JP2002207025A - Freshness measuring method for fishes - Google Patents
Freshness measuring method for fishesInfo
- Publication number
- JP2002207025A JP2002207025A JP2001001911A JP2001001911A JP2002207025A JP 2002207025 A JP2002207025 A JP 2002207025A JP 2001001911 A JP2001001911 A JP 2001001911A JP 2001001911 A JP2001001911 A JP 2001001911A JP 2002207025 A JP2002207025 A JP 2002207025A
- Authority
- JP
- Japan
- Prior art keywords
- freshness
- fish
- oxidation
- reduction potential
- storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この出願の発明は魚類の鮮度
測定方法に関するものである。さらに詳しくは、この出
願の発明は魚類肉組織又は魚類の肉組織の絞り汁に電極
を挿入し、酸化還元電位を測定し、生食可能な鮮度を判
定することを特徴とする魚類の迅速、かつ簡便な鮮度測
定方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring freshness of fish. More specifically, the invention of this application inserts an electrode into the juice of fish meat tissue or fish meat tissue, measures the oxidation-reduction potential, and determines freshness that can be eaten quickly, and It relates to a simple freshness measuring method.
【0002】[0002]
【従来の技術】魚類は漁獲後の初期段階において酸素供
給遮断により、肉組織内において解糖、タンパク質の変
性、タンパク質の分解、脂質の酸化等がそれぞれ異なる
速度で進行し、その結果細菌の増殖、細菌から産生され
る各種酵素が各種生化学反応に関与し、鮮度が低下する
(渡邉悦生編著、「魚介類の鮮度と加工・貯蔵」、第6
3ページ、成山堂書店、発行年月日不明)。例えば、刺
身に供する生食用魚肉では、流通段階における魚肉の初
期鮮度の低下程度が重要になる。2. Description of the Related Art In the early stage after fish are caught, oxygen supply is cut off, and glycolysis, protein denaturation, protein degradation, lipid oxidation, etc., proceed at different rates in meat tissue, resulting in bacterial growth. In addition, various enzymes produced by bacteria are involved in various biochemical reactions, resulting in a decrease in freshness (Etsuo Watanabe, Ed., "Freshness and Processing and Storage of Seafood", No. 6,
3 pages, Seizando Bookstore, date of issue unknown). For example, in raw fish meat to be served for sashimi, the degree of reduction in the initial freshness of fish meat at the distribution stage is important.
【0003】従来、魚類の鮮度の定量的評価法として、
国内ではATP関連物質の消長を指標とするK値による
方法が広範に利用されており、一般にK値が20%以下
の場合生食可能といわれていた。K値の測定は高速液体
クロマトグラフィー等でATP関連物質を定量しなけれ
ばならず、整備された実験室でなければ測定できない不
都合があったが、最近バイオセンサ、試験紙等が開発さ
れ、ATP関連物質の定量が簡便になっている。Conventionally, as a quantitative evaluation method of freshness of fish,
In Japan, a method based on the K value using the change of the ATP-related substance as an index is widely used, and it is generally said that if the K value is 20% or less, it can be eaten raw. For the measurement of the K value, ATP-related substances must be quantified by high performance liquid chromatography or the like, and there is a disadvantage that it cannot be measured unless a well-equipped laboratory is used. Quantification of related substances has been simplified.
【0004】しかしながら、魚の種類によってK値の変
化の程度が異なり、例えばタイではK値がほとんど変化
していないにもかかわらず、腐敗が進行する場合もあ
り、この方法を全ての魚種に適用することはできない。
尚、この評価方法は牛肉の熟度測定にも利用されている
(特開平5−119033号公報)。However, the degree of change in the K value varies depending on the type of fish. For example, in Thailand, even though the K value hardly changes, rot may progress, and this method is applied to all fish types. I can't.
This evaluation method is also used for measuring beef ripeness (Japanese Patent Application Laid-Open No. H5-119033).
【0005】一方、海外ではイギリスで開発された魚肉
の誘電率の変化を指標とする鮮度センサーが開発されて
いる。この方法は、魚肉中の水の動的性質が鮮度低下と
ともに変化することを利用したものであるが、凍結解凍
魚の場合、水の状態が非凍結魚と異なるので、測定値が
著しく相違する問題がある。[0005] On the other hand, overseas, a freshness sensor has been developed in the United Kingdom that uses a change in the dielectric constant of fish meat as an index. This method makes use of the fact that the dynamic properties of water in fish meat change with a decrease in freshness. However, in the case of frozen-thawed fish, the water condition is different from that of non-frozen fish, and the measured values are significantly different. There is.
【0006】その他、魚類の鮮度指標及びその測定方法
としては、揮発性塩基窒素を測定する方法、トリメチル
アミンを測定する方法、ポリアミン類を測定する方法、
有機酸を測定する方法、官能検査方法、生菌数測定方
法、緩衝能センサによる測定方法、非破壊型鮮度センサ
による測定方法等が知られているが(渡邉悦生編著、
「魚介類の鮮度と加工・貯蔵」、第65〜76ページ、
成山堂書店、発行年月日不明)、酸化還元電位を測定す
る評価方法は従来知られていない。[0006] In addition, as a freshness index of fish and its measuring method, there are a method for measuring volatile basic nitrogen, a method for measuring trimethylamine, a method for measuring polyamines,
There are known methods for measuring organic acids, sensory test methods, viable cell count measurement methods, measurement methods using a buffer capacity sensor, measurement methods using a non-destructive freshness sensor, etc. (edited by Etsuo Watanabe,
"Freshness and Processing and Storage of Seafood", pp. 65-76,
Seizando Shoten, date of issue unknown), no evaluation method for measuring oxidation-reduction potential has been hitherto known.
【0007】[0007]
【発明が解決しようとする課題】鮮魚、特に生食用の流
通において鮮度の良否は、魚価を決定する重要な因子で
ある。魚市場における卸商、スーパー等の量販店との売
買、店頭における消費者との売買等において生食可能か
否かを、現場で簡便に判別できるならば、望ましいこと
である。また、すり身製品、乾燥製品等の製造におい
て、原料魚類の鮮度により工程を調整しなければならな
い場合もあり、魚類の鮮度を簡便に評価し得るならば、
工程の標準化が可能になり、その利点は大きい。The quality of freshness in distribution of fresh fish, especially for fresh food, is an important factor in determining fish prices. It would be desirable if it could be easily determined on the spot whether or not fresh food could be purchased or sold with a mass retailer such as a supermarket or supermarket in the fish market, or with a consumer at a store. Also, in the manufacture of surimi products, dried products, etc., it may be necessary to adjust the process depending on the freshness of the raw fish, if the freshness of the fish can be easily evaluated,
The process can be standardized, and the advantage is great.
【0008】この出願の発明者らは前記のとおりの従来
技術に鑑みて、凍結の有無、種類にかかわらず魚類の鮮
度を、その場で簡便に、かつ短時間で評価し得る方法に
関して鋭意研究を行った結果、魚類の死後直後から腐敗
初期までの間に肉組織の酸化還元電位が、種々の生化学
的変化により経時的に上昇するとの知見を得た。In view of the prior art as described above, the inventors of the present application have intensively studied a method for easily and quickly evaluating the freshness of fish regardless of the presence or absence of freezing and the type thereof. As a result, it was found that the oxidation-reduction potential of meat tissue increases with time due to various biochemical changes from immediately after the death of fish to the early stage of putrefaction.
【0009】この出願の発明は、このような知見に基づ
いて、現場で魚類肉組織の一部又は魚類肉組織の絞り汁
から簡便、かつ短時間に魚類の鮮度を評価し得る方法を
提供することを課題としている。The invention of this application provides a method that can easily and quickly evaluate the freshness of fish from a part of fish meat tissue or the juice of fish meat tissue on site based on such knowledge. That is the task.
【0010】[0010]
【課題を解決するための手段】前記課題を解決するもの
として、この出願の発明は、魚類肉組織又は魚類肉組織
の絞り汁に電極を挿入し、酸化還元電位を測定し、生食
可能な鮮度を判定することを特徴とする魚類の鮮度測定
方法を提供し、また、生食可能魚類の鮮度が、約0.3
7V以下の酸化還元電位であるとする方法、並びに電極
が、温度補正センサ及びpH補正センサを有する方法も
提供する。Means for Solving the Problems To solve the above problems, the invention of the present application is to insert an electrode in fish meat tissue or juice of fish meat tissue, measure the oxidation-reduction potential, and determine the freshness that can be eaten raw. A method for measuring the freshness of fish, characterized in that the freshness of freshly edible fish is about 0.3
Methods are also provided that assume an oxidation-reduction potential of 7 V or less, and that the electrodes have a temperature compensation sensor and a pH compensation sensor.
【0011】[0011]
【発明の実施の形態】この出願の発明の実施は、極めて
簡単であり、特殊な技術を必要としない。鮮度を測定す
る魚類の肉組織に、またはその肉組織から採取した絞り
汁に電極を挿入して常法により酸化還元電位を測定する
のみである。酸化還元電位を測定する装置は、例えば図
1に示すとおり、電極、電極と測定機を結合するリード
線、及び測定機からなり、市販品を使用することができ
る。また、酸化還元電位をより正確に測定するために、
電極に温度補正センサ及びpH補正センサを配設するこ
とが望ましい。DESCRIPTION OF THE PREFERRED EMBODIMENTS The implementation of the invention of this application is extremely simple and does not require special techniques. It is only necessary to insert an electrode into the meat tissue of the fish whose freshness is to be measured or into the juice extracted from the meat tissue and measure the oxidation-reduction potential by a conventional method. As shown in FIG. 1, for example, an apparatus for measuring the oxidation-reduction potential includes an electrode, a lead wire connecting the electrode and the measuring device, and a measuring device, and a commercially available product can be used. Also, to measure the oxidation-reduction potential more accurately,
It is desirable to provide a temperature correction sensor and a pH correction sensor on the electrode.
【0012】これは、酸化還元電位(ORP)は、その
物理化学的定義から、温度、pHに依存することが知ら
れているからである。たとえば、温度補正をしないと、
外気温度、品温によってバラツキが大きくなることがあ
る。ただ、測定時の温度標準を設定しておけば、温度補
正センサは必ずしも必要ではない。また、pHに関して
は、一般的に魚肉の場合、非常に極初期(死後3、4時
間後)にpH変動が見られるが、それ以上の時間の鮮度
低下の経過時には実際的にはほとんどpH変動は見られ
ない。このため、pH補正センサについても常に必要と
されることはない。This is because it is known that the oxidation-reduction potential (ORP) depends on temperature and pH from the physicochemical definition. For example, without temperature compensation,
The variation may increase depending on the outside air temperature and the product temperature. However, if a temperature standard at the time of measurement is set, the temperature correction sensor is not necessarily required. Regarding pH, in general, in the case of fish meat, pH fluctuation is observed at a very early stage (3 or 4 hours after death), but practically almost no pH fluctuation occurs when the freshness decreases over a longer time. Is not seen. Therefore, the pH correction sensor is not always required.
【0013】採取した肉組織に電極を挿入する場合に
は、その肉組織に電極とほぼ同一の孔を設け、その孔に
固体表面測定用の電極を挿入し、酸化還元電位を測定す
る。採取した肉組織から絞り取った汁を測定する場合に
は、通常の電極をその汁に挿入し、酸化還元電位を測定
する。いずれの場合においても、測定機に表示される酸
化還元電位の数値を読み取るのみの簡単な操作であり、
約3分の短時間で測定が終了する。尚、より正確に評価
するためには、いくつかの試料を採取し、酸化還元電位
を測定し、その平均値を算出することが望ましい。When an electrode is inserted into the collected meat tissue, a hole almost identical to the electrode is provided in the meat tissue, an electrode for measuring the solid surface is inserted into the hole, and the oxidation-reduction potential is measured. When measuring juice squeezed from the collected meat tissue, a normal electrode is inserted into the juice and the oxidation-reduction potential is measured. In any case, it is a simple operation only to read the value of the oxidation-reduction potential displayed on the measuring instrument,
The measurement is completed in a short time of about 3 minutes. For more accurate evaluation, it is desirable to collect some samples, measure the oxidation-reduction potential, and calculate the average value.
【0014】発明者らは、後記する試験例に示すとお
り、各種魚類について死後直後から腐敗初期までの間の
酸化還元電位の変化を測定した。その結果、魚類の種
類、魚類の保存温度に関係なく酸化還元電位は死後直後
から、徐々に上昇し、通常は、約0.35〜0.37V
で最高値に達し、以後徐々に低下することが判明した。As shown in the test examples described below, the inventors measured changes in the oxidation-reduction potential of various fishes from immediately after death to the beginning of putrefaction. As a result, regardless of the type of fish and the storage temperature of the fish, the oxidation-reduction potential gradually increases immediately after death, and is usually about 0.35 to 0.37 V
It was found that the maximum value was reached and gradually decreased thereafter.
【0015】発明者らは、従来実施されていた鮮度評価
方法とこの出願の発明の方法とを比較検討し、酸化還元
電位の測定値が最高値に達するまでの間が生食可能な期
間であることを見出し、新規な鮮度評価方法を完成した
のである。従って、この出願の第2の発明では、生食可
能な鮮度の判定を、酸化還元電位が約0.37V以下と
することを特徴としている。ここで、「約」の意味は、
常識的には±0.01Vの範囲を含めたものとしてい
る。[0015] The inventors compare the freshness evaluation method which has been conventionally carried out with the method of the invention of this application, and the period until the measured value of the oxidation-reduction potential reaches the maximum value is the period during which the fresh food can be eaten. Thus, a new method for evaluating freshness was completed. Therefore, the second invention of this application is characterized in that the freshness that can be eaten raw is determined at an oxidation-reduction potential of about 0.37 V or less. Here, "about" means
Common sense includes the range of ± 0.01V.
【0016】そして、この出願の発明の実施において
は、測定された酸化還元電位(ORP)が最高値(ピー
ク電位)到達前か、それとも到達以後なのかの判別が望
まれることになる。この判別については、たとえば次の
いずれかの方法により可能とされる。In practicing the invention of this application, it is desired to determine whether the measured oxidation-reduction potential (ORP) is before or after reaching a maximum value (peak potential). This determination can be made, for example, by any of the following methods.
【0017】(a)ピークを超えると官能的に匂いが出
てくることから、匂いセンサ、トリメチルアミン濃度セ
ンサ、あるいはこれらと同等のピーク出現以後の品質特
性をとらえるセンサと組合わせて判別する。(A) Since an odor comes out sensuously when the peak is exceeded, it is determined in combination with an odor sensor, a trimethylamine concentration sensor, or a sensor that captures the same quality characteristics after the appearance of the peak.
【0018】(b)トレンドとして、酸化還元電位の時
間微分値が算出できればそれのプラス、マイナスでピー
クの前後を判別する。(B) As a trend, if a time differential value of the oxidation-reduction potential can be calculated, the difference before and after the peak is judged as plus or minus.
【0019】次に試験例を示してこの出願の発明を詳細
に説明する。 <試験例1>この試験は、キハダマグロ及びブリの酸化
還元電位と貯蔵期間、貯蔵温度、pHとの関係を調べる
ために行った。 (1)試料の調製 築地市場から購入したキハダマグロ5さく及びブリ7さ
くを使用した。キハダマグロ及びブリの各さくから貯蔵
前の試料を採取し、残りはそのまま、それぞれポリエチ
レン製の袋に入れて密封し、0、5及び10℃の冷蔵庫
に貯蔵した。キハダマグロについては貯蔵1日後、2日
後、4日後、6日後及び7日後に、ブリについては貯蔵
5時間後、10時間後、25時間後、60時間後、80
時間後、160時間後及び180時間後にそれぞれのさ
くから試料を採取した。 (2)試験方法 図1に示す市販の携帯用測定装置TOKO ph/OR
P((株)東興化学研究所「TPX−90i」(温度補
正センサ組み込み型))を使用し、採取した各試料にコ
ルクボーラーで魚肉に孔設した直径及び深さ約1cmの
孔に固体表面用電極を嵌着して酸化還元電位を測定し、
キハダマグロについては採取した5試料及びブリについ
ては採取した7試料の平均値を算出して試験した。尚、
正確に測定するために、測定前にキンヒドロン液(標準
液)により電極の検査を実施した。 (3)試験結果 試験の結果は図2及び図3に示すとおりである。図2及
び図3において左縦軸は酸化還元電位:ORP(V)、
右縦軸はpH、横軸は貯蔵期間を示し、図中実線は0
℃、破線は5℃、点線は10℃の貯蔵温度を示し、図中
上の線が酸化還元電位、下の線がpHを示す。尚、各図
面には平均値、最高値及び最低値を表示した。Next, the invention of this application will be described in detail with reference to test examples. <Test Example 1> This test was performed to examine the relationship between the oxidation-reduction potential of yellowfin tuna and yellowtail and the storage period, storage temperature, and pH. (1) Preparation of Samples Yellowfin tuna 5 and yellowtail 7 purchased from Tsukiji Market were used. Samples before storage were collected from each of the yellowfin tuna and yellowtail crusts, and the rest were directly sealed in polyethylene bags and stored in refrigerators at 0, 5 and 10 ° C. 1 day, 2 days, 4 days, 6 days and 7 days after storage for yellowfin tuna, 5 hours, 10 hours, 25 hours, 60 hours and 80 hours after storage for yellowtail
After hours, 160 hours and 180 hours, samples were taken from each frog. (2) Test method Commercially available portable measuring device TOKO ph / OR shown in FIG.
Using P (Tokyo Chemical Laboratory “TPX-90i” (with temperature compensation sensor built-in type)), each sample collected was drilled with a cork borer into a fish meat with a solid surface with a diameter and depth of about 1 cm. Measuring the oxidation-reduction potential
The average value of 5 samples collected for yellowfin tuna and 7 samples collected for yellowtail was calculated and tested. still,
In order to measure accurately, the electrodes were inspected with a quinhydrone solution (standard solution) before the measurement. (3) Test results The test results are as shown in FIGS. 2 and 3, the left vertical axis represents the oxidation-reduction potential: ORP (V),
The right vertical axis indicates the pH, and the horizontal axis indicates the storage period.
° C, the dashed line indicates the storage temperature of 5 ° C, and the dotted line indicates the storage temperature of 10 ° C. In each drawing, the average value, the maximum value, and the minimum value are shown.
【0020】図2から明らかなとおり、キハダマグロの
場合、各貯蔵温度において貯蔵期間によるpHの変化は
少なく、酸化還元電位を各貯蔵温度において貯蔵期間の
増加とともに上昇し、約0.37Vで最高値に達し、貯
蔵期間の増加により低下した。最高値に達する期間は貯
蔵温度において異なり、貯蔵温度が10℃では2日後、
0℃及び5℃では4日後であった。この結果から、キハ
ダマグロでは10℃の貯蔵温度では2日後が生食可能期
間であり、0℃及び5℃の貯蔵温度では4日後が生食可
能期間であることが判明した。As is clear from FIG. 2, in the case of yellowfin tuna, the pH changes with the storage period at each storage temperature were small, and the oxidation-reduction potential increased with the storage period at each storage temperature, and reached a maximum at about 0.37 V. And decreased with increasing storage time. The time to reach the maximum value is different at the storage temperature, when the storage temperature is 10 ° C, after 2 days,
At 0 ° C. and 5 ° C., after 4 days. From these results, it was found that in the yellowfin tuna, at a storage temperature of 10 ° C., the edible period is two days later, and at the storage temperatures of 0 ° C. and 5 ° C., the edible period is four days later.
【0021】また、図3から明らかなとおり、ブリの場
合もキハダマグロと同様であり、各貯蔵温度において貯
蔵期間によるpHの変化は少なく、酸化還元電位は各貯
蔵温度において貯蔵期間の増加とともに上昇し、約0.
35〜0.37Vで最高値に達し、貯蔵期間の増加によ
り低下した。最高値に達する期間は貯蔵温度において異
なり、貯蔵温度が10℃では25時間後、0℃及び5℃
では125時間後であった。この結果から、ブリでは1
0℃の貯蔵温度では約1日後までが生食可能期間であ
り、0℃及び5℃の貯蔵温度では5日後までが生食可能
期間であることが判明した。 <試験例2>この試験は、タイ及びヒラメの酸化還元電
位と貯蔵期間、pHとの関係を調べるために行った。 (1)試料の調製 築地市場からタイ及びヒラメの活魚各9尾を購入し、即
殺し、背肉から貯蔵前の試料を採取し、残りはそのま
ま、それぞれポリエチレン製の袋に入れて密封し、5℃
の冷蔵庫に貯蔵し、貯蔵5時間後、10時間後、25時
間後、40時間後、70時間後、90時間後、120時
間後、160時間後及び180時間後にそれぞれの魚体
から背肉を採取し、試料とした。 (2)試験方法 前記試験例1と同一の方法により試験を行った。 (3)試験結果 試験の結果は図4に示すとおりである。図4において左
縦軸は酸化還元電位(V)、右縦軸はpH、横軸は貯蔵
期間を示し、図中実線はヒラメ、破線はタイを示し、図
中上の線が酸化還元電位、下の線がpHを示す。尚、図
面には平均値、最高値及び最低値を表示した。Further, as is apparent from FIG. 3, the case of yellowtail is the same as that of yellowfin tuna, with little change in pH due to the storage period at each storage temperature, and the oxidation-reduction potential increases with the storage period at each storage temperature. , Approx.
It reached a maximum at 35-0.37V and decreased with increasing storage time. The time to reach the maximum varies with storage temperature, 25 hours at 10 ° C, 0 ° C and 5 ° C.
Then it was 125 hours later. From these results, it is 1 in yellowtail
At the storage temperature of 0 ° C., it was found that the period of up to about 1 day was the period during which it was possible to eat, and at the storage temperatures of 0 ° C. and 5 ° C., up to 5 days afterwards, the period during which it was possible to eat. <Test Example 2> This test was performed to examine the relationship between the oxidation-reduction potential of Thai and Japanese flounder, storage period, and pH. (1) Preparation of samples Purchase 9 live fish of Thailand and Japanese flounder from Tsukiji Market, kill them immediately, collect samples from the back meat before storage, put the rest as they are in polyethylene bags and seal them, 5 ℃
5 hours, 10 hours, 25 hours, 40 hours, 70 hours, 90 hours, 120 hours, 160 hours and 180 hours after harvesting the back meat from each fish body And used as a sample. (2) Test method A test was performed by the same method as in Test Example 1. (3) Test results The test results are as shown in FIG. In FIG. 4, the left vertical axis indicates the oxidation-reduction potential (V), the right vertical axis indicates the pH, and the horizontal axis indicates the storage period. The lower line shows the pH. In the drawings, the average value, the maximum value, and the minimum value are shown.
【0022】図4から明らかなとおり、いずれの魚の場
合も、各貯蔵温度において貯蔵期間によるpHの変化は
少なく、酸化還元電位は貯蔵期間の増加とともに上昇
し、約0.37Vで最高値に達し、貯蔵期間の増加によ
り低下した。最高値に達する期間はいずれの魚において
も約100時間後であった。この結果から、ヒラメ及び
タイでは5℃の貯蔵温度では約4日後までが生食可能期
間であることが判明した。 <試験例3>この試験は、従来の鮮度評価方法であるK
値とこの出願の発明の方法とを比較するために行った。 (1)試料の調製 前記試験例1及び試験例2と同一の試料を使用した。 (2)試験方法 常法の高速液体クロマトグラフィーにより測定した結果
から、K値を算出して試験した。As is apparent from FIG. 4, in all the fishes, the change in pH with the storage period at each storage temperature was small, and the oxidation-reduction potential increased with the increase in the storage period, and reached the maximum at about 0.37 V. , Decreased due to an increase in the storage period. The time to reach the maximum was about 100 hours after in any fish. From this result, it was found that in the case of flounder and Thailand, the storage edible period was about 4 days after storage at 5 ° C. <Test Example 3> In this test, K is a conventional freshness evaluation method.
This was done to compare the values with the method of the invention of this application. (1) Preparation of Sample The same sample as in Test Examples 1 and 2 was used. (2) Test method The K value was calculated from the results measured by a conventional high performance liquid chromatography and tested.
【0023】なお、この出願の発明の方法により測定し
た値は、試験例1及び試験例2の値を用いた。 (3)試験結果 試験の結果と前記試験例1及び試験例2との相関を示し
たのが図5乃至図7である。各図において縦軸はK値、
横軸は酸化還元電位を示し、図5及び図6において実線
は0℃、破線は5℃、点線は10℃の貯蔵温度を示し、
図7において実線はタイ、点線はヒラメを示す。尚、図
5及び図6の縦軸のスケールと図7のそれとは異なって
いる。As the values measured by the method of the present invention, the values of Test Examples 1 and 2 were used. (3) Test Results FIGS. 5 to 7 show the correlation between the test results and Test Examples 1 and 2. In each figure, the vertical axis represents the K value,
The horizontal axis indicates the oxidation-reduction potential. In FIGS. 5 and 6, the solid line indicates 0 ° C., the dashed line indicates 5 ° C., and the dotted line indicates the storage temperature of 10 ° C.
In FIG. 7, a solid line indicates a tie and a dotted line indicates a flounder. Note that the scale of the vertical axis in FIGS. 5 and 6 is different from that in FIG.
【0024】図5乃至図7から明らかなとおり、酸化還
元電位は貯蔵初期においてK値とともに増加し、その後
減少する。魚の種類により生食の限界とされるK値が異
なっており、マグロ類では20%前後、ブリ類では30
%前後といわれている。As is clear from FIGS. 5 to 7, the oxidation-reduction potential increases with the K value at the beginning of storage and then decreases. The K value, which is the limit of raw food, differs depending on the type of fish, and is around 20% for tuna and 30 for yellowtail.
It is said to be around%.
【0025】一方、タイ及びヒラメでは貯蔵期間が増加
してもK値が増加せず、かつ図7から明らかなとおり、
K値の変化が他の魚類と比較して著しく少なく、これら
の魚類ではK値が鮮度評価の指標にはならないことが明
白である。以上の結果から、本発明の方法が鮮度評価に
極めて有効であることが判明した。On the other hand, in Thai and flounder, the K value did not increase even if the storage period increased, and as is clear from FIG.
The change in the K value is remarkably small as compared with other fishes, and it is clear that the K value is not an index of freshness evaluation in these fishes. From the above results, it was found that the method of the present invention was extremely effective for freshness evaluation.
【0026】次に実施例を示し、更に詳細に説明する。Next, an embodiment will be shown and described in more detail.
【0027】[0027]
【実施例】<実施例1>築地市場からさくで購入したキ
ハダマグロの鮮度を、市販の携帯用測定装置TOKO
ph/ORPを使用し、6℃で冷蔵庫に貯蔵したことを
除き、試験例1と同一の方法により測定した。その結
果、4日後に酸化還元電位が0.37Vに達し、生食可
能であることが判明した。 <実施例2>都内のスーパーからさくで購入したブリの
鮮度を、市販の携帯用装置TOKOph/ORPを使用
し、6℃で冷蔵庫に貯蔵したことを除き、試験例1と同
一の方法により測定した。その結果、60時間後に酸化
還元電位が0.37Vに達し、生食可能であることが判
明した。 <実施例3>築地市場から購入した活ヒラメから背肉を
採取し、その鮮度を市販の携帯用測定装置TOKO p
h/ORPを使用し、6℃で冷蔵庫に貯蔵したことを除
き、試験例1と同一の方法により測定した。その結果、
90時間後に酸化還元電位が0.36Vに達し、生食可
能であることが判明した。<Example 1> The freshness of yellowfin tuna purchased from Tsukiji Fish Market was measured using a commercially available portable measuring device TOKO.
The measurement was performed in the same manner as in Test Example 1 except that ph / ORP was used and stored in a refrigerator at 6 ° C. As a result, it was found that the oxidation-reduction potential reached 0.37 V after 4 days, and that it was possible to eat raw food. <Example 2> Freshness of yellowtail purchased from a supermarket in Tokyo was measured in the same manner as in Test Example 1 except that it was stored in a refrigerator at 6 ° C using a commercially available portable device TOKOph / ORP. did. As a result, it was found that the oxidation-reduction potential reached 0.37 V after 60 hours, and that it was possible to eat raw food. <Example 3> Back meat is collected from live flounder purchased from Tsukiji Market, and its freshness is measured using a commercially available portable measuring device TOKO p.
The measurement was performed in the same manner as in Test Example 1 except that h / ORP was used and stored in a refrigerator at 6 ° C. as a result,
After 90 hours, the oxidation-reduction potential reached 0.36 V, indicating that it was possible to eat raw food.
【0028】[0028]
【発明の効果】以上詳記したとおり、この出願の発明は
魚類の鮮度測定方法に関するものであり、本発明により
奏される効果は次のとおりである。As described above in detail, the invention of this application relates to a method for measuring the freshness of fish, and the effects achieved by the present invention are as follows.
【0029】1)魚類の種類に関係なく、魚類の鮮度を
簡単に測定することができる。1) Regardless of the type of fish, the freshness of the fish can be easily measured.
【0030】2)凍結解凍等魚類の状態に関係なく、魚
類の鮮度を簡単に測定することができる。2) Freshness of fish can be easily measured irrespective of the condition of the fish such as freeze-thaw.
【0031】3)酸化還元電位を測定する装置が小型、
軽量である。3) The apparatus for measuring the oxidation-reduction potential is small,
Lightweight.
【0032】4)酸化還元電位の測定が、特殊な技術を
要することなく、短時間で実施することができる。4) The measurement of the oxidation-reduction potential can be performed in a short time without requiring any special technique.
【0033】5)熟練を要する魚類の鮮度判定が自動
化、標準化することが可能になる。5) It is possible to automate and standardize the determination of freshness of fish requiring skill.
【図1】図1は、この出願の発明を実施するための酸化
還元電位測定装置の一例を示す。FIG. 1 shows an example of an oxidation-reduction potential measuring apparatus for carrying out the invention of this application.
【図2】図2は、キハダマグロの貯蔵温度、貯蔵期間、
酸化還元電位及びpHの関係を示す。FIG. 2 shows the storage temperature, storage period, and storage time of yellowfin tuna.
4 shows the relationship between oxidation-reduction potential and pH.
【図3】図3は、ブリの貯蔵温度、貯蔵期間、酸化還元
電位及びpHの関係を示す。FIG. 3 shows the relationship between storage temperature, storage period, oxidation-reduction potential, and pH of yellowtail.
【図4】図4は、タイ及びヒラメの貯蔵期間、酸化還元
電位及びpHの関係を示す。FIG. 4 shows the relationship between the storage period, redox potential and pH of Thai and Japanese flounder.
【図5】図5は、キハダマグロのK値と酸化還元電位と
の相関を示す。FIG. 5 shows the correlation between the K value of yellowfin tuna and the oxidation-reduction potential.
【図6】図6は、ブリのK値と酸化還元電位との相関を
示す。FIG. 6 shows a correlation between yellowtail K value and oxidation-reduction potential.
【図7】図7は、タイ及びヒラメのK値と酸化還元電位
との相関を示す。FIG. 7 shows the correlation between the K value of Thai and Japanese flounder and redox potential.
1 試料 2 電極 3 リード線 4 測定機 1 sample 2 electrode 3 lead wire 4 measuring instrument
Claims (3)
極を挿入し、酸化還元電位を測定し、生食可能魚類の鮮
度を判定することを特徴とする魚類の鮮度測定方法。1. A method for measuring freshness of fish, comprising inserting an electrode into fish meat tissue or juice of fish meat tissue, measuring an oxidation-reduction potential, and judging freshness of fish that can be eaten.
下の酸化還元電位である請求項1に記載の魚類の鮮度測
定方法。2. The method for measuring freshness of fish according to claim 1, wherein the freshness of the fish that can be eaten has an oxidation-reduction potential of about 0.37 V or less.
ンサを有する請求項1又は請求項2のいずれかに記載の
魚類の鮮度測定方法。3. The method according to claim 1, wherein the electrode has a temperature correction sensor and a pH correction sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001001911A JP3933396B2 (en) | 2001-01-09 | 2001-01-09 | Method for measuring freshness of fish |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001001911A JP3933396B2 (en) | 2001-01-09 | 2001-01-09 | Method for measuring freshness of fish |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002207025A true JP2002207025A (en) | 2002-07-26 |
JP3933396B2 JP3933396B2 (en) | 2007-06-20 |
Family
ID=18870491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001001911A Expired - Fee Related JP3933396B2 (en) | 2001-01-09 | 2001-01-09 | Method for measuring freshness of fish |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3933396B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012047606A (en) * | 2010-08-27 | 2012-03-08 | Fujidenoro Co Ltd | Nucleic acid related substance measurement system and nucleic acid related substance measurement method |
CN113740410A (en) * | 2021-09-26 | 2021-12-03 | 浙江工商大学 | Method for detecting wet-type maturation maturity of tuna meat |
-
2001
- 2001-01-09 JP JP2001001911A patent/JP3933396B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012047606A (en) * | 2010-08-27 | 2012-03-08 | Fujidenoro Co Ltd | Nucleic acid related substance measurement system and nucleic acid related substance measurement method |
CN113740410A (en) * | 2021-09-26 | 2021-12-03 | 浙江工商大学 | Method for detecting wet-type maturation maturity of tuna meat |
Also Published As
Publication number | Publication date |
---|---|
JP3933396B2 (en) | 2007-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Abbas et al. | A review on correlations between fish freshness and pH during cold storage | |
Kim et al. | Development of a pH indicator composed of high moisture-absorbing materials for real-time monitoring of chicken breast freshness | |
Chun et al. | Evaluation of a freshness indicator for quality of fish products during storage | |
JP6426329B1 (en) | Method of evaluating sulfur compound-containing substance and method of determining volatile low molecular weight sulfur compound | |
US20100086655A1 (en) | Process of selecting a preparation method, a packaging and shipping method, or other dispostion of a foodstuff, and process of determining if a foodstuff is fresh or has previously been frozen | |
Xu et al. | Determination of volatile compounds in turbot (Psetta maxima) during refrigerated storage by headspace solid‐phase microextraction and gas chromatography–mass spectrometry | |
US20100182021A1 (en) | Determination of the safety of foodstuffs for consumption | |
Olivares et al. | Rapid detection of lipid oxidation in beef muscle packed under modified atmosphere by measuring volatile organic compounds using SIFT-MS | |
Olafsson et al. | Monitoring of fish freshness using tin oxide sensors | |
Yano et al. | Evaluation of beef aging by determination of hypoxanthine and xanthine contents: application of a xanthine sensor | |
US4105800A (en) | Immobilized enzyme method to assess fish quality | |
Grossi et al. | Automatic ice-cream characterization by impedance measurements for optimal machine setting | |
Rossano et al. | Influence of storage temperature and freezing time on histamine level in the European anchovy Engraulis encrasicholus (L., 1758): a study by capillary electrophoresis | |
Shelef et al. | Use of a titrimetric method to assess the bacterial spoilage of fresh beef | |
Sørensen et al. | Biogenic amines: a key freshness parameter of animal protein products in the coming circular economy | |
Zhang et al. | Real-time and rapid prediction of TVB-N of livestock and poultry meat at three depths for freshness evaluation using a portable fluorescent film sensor | |
Mendes et al. | Indole production and deepwater pink shrimp (Parapenaeus longirostris) decomposition | |
Flores et al. | Real time detection of aroma compounds in meat and meat products by SIFT-MS and comparison to conventional techniques (SPME-GC-MS) | |
Caicedo-Eraso et al. | Electrical impedance spectroscopy applied to quality control in the food industry | |
JP3933396B2 (en) | Method for measuring freshness of fish | |
Jastrzębska et al. | Optimization of cheese sample preparation methodology for free amino acid analysis by capillary isotachophoresis | |
Rodríguez-Jérez et al. | New methods to determine fish freshness in research and industry | |
Park et al. | Electric field induced super-cooling system for long term dry-aged beef loin | |
Yan et al. | Monitoring the quality change of fresh coconut milk using an electronic tongue | |
JP2020153774A (en) | Method of evaluating dry state of processed food |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20031031 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040120 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040129 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060404 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060606 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060704 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060825 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061017 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070313 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100330 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110330 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |