JP2002206813A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2002206813A
JP2002206813A JP2001003876A JP2001003876A JP2002206813A JP 2002206813 A JP2002206813 A JP 2002206813A JP 2001003876 A JP2001003876 A JP 2001003876A JP 2001003876 A JP2001003876 A JP 2001003876A JP 2002206813 A JP2002206813 A JP 2002206813A
Authority
JP
Japan
Prior art keywords
prime mover
compressors
compressor
air conditioner
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001003876A
Other languages
Japanese (ja)
Inventor
Kazuya Yamaguchi
口 和 也 山
Toshiya Okano
野 俊 也 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2001003876A priority Critical patent/JP2002206813A/en
Publication of JP2002206813A publication Critical patent/JP2002206813A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high efficient air conditioner capable of accommodating for a variation in a requisite air conditioning capability without changing a number of rotation of a prime mover, capable of restricting a reduction in thermal efficiency of the prime mover caused by changing-over the number of operating compressors and further capable of expanding a minimum region of operating capacity. SOLUTION: This air conditioner comprises a prime mover (1) acting as a driving machine for the air conditioner; a plurality of compressors (2), (3) driven by the prime mover (1); a transferring mechanism (4) for transmitting a rotating output of the prime mover (1) to the plurality of compressors (2), (3); and a transmission means (5) installed at any one of an output shaft (11) of the prime mover (1), input shafts (6), (7) of the compressor and the transferring mechanism (4). Any one (2) of the plurality of compressors (2), (3) is constituted such that it is always driven during an air conditioning operation. The other compressor (3) is constituted such that it is operated only in the case that a capability more than a predetermined air conditioning capability is required during an air conditioning operation. The transmission means (5) controls a rate of increasing speed to cause a torque of the prime mover (1) to become constant when the number of operating compressors is changed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原動機により1台
若しくは複数台の圧縮機を駆動し、空調を行う装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for driving one or more compressors by a motor to perform air conditioning.

【0002】[0002]

【従来の技術】従来は、単一の圧縮機の入力軸と、原動
機(例えばガス原動機)の出力軸とは、ベルト・プーリ
等の伝達機構を介して直結しており、増速比も固定であ
った。一方、要求空調能力が低い場合は、圧縮機の回転
数を低下させて対応するため、上述のように増速比を固
定した場合、ガス原動機の回転数も低下することとなり
ガス原動機の運転上問題が有った。
2. Description of the Related Art Conventionally, an input shaft of a single compressor and an output shaft of a prime mover (for example, a gas prime mover) are directly connected via a transmission mechanism such as a belt and a pulley, and a speed increase ratio is also fixed. Met. On the other hand, when the required air-conditioning capacity is low, the number of rotations of the compressor is reduced, and the number of rotations of the gas motor is reduced when the speed increase ratio is fixed as described above. There was a problem.

【0003】これに対処すべく、1台の原動機で複数台
(例えば2台)の圧縮機を回転駆動出来るようにし、要
求空調能力が低い場合は、1台の圧縮機のみを稼動させ
て対応することが行われている。
In order to cope with this, a plurality of (for example, two) compressors can be driven to rotate by one motor, and when the required air conditioning capacity is low, only one compressor is operated. That is being done.

【0004】しかし、圧縮機の稼動台数を2台から1台
に切り換えた際に、原動機のトルクが減少し、原動機の
熱効率も低下し、装置全体の効率悪化に繋がっていた。
However, when the number of operating compressors is switched from two to one, the torque of the prime mover is reduced, and the thermal efficiency of the prime mover is also reduced, leading to a decrease in the efficiency of the entire apparatus.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑みて提案されたものであり、原動機の回転数を変動
させることなく、要求空調能力の変動に対処出来、圧縮
機運転台数の切換えによる原動機の熱効率の低下を抑制
し、最小運転容量領域を拡大する高効率の空調機の提供
を目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above problems, and can cope with a change in required air-conditioning capacity without changing the rotation speed of a prime mover. It is an object of the present invention to provide a high-efficiency air conditioner that suppresses a decrease in thermal efficiency of a prime mover due to switching and expands a minimum operation capacity region.

【0006】[0006]

【課題を解決するための手段】本発明の空調機は、空調
機の駆動源である原動機(1)と、該原動機(1)によ
り駆動される複数の圧縮機(2、3)と、原動機(1)
の回転出力を複数の圧縮機(2、3)に伝達する伝達機
構(4)と、原動機(1)の出力軸(11)と圧縮機
(2、3)の入力軸(6、7)と伝達機構(4)の何れ
かに介装された変速手段(5)とを有しており、複数の
圧縮機(2、3)の何れか1つ(2)は空調運転に際し
て常時稼動される様に構成され、その他の圧縮機(3)
は空調運転に際して所定の空調能力以上が要求される場
合にのみ稼動する様に構成されており、変速手段(5)
は圧縮機の運転台数が切り換わる際に原動機(1)のト
ルクが一定となるべく増速比を制御する様に構成されて
いる(請求項1、図1〜図6)。
An air conditioner according to the present invention comprises a prime mover (1) as a drive source of the air conditioner, a plurality of compressors (2, 3) driven by the prime mover (1), and a prime mover. (1)
A transmission mechanism (4) for transmitting the rotational output of the motor to a plurality of compressors (2, 3), an output shaft (11) of a motor (1) and input shafts (6, 7) of the compressors (2, 3). Transmission means (5) interposed in any of the transmission mechanisms (4), and one of the plurality of compressors (2, 3) is always operated during air-conditioning operation. And other compressors (3)
The transmission means (5) is configured to operate only when the air-conditioning operation requires a predetermined air-conditioning capacity or more.
Is configured to control the speed increase ratio so that the torque of the prime mover (1) becomes constant when the number of operating compressors is switched (claim 1, FIG. 1 to FIG. 6).

【0007】ここで、前記空調機は運転に際して常時稼
動される前記圧縮機(2)の排除容積は、所定の空調能
力以上が要求される場合にのみ稼動する前記その他の圧
縮機(3)の排除容積に比較して、少なく設定されてい
るのが好ましい(請求項2、図1〜図5、図7)。
Here, the rejected volume of the compressor (2), which is always operated when the air conditioner is operated, is smaller than that of the other compressor (3), which is operated only when a predetermined air conditioning capacity or more is required. It is preferable that the volume is set to be smaller than the exclusion volume (claim 2, FIG. 1 to FIG. 5, FIG. 7).

【0008】また、前記変速手段(5)は、前記圧縮機
(2、3)の台数を切換える際に、原動機(1)のトル
クが変動しないように増速比を制御するのが好ましい
(請求項3、図1〜図5、図8)。
It is preferable that the transmission means (5) controls the speed increase ratio so that the torque of the prime mover (1) does not fluctuate when switching the number of the compressors (2, 3). Item 3, FIG. 1 to FIG. 5, FIG. 8).

【0009】或いは、前記変速手段(5)は、前記圧縮
機(2、3)の台数を切換える際に、原動機(1)の回
転数が変動しないように増速比を制御するのが好ましい
(請求項4、図1〜図5、図9)。
Alternatively, it is preferable that the speed change means (5) controls the speed increase ratio so that the number of rotations of the prime mover (1) does not fluctuate when switching the number of the compressors (2, 3) ( Claim 4, FIG. 1 to FIG. 5, FIG. 9).

【0010】ここで、原動機(1)としては、ガスエン
ジン等の内燃機関或いは燃焼機関に限るものではなく、
電動モータ、その他の電動機等が適用可能であり、特に
限定するものではない。
Here, the prime mover (1) is not limited to an internal combustion engine such as a gas engine or a combustion engine.
An electric motor, another electric motor, or the like is applicable, and is not particularly limited.

【0011】原動機の回転出力を複数の圧縮機に伝達す
る伝達機構(4)としては、ベルトとプーリ、チェーン
とスプロケット等の巻き掛け伝動や、歯車伝達機構、そ
の他、回転動力を確実に圧縮機に伝達出来る機構であれ
ば良い。
The transmission mechanism (4) for transmitting the rotation output of the prime mover to a plurality of compressors includes winding transmission of belts and pulleys, chains and sprockets, gear transmission mechanisms, and other means for reliably transmitting rotational power to the compressor. Any mechanism can be used as long as the mechanism can be transmitted.

【0012】さらに、変速手段(5)としては、所謂
「CVT」等の無段変速機構であっても良いし、或い
は、歯車機構等で構成された段付の変速機構であっても
良い。
Further, the transmission means (5) may be a continuously variable transmission mechanism such as a so-called "CVT" or a stepped transmission mechanism constituted by a gear mechanism or the like.

【0013】かかる構成を具備する本発明によれば、要
求される空調能力に対応して増速比を制御することによ
り、原動機の回転数を変動すること無く、要求される空
調能力の変動に対処出来る。
According to the present invention having such a configuration, by controlling the speed increase ratio in accordance with the required air conditioning capacity, the required air conditioning capacity can be changed without changing the rotation speed of the prime mover. I can deal with it.

【0014】また、圧縮機の運転台数が切り換わる際に
原動機のトルクが一定となるべく増速比を制御する様に
構成したので、圧縮機運転台数の切換により原動機の熱
効率が低下することが無い。
Further, since the speed increase ratio is controlled so that the torque of the prime mover becomes constant when the number of compressors is switched, the thermal efficiency of the prime mover is not reduced by switching the number of compressors. .

【0015】本発明の実施に際して、空調運転に際して
常時稼動される前記圧縮機の排除容積は、所定の空調能
力以上が要求される場合にのみ稼動する前記その他の圧
縮機の排除容積に比較して、少なく設定されているのが
好ましい。
In practicing the present invention, the rejected volume of the compressor which is always operated during the air-conditioning operation is smaller than the rejected volume of the other compressor which is operated only when a predetermined air-conditioning capacity or more is required. Is preferably set to be small.

【0016】この様に設定すれば、最大空調能力と最小
空調能力との比率(所謂「ターンダウン」)を大きくと
ることが可能となる。
With this setting, it is possible to increase the ratio between the maximum air-conditioning capacity and the minimum air-conditioning capacity (so-called "turndown").

【0017】ここで、異なる排除容積を有する複数台
(例えば2台)の圧縮機を有することは、本発明が前記
変速手段を有することによる。原動機出力軸と圧縮機入
力軸との増速比が固定されている従来の原動機付の空調
機において、異なる排除容積を有する複数台(例えば2
台)の圧縮機を備えた場合には、最小空調能力と最大空
調能力との間に運転不可能な領域が生じる恐れがあるか
らである。
Here, having a plurality of compressors (for example, two compressors) having different displacement volumes is based on the fact that the present invention has the above-mentioned transmission means. In a conventional motor-equipped air conditioner having a fixed speed increase ratio between a motor output shaft and a compressor input shaft, a plurality of air conditioners (for example, 2
This is because, if the compressor is provided, an inoperable region may be generated between the minimum air-conditioning capacity and the maximum air-conditioning capacity.

【0018】[0018]

【発明の実施の形態】以下、添付図面を参照しつつ、本
発明の実施形態に関して説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0019】図1において、空調機は、全体をAで示す
室外機と、全体をBで示す室内機より構成される。
In FIG. 1, the air conditioner comprises an outdoor unit indicated by A in its entirety and an indoor unit indicated by B in its entirety.

【0020】前記室外機Aは、原動機1と、原動機1に
より駆動される第一の圧縮機2及び第二の圧縮機3と、
原動機1の回転力を前記第一の圧縮機2及び第二の圧縮
機3に伝達するプーリとベルトからなる伝達機構4と、
無段変速機(「CVT」以降無段変速機をCVTと呼称
する)5と、復水機10aと電動ファン10bとからな
る凝縮器10と、後述する冷媒用の配管群とを含んでい
る。
The outdoor unit A includes a prime mover 1, a first compressor 2 and a second compressor 3 driven by the prime mover 1,
A transmission mechanism 4 including a pulley and a belt for transmitting the rotational force of the prime mover 1 to the first compressor 2 and the second compressor 3,
It includes a continuously variable transmission (hereinafter, a continuously variable transmission is referred to as a CVT hereinafter) 5, a condenser 10 including a condenser 10a and an electric fan 10b, and a piping group for a refrigerant described later. .

【0021】ここで、CVT5は、原動機1と伝達機構
4の間に介装されており、冷房負荷状況に応答して増速
比が適宜変えられる様に構成されている。なお図1にお
いて、符号11は原動機1の出力軸を示している。
Here, the CVT 5 is interposed between the prime mover 1 and the transmission mechanism 4, and is configured so that the speed increase ratio can be appropriately changed in response to a cooling load condition. In FIG. 1, reference numeral 11 indicates an output shaft of the prime mover 1.

【0022】一方、前記室内機Bは複数(図示では2
台)の膨張弁20と、複数(図示では2台)の蒸発器2
1と、後述する冷媒用の配管群とを含んでいる。
On the other hand, a plurality of indoor units B (two
) Expansion valve 20 and a plurality (two in the figure) of evaporators 2
1 and a piping group for a refrigerant described later.

【0023】前記プーリとベルトからなる伝達機構4
は、無段変速機5の出力軸51に系止されたプーリ41
と、第一の圧縮機2の入力軸6に系止された第二のプー
リ42と、第二の圧縮機3のクラッチ8を介装した入力
軸7に系止された第三のプーリ43と、ベルト44、と
を含んでいる。原動機1の回転力が無段変速機5を介し
てプーリ41に伝えられ、さらに、プーリ41の回転力
がベルト44によって第二のプーリ42と第三のプーリ
43とに伝えられるように構成されている。
Transmission mechanism 4 comprising pulley and belt
Is a pulley 41 fixed to the output shaft 51 of the continuously variable transmission 5.
A second pulley 42 connected to the input shaft 6 of the first compressor 2 and a third pulley 43 connected to the input shaft 7 with the clutch 8 of the second compressor 3 interposed therebetween. And a belt 44. The torque of the prime mover 1 is transmitted to the pulley 41 via the continuously variable transmission 5, and the torque of the pulley 41 is further transmitted to the second pulley 42 and the third pulley 43 by the belt 44. ing.

【0024】また、前記クラッチ5は要求冷房負荷の大
小によって原動機から第二の圧縮機への回転力の断接を
行うものである。
The clutch 5 connects and disconnects the rotational force from the prime mover to the second compressor depending on the required cooling load.

【0025】空調ユニットと空調配管の接続関係は室外
機A側から接続順に、第一の圧縮機2から第一の配管L
1が第二の圧縮機3に設けられた第二の配管L2に接続
され、第二の配管L2は切換え弁9を介して第三の配管
L3に接続され、第三の配管L3は凝縮器10aに接続
されている。
The connection relationship between the air-conditioning unit and the air-conditioning pipes is as follows from the outdoor unit A side in the connection order from the first compressor 2 to the first pipe L.
1 is connected to a second pipe L2 provided in the second compressor 3, the second pipe L2 is connected to a third pipe L3 via a switching valve 9, and the third pipe L3 is connected to a condenser. 10a.

【0026】凝縮器10aから第四の配管L4が室内機
B側の膨張弁20を介装した第五の配管L5に接続さ
れ、また、第五の配管L5は蒸発器21に接続されてい
る。
From the condenser 10a, a fourth pipe L4 is connected to a fifth pipe L5 provided with the expansion valve 20 on the indoor unit B side, and the fifth pipe L5 is connected to the evaporator 21. .

【0027】蒸発器21から第六の配管L6が第七の配
管L7に接続され、第七の配管L7は前記切換え弁9を
介して第八の配管L8に接続され、第八の配管L8は前
記第一の圧縮機2に接続され、上述の空調ユニットと配
管全てが連通している。そして、冷媒がこれらを循環す
る際に、室内・外で熱の授受を行うことによって冷・暖
房が行われるように構成されている。
From the evaporator 21, a sixth pipe L6 is connected to a seventh pipe L7, the seventh pipe L7 is connected to an eighth pipe L8 via the switching valve 9, and an eighth pipe L8 is connected to the eighth pipe L8. The air conditioning unit is connected to the first compressor 2, and all the pipes communicate with the air conditioning unit. When the refrigerant circulates, cooling / heating is performed by transferring heat inside and outside the room.

【0028】なお、切換え弁9はバルブを(図示では9
0度)回転することにより冷媒の流路を変え、冷・暖房
の切換えを行うものである。
The switching valve 9 is a valve (9 in the figure).
(0 degree) By rotating, the flow path of the refrigerant is changed, and switching between cooling and heating is performed.

【0029】本発明の特徴である、要求冷房負荷の変化
と圧縮機の運転台数の切換え(運転方法)に関して、原
動機回転数と原動機トルクの関係(図2)、原動機回転
数と圧縮機回転数の関係(図3)、圧縮機トルクと原動
機トルクの関係(図4)、圧縮機トルクと圧縮機回転数
の関係(図5)を用いて従来技術との比較も含めて説明
する。
With respect to the change of the required cooling load and the switching of the number of operating compressors (operating method), which are the characteristics of the present invention, the relationship between the motor speed and the motor torque (FIG. 2), the motor speed and the compressor speed , The relationship between the compressor torque and the prime mover torque (FIG. 4), and the relationship between the compressor torque and the compressor rotation speed (FIG. 5), including comparison with the prior art.

【0030】なお、説明を容易にするために従来技術で
は排除容積200cc/revの圧縮機を2台、本発明
では第一、第二の圧縮機の排除容積を夫々順に100c
c/rev、300cc/rev(従来技術と本発明に
おいて合計の冷房能力は等しい)とし、室温が次第に上
昇し、要求冷房負荷が増加する場合を想定して運転の推
移を説明する。
For the sake of simplicity, the prior art uses two compressors with an excluded volume of 200 cc / rev, and in the present invention, the excluded volumes of the first and second compressors are respectively set to 100 c / rev.
The transition of operation will be described on the assumption that c / rev is 300 cc / rev (the total cooling capacity is equal in the conventional technology and the present invention), and the room temperature gradually increases and the required cooling load increases.

【0031】先ず図2において(図3〜図5をも参照し
て)、従来技術による運転はイ、ロ、ハ、ニを結ぶ
(ロ、ハ間は不連続)太い破線で、本発明による運転は
a、ホ、b、c、ヘ、d、ト、チを結ぶ太い実線で示
す。
Referring first to FIG. 2 (see also FIGS. 3 to 5), the operation according to the prior art is a thick broken line connecting A, B, C and D (discontinuous between B and C) according to the present invention. The operation is indicated by a thick solid line connecting a, e, b, c, f, d, g, and j.

【0032】従来技術では当初要求冷房負荷が小さく、
1台のみの圧縮機の運転を原動機が800rpmの回転
数から始め(イ点)、室温の上昇と共に原動機をトルク
一定(42Nm)に保ちながら回転数を上げていき、ロ
点(1600rpm)に至り、クラッチを繋ぐことで2
台目の圧縮機も同時に運転する(ロ点からハ点に跳
ぶ)。
In the prior art, the required cooling load is initially small,
The operation of only one compressor starts with the rotation speed of the prime mover at 800 rpm (point A). As the room temperature rises, the rotation speed is increased while maintaining the torque of the prime mover at a constant torque (42 Nm), and the rotation point is reached (1600 rpm). , 2 by connecting the clutch
The second compressor also operates at the same time (jumps from point B to point C).

【0033】図中、破線で示される原動機の等出力線
と、二点鎖線で示される等熱効率線から読取れるよう
に、原動機の出力は1台運転のときはイ点の3.7kw
からロ点の7kwに増加しており、2台運転開始のハ点
の11kwから最大空調能力である二点の18kwまで
増加し、一方、熱効率は1台運転では20%を下回る値
(イ点)から約21%(ロ点)に、2台運転では28.
4%(ハ点)から28.7%(ニ点)まで変化してい
る。なお、2台の圧縮機の原動機に対する増速比は1.
45の固定値である(図3参照)。
In the figure, the output of the prime mover is 3.7 kW at point A when one vehicle is operating, as can be read from the iso-power line of the prime mover indicated by the broken line and the isothermal efficiency line indicated by the two-dot chain line.
From the point B at the start of operation of the two units to 11 kW, which is the maximum air-conditioning capacity, at 18 points. On the other hand, the thermal efficiency is less than 20% for the operation of one unit (point A). ) To about 21% (point B).
It changes from 4% (C point) to 28.7% (D point). The speed increase ratio of the two compressors to the prime mover was 1.
This is a fixed value of 45 (see FIG. 3).

【0034】一方、本発明のシステムによれば、イ点よ
りも更に要求冷房負荷の小さな運転可能な最小空調能力
時であるa点(原動機回転数800rpm、原動機トル
ク18Nm、原動機出力1.44kw)から第一の圧縮
機2のみで運転を始め、原動機1の回転数を800rp
mに保ったまま、a点とb点(原動機トルク75Nm、
原動機出力6kw、圧縮機回転数4000rpm(図3
参照)、圧縮機トルク15Nm(図5参照))の間で無
段変速機(CVT)5の増速比を増減して空調負荷を調
節する。
On the other hand, according to the system of the present invention, the point a (the prime mover speed is 800 rpm, the prime mover torque is 18 Nm, the prime mover output is 1.44 kW) at the time of the operable minimum air-conditioning capacity having a smaller required cooling load than the point A. Starts the operation with only the first compressor 2 and changes the rotation speed of the prime mover 1 to 800 rpm
m and points a and b (motor torque 75 Nm,
The motor output is 6 kW and the compressor speed is 4000 rpm (see FIG. 3).
) And the compressor torque of 15 Nm (see FIG. 5)) to increase or decrease the speed increase ratio of the continuously variable transmission (CVT) 5 to adjust the air conditioning load.

【0035】なお、図3、図4において、破線は等変速
比線図で、右肩に付した数字は増速比を表し、又、図4
は原動機の回転数と圧縮機の回転数の関係を示すもので
ある。従来技術が全ての運転領域で変速比が一定である
のに対して、本発明は1台の圧縮機の運転時及び2台運
転時で軽負荷の場合には原動機回転数は一定で、且つ、
CVTの変速比を変えることにより圧縮機は増速してお
り、2台運転時で高負荷の場合にはCVTの変速比が一
定で、原動機の回転速度を変化させることが示されてい
る。
In FIGS. 3 and 4, the broken lines are equal speed ratio diagrams, and the numbers attached to the right shoulder indicate the speed increase ratio.
Shows the relationship between the rotation speed of the prime mover and the rotation speed of the compressor. Whereas the prior art has a constant gear ratio in all operating ranges, the present invention provides that the prime mover rotation speed is constant when one compressor is operating and two units are operating with a light load, and ,
It is shown that the speed of the compressor is increased by changing the speed ratio of the CVT, and the speed ratio of the CVT is constant and the rotation speed of the prime mover is changed when the load is high and the two units are operated.

【0036】図5は、圧縮機のトルクと、回転数の関係
を示すグラフであり、本発明の圧縮機の1台運転時のト
ルクは従来技術のトルクに比べ小さいが、回転数の幅が
大きく採ってあり、従って特に小さな要求空調負荷に対
して対処しやすいことが窺い知れる。なお、図5中の破
線は圧縮機の等消費馬力線図を示す。ここで、図2から
図5までは同一の符号を用いてある。
FIG. 5 is a graph showing the relationship between the torque of the compressor and the number of revolutions. The torque of one compressor of the present invention during operation of one compressor is smaller than that of the prior art, but the width of the number of revolutions is small. It can be seen that it is easy to deal with especially small required air-conditioning load. In addition, the broken line in FIG. 5 shows an iso-consumption horsepower diagram of the compressor. Here, the same reference numerals are used in FIGS.

【0037】室温の上昇に伴い、c点(原動機回転数8
00rpm、原動機トルク75Nm、原動機出力6k
w、圧縮機回転数1350rpm(図3を参照)、圧縮
機トルク60Nm(図5参照))で前記クラッチ5を繋
ぎ、第二の圧縮機3も運転して、原動機回転数を800
rpmに保ちつつ、原動機トルクが100Nmを超えな
い(d点)範囲でCVT5の増速比を制御する。
As the room temperature rises, point c (the number of motor rotations of 8
00rpm, motor torque 75Nm, motor output 6k
w, compressor speed 1350 rpm (see FIG. 3), compressor torque 60 Nm (see FIG. 5)), the clutch 5 is engaged, the second compressor 3 is also operated, and the prime mover speed is 800
While maintaining the rpm, the speed increase ratio of the CVT 5 is controlled in a range where the motor torque does not exceed 100 Nm (point d).

【0038】更に空調負荷が増大した場合には、CVT
5の増速比を一定に保ち、原動機1の回転数を増加さ
せ、ト点を経て最大空調能力であるチ点に至るように制
御することで、要求冷房負荷に対応する。なお、ヘ点、
ト点は従来技術の夫々ロ点とハ点における原動機の出力
と同じ出力点を表すもので、運転上の特異点を示すもの
ではない。
If the air conditioning load further increases, the CVT
By keeping the speed increase ratio of 5 constant, increasing the number of revolutions of the prime mover 1 and controlling the vehicle to reach the maximum air conditioning capacity via the point G, the required cooling load can be met. In addition,
The point G represents the same output point as the output of the prime mover at point B and point C in the prior art, and does not indicate a singular point in operation.

【0039】本発明と従来技術との原動機の熱効率の比
較を、最もエネルギ消費の多い回転数800rpm以上
について行う。
The comparison between the thermal efficiency of the prime mover of the present invention and that of the prior art is carried out for a rotational speed of 800 rpm or more, which consumes the most energy.

【0040】従来技術では前述の如く、熱効率は1台運
転では20%を下回る値(イ点)から約21%(ロ点)
に、2台運転では28.4%(ハ点)から28.7%
(ニ点)まで変化している。他方、本発明では、上記運
転域では2台運転となり、28.3%(d点)から2
9.7%(チ点)までと従来技術を凌駕している。(図
2参照)
In the prior art, as described above, the thermal efficiency in a single-unit operation is reduced from less than 20% (point A) to about 21% (point B).
However, 28.4% (point C) to 28.7% for two-unit operation
(Two points). On the other hand, in the present invention, the two-vehicle operation is performed in the above-mentioned operation range, and 28.3% (d point) decreases
Up to 9.7% (H point), surpassing the conventional technology. (See Fig. 2)

【0041】また、空調能力に対する原動機熱効率の関
係は、図6に示すように従来技術に対して本発明は、全
空調能力域において向上しているが、運転台数切換え点
(ロ点、c点)を含む低から中能力域において顕著であ
る。なお、図6中の符号は図2から図5の符合に一致さ
せている。
As shown in FIG. 6, the relationship between the heat efficiency of the prime mover and the air conditioning capacity is improved in the entire air conditioning capacity area of the present invention as compared with the prior art. ) In the low to medium capacity range. The reference numerals in FIG. 6 correspond to those in FIGS. 2 to 5.

【0042】前述の如く、第二の圧縮機の排除容積30
0cc/revに対して、第一の圧縮機の排除容積を1
00cc/revとより小さな数値とし、低回転から高
回転まで使用することにより、ターンダウン(最大空調
能力と最小空調能力の比)を大きくとることが出来、よ
り木目細かな空調ニーズに応えると共に、省エネルギー
を達成するものでもある。
As described above, the displacement volume 30 of the second compressor 30
For 0 cc / rev, the displacement volume of the first compressor is 1
By using a lower value of 00 cc / rev and using it from low to high speeds, the turndown (the ratio of the maximum air-conditioning capacity to the minimum air-conditioning capacity) can be increased, and in addition to meeting the needs of finer air conditioning, It also achieves energy savings.

【0043】図2から図5までに示す各ポイントで運転
する制御フローに関して、図7を用いて(図1をも参照
して)説明する。
The control flow for operating at each point shown in FIGS. 2 to 5 will be described with reference to FIG. 7 (also referring to FIG. 1).

【0044】スタートして、ステップS1において、空
調負荷を変動させるか否かを判断して、変動させる必要
が無ければ(ステップS1においてNO)、ステップS
1を繰り返す。変動させる必要があれば(ステップS1
においてYES)、ステップS2に進む。
After starting, in step S1, it is determined whether or not the air-conditioning load is to be varied. If it is not necessary to do so (NO in step S1), step S1 is performed.
Repeat 1. If it is necessary to change (step S1
YES at step S2), and proceeds to step S2.

【0045】ステップS2では、圧縮機の回転数が下限
値と上限値の間にあるか否かを判断して、間に無ければ
(ステップS2においてNO)、ステップS3に進み、
クラッチ8を断・接し、圧縮機の運転台数を切り替え、
ステップS4に進む。間にあれば(ステップS2におい
てYES)、ステップS4に進む。
In step S2, it is determined whether or not the number of revolutions of the compressor is between the lower limit value and the upper limit value. If not, (NO in step S2), the process proceeds to step S3.
Disconnects and connects the clutch 8, switches the number of operating compressors,
Proceed to step S4. If there is an interval (YES in step S2), the process proceeds to step S4.

【0046】ステップS4では、前記CVTの増速比が
下限値と上限値の間にあるか否かを判断して、間に無け
れば(ステップS4においてNO)、ステップS5に進
み、間にあれば(ステップS4においてYES)、ステ
ップS6に進む。
In step S4, it is determined whether or not the speed increase ratio of the CVT is between the lower limit value and the upper limit value. If not, the process proceeds to step S5 and proceeds to step S5. If (YES in step S4), the process proceeds to step S6.

【0047】ステップS6では、原動機回転数を一定に
保ちながら前記CVTの増速比を図示せぬデータベース
に従って所定値に変え、次のステップS7に進み、所定
の空調能力であるか否かを判断し、所定の空調能力でな
い場合(ステップS7においてNO)、ステップS6に
戻り、所定の能力であれば(ステップS7においてYE
S)、ステップS1に戻る。
In step S6, the speed increase ratio of the CVT is changed to a predetermined value according to a database (not shown) while keeping the rotation speed of the prime mover, and the process proceeds to the next step S7 to determine whether or not the air conditioning capacity is the predetermined. If it is not the predetermined air conditioning capacity (NO in step S7), the process returns to step S6, and if it is the predetermined capacity (YE in step S7).
S), returning to step S1.

【0048】ステップS5では、前記CVTの増速比を
一定に保ったまま、原動機回転数を変え、次のステップ
S8に進む。
In step S5, while the speed increase ratio of the CVT is kept constant, the rotation speed of the prime mover is changed, and the process proceeds to the next step S8.

【0049】ステップS8では、所定の空調能力である
か否かを判断し、所定の空調能力でない場合(ステップ
S8においてNO)、ステップS5に戻り、所定の能力
であれば(ステップS8においてYES)、ステップS
1に戻り、上記フローを繰り返す。
In step S8, it is determined whether the air conditioner has the predetermined air conditioning capability. If the air conditioner is not the predetermined air conditioner (NO in step S8), the process returns to step S5, and if the air conditioner has the predetermined air conditioner (YES in step S8). , Step S
1 and the above flow is repeated.

【0050】かかる構成を具備する本発明によれば、要
求される空調能力に対応して増速比を制御することによ
り、原動機の回転数を変動すること無く、要求される空
調能力の変動に対処出来る。
According to the present invention having such a configuration, by controlling the speed increase ratio in accordance with the required air conditioning capacity, the required air conditioning capacity can be changed without changing the rotation speed of the prime mover. I can deal with it.

【0051】ここで、装置そのものは第一及び、第二実
施形態(図1参照)と同じであるが、前記圧縮機の運転
台数を切換える際(図2のd点からト点の間に相当)
に、原動機1のトルクが変動しないように前記CVT5
の増速比を制御するように構成する事も可能である。こ
の場合の制御フローに関して、図8を用いて(図1、図
2をも参照して)説明する。
Here, the apparatus itself is the same as in the first and second embodiments (see FIG. 1), but when switching the number of operating compressors (corresponding to a point between point d and point G in FIG. 2). )
In order to prevent the torque of the motor 1 from fluctuating, the CVT 5
It is also possible to configure so as to control the speed increase ratio. The control flow in this case will be described with reference to FIG. 8 (see also FIGS. 1 and 2).

【0052】スタートして、ステップS21において、
要求空調能力により圧縮機の運転台数を切換えるか否か
を判断して、切換える必要が無ければ(ステップS21
においてNO)、ステップS1を繰り返し、切換える必
要があれば(ステップS21においてYES)、ステッ
プS22に進む。
After starting, in step S21,
It is determined whether or not to switch the number of operating compressors based on the required air-conditioning capacity, and if there is no need to switch (step S21)
In step S21, if step S1 is repeated and it is necessary to switch (YES in step S21), the process proceeds to step S22.

【0053】ステップS22では、原動機1のトルクを
検出しており、このトルク値から増速比を決定しCVT
5の増速比を変え(ステップS23)、ステップS24
に進む。
In step S22, the torque of the prime mover 1 is detected, and the speed increase ratio is determined from this torque value, and the CVT is determined.
5 is changed (step S23), and step S24 is changed.
Proceed to.

【0054】ステップS24では、所定の増速比になっ
ているか否かを判断して、所定の増速比になっていなけ
れば(ステップS24においてNO)、ステップS23
に戻り、所定の増速比になっていれば(ステップS24
においてYES)、ステップS21に戻り、以下同様の
制御を繰り返す。
In step S24, it is determined whether or not a predetermined speed increase ratio has been reached. If the predetermined speed increase ratio has not been reached (NO in step S24), step S23 is executed.
And if the predetermined speed increase ratio has been reached (step S24).
Is YES), the process returns to step S21, and the same control is repeated thereafter.

【0055】圧縮機の運転台数が切り換わる際に原動機
のトルクが一定となるべく増速比を制御する様に構成し
たので、圧縮機運転台数の切換により原動機の熱効率が
低下することが無い。
When the number of operating compressors is switched, the speed increase ratio is controlled so that the torque of the prime mover is constant, so that the thermal efficiency of the prime mover does not decrease by switching the number of operating compressors.

【0056】さらに、装置そのものは図1で示すのと同
じであるが、前記圧縮機の運転台数を切換える際(図2
のヘ点からd点の間に相当)に、前記CVT5の増速比
を制御して、原動機1の回転数が変動しない様に構成す
る事も出来る。この場合の制御フローに関して、図9を
用いて(図1、図2をも参照して)説明する。
Further, the apparatus itself is the same as that shown in FIG. 1, but when switching the number of operating compressors (FIG. 2).
(Corresponding to a point between point f and point d)), the speed increase ratio of the CVT 5 may be controlled so that the rotation speed of the prime mover 1 does not fluctuate. The control flow in this case will be described with reference to FIG. 9 (see also FIGS. 1 and 2).

【0057】スタートして、ステップS31において、
要求空調能力により圧縮機の運転台数を切換えるか否か
を判断して、切換える必要が無ければ(ステップS31
においてNO)、ステップS31を繰り返し、切換える
必要があれば(ステップS31においてYES)、ステ
ップS32に進む。
After starting, in step S31,
It is determined whether or not to switch the number of operating compressors based on the required air-conditioning capacity, and if there is no need to switch (step S31)
In step S31, if step S31 is repeated (YES in step S31), the process proceeds to step S32.

【0058】ステップS32では、原動機1の回転数を
検出しており、増速比を決定し、CVT5の増速比を変
え(ステップS33)、ステップS34に進む。
In step S32, the rotation speed of the prime mover 1 is detected, the speed increase ratio is determined, the speed increase ratio of the CVT 5 is changed (step S33), and the process proceeds to step S34.

【0059】ステップS34では、所定の増速比になっ
ているか否かを判断して、所定の増速比になっていなけ
れば(ステップS34においてNO)、ステップS33
に戻り、所定の増速比になっていれば(ステップS34
においてYES)、ステップS31に戻り、以下同様の
制御を繰り返す。
In step S34, it is determined whether or not a predetermined speed increase ratio has been reached. If the predetermined speed increase ratio has not been reached (NO in step S34), step S33 is executed.
And if the predetermined speed increase ratio has been reached (step S34).
Is YES), the process returns to step S31, and the same control is repeated thereafter.

【0060】かかる構成を具備する本発明の空調機によ
れば、要求される空調能力に対応して増速比を制御する
ことにより、原動機の回転数を変動すること無く、要求
される空調能力の変動に対処することが出来る。この様
に構成すれば、圧縮機運転台数の切換により原動機の熱
効率が低下することが無い。
According to the air conditioner of the present invention having such a configuration, by controlling the speed increase ratio in accordance with the required air conditioning capacity, the required air conditioning capacity can be maintained without changing the rotation speed of the prime mover. Can be dealt with. With this configuration, the thermal efficiency of the prime mover does not decrease due to the switching of the number of operating compressors.

【0061】さらに、空調運転に際して常時稼動される
圧縮機の排除容積は、所定の空調能力以上が要求される
場合にのみ稼動するその他の圧縮機の排除容積に比較し
て、少なく設定すれば、最大空調能力と最小空調能力と
の比率(所謂「ターンダウン」)を大きくとることが可
能となる。
Furthermore, if the excluded volume of the compressor that is always operated during the air-conditioning operation is set smaller than the excluded volume of other compressors that are operated only when a predetermined air-conditioning capacity or more is required, It is possible to increase the ratio between the maximum air conditioning capacity and the minimum air conditioning capacity (so-called “turndown”).

【0062】[0062]

【発明の効果】以上の通り本発明によれば、以下の優れ
た効果を奏する。 (a) 要求される空調能力に対応して増速比を制御す
ることにより、原動機の回転数を変動すること無く、要
求される空調能力の変動に対処出来て、原動機の効率が
向上する。 (b) 圧縮機運転台数切り換えによる原動機の熱効率
の低下が無い。 (c) 常時稼動される圧縮機の排除容積は、所定の空
調能力以上が要求される場合にのみ稼動するその他の圧
縮機の排除容積に比較して、少なく設定されているの
で、最大空調能力と最小空調能力との比率(所謂「ター
ンダウン」)を大きくとることが可能となるたり、木目
細かな空調ニーズに対応出来る。 (d) 省エネルギーが達成出来る。
As described above, according to the present invention, the following excellent effects can be obtained. (A) By controlling the speed increase ratio in accordance with the required air-conditioning capacity, it is possible to cope with the required change in the air-conditioning capacity without changing the rotation speed of the prime mover, thereby improving the efficiency of the prime mover. (B) There is no decrease in the thermal efficiency of the prime mover due to switching of the number of operating compressors. (C) Since the rejection volume of the compressor that is constantly operated is set to be smaller than the rejection volume of other compressors that operate only when a predetermined air conditioning capacity or more is required, the maximum air conditioning capacity And the minimum air-conditioning capacity (so-called “turndown”) can be increased, or the air-conditioning needs can be finely adjusted. (D) Energy saving can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施形態及び第二実施形態である
空調機の全体構成図。
FIG. 1 is an overall configuration diagram of an air conditioner according to a first embodiment and a second embodiment of the present invention.

【図2】GHP用原動機の所定の運転ポイントにおける
原動機回転数とトルクの関係を示す図。
FIG. 2 is a diagram showing a relationship between the rotation speed of the prime mover and the torque at a predetermined operation point of the prime mover for GHP.

【図3】GHP用原動機の運転ポイントにおける原動機
回転数と圧縮機回転数の関係を示す図。
FIG. 3 is a diagram showing a relationship between a prime mover rotational speed and a compressor rotational speed at an operation point of a GHP prime mover.

【図4】GHP用原動機の運転ポイントにおける圧縮機
トルクと原動機トルクとの関係を示す図。
FIG. 4 is a diagram showing the relationship between compressor torque and prime mover torque at operating points of the GHP prime mover.

【図5】GHP用原動機の運転ポイントにおける圧縮機
トルクと圧縮機回転数との関係を示す図。
FIG. 5 is a diagram showing a relationship between compressor torque and compressor rotation speed at an operation point of the GHP prime mover.

【図6】空調能力と原動機熱効率の関係を示すグラフ。FIG. 6 is a graph showing the relationship between the air conditioning capacity and the heat efficiency of the prime mover.

【図7】本発明によるGHP用原動機の運転制御フロー
を示すフローチャート。
FIG. 7 is a flowchart showing an operation control flow of the GHP prime mover according to the present invention.

【図8】本発明によるGHP用原動機の圧縮機運転台数
変更時の運転制御であって、原動機トルクを一定とする
制御を示すフローチャート。
FIG. 8 is a flowchart showing operation control when changing the number of operating compressors of the GHP prime mover according to the present invention, the control being performed to keep the prime mover torque constant.

【図9】本発明によるGHP用原動機の圧縮機運転台数
変更時の運転制御であって、原動機回転数を一定とする
制御を示すフローチャート。
FIG. 9 is a flowchart showing operation control when changing the number of operating compressors of the GHP prime mover according to the present invention, the control being performed to keep the prime mover rotational speed constant.

【符号の説明】[Explanation of symbols]

1・・・原動機 2・・・第一の圧縮機 3・・・第二の圧縮機 4・・・伝達機構 5・・・変速手段(無段変速機) 6・・・入力軸 8・・・クラッチ 9・・・切換弁 10・・・凝縮器 A・・・室外機 B・・・室内機 DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... 1st compressor 3 ... 2nd compressor 4 ... Transmission mechanism 5 ... Transmission means (continuously variable transmission) 6 ... Input shaft 8 ...・ Clutch 9 ・ ・ ・ Switching valve 10 ・ ・ ・ Condenser A ・ ・ ・ Outdoor unit B ・ ・ ・ Indoor unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 空調機の駆動源である原動機と、該原動
機により駆動される複数の圧縮機と、原動機の回転出力
を複数の圧縮機に伝達する伝達機構と、原動機の出力軸
と圧縮機の入力軸と伝達機構の何れかに介装された変速
手段とを有しており、複数の圧縮機の何れか1つは空調
運転に際して常時稼動される様に構成され、その他の圧
縮機は空調運転に際して所定の空調能力以上が要求され
る場合にのみ稼動する様に構成されており、変速手段は
圧縮機の運転台数が切り換わる際に原動機のトルクが一
定となるべく増速比を制御する様に構成されていること
を特徴とする空調機。
1. A motor as a driving source of an air conditioner, a plurality of compressors driven by the motor, a transmission mechanism for transmitting rotation output of the motor to the plurality of compressors, an output shaft of the motor and a compressor , And transmission means interposed in any of the transmission mechanisms, and one of the plurality of compressors is configured to always operate during the air-conditioning operation, and the other compressors The air conditioner is configured to operate only when a predetermined air conditioning capacity or more is required during the air conditioning operation, and the transmission means controls the speed increase ratio so that the torque of the prime mover becomes constant when the number of operating compressors is switched. An air conditioner characterized by having the following configuration.
【請求項2】 空調運転に際して常時稼動される前記圧
縮機の排除容積は、所定の空調能力以上が要求される場
合にのみ稼動する前記その他の圧縮機の排除容積に比較
して、少なく設定されている請求項1の空調機。
2. The rejection volume of the compressor that is constantly operated during the air-conditioning operation is set to be smaller than the rejection volume of the other compressors that operate only when a predetermined air-conditioning capacity or more is required. The air conditioner of claim 1, wherein:
【請求項3】 前記変速手段は、前記圧縮機の台数を切
換える際に、原動機のトルクが変動しないように増速比
を制御することを特徴とする請求項1若しくは請求項2
記載の空調機。
3. The speed changer according to claim 1, wherein, when switching the number of the compressors, the speed changer controls the speed increase ratio so that the torque of the prime mover does not fluctuate.
The described air conditioner.
【請求項4】 前記変速手段は、前記圧縮機の台数を切
換える際に、原動機の回転数が変動しないように増速比
を制御することを特徴とする請求項1若しくは請求項2
記載の空調機。
4. The apparatus according to claim 1, wherein the speed change means controls a speed increase ratio so that the number of rotations of the prime mover does not fluctuate when switching the number of the compressors.
The described air conditioner.
JP2001003876A 2001-01-11 2001-01-11 Air conditioner Pending JP2002206813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001003876A JP2002206813A (en) 2001-01-11 2001-01-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001003876A JP2002206813A (en) 2001-01-11 2001-01-11 Air conditioner

Publications (1)

Publication Number Publication Date
JP2002206813A true JP2002206813A (en) 2002-07-26

Family

ID=18872150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001003876A Pending JP2002206813A (en) 2001-01-11 2001-01-11 Air conditioner

Country Status (1)

Country Link
JP (1) JP2002206813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282986A (en) * 2004-03-30 2005-10-13 Aisin Seiki Co Ltd Internal combustion engine-driven heat pump type air conditioner
JP2008045814A (en) * 2006-08-16 2008-02-28 Tokyo Gas Co Ltd Gas engine heat pump and its control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282986A (en) * 2004-03-30 2005-10-13 Aisin Seiki Co Ltd Internal combustion engine-driven heat pump type air conditioner
JP4556469B2 (en) * 2004-03-30 2010-10-06 アイシン精機株式会社 Internal combustion engine driven heat pump air conditioner
JP2008045814A (en) * 2006-08-16 2008-02-28 Tokyo Gas Co Ltd Gas engine heat pump and its control method

Similar Documents

Publication Publication Date Title
KR100572749B1 (en) Hybrid compressor system
JP3948919B2 (en) Method and apparatus for controlling at least one compressor of a cooling system with a variable speed drive
JP3080558B2 (en) Heat pump air conditioners for cold regions
JP4526755B2 (en) Air conditioner for vehicles
JP3854119B2 (en) Compressor control device
JPH0474210B2 (en)
KR20050086188A (en) Air conditioner driven by engine or electric motor and control method thereof
JP2004026076A (en) Method of driving hybrid compressor for vehicle air conditioner
JP2002029253A (en) Air conditioner for vehicle
JP5939011B2 (en) Engine driven heat pump air conditioner
JP2002206813A (en) Air conditioner
JP2002204598A (en) Motor serving as generator, and its driving control method
JP3996404B2 (en) Air conditioner
JP2001330291A (en) Air conditioning unit
JPH11337190A (en) Heat pump air conditioner for cold district
JP4026991B2 (en) Gas heat pump type air conditioner
JP4006390B2 (en) Air conditioner
JP2005140373A (en) Engine driven type refrigeration cycle device with generator
JP2003291633A (en) Air conditioner for vehicle
JPH11235925A (en) Air conditioner driving device for electric automobile
JP4183380B2 (en) Multi-type engine driven refrigeration system
JP2008045401A (en) Refrigerant compression equipment of air conditioner
JP3932921B2 (en) Engine driven refrigeration cycle apparatus and air conditioner
JPH11193966A (en) Gas heat pump apparatus
JPH10220886A (en) Engine-driven air conditioner