fine particles of radioactive material and carbon dioxide in a gaseous state to recover fine particles of radioactive material, and separation in the second recovery step (17). Pressurizing the gaseous carbon dioxide into supercritical or liquid carbon dioxide (18).
【請求項2】 第1回収工程(14)が固液分離又は沈降分
離により行われる請求項1記載の放射性物質の除染方
法。
2. The method according to claim 1, wherein the first recovery step (14) is performed by solid-liquid separation or sedimentation.
【請求項3】 第2回収工程(17)が固気分離により行わ
れる請求項1記載の放射性物質の除染方法。
3. The method according to claim 1, wherein the second recovery step (17) is performed by solid-gas separation.
【請求項4】 加圧工程(18)で得られた超臨界又は液体
状態の二酸化炭素を前処理工程(11)へ供給するとともに
前記超臨界又は液体状態の二酸化炭素の一部を第2回収
工程(17)に逆洗供給する請求項1ないし3いずれか記載
の放射性物質の除染方法。
4. The supercritical or liquid carbon dioxide obtained in the pressurizing step (18) is supplied to the pretreatment step (11), and a part of the supercritical or liquid carbon dioxide is recovered in the second step. The method for decontaminating a radioactive substance according to any one of claims 1 to 3, wherein the step (17) is carried out by backwashing.
【請求項5】 粉末状の放射性物質が付着した被汚染物
を超臨界又は液体状態の二酸化炭素により洗浄して前記
放射性物質を前記被汚染物から分離させて除去する洗浄
装置(21)と、 前記洗浄装置(21)で除去した放射性物質と液体状態の二
酸化炭素とを含む流体を放射性物質の凝集体と流体とに
分離する固液分離器(23)と、 前記固液分離器(23)で分離した前記流体を減圧して流体
に含まれる液体状態の二酸化炭素を気体状態にして体積
を増大させることにより前記流体に流速を与えるベンチ
ュリ(27)と、 前記流体を放射性物質の微粒子と気体状態の二酸化炭素
とに分離する固気分離器(26)と、 前記固気分離器(26)で分離した前記気体状態の二酸化炭
素を加圧するコンプレッサ(29)とを備えた放射性物質の
除染装置。
5. A cleaning device (21) for cleaning a contaminated substance to which a powdered radioactive substance is attached with carbon dioxide in a supercritical or liquid state to separate and remove the radioactive substance from the contaminated substance. A solid-liquid separator (23) for separating a fluid containing the radioactive substance and carbon dioxide in a liquid state removed by the washing device (21) into an aggregate of the radioactive substance and a fluid, and the solid-liquid separator (23) A venturi (27) that gives a flow rate to the fluid by decompressing the fluid separated and reducing the volume of the carbon dioxide in a liquid state contained in the fluid to a gaseous state and increasing the volume thereof; Decontamination of radioactive materials comprising a solid-gas separator (26) for separating carbon dioxide in a gaseous state, and a compressor (29) for pressurizing the gaseous carbon dioxide separated by the solid-gas separator (26) apparatus.
JP2001001378A 2001-01-09 2001-01-09 Method and device for decontaminating radioactive substances Withdrawn JP2002207097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001001378A JP2002207097A (en) 2001-01-09 2001-01-09 Method and device for decontaminating radioactive substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001001378A JP2002207097A (en) 2001-01-09 2001-01-09 Method and device for decontaminating radioactive substances

Publications (1)

Publication Number Publication Date
JP2002207097A true JP2002207097A (en) 2002-07-26

Family

ID=18870025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001001378A Withdrawn JP2002207097A (en) 2001-01-09 2001-01-09 Method and device for decontaminating radioactive substances

Country Status (1)

Country Link
JP (1) JP2002207097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527753A (en) * 2006-02-24 2009-07-30 コミツサリア タ レネルジー アトミーク Decontamination of solid organic substrates contaminated with solid radioactive particulate inorganic contaminants using high density pressurized CO2

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527753A (en) * 2006-02-24 2009-07-30 コミツサリア タ レネルジー アトミーク Decontamination of solid organic substrates contaminated with solid radioactive particulate inorganic contaminants using high density pressurized CO2
US8172955B2 (en) * 2006-02-24 2012-05-08 Commissariat A L'energie Atomique Process for decontaminating an organic solid substrate contaminated by solid radioactive particulate inorganic contaminants, using dense pressurized CO2

Similar Documents

Publication Publication Date Title
JPWO2008020507A1 (en) Abrasive recovery method and apparatus from abrasive slurry waste liquid
KR102504769B1 (en) Method for purification of radioactive contaminated soil
JP2001287163A (en) Polishing slurry regeneration apparatus
CN102423871A (en) Recycling method of polishing solution
JP4353991B2 (en) Method and apparatus for regenerating slurry waste liquid
KR20200075420A (en) Washing apparatus for contaminated soil
CN106975652B (en) Be used for prosthetic material loading of soil drip washing to make thick liquid and hierarchical recovery system
JP5229764B2 (en) Oil / water separator
JP5303649B2 (en) Semiconductor slurry supply apparatus and slurry supply method
JP2009023061A5 (en)
JP5417933B2 (en) Method for processing oil-containing granular materials
JP2002207097A (en) Method and device for decontaminating radioactive substances
JP2001058108A (en) Cleaner for liquid containing suspended substance
JP6315861B2 (en) Mobile system for decontamination of incineration ash contaminated with radioactive cesium
JP2013108758A (en) Method for decontaminating radiation-contaminated soil
JP2004130199A (en) Method and system for repairing heavy metal-polluted soil
JP7105080B2 (en) Waste muddy water volume reduction treatment device and volume reduction treatment method
JP3996686B2 (en) Method and apparatus for regenerating wire saw abrasive slurry
EP2504139B1 (en) Method and device for treating abrasive slurries containing si/sic
JP6478194B2 (en) Apparatus and method for removing cesium from muddy water
JP5715992B2 (en) Radioactive cesium-containing water treatment method, fly ash treatment method, radioactive cesium-containing water treatment device, and fly ash treatment device
US3084796A (en) Magnetic heavy medium treatment process and apparatus
JP2000056084A (en) Precipitating/separating tank for liquid waste processing system
KR102096451B1 (en) A Transportable system to decontaminate and purify the silt soil contaminated with radioactive cesium
JP6327741B2 (en) Apparatus and method for removing cesium from muddy water

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401