JP2002203550A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2002203550A
JP2002203550A JP2000400933A JP2000400933A JP2002203550A JP 2002203550 A JP2002203550 A JP 2002203550A JP 2000400933 A JP2000400933 A JP 2000400933A JP 2000400933 A JP2000400933 A JP 2000400933A JP 2002203550 A JP2002203550 A JP 2002203550A
Authority
JP
Japan
Prior art keywords
battery
lithium
positive electrode
lithium manganate
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000400933A
Other languages
Japanese (ja)
Inventor
Yoshimasa Koishikawa
佳正 小石川
Kenji Nakai
賢治 中井
Yuichi Takatsuka
祐一 高塚
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000400933A priority Critical patent/JP2002203550A/en
Publication of JP2002203550A publication Critical patent/JP2002203550A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having a high safety although it has a high capacity and a high output. SOLUTION: The cylindrical lithium-ion battery 20 has a built in winding group 6 and a nonaqueous electrolytic solution in a battery container 7. As for the winding group 6, a positive electrode in which lithium manganate having average diameter not less than 2 μm of the primary particle is used as a positive electrode active substance and a negative electrode in which amorphous carbon is used as a negative electrode active substance are wound via a separator. A battery cap 6 has a rupture valve 11 to cleave at a prescribed pressure. Mn-O bonding strength rises according to the primary particle average diameter that has been grown.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池に
係り、特に、所定圧で内圧を開放する内圧開放機構を有
する電池容器に、正極活物質にマンガン酸リチウムを用
いた正極と負極活物質に非晶質炭素を用いた負極とをセ
パレータを介して捲回した電極群と、この電極群を浸潤
する非水電解液と、を内蔵したリチウム二次電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly, to a battery container having an internal pressure release mechanism for releasing internal pressure at a predetermined pressure, a positive electrode and a negative electrode active material using lithium manganate as a positive electrode active material. The present invention relates to a lithium secondary battery having a built-in electrode group formed by winding a negative electrode using amorphous carbon through a separator, and a non-aqueous electrolyte that infiltrates the electrode group.

【0002】[0002]

【従来の技術】従来、再充電可能な二次電池の分野で
は、鉛電池、ニッケル−カドミウム電池、ニッケル−水
素電池等の水溶液系電池が主流であった。しかしなが
ら、電気機器の小型化、軽量化が進むにつれ、高エネル
ギー密度を有するリチウム二次電池が着目され、その研
究、開発及び商品化が急速に進められた結果、現在で
は、携帯電話やノートパソコン向けに小型民生用リチウ
ム二次電池が広く普及している。
2. Description of the Related Art In the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have hitherto been the mainstream. However, as electric devices have become smaller and lighter, attention has been focused on lithium secondary batteries having a high energy density, and research, development, and commercialization have been rapidly advanced. Lithium secondary batteries for consumer use have become widespread.

【0003】一方、地球温暖化や枯渇燃料の問題から電
気自動車(EV)や駆動の一部を電気モーターで補助す
るハイブリッド電気自動車(HEV)が各自動車メーカ
ーで開発され、その電源により高容量で高出力な二次電
池が求められるようになってきた。このような要求に合
致する電源として、高電圧を有する非水溶液系のリチウ
ム二次電池が注目されている。
[0003] On the other hand, electric vehicles (EV) and hybrid electric vehicles (HEV) in which a part of the drive is assisted by electric motors have been developed by various automobile manufacturers due to the problem of global warming and depleted fuel, and their power sources have increased capacity. High-output secondary batteries have been required. As a power source meeting such a demand, a non-aqueous solution type lithium secondary battery having a high voltage has attracted attention.

【0004】リチウム二次電池の負極材には一般的に炭
素材が用いられる。この炭素材は、天然黒鉛や鱗片状、
塊状等の人造黒鉛、メソフェーズピッチ系黒鉛等の黒鉛
系材料とフルフリルアルコール等のフラン樹脂等を焼成
した非晶質炭素材料が用いられている。
A carbon material is generally used as a negative electrode material of a lithium secondary battery. This carbon material is made of natural graphite, scale,
An amorphous carbon material obtained by firing a graphite material such as artificial graphite in a lump or a mesophase pitch graphite and a furan resin such as furfuryl alcohol is used.

【0005】また、正極材には一般的にリチウム遷移金
属酸化物が用いられており、中でも容量やサイクル特性
等のバランスからコバルト酸リチウムが広く用いられて
いるが、原料であるコバルトは資源量が少なくコスト高
となることから、電気自動車用やハイブリッド電気自動
車用電池の正極材としてはマンガン酸リチウムが有望視
され開発が進められている。
[0005] In addition, lithium transition metal oxides are generally used for the positive electrode material. Among them, lithium cobalt oxide is widely used in view of the balance of capacity and cycle characteristics. Therefore, lithium manganate is promising as a positive electrode material for batteries for electric vehicles and hybrid electric vehicles, and its development is proceeding.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、リチウ
ム二次電池の場合、電池の高容量化、高出力化に伴い安
全性が重視される傾向にあり、特に電気自動車やハイブ
リッド電気自動車用の電源に用いられるような高容量、
高出力の二次電池ともなると、大電流充電、大電流放電
がなされるために、小型民生用リチウム二次電池で一般
に採用されているような、異常時の電池内圧上昇に応じ
て電気的に作動する電流遮断機構を電池構造内に設ける
ことは難しい。
However, in the case of lithium secondary batteries, safety tends to be emphasized as the capacity and output of the batteries are increased. Particularly, power sources for electric vehicles and hybrid electric vehicles are used. High capacity as used,
When a high-power secondary battery is used, it is charged and discharged at a high current, so it is electrically connected to the internal pressure of the battery in the event of an abnormality, as is generally used in small consumer lithium secondary batteries. It is difficult to provide a working current interrupt mechanism in the battery structure.

【0007】人を乗せて走行する電気自動車やハイブリ
ッド電気自動車では、充放電制御システムが故障してし
まった場合の過充電時、不慮の衝突事故に遭遇する可能
性のある電池のクラッシュ時、異物突き刺し時あるい
は、外部短絡時等に電池自体の安全性を確保すること
は、最低限必要かつ非常に重要な電池特性である。ここ
でいう電池の安全性とは、電池が異常な状態にさらされ
たときの電池挙動が、人体に被害を与えないことは当然
のことながら、車両への損害を最小限に抑えることを意
味する。
[0007] In an electric vehicle or a hybrid electric vehicle that is driven by a person, at the time of overcharging when the charge / discharge control system breaks down, at the time of a battery crash that may encounter an accidental collision, Ensuring the safety of the battery itself at the time of piercing or external short circuit is a minimum and very important battery characteristic. Battery safety here means that the behavior of the battery when the battery is exposed to abnormal conditions does not harm the human body, but also minimizes damage to the vehicle. I do.

【0008】本発明は上記事案に鑑み、高容量、高出力
でありながらも、極めて安全性の高いリチウム二次電池
を提供することを課題とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a lithium secondary battery having a high capacity and a high output, yet having extremely high safety.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、所定圧で内圧を開放する内圧開放機構を
有する電池容器に、正極活物質にマンガン酸リチウムを
用いた正極と負極活物質に非晶質炭素を用いた負極とを
セパレータを介して捲回した電極群と、この電極群を浸
潤する非水電解液と、を内蔵したリチウム二次電池にお
いて、前記マンガン酸リチウムの1次粒子の平均粒子径
が2μm以上であることを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a battery container having an internal pressure releasing mechanism for releasing an internal pressure at a predetermined pressure, comprising a positive electrode and a negative electrode using lithium manganate as a positive electrode active material. An electrode group in which a negative electrode using amorphous carbon as an active material is wound via a separator, and a non-aqueous electrolyte infiltrating the electrode group, in a lithium secondary battery incorporating the lithium manganate, The average particle diameter of the primary particles is 2 μm or more.

【0010】本発明では、高容量、高出力のリチウム二
次電池を確保するために、正極活物質にマンガン酸リチ
ウムを用いた正極と、負極活物質に非晶質炭素を用いた
負極と、が使用されている。高容量、高出力のリチウム
二次電池では、過充電状態に陥ったときに、大電流充電
又は大電流放電状態が維持され、非水電解液と活物質と
の化学反応により電池容器内で急激かつ大量のガスが発
生し、電池容器の内圧を上昇させる。一般に、リチウム
二次電池では、電池容器内の内圧上昇を防止するため
に、電池容器に所定圧で内圧を開放する内圧低減機構を
有しているが、1次粒子の平均粒子径を2μm以上に成
長させたマンガン酸リチウムを正極活物質に用いること
により、1次粒子径の成長でマンガン酸リチウムのMn
−O結合力が高まるので、過充電時にマンガン酸リチウ
ム中からMnの非水電解液中への溶出反応を抑制するこ
とができる共に、過充電が継続状態となる等の電池異常
時に、温度上昇による内部短絡が生じた場合でも、マン
ガン酸リチウムの分解反応による熱暴走を防ぐことがで
き、安全に電池を使用不能状態とすることができる。こ
のため、本発明によれば、高容量、高出力でありながら
も、安全性に優れたリチウム二次電池を実現することが
できる。
According to the present invention, in order to secure a high capacity, high output lithium secondary battery, a positive electrode using lithium manganate as a positive electrode active material, a negative electrode using amorphous carbon as a negative electrode active material, Is used. In a high-capacity, high-output lithium secondary battery, a large current charge or a large current discharge state is maintained when an overcharged state occurs, and a sudden reaction occurs in the battery container due to a chemical reaction between the nonaqueous electrolyte and the active material. In addition, a large amount of gas is generated, and the internal pressure of the battery container is increased. Generally, a lithium secondary battery has an internal pressure reduction mechanism that releases internal pressure at a predetermined pressure in the battery container in order to prevent an increase in internal pressure in the battery container, but the average primary particle diameter is 2 μm or more. By using lithium manganate grown on a positive electrode active material, Mn of lithium manganate can be increased by growing the primary particle diameter.
Since the -O bonding force is increased, the elution reaction of Mn from the lithium manganate into the nonaqueous electrolyte during overcharging can be suppressed, and the temperature rises when a battery abnormality such as overcharging continues. Even when an internal short circuit occurs, thermal runaway due to the decomposition reaction of lithium manganate can be prevented, and the battery can be safely disabled. Therefore, according to the present invention, it is possible to realize a lithium secondary battery having high safety while being high in capacity and high in output.

【0011】この場合において、正極活物質にスピネル
結晶構造を有するマンガン酸リチウムを用いるようにす
れば、スピネル結晶構造は熱的安定性が高いので、リチ
ウム二次電池の安全性をより向上させることができ、ま
た、Li/Mn組成比が0.55以上0.60以下の範
囲のマンガン酸リチウムを用いるようにすれば、量論組
成(Li/Mn=0.5)と比べ、Mn溶出反応がより
高い電位でしか生じなくなるのみならず、電池異常時の
Mn溶出反応の進行・拡大を抑制することができるの
で、その後の熱暴走反応が起こりにくくなり、電池異常
時の安全性を一層高めることができる。このようなマン
ガン酸リチウムには、化学式Li1+xMn2−x
で表されるか又は該化学式中のマンガンの一部を他の金
属元素で置換したものを好適に用いることができる。
In this case, if lithium manganate having a spinel crystal structure is used as the positive electrode active material, the spinel crystal structure has high thermal stability, so that the safety of the lithium secondary battery can be further improved. If lithium manganate having a Li / Mn composition ratio in the range of 0.55 or more and 0.60 or less is used, the Mn elution reaction can be compared with the stoichiometric composition (Li / Mn = 0.5). Not only occurs at a higher potential, but also suppresses the progress and expansion of the Mn elution reaction in the event of a battery abnormality, making subsequent thermal runaway reactions less likely to occur and further enhancing safety in the event of a battery abnormality. be able to. Such lithium manganate has a chemical formula of Li 1 + x Mn 2-x O 4
Or one obtained by substituting a part of manganese in the chemical formula with another metal element can be suitably used.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して、本発明に
係るリチウム二次電池を電気自動車用電源として用いら
れる円筒形リチウムイオン電池に適用した実施の形態に
ついて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which a lithium secondary battery according to the present invention is applied to a cylindrical lithium ion battery used as a power source for an electric vehicle will be described below with reference to the drawings.

【0013】(正極)正極活物質として1次粒子の平均
粒子径(以下、1次粒子平均径という。)が2μm以上
のマンガン酸リチウム(Li1+xMn2−x又は
Li1+xMn2−x−yAl)粉末と、導電材
として鱗片状黒鉛と、結着剤としてポリフッ化ビニリデ
ン(PVDF)と、を重量比85:10:5で混合し、
これに分散溶媒のN−メチルピロリドン(NMP)を添
加、混練したスラリを、厚さ20μmのアルミニウム箔
の両面に塗布した。その後、乾燥、プレス、裁断するこ
とにより厚さ90μmの正極を得た。
(Positive Electrode) As a positive electrode active material, lithium manganate (Li 1 + x Mn 2-x O 4 or Li 1 + x Mn 2− ) having an average primary particle diameter (hereinafter, referred to as an average primary particle diameter) of 2 μm or more. x-y Al y O 4) powder and a scaly graphite as a conductive material, polyvinylidene fluoride and (PVDF), the weight ratio as a binder 85: 10 were mixed with 5,
A slurry in which N-methylpyrrolidone (NMP) as a dispersion solvent was added and kneaded was applied to both surfaces of a 20-μm-thick aluminum foil. Thereafter, the positive electrode having a thickness of 90 μm was obtained by drying, pressing and cutting.

【0014】マンガン酸リチウムには、スピネル結晶構
造を有し、Mnに対するLiの組成比(以下、Li/M
n比という。)が0.55〜0.60のものを使用し
た。なお、マンガン酸リチウムは、適当なリチウム塩と
酸化マンガンとを混合、焼成して合成することができる
が、リチウム塩と酸化マンガンの仕込み比を制御するこ
とによって所望のLi/Mn比とすることができる。ま
た、使用したマンガン酸リチウムは、電子顕微鏡にて無
作為に数箇所撮影し、撮影した電子顕微鏡写真から1次
粒子径を測定し、個数平均を算出して、1次粒子平均径
を確認したものを用いた。
Lithium manganate has a spinel crystal structure and a composition ratio of Li to Mn (hereinafter, Li / M
It is called n ratio. ) Of 0.55 to 0.60 were used. Lithium manganate can be synthesized by mixing and baking an appropriate lithium salt and manganese oxide. However, by controlling the charging ratio of the lithium salt and manganese oxide, a desired Li / Mn ratio is obtained. Can be. In addition, the used lithium manganate was photographed at random in several places with an electron microscope, the primary particle diameter was measured from the photographed electron micrograph, the number average was calculated, and the primary particle average diameter was confirmed. Was used.

【0015】(負極)負極活物質として非晶質炭素粉末
90質量部に対し、結着剤としてポリフッ化ビニリデン
を負極活物質に対し10質量部添加し、これに分散溶媒
のNMPを添加、混練したスラリを、厚さ10μmの圧
延銅箔の両面に塗布した。その後乾燥、プレス、裁断す
ることにより厚さ70μmの負極を得た。
(Negative electrode) To 90 parts by mass of amorphous carbon powder as a negative electrode active material, 10 parts by mass of polyvinylidene fluoride as a binder were added to the negative electrode active material, and NMP as a dispersion solvent was added thereto and kneaded. The slurry thus obtained was applied to both sides of a rolled copper foil having a thickness of 10 μm. Thereafter, drying, pressing and cutting were performed to obtain a negative electrode having a thickness of 70 μm.

【0016】(電池の作製)図1に示すように、作製し
た正負極を、これら両極板が直接接触しないように、厚
さ40μmのポリエチレン製セパレータと共に捲回して
捲回群6を作製した。捲回の中心には、ポリプロピレン
製の中空円筒状の軸芯1を用いた。このとき、正極リー
ド片2と負極リード片3とが、それぞれ捲回群6の互い
に反対側の両端面に位置するようにした。
(Preparation of Battery) As shown in FIG. 1, the prepared positive and negative electrodes were wound together with a polyethylene separator having a thickness of 40 μm so that these two electrode plates did not come into direct contact with each other to prepare a winding group 6. At the center of the winding, a hollow cylindrical shaft core 1 made of polypropylene was used. At this time, the positive electrode lead piece 2 and the negative electrode lead piece 3 were located on both end faces on the opposite side of the winding group 6, respectively.

【0017】正極リード片2を変形させ、その全てを正
極集電リング4の周囲から一体に張り出した鍔部周面付
近に集合、接触させた後、正極リード片2と鍔部周面と
を超音波溶接して正極リード片2を鍔部周面に接続し
た。一方、負極集電リング5と負極リード片3との接続
操作も、正極集電リング4と正極リード片2との接続操
作と同様に実施した。その後、正極集電リング4の鍔部
周面全周に絶縁被覆を施し、捲回群6をニッケルメッキ
が施されたスチール製の電池容器7内に挿入した。
After deforming the positive electrode lead piece 2 and assembling and contacting the whole near the flange peripheral surface integrally projecting from the periphery of the positive electrode current collecting ring 4, the positive electrode lead piece 2 and the flange peripheral surface are brought into contact with each other. The positive electrode lead piece 2 was connected to the flange peripheral surface by ultrasonic welding. On the other hand, the connection operation between the negative electrode current collector ring 5 and the negative electrode lead piece 3 was also performed in the same manner as the connection operation between the positive electrode current collector ring 4 and the positive electrode lead piece 2. Thereafter, an insulating coating was applied to the entire periphery of the flange of the positive electrode current collecting ring 4, and the wound group 6 was inserted into a nickel-plated steel battery container 7.

【0018】負極集電リング5には、予め電気的導通の
ための負極リード板8が溶接されており、電池容器7に
捲回群6を挿入後、電池容器7の底部と負極リード板8
とを溶接した。一方、正極集電リング4には、予め複数
枚のアルミニウム製のリボンを重ね合わせて構成した正
極リード9を溶接しておき、正極リード9の他端を、電
池容器7を封口するための電池蓋10の下面に溶接し
た。電池蓋10は、蓋ケースと、蓋キャップと、気密を
保つ弁押えと、アルミニウム合金製で薄板状の内圧低減
機構としての開裂弁11とで構成されており、これらが
積層されて蓋ケースの周縁をカシメることによって組立
てられている。開裂弁11の開裂圧は約9×10Pa
に設定した。
A negative electrode lead plate 8 for electrical conduction is welded to the negative electrode current collector ring 5 in advance. After the winding group 6 is inserted into the battery container 7, the bottom of the battery container 7
And was welded. On the other hand, a positive electrode lead 9 formed by overlapping a plurality of aluminum ribbons in advance is welded to the positive electrode current collecting ring 4, and the other end of the positive electrode lead 9 is sealed with a battery for closing the battery container 7. It was welded to the lower surface of the lid 10. The battery lid 10 is composed of a lid case, a lid cap, a valve retainer for maintaining airtightness, and a cleavage valve 11 as a thin plate made of an aluminum alloy as an internal pressure reducing mechanism. It is assembled by caulking the periphery. The cleavage pressure of the cleavage valve 11 is about 9 × 10 5 Pa
Set to.

【0019】捲回群6全体を浸潤可能な所定量の非水電
解液を電池容器7内に注入し、その後、正極リード9を
折りたたむようにして電池蓋10で電池容器7に蓋を
し、EPDM樹脂製ガスケットを介してカシメて密封
し、容量4.0Ahの円筒形リチウムイオン二次電池2
0を完成させた。
A predetermined amount of a non-aqueous electrolyte capable of infiltrating the entire winding group 6 is poured into the battery container 7, and then the battery cover 7 is covered with the battery cover 10 so that the positive electrode lead 9 is folded. A cylindrical lithium ion secondary battery 2 having a capacity of 4.0 Ah, which is caulked and sealed via an EPDM resin gasket.
0 was completed.

【0020】非水電解液には、エチレンカーボネート
(EC)とジメチルカーボネート(DMC)とジエチル
カーボネート(DEC)とを体積比1:1:1の割合で
混合した混合溶液中へ6フッ化リン酸リチウム(LiP
)を1モル/リットル溶解したものを用いた。
The non-aqueous electrolyte contains a mixture of ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) at a volume ratio of 1: 1: 1 into a mixed solution of phosphoric acid hexafluoride. Lithium (LiP
F 6) was used after dissolving 1 mole / liter.

【0021】[0021]

【実施例】次に、本実施形態に従って作製した円筒形リ
チウムイオン電池20の実施例について説明する。比較
のために作製した比較例の電池についても併記する。
Next, an example of the cylindrical lithium ion battery 20 manufactured according to this embodiment will be described. A battery of a comparative example produced for comparison is also described.

【0022】(実施例1)下表1に示すように、実施例
1では、正極活物質にLi/Mn比が0.55で1次粒
子平均径が2μmのマンガン酸リチウム(Li1.06
Mn1.94)粉末を用いて電池を作製した。
Example 1 As shown in Table 1 below, in Example 1, lithium manganate (Li 1.06) having a Li / Mn ratio of 0.55 and an average primary particle diameter of 2 μm was used as the positive electrode active material.
A battery was prepared using the Mn 1.94 O 4) powder.

【0023】[0023]

【表1】 [Table 1]

【0024】(実施例2、3)表1に示すように、実施
例2及び実施例3では、正極活物質に1次粒子平均径が
それぞれ、2.5μm、3.0μmのマンガン酸リチウ
ム(Li1.06Mn 1.94)粉末を用いた以外
は実施例1と同様に電池を作製した。
(Examples 2 and 3) As shown in Table 1,
In Examples 2 and 3, the average primary particle diameter of the positive electrode active material was
2.5 μm and 3.0 μm lithium manganate, respectively
(Li1.06Mn 1.94O4) Except using powder
Produced a battery in the same manner as in Example 1.

【0025】(実施例4、5)表1に示すように、実施
例4では、正極活物質にLi/Mn比が0.60のマン
ガン酸リチウム(Li1.14Mn1.86)粉末
を用い、実施例5では、正極活物質にLi/Mn比が
0.55でMnの一部をAlで置換したマンガン酸リチ
ウム(Li1.03Mn1.87Al0.1)を用
いた以外は実施例1と同様に電池を作製した。
Examples 4 and 5 As shown in Table 1, in Example 4, lithium manganate (Li 1.14 Mn 1.86 O 4 ) having a Li / Mn ratio of 0.60 was used as the positive electrode active material. In Example 5, lithium manganate (Li 1.03 Mn 1.87 Al 0.1 O 4 ) having a Li / Mn ratio of 0.55 and partially replacing Mn with Al was used as the positive electrode active material using powder. A battery was produced in the same manner as in Example 1, except that was used.

【0026】(比較例1、2)表1に示すように、比較
例1及び比較例2では、正極活物質にLi/Mn比が
0.55で1次粒子平均径がそれぞれ、0.5μm、
1.0μmのマンガン酸リチウム(Li1.06Mn
1.94)粉末を用いた以外は実施例1と同様に電
池を作製した。
(Comparative Examples 1 and 2) As shown in Table 1, in Comparative Examples 1 and 2, the positive electrode active material had a Li / Mn ratio of 0.55 and an average primary particle diameter of 0.5 μm. ,
1.0 μm lithium manganate (Li 1.06 Mn
A battery was fabricated in the same manner as in Example 1, except that 1.94 O 4 ) powder was used.

【0027】(比較例3、4)表1に示すように、比較
例3及び比較例4では、正極活物質に1次粒子平均径が
1.0μmのマンガン酸リチウムを用いた。比較例3で
は、Li/Mn比が0.60のマンガン酸リチウム(L
1.14Mn1.86)粉末を用い、比較例4で
は、Li/Mn比が0.55でMnの一部をAlで置換
したマンガン酸リチウム(Li1.03Mn1.87
0.1)粉末を用いた以外は実施例1と同様に電
池を作製した。
(Comparative Examples 3 and 4) As shown in Table 1, in Comparative Examples 3 and 4, lithium manganate having an average primary particle diameter of 1.0 μm was used as the positive electrode active material. In Comparative Example 3, lithium / manganate (L / Mn ratio: 0.60)
i 1.14 Mn 1.86 O 4 ) powder, and in Comparative Example 4, lithium / manganate (Li 1.03 Mn 1.87 ) having a Li / Mn ratio of 0.55 and part of Mn substituted with Al. A
l 0.1 O 4 ) A battery was fabricated in the same manner as in Example 1 except that powder was used.

【0028】<試験・評価>次に、以上のように作製し
た実施例及び比較例の各電池について、初期安定化運転
後に満充電状態から1時間率(1C)で電池外観に異常
現象が生じるまで定電流充電する過充電試験を行い、そ
のときの外観異常現象を観察し、電池容器7表面の最高
到達温度を測定した。下表2に過充電試験の試験結果を
示す。
<Test / Evaluation> Next, with respect to the batteries of the examples and comparative examples manufactured as described above, abnormal phenomena occur in the appearance of the batteries at an hourly rate (1 C) from the fully charged state after the initial stabilization operation. An overcharge test was performed in which the battery was charged at a constant current up to that time. At that time, an abnormal appearance phenomenon was observed, and the maximum temperature reached on the surface of the battery container 7 was measured. Table 2 below shows the test results of the overcharge test.

【0029】[0029]

【表2】 [Table 2]

【0030】表2に示すように、1次粒子平均径が2μ
m以上であり、Li/Mn比が0.55のマンガン酸リ
チウムを用いた実施例1〜3の電池は、現象発生時の電
池表面の最高到達温度が130°C以下であり、その現
象もわずかに白煙が発生するのみの、いずれも安全性に
優れた電池である。しかしながら、1次粒子平均径が1
μm以下であり、Li/Mn比が0.55のマンガン酸
リチウムを用いた比較例1〜2の電池は、現象発生時の
電池表面の最高到達温度が385〜425°Cに達し、
開裂弁11から激しく白煙と共に内容物を噴出した。
As shown in Table 2, the average primary particle diameter was 2 μm.
m or more, the batteries of Examples 1 to 3 using lithium manganate having a Li / Mn ratio of 0.55 have a maximum temperature of 130 ° C. or less on the battery surface at the time of occurrence of the phenomenon. All of them are batteries with excellent safety with only slight generation of white smoke. However, the average primary particle diameter is 1
μm or less, the batteries of Comparative Examples 1-2 using lithium manganate having a Li / Mn ratio of 0.55 reached a maximum temperature of 385-425 ° C. on the battery surface when the phenomenon occurred,
The contents were vigorously squirted from the cleavage valve 11 together with white smoke.

【0031】また、1次粒子平均径が2μmであり、L
i/Mn比が0.60のマンガン酸リチウムを用いた実
施例4の電池は、現象発生時の電池表面の最高到達温度
が120°Cで、現象もわずかに白煙が発生するのみ
の、安全性に優れた電池であるのに対し、1次粒子平均
径が1μmであり、Li/Mn比が0.60のマンガン
酸リチウムを用いた比較例3の電池は、電池表面の最高
到達温度が390°Cに達し内容物を伴う白煙を激しく
噴出した。
The average primary particle diameter is 2 μm, and L
In the battery of Example 4 using lithium manganate having an i / Mn ratio of 0.60, the maximum temperature of the battery surface at the time of occurrence of the phenomenon was 120 ° C., and the phenomenon was only slight white smoke. While the battery is excellent in safety, the battery of Comparative Example 3 using lithium manganate having an average primary particle diameter of 1 μm and a Li / Mn ratio of 0.60 has the highest temperature on the battery surface. Reached 390 ° C. and violently emitted white smoke accompanied by the contents.

【0032】更に、正極活物質にLi/Mn比=0.5
5で、Mnの一部をAlで置換したマンガン酸リチウム
を用いた場合においても、1次粒子平均径が2.0μm
の実施例5の電池は、現象発生時の電池表面の最高到達
温度が130°Cで、現象もわずかに白煙が発生するの
みの、安全性に優れた電池であるのに対し、1次粒子平
均径が1μmの比較例4の電池は、電池表面の最高到達
温度が430°Cに達し内容物を伴う白煙を激しく噴出
した。
Further, Li / Mn ratio = 0.5
5, even when lithium manganate in which part of Mn was substituted with Al was used, the average primary particle diameter was 2.0 μm.
The battery of Example 5 has a maximum temperature of 130 ° C. at the surface of the battery when the phenomenon occurs, and the phenomenon is a slight white smoke. In the battery of Comparative Example 4 having an average particle diameter of 1 μm, the highest temperature reached on the battery surface reached 430 ° C., and white smoke accompanied by the contents was jetted violently.

【0033】以上の結果から、正極活物質に1次粒子平
均径が2μm以上のマンガン酸リチウムを用いた実施例
1〜5の電池は、過充電時における電池の最高到達温度
を低く抑えることができ、現象も穏やかで安全性の点に
優れた電池とすることができることが分かった。
From the above results, in the batteries of Examples 1 to 5 using lithium manganate having a primary particle average diameter of 2 μm or more as the positive electrode active material, the maximum temperature of the battery at the time of overcharge can be kept low. It was found that the battery could be produced with a mild phenomenon and excellent in safety.

【0034】なお、本実施形態では、化学式Li1+x
Mn2−xで表されるマンガン酸リチウム又は該化
学式中のマンガンの一部がAlで置換されたマンガン酸
リチウムについて例示したが、本発明は上述した化学式
を有するマンガン酸リチウムに限らず、予め十分な量の
リチウムを挿入した他の化学式で表されるマンガン酸リ
チウムを用いた場合にも適用可能であり、また、Alに
代えてMg、Cr、Fe、Ni等の金属元素でMnの一
部を置換又はドープしたマンガン酸リチウムを用いた場
合にも適用可能である。
In this embodiment, the chemical formula Li 1 + x
Although lithium manganate represented by Mn 2-x O 4 or lithium manganate in which a part of manganese in the chemical formula is substituted by Al has been exemplified, the present invention is not limited to lithium manganate having the above-described chemical formula. It is also applicable to the case where lithium manganate represented by another chemical formula in which a sufficient amount of lithium is inserted in advance is used, and Mn is replaced with a metal element such as Mg, Cr, Fe, or Ni instead of Al. It is also applicable when lithium manganate partially substituted or doped is used.

【0035】また、本実施形態では、円筒形電池につい
て例示したが、本発明は電池の形状についても限定され
ず、角形、その他の多角形の電池にも適用可能である。
更に、本発明の適用可能な構造としては、上述した電池
容器(缶)に電池蓋がカシメによって封口されている構
造の電池以外であっても構わない。このような構造の一
例として正負外部端子が電池蓋を貫通し電池容器内で軸
芯を介して正負外部端子が押し合っている状態の電池を
挙げることができる。
In this embodiment, a cylindrical battery is described as an example. However, the present invention is not limited to the shape of the battery, and is applicable to a square battery and other polygon batteries.
Furthermore, as a structure to which the present invention can be applied, a battery other than the above-described battery container (can) having a structure in which a battery lid is sealed by caulking may be used. An example of such a structure is a battery in which the positive and negative external terminals penetrate the battery cover and the positive and negative external terminals press against each other via the shaft core in the battery container.

【0036】更に、本実施形態では、EC、DEC、D
MCの混合溶液中にLiPFを溶解した非水電解液を
例示したが、一般的なリチウム塩を電解質とし、これを
有機溶媒に溶解した非水電解液を用を用いるようにして
もよく、本発明は用いられるリチウム塩や有機溶媒には
特に制限されない。例えば、電解質としては、LiCl
4、LiAsF、LiBF4、LiB(C
4、CHSOLi、CFSOLi等や
これらの混合物を用いることができる。また、有機溶媒
としては、プロピレンカーボネート、エチレンカーボネ
ート、1,2−ジメトキシエタン、1,2−ジエトキシ
エタン、γ−ブチロラクトン、テトラヒドロフラン、
1,3−ジオキソラン、4−メチル−1,3−ジオキソ
ラン、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、プロピオニトニル等またはこれら
2種類以上の混合溶媒を用いるようにしてもよく、混合
配合比についても限定されるものではない。
Further, in this embodiment, EC, DEC, D
Although a non-aqueous electrolyte in which LiPF 6 is dissolved in a mixed solution of MC is exemplified, a general lithium salt may be used as an electrolyte, and a non-aqueous electrolyte in which this is dissolved in an organic solvent may be used. The present invention is not particularly limited to the lithium salt and the organic solvent used. For example, as the electrolyte, LiCl
O 4 , LiAsF 6 , LiBF 4 , LiB (C
6 H 5) 4, CH 3 SO 3 Li, can be used CF 3 SO 3 Li and the like and mixtures thereof. Further, as the organic solvent, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran,
1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitonyl, etc. or a mixed solvent of two or more of these may be used, and the mixing ratio is also limited. It is not something to be done.

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
1次粒子の平均粒子径を2μm以上に成長させたマンガ
ン酸リチウムを正極活物質に用いることにより、1次粒
子径の成長でマンガン酸リチウムのMn−O結合力が高
まるので、過充電時にマンガン酸リチウム中からMnの
非水電解液中への溶出反応を抑制することができる共
に、過充電が継続状態となる等の電池異常時に、温度上
昇による内部短絡が生じた場合でも、マンガン酸リチウ
ムの分解反応による熱暴走を防ぐことができ、安全に電
池を使用不能状態にすることができため、高容量、高出
力でありながらも、極めて安全性の高いリチウム二次電
池を実現することができる。
As described above, according to the present invention,
The use of lithium manganate having an average primary particle diameter of 2 μm or more as the positive electrode active material increases the Mn-O binding force of lithium manganate due to the growth of the primary particle diameter. In addition to suppressing the elution reaction of Mn from the lithium oxide into the non-aqueous electrolyte, even when an internal short circuit occurs due to a temperature rise at the time of a battery abnormality such as continuous overcharging, lithium manganate can be prevented. Can prevent thermal runaway due to decomposition reaction of the battery and make the battery unusable safely, so it is possible to realize a highly safe lithium secondary battery with high capacity and high output. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用可能な実施形態の円筒形リチウム
イオン電池の断面図である。
FIG. 1 is a sectional view of a cylindrical lithium ion battery according to an embodiment to which the present invention can be applied.

【符号の説明】[Explanation of symbols]

6 捲回群(電極群) 7 電池容器 10 電池蓋(電池容器の一部) 11 開裂弁(内圧低減機構) 20 円筒形リチウムイオン電池(リチウム二次電池) Reference Signs List 6 Winding group (electrode group) 7 Battery container 10 Battery cover (part of battery container) 11 Cleavage valve (internal pressure reduction mechanism) 20 Cylindrical lithium ion battery (lithium secondary battery)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高塚 祐一 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 (72)発明者 弘中 健介 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H029 AJ02 AJ03 AJ12 AK03 AL08 AM03 AM05 AM07 BJ02 BJ14 DJ17 DJ18 HJ02 HJ05 5H050 AA02 AA08 AA15 BA17 CA09 CB09 FA19 FA20 HA02 HA05 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yuichi Takatsuka 2-87-7 Nihonbashi Honcho, Chuo-ku, Tokyo Inside Shin-Kobe Electric Machinery Co., Ltd. (72) Kensuke Hironaka 2-87 Nihonbashi Honcho, Chuo-ku, Tokyo F term in Shin-Kobe Electric Co., Ltd. (reference) 5H029 AJ02 AJ03 AJ12 AK03 AL08 AM03 AM05 AM07 BJ02 BJ14 DJ17 DJ18 HJ02 HJ05 5H050 AA02 AA08 AA15 BA17 CA09 CB09 FA19 FA20 HA02 HA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定圧で内圧を開放する内圧開放機構を
有する電池容器に、正極活物質にマンガン酸リチウムを
用いた正極と負極活物質に非晶質炭素を用いた負極とを
セパレータを介して捲回した電極群と、この電極群を浸
潤する非水電解液と、を内蔵したリチウム二次電池にお
いて、前記マンガン酸リチウムの1次粒子の平均粒子径
が2μm以上であることを特徴とするリチウム二次電
池。
1. A battery container having an internal pressure release mechanism for releasing an internal pressure at a predetermined pressure, a positive electrode using lithium manganate as a positive electrode active material and a negative electrode using amorphous carbon as a negative electrode active material via a separator. And a non-aqueous electrolyte infiltrating the electrode group, wherein the average particle diameter of the primary particles of the lithium manganate is 2 μm or more. Rechargeable lithium battery.
【請求項2】 前記マンガン酸リチウムは、スピネル結
晶構造を有し、かつ、Li/Mn組成比が0.55以上
0.60以下であることを特徴とする請求項1に記載の
リチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the lithium manganate has a spinel crystal structure, and has a Li / Mn composition ratio of 0.55 or more and 0.60 or less. battery.
【請求項3】 前記マンガン酸リチウムは、化学式Li
1+xMn2−x で表されるか又は該化学式中のマ
ンガンの一部が他の金属元素で置換又はドープされたこ
とを特徴とする請求項1又は請求項2に記載のリチウム
二次電池。
3. The lithium manganate has a chemical formula Li
1 + xMn2-xO 4Or represented by the formula
That some of the metal has been replaced or doped with other metal elements
The lithium according to claim 1 or 2, characterized in that:
Rechargeable battery.
JP2000400933A 2000-12-28 2000-12-28 Lithium secondary battery Pending JP2002203550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000400933A JP2002203550A (en) 2000-12-28 2000-12-28 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000400933A JP2002203550A (en) 2000-12-28 2000-12-28 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2002203550A true JP2002203550A (en) 2002-07-19

Family

ID=18865437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000400933A Pending JP2002203550A (en) 2000-12-28 2000-12-28 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2002203550A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077023B2 (en) 2011-01-12 2015-07-07 Samsung Sdi Co., Ltd. Cathode active material having manganese oxide and boron, cathode and lithium battery including cathode active material, and method of preparing the cathode active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077023B2 (en) 2011-01-12 2015-07-07 Samsung Sdi Co., Ltd. Cathode active material having manganese oxide and boron, cathode and lithium battery including cathode active material, and method of preparing the cathode active material

Similar Documents

Publication Publication Date Title
JP6582605B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3866740B2 (en) Non-aqueous electrolyte secondary battery, assembled battery and battery pack
EP1126538B1 (en) Non-aqueous electrolyte secondary battery
EP3210252B1 (en) Nonaqueous electrolyte secondary battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
US9520588B2 (en) Nonaqueous electrolyte secondary cell
JP2009021134A (en) Nonaqueous electrolyte battery and battery pack
JP2000311676A (en) Cylindrical lithium ion battery
JP2007257885A (en) Positive electrode material for nonaqueous electrolyte lithium ion battery and battery using this
JP2004014405A (en) Non-aqueous electrolyte secondary battery
JP2004006264A (en) Lithium secondary battery
JP2019160734A (en) Assembled battery, battery pack, vehicle, stationary power supply
JP5433164B2 (en) Lithium ion secondary battery
JP5300274B2 (en) Lithium secondary battery
JP5203632B2 (en) Non-aqueous electrolyte battery
JPH1092430A (en) Lithium secondary battery
JP4455008B2 (en) Nonaqueous electrolyte secondary battery
JP2007165114A (en) Lithium secondary battery
JP3988384B2 (en) Non-aqueous electrolyte secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2014220140A (en) Nonaqueous secondary battery
JP4191969B2 (en) Nonaqueous electrolyte secondary battery
JP2006252834A (en) Lithium secondary battery
JP2002203550A (en) Lithium secondary battery
JP3719139B2 (en) Non-aqueous electrolyte secondary battery