JP2002201458A - Far-infrared radiating material and application thereof - Google Patents

Far-infrared radiating material and application thereof

Info

Publication number
JP2002201458A
JP2002201458A JP2000404964A JP2000404964A JP2002201458A JP 2002201458 A JP2002201458 A JP 2002201458A JP 2000404964 A JP2000404964 A JP 2000404964A JP 2000404964 A JP2000404964 A JP 2000404964A JP 2002201458 A JP2002201458 A JP 2002201458A
Authority
JP
Japan
Prior art keywords
far
infrared
radiating material
infrared radiating
fossil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000404964A
Other languages
Japanese (ja)
Inventor
Sadako Ueda
貞子 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN CULTURE KK
Original Assignee
GREEN CULTURE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN CULTURE KK filed Critical GREEN CULTURE KK
Priority to JP2000404964A priority Critical patent/JP2002201458A/en
Publication of JP2002201458A publication Critical patent/JP2002201458A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Paper (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a far-infrared radiating material exhibiting far-infrared effects, particularly energy-saving effects, only by small modifications without consuming enormous energy and yet inexpensive, and its applications. SOLUTION: The far-infrared radiating material comprises as the main components 63.9-78.3 wt.% of SiO2, 11.6-14.2 wt.% of Al2O3, 3.60-4.40 wt.% of Fe2O3, 1.52-1.86 wt.% of MgO, 1.73-2.13 wt.% of CaO, 2.70-3.32 wt.% of K2O and 0.054-0.068 wt.% of P2O5, and the balance being shell fossils containing other trace elements. Far-infrared effects are obtained by utilizing this far- infrared radiating material alone or by incorporating it into a substance or coating a substance with it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定の成分を含有
する貝化石を有効成分としてなる遠赤外線放射材及びそ
の用途物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a far-infrared ray radiating material comprising a shell fossil containing a specific component as an active ingredient, and a use thereof.

【0002】[0002]

【従来の技術】従来の遠赤外線放射材は、各種の鉱物や
金属化合物を原料とし、ある特定の割合で混合して、1
500〜1600°Cの高温にて焼成し、その焼成物を
微粉状にしたものである。このようにして得られた遠赤
外線放射材は、その微粉状のものを各種素材に含有させ
たり、固形状にしたり、各種の物の表面にコーティング
したりして、使用している。
2. Description of the Related Art Conventional far-infrared radiating materials are prepared by mixing various minerals and metal compounds as raw materials at a specific ratio.
It is fired at a high temperature of 500 to 1600 ° C., and the fired product is pulverized. The far-infrared ray radiating material thus obtained is used by incorporating its fine powder in various materials, making it solid, or coating the surface of various materials.

【0003】そして、この遠赤外線放射材は、原料とす
る各種の鉱物や金属化合物をいろいろ変え、更に混合比
率を変えることで、理想黒体(入射する光を100%吸
収し、エネルギー放射能力が最大の物体)に近づける努
力がなされ、数々のものが市場に出回っている。
[0003] This far-infrared radiating material is made by changing various kinds of minerals and metal compounds as raw materials, and further changing the mixing ratio, thereby absorbing an ideal black body (100% of incident light and energy radiating ability). Efforts have been made to get closer to the (largest object) and many are on the market.

【0004】[0004]

【発明が解決しようとする課題】上記の遠赤外線放射材
は、遠赤外線放射体としての良好な性能を有して利用価
値の高いものであるが、いずれも原料となる各種の鉱物
や金属化合物を粉末状にして混合し、その混合物を15
00〜1600°Cの高温にて焼成し、その焼成物を再
び利用形態に合わせて微粉状にするため、高価となり易
い。
The above-mentioned far-infrared radiating materials have good performance as far-infrared radiators and are highly useful, but all of them are various kinds of minerals and metal compounds as raw materials. Into a powder and mixed.
Since it is fired at a high temperature of 00 to 1600 ° C. and the fired material is again made into a fine powder according to the usage form, it tends to be expensive.

【0005】また、遠赤外線放射材の利用分野は、加熱
利用と非加熱・常温域での利用とに分けられるが、最近
の研究では地球環境を保全する観点から、加熱利用面で
注目されている。しかし、従来の遠赤外線放射材では、
2度にわたる粉砕と高温で長時間の焼成とが必要にな
り、これを得るために結果的に莫大なエネルギーを消費
することになる。したがって、遠赤外線放射材を得るた
めに消費した莫大なエネルギーを踏まえて考えると、従
来のセラミックスとしての遠赤外線放射材は、果してそ
の消費した莫大なエネルギーを回収し、且つ有り余るも
のであるのか、甚だ疑問である。
[0005] The field of application of far-infrared radiating materials is divided into heating and non-heating at room temperature. Recently, research has been focused on heating from the viewpoint of preserving the global environment. I have. However, with conventional far-infrared radiation materials,
Two grindings and long firings at high temperatures are required, which in turn consumes enormous amounts of energy. Therefore, considering the enormous energy consumed to obtain the far-infrared radiating material, whether the far-infrared radiating material as a conventional ceramics recovers the enormous energy consumed, and whether it is surplus, It is a serious question.

【0006】そこで、本発明は、上記事情に鑑みてなさ
れたもので、莫大なエネルギーを消費することなく、わ
ずかな加工のみで遠赤外線効果、特に省エネルギー効果
を得ることができ、しかも安価な遠赤外線放射材及びそ
の用途物を提供することを課題とする。
Therefore, the present invention has been made in view of the above circumstances, and it is possible to obtain a far-infrared effect, particularly an energy-saving effect, with a small amount of processing without consuming a huge amount of energy, and at a low cost. An object of the present invention is to provide an infrared radiating material and a use product thereof.

【0007】[0007]

【課題を解決するための手段】本発明者は、長年貝化石
の組成、特性について調査研究を続け、同時に、魚介類
の養殖、養殖漁場及びその周辺における水質及び底質の
環境保全、並びに得られた養殖魚介類の調理について
も、調査研究を続けてきた。その結果、養殖及び天然魚
介類を焼く際、ガスグリルの網の下にある水を入れるト
レーに、水の代わりに特定成分の粒状の貝化石を敷いて
焼くと、一般に、遠赤外線効果が高いとされている備長
炭で焼いた魚介類よりも、仕上がり良くしかも熱回りが
良いから早く焼け、加えて水っぽさが無くなり且つ冷め
にくいことを発見し、その原因を調査したところ、特定
成分の貝化石が極めて高い遠赤外線効果を有しているこ
とを見い出し、本発明に到達したのである。
SUMMARY OF THE INVENTION The present inventor has been conducting research on the composition and characteristics of shell fossils for many years, and at the same time, has been promoting the cultivation of fish and shellfish, the environmental conservation of water and sediment in and around the aquaculture fishing grounds, and the acquisition of the same. We have been conducting research on the cooking of farmed seafood. As a result, when aquaculture and baking of natural seafood, if a granular shell fossil of a specific component is laid in place of the water on the tray under the gas grill net and filled with water, baking will generally have a high far-infrared effect. It has been found that it has better finish and better heat than seafood baked with Bincho charcoal, so it burns quickly, and in addition, it loses wateriness and is hard to cool down. They have found that shell fossils have a very high far-infrared effect and arrived at the present invention.

【0008】すなわち、請求項1の発明は、SiO
67.5〜74.7%(重量%、以下同じ)、Al
:12.2〜13.6%、Fe:3.8〜4.
2%、MgO:1.60〜1.78%、CaO:1.8
3〜2.03%、KO:2.85〜3.17%、P
:0.057〜0.065%を主成分とし、残部に
他の微量元素を含有する貝化石を、有効成分とすること
を特徴とする遠赤外線放射材である。
That is, the first aspect of the present invention relates to a method for producing SiO 2 :
67.5 to 74.7% (% by weight, the same applies hereinafter), Al 2 O
3 : 12.2 to 13.6%, Fe 2 O 3 : 3.8 to 4.
2%, MgO: 1.60 to 1.78%, CaO: 1.8
3~2.03%, K 2 O: 2.85~3.17 %, P 2
O 5: the 0.057 to 0.065% as a main component, a fossil shells containing other trace elements to the remainder, is a far-infrared radiation material, characterized in that as an active ingredient.

【0009】本発明の遠赤外線放射材は、上記成分を含
有する貝化石(以下、遠赤貝化石という)を有効成分と
するから、この成分値の遠赤貝化石単独あるいはこの遠
赤貝化石に他の成分値が大きく異なる貝化石を添加した
ものにより、構成される。本発明は、すでに水質改良
剤、底質改善剤あるいは餌料添加物としての効果、実績
が積み重ねられている貝化石とは、成分値が大きく異な
る遠赤貝化石の利用分野に関するものである。本発明に
使用される遠赤貝化石は、考古学名では有孔虫化石、地
質学名では石灰質砂岩であり、日本では現在のところ富
山県のみで産するが、産地による限定がない。上記した
主成分を有する貝化石であれば、いかなる産地の貝化石
であっても良い。富山県で産した遠赤貝化石の分析値
は、表1のとおりである。
The far-infrared ray radiating material of the present invention contains a fossil shell containing the above-mentioned components (hereinafter referred to as a far-red shell fossil) as an active ingredient. It is constituted by the addition of shell fossils with greatly different component values. The present invention relates to a field of use of far-infrared shell fossils whose component values are significantly different from those of shell fossils, which have already been accumulated for their effects as water quality improvers, bottom quality improvers or food additives, and have been accumulated. The deep-sea clam fossils used in the present invention are foraminiferal fossils in the archaeological name and calcareous sandstone in the geological name, and are currently produced only in Toyama Prefecture in Japan, but are not limited by the place of production. Any shell fossil from any locality may be used as long as it is a shell fossil having the main components described above. Table 1 shows the analysis values of fossil shellfish produced in Toyama Prefecture.

【0010】本発明の遠赤貝化石は、より具体的には、
富山県内の数カ所の採掘場において採掘されたものであ
り、且つこれらの採掘場から採掘された表1に示す成分
の遠赤貝化石の類似品と、である。
[0010] More specifically, the deep-sea shelled fossils of the present invention include:
These were mined at several mines in Toyama Prefecture, and were similar to the far-infrared shell fossils of the components shown in Table 1 mined from these mines.

【0011】[0011]

【表1】 [Table 1]

【0012】なお、上記富山県において採掘されている
遠赤貝化石は、表1に示す成分値から明らかな通り、日
本の他の地域で採掘される貝化石の成分構成と、分子集
合形態が大きく異なり、特にケイ素、アルミニウム、
鉄、カリウムが非常に多く、カルシウムの含有率、すな
わち、炭酸カルシウムの含有率が非常に低いことが特徴
となっている。また、遠赤貝化石の成分値は、採掘場間
及び同じ採掘場でも鉱脈による若干の相違が認められ
る。
As is clear from the component values shown in Table 1, the fossil shellfish mined in Toyama Prefecture has a large composition and molecular assemblage of shell fossils mined in other regions of Japan. Different, especially silicon, aluminum,
It is characterized by a very high content of iron and potassium and a very low content of calcium, that is, a very low content of calcium carbonate. In addition, there are slight differences in the component values of fossil shellfish between mines and at the same mines due to veins.

【0013】次に、富山Aの遠赤貝化石の30mmアン
ダーのものと、73μm微粉体のものとについて、遠赤
外線の放射状況を測定する。測定内容は以下のとおりで
ある。 1.測定温度 70°C 2.測定機種 フーリエ変換型赤外線分光光度計 JIR−E500 3.測定条件 分解能 1/16cm 積算回数 200回 検知器 MCT 上記測定内容にて、遠赤貝化石の30mmアンダー試料
と、73μm微粉体試料とについて、遠赤外線放射エネ
ルギーを測定した値を図1、2に示す。更に、両試料に
おける遠赤外線放射エネルギーと理想黒体における遠赤
外線放射エネルギーとの比率、すなわち、遠赤外線放射
率を図3、4に示す。
Next, the radiation status of far-infrared rays is measured for the far-red shell fossils of Toyama A, which are 30 mm under and those of 73 μm fine powder. The details of the measurement are as follows. 1. Measurement temperature 70 ° C 2. 2. Measurement model Fourier transform infrared spectrophotometer JIR-E500 Measurement conditions Resolution 1 / 16cm Integral count 200 times Detector MCT Figures 1 and 2 show the measured values of far-infrared radiant energy of a 30 mm under sample of fossil shellfish and a 73 μm fine powder sample in the above measurement contents. . Further, FIGS. 3 and 4 show the ratio between the far-infrared radiation energy in both samples and the far-infrared radiation energy in the ideal black body, that is, the far-infrared emissivity.

【0014】図1、2において、遠赤貝化石の30mm
アンダー試料と、73μm微粉体試料とも遠赤線放射エ
ネルギーに余り差がなく、7〜9μm範囲の遠赤外線で
遠赤外線放射エネルギーのピーク値があり、理想黒体と
ほぼ同様の傾向を示す。また、図3、4において、遠赤
貝化石の30mmアンダー試料と、73μm微粉体試料
とも高い遠赤外赤線放射率を示し、特に、あらゆる有機
物の波長帯である5〜14μm範囲の遠赤外線では、最
大97%、最小83%、平均で約93%という高い遠赤
外赤線放射率を示した。したがって、これら30mmア
ンダーの遠赤貝化石、73μm微粉体の遠赤貝化石と
も、あらゆる場面で遠赤外線による放射エネルギーを効
率良く利用することが可能である。
In FIG. 1 and FIG.
The under sample and the 73 μm fine powder sample have little difference in far-infrared ray radiant energy, have a peak value of far-infrared radiant energy in the range of 7 to 9 μm far infrared rays, and show almost the same tendency as an ideal black body. In addition, in FIGS. 3 and 4, both the 30 mm under sample of the far-red shell fossils and the 73 μm fine powder sample show high far-infrared red-ray emissivity, especially in the far-infrared range of 5 to 14 μm, which is the wavelength band of all organic substances. , A maximum of 97%, a minimum of 83%, and an average of about 93%. Therefore, it is possible to efficiently use the radiant energy of far-infrared rays in all scenes with these far-red shell fossils of 30 mm or less and fine powder of 73 μm fine powder.

【0015】したがって、遠赤貝化石は、ミクロン単位
の微粉末状態から3mm程度の砂利状態まで、ほぼ同じ
の遠赤外赤線放射率にて利用可能であるから、利用形態
に合わせて必要とする粒度に自在に粉砕して利用するこ
とが出来る。そして、遠赤貝化石の最も単純な利用形態
としては、5mm前後の粒体にしたものを、魚焼き用の
ガスグリルの網の下にある水を入れるトレーに、水の代
わりに敷いて魚介類を焼くことが、考えられる。このよ
うにすると、仕上がり良くしかも熱回りが良いから早く
焼ける。
[0015] Accordingly, since far-infrared shell fossils can be used at almost the same far-infrared red-ray emissivity from a fine powder state in micron units to a gravel state of about 3 mm, they are required in accordance with the usage form. It can be used by crushing freely to the particle size. And the simplest form of use of the far-infrared shell fossils is to place the granules of about 5 mm in size on a tray under the gas grill net for grilling fish, instead of water, and place the seafood. Baking is conceivable. By doing so, the baking is quick because of good finish and good heat circulation.

【0016】また、請求項2の発明は、前記微量元素
は、Sr、Zr、Ru、Y、Ga、Zn、Cu、Ni、
Mn、Ti、Cl、Naである請求項1記載の遠赤外線
放射材である。
Further, the invention according to claim 2 is characterized in that the trace elements are Sr, Zr, Ru, Y, Ga, Zn, Cu, Ni,
The far-infrared radiating material according to claim 1, which is Mn, Ti, Cl, or Na.

【0017】上記微量元素が、遠赤貝化石からの遠赤外
線放射エネルギーに及ぼす影響は不明である。しかし、
SiO:67.5〜74.7%、Al:12.
2〜13.6%、Fe:3.8〜4.2%、Mg
O:1.60〜1.78%、CaO:1.83〜2.0
3%、KO:2.85〜3.17%、P:0.
057〜0.065%を主成分とし、上記のような微量
元素が無い鉱物によっては、図1、2にしめすような高
い遠赤外線放射エネルギーや、図3、4に示すような高
い遠赤外赤線放射率を示すことが無い。したがって、上
記主成分とこれら微量元素との相乗効果により、遠赤貝
化石は高い遠赤外線放射エネルギーと高い遠赤外赤線放
射率を示すものと、想定される。
The effect of the above-mentioned trace elements on far-infrared radiation energy from far-infrared fossil fossils is unknown. But,
SiO 2: 67.5~74.7%, Al 2 O 3: 12.
2~13.6%, Fe 2 O 3: 3.8~4.2%, Mg
O: 1.60 to 1.78%, CaO: 1.83 to 2.0
3%, K 2 O: 2.85~3.17 %, P 2 O 5: 0.
Depending on minerals containing 057 to 0.065% as a main component and having no trace elements as described above, high far-infrared radiation energy as shown in FIGS. 1 and 2 or high far-infrared as shown in FIGS. It does not show red line emissivity. Therefore, it is assumed that, due to the synergistic effect of the above main components and these trace elements, the far-infrared shell fossils exhibit high far-infrared radiation energy and high far-infrared red emissivity.

【0018】また、請求項3の発明は、上記した貝化石
に、石灰質や珪酸等からなる各種ネクトン、プランクト
ン、藻類、海藻等が埋没して堆積し、腐植溶性を帯びた
結晶体からなる貝化石を混合してなることを特徴とする
遠赤外線放射材である。
The invention of claim 3 provides a shell made of a humus-soluble crystal, in which various nekton, plankton, algae, seaweed and the like made of calcareous or silicic acid are buried and deposited in the fossil shell. It is a far-infrared radiation material characterized by mixing fossils.

【0019】請求項3の発明で使用される貝化石(以
下、腐植貝化石という)は、遠赤貝化石と同様に、考古
学名では有孔虫化石、地質学名では石灰質砂岩であり、
日本では富山県、石川県能登半島、岐阜県高山市、北海
道、山口県、徳島県、福島県、鹿児島県に産するが、産
地による限定がない。以下に説明する特性を有する腐植
貝化石であれば、いかなる産地の腐植貝化石であっても
良い。その主な産地における腐植貝化石の分析値は、表
2のとおりである。
The fossil shellfish (hereinafter referred to as humus fossil) used in the invention of claim 3 is a foraminiferal fossil in the archaeological name and calcareous sandstone in the geological name, similarly to the fossil shellfish fossil.
In Japan, it is produced in Toyama Prefecture, Noto Peninsula in Ishikawa Prefecture, Takayama City in Gifu Prefecture, Hokkaido, Yamaguchi Prefecture, Tokushima Prefecture, Fukushima Prefecture and Kagoshima Prefecture, but there is no limitation depending on the place of production. Humus fossils from any locality may be used as long as they have the characteristics described below. Table 2 shows the analytical values of humus fossils in the main production areas.

【0020】上記の腐植貝化石は、より具体的には、富
山県内の数カ所の採掘場において採掘された試料につい
ての下記定量分析表(表3)によるものと、これらの採
掘場から採掘された表3に示す成分の腐植貝化石の類似
品と、である。
More specifically, the humus fossils described above were obtained from the following quantitative analysis tables (Table 3) for samples mined at several mines in Toyama Prefecture, and mined from these mines. And humus fossils analogous to the components shown in Table 3.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】なお、上記富山県において採掘されている
腐植貝化石は、日本の他の地域で採掘される腐植貝化石
の成分構成と、分子集合形態が大きく異なり、特に珪素
もある程度含有するが、カルシウムの含有率、すなわ
ち、炭酸カルシウムの含有率が非常に高いことが特徴と
なっている。
The humus fossils mined in Toyama Prefecture differ greatly in the molecular composition from those of humus fossils mined in other parts of Japan, and in particular contain some silicon. It is characterized by a very high calcium content, that is, a very high calcium carbonate content.

【0024】前記腐植溶性は、つぎのとおり定義され
る。まず、腐植とは、動植物や微生物の遺体が土壌中で
酸素の乏しい状態で生物群集により分解され、ポリフェ
ノール類、キノン類、アミノ化合物が生成され、さら
に、これらの物質は、酵素、微生物の酸化酵素、無機イ
オン、粘土鉱物などの触媒作用により重縮合され、土壌
固有の暗色無定形コロイド状高分子化合物に、変化する
ことである。したがって、腐植溶性とは、動植物や微生
物の遺体が土壌中で分解、重縮合されて生成された物質
が可溶性を示すこと、である。そして、腐植溶性を帯び
た結晶体とは、動植物や微生物の遺体が数百万年に及ぶ
地球規模の変遷を経て、姿かたちを変えたものである。
The humic solubility is defined as follows. First, humus means that the remains of animals, plants and microorganisms are decomposed by biological communities in a state of low oxygen in the soil, and polyphenols, quinones, and amino compounds are produced, and these substances are oxidized by enzymes and microorganisms. It is polycondensed by the catalytic action of enzymes, inorganic ions, clay minerals, etc., and changes into a dark amorphous colloidal high molecular compound inherent in soil. Therefore, the term "humus-soluble" means that a substance produced by the decomposition and polycondensation of the remains of animals, plants and microorganisms in soil shows solubility. Humic-soluble crystals are the bodies of animals, plants, and microorganisms that have undergone a global transformation over millions of years.

【0025】また、この腐植貝化石は、生体より分泌さ
れたアラゴライト形の結晶構造をとり、一定の有効径を
持つ小孔が無数に有り、これら無数の小孔には結晶水を
含むものも、含まないものもあり、様々である。これら
結晶水を含まない小孔は、活性炭と同様に吸着性能を有
し、被吸着物質の種類によっては活性炭の数十倍の能力
を示す場合がある。そして、この腐植貝化石は、上述の
とおり、動植物や微生物の遺体が数百万年に及ぶ地球規
模の変遷を経て、姿かたちを変えたものであるから、こ
れらの動植物や微生物を構成する全ての元素を含有し、
特に必須ミネラルが豊富に含まれ、更に、若干性能的に
劣るとはいえ、前記遠赤貝化石と同様に、比較的高い遠
赤外線放射エネルギーや遠赤外線放射率を示し、その程
度は、あらゆる有機物の波長帯である5〜14μm範囲
の遠赤外線では、測定温度60°Cの場合で、最大85
%、最小73%、平均で約80%弱というものである。
The humus fossil has an aragolite-type crystal structure secreted from a living body, and has a myriad of small pores having a certain effective diameter, and these numerous small pores contain water of crystallization. , And some do not. These pores that do not contain water of crystallization have adsorption performance similar to activated carbon, and may exhibit tens of times the capacity of activated carbon depending on the type of the substance to be adsorbed. And, as mentioned above, this humus fossil is a form of the remains of flora, fauna, and microorganisms that have undergone millions of years of global change, and have changed their appearance. Containing the elements of
In particular, it contains essential minerals abundantly, and even though it is slightly inferior in performance, it shows relatively high far-infrared radiation energy and far-infrared emissivity, similar to the far-red shell fossils, and its degree In the case of far infrared rays in the wavelength band of 5 to 14 μm, a maximum of 85 at a measurement temperature of 60 ° C.
%, A minimum of 73%, and an average of just under 80%.

【0026】したがって、前記遠赤貝化石と上記腐植貝
化石とを、利用形態に合わせて最適な粒径にして混合す
ることで、それぞれが有する特性を出し合い、それぞれ
が有する欠点をカバーし合うことが可能となる。すなわ
ち、遠赤貝化石は遠赤外線効果は高いものの、吸着効
果、ミネラル効果は低い、腐植貝化石は吸着効果、ミネ
ラル効果は高いが、遠赤外線効果は低い。これらの欠点
を補完することができる。そして、遠赤貝化石と腐植貝
化石とが混合してあることで、様々な遠赤外線放射体と
しての利用後に、廃棄する場合や、容器やシートとして
の利用の場合に吸着効果、ミネラル効果が生きてくるこ
とになる。
Therefore, by mixing the fossil shellfish and the humus shell fossil at an optimum particle size according to the use form, it is possible to share the characteristics possessed by each and cover the defects possessed by each. It becomes possible. That is, although far-infrared shell fossils have a high far-infrared effect, adsorption and mineral effects are low. Humus shell fossils have high adsorption and mineral effects, but low far-infrared effects. These disadvantages can be complemented. In addition, the mixture of fossils of far-infrared shellfish and fossil humus leads to the absorption effect and mineral effect when discarded or used as containers and sheets after being used as various far-infrared radiators. Will come.

【0027】また、請求項4の発明は、請求項1、2又
は3記載の遠赤外線放射材を天然及び合成有機物に含有
させてなることを特徴とする遠赤外線放射材の用途物で
ある。
A fourth aspect of the present invention is an application of a far-infrared radiating material characterized in that the far-infrared radiating material according to the first, second or third aspect is contained in a natural or synthetic organic substance.

【0028】前記天然有機物は、木綿、麻、木材などか
らのセルロース、パルプや紙、羊毛などからのケラチ
ン、絹などからのフィブロイン、その他の動植物から主
に炭水化物や蛋白質を抽出して、これらを原料とした再
生繊維やプラスチックなども含む。また、合成有機物
は、合成繊維、合成ゴム、合成樹脂、合成塗料などであ
る。これら天然及び合成有機物に上記した遠赤外線放射
材を含有させたもの全てを含む。したがって、遠赤外線
放射材は、天然及び合成有機物に含有させるために、そ
の目的に合わせて、73μm以上の粉体あるいはそれ以
下の微粉体とする必要がある。そして、この遠赤外線放
射材の用途物は、利用目的にあわせて様々な形状に成形
される。具体的な用途としては、各種衣服、寝具関連用
品、各種容器、各種シート、各種家具、各種建材、各種
繊維製品、各種塗料などである。
The natural organic substances include cellulose from cotton, hemp, wood, etc., keratin from pulp and paper, wool, etc., fibroin from silk, etc., and carbohydrates and proteins mainly extracted from animals and plants. It also includes recycled fibers and plastics used as raw materials. The synthetic organic material is a synthetic fiber, a synthetic rubber, a synthetic resin, a synthetic paint, or the like. All natural and synthetic organic substances containing the far-infrared radiating material described above are included. Therefore, the far-infrared radiating material needs to be a powder having a size of 73 μm or more or a fine powder having a size of 73 μm or less in order to be contained in natural and synthetic organic substances. Then, the application of the far-infrared radiation material is formed into various shapes according to the purpose of use. Specific applications include various clothes, bedding-related products, various containers, various sheets, various furniture, various building materials, various fiber products, various paints, and the like.

【0029】また、請求項5の発明は、請求項1、2又
は3記載の遠赤外線放射材を天然及び大工無機物に含有
させてなることを特徴とする遠赤外線放射材の用途物で
ある。
A fifth aspect of the present invention is a use of a far-infrared radiating material characterized in that the far-infrared radiating material according to the first, second or third aspect is contained in a natural or carpentry inorganic substance.

【0030】天然無機物は、土、粘土、シラス、珪藻
土、砂、砂利、各種岩石、各種鉱物などである。また、
人工無機物は、ガラス、セメント、レンガ、かわら、陶
磁器などである。これら天然及び合成無機物に上記した
遠赤外線放射材を含有させたもの全てを含む。したがっ
て、遠赤外線放射材は、天然及び合成無機物に含有させ
るために、その目的に合わせて、粒体、73μm以上の
粉体あるいは以下の微粉体とする必要がある。そして、
この遠赤外線放射材の用途物は、利用目的にあわせて様
々な形状に成形される。具体的な用途としては、各種容
器、各種板材、各種建材、各種家具、各種釉薬、各種塗
料などである。
The natural inorganic substances are soil, clay, shirasu, diatomaceous earth, sand, gravel, various rocks, various minerals and the like. Also,
Artificial minerals are glass, cement, brick, tile, ceramic, and the like. All natural and synthetic inorganic materials containing the far-infrared radiating material described above are included. Therefore, the far-infrared radiating material must be in the form of a granule, a powder of 73 μm or more or a fine powder of the following, depending on the purpose, in order to be contained in natural and synthetic inorganic substances. And
Applications of the far-infrared radiation material are formed into various shapes according to the purpose of use. Specific applications include various containers, various plate materials, various building materials, various furniture, various glazes, various paints, and the like.

【0031】また、請求項6の発明は、請求項1、2又
は3記載の遠赤外線放射材を結合剤にて所定形状に形成
してなることを特徴とする遠赤外線放射材の用途物であ
る。
According to a sixth aspect of the present invention, there is provided a use of a far-infrared radiating material characterized in that the far-infrared radiating material according to the first, second or third aspect is formed into a predetermined shape with a binder. is there.

【0032】結合剤は、石灰、漆喰、モルタル、セメン
トなどの天然及び人工無機物、カゼイン、にかわ、血漿
などの蛋白系、澱粉糊、デキストリン、CMC、アルギ
ン酸、天然ゴム、歴青系、ロジン、うるし、天然ゴムな
どの天然有機物、熱可塑性樹脂及び熱硬化性樹脂などの
合成樹脂系結合剤、合成ゴム系結合剤などの合成有機物
などである。これらの結合剤により、上記した遠赤外線
放射材を結合させたもの全てを含む。したがって、遠赤
外線放射材は、結合剤により結合させて目的物とするた
めに、その目的物に合わせて、粒状、粉粒状、粉状、微
粉状とする必要がある。そして、この遠赤外線放射材の
用途物は、利用目的にあわせて様々な形状に成形され
る。具体的な用途としては、各種容器、各種板材、各種
建材、各種家具などである。
Binders include natural and artificial minerals such as lime, stucco, mortar, cement, etc., protein-based such as casein, glue, plasma, starch paste, dextrin, CMC, alginic acid, natural rubber, bituminous, rosin, urushi. And natural organic substances such as natural rubber, synthetic resin-based binders such as thermoplastic resins and thermosetting resins, and synthetic organic substances such as synthetic rubber-based binders. All of the above-mentioned far-infrared radiating materials bound by these binders are included. Therefore, in order to combine the far-infrared ray radiating material with the binder to obtain the target, it is necessary to make the far-infrared radiating material granular, powdery, powdery, or fine powder according to the target. Then, the application of the far-infrared radiation material is formed into various shapes according to the purpose of use. Specific applications include various containers, various plate materials, various building materials, and various furniture.

【0033】また、請求項7の発明は、請求項1、2又
は3記載の遠赤外線放射材にて物の表面を覆ってなるこ
とを特徴とする遠赤外線放射材の用途物である。
A seventh aspect of the present invention is an application of a far-infrared radiating material characterized in that the surface of an object is covered with the far-infrared radiating material according to the first, second or third aspect.

【0034】物は、その表面に上記した遠赤外線放射材
にて覆うことが出来れば、線状、繊維状、シート状、板
状、球体や方体などのブロック状など、形状による限定
がない。物の表面を遠赤外線放射材で覆うことは、具体
的に例示すれば、表面に遠赤外線放射材を貼り付けるこ
と、表面に遠赤外線放射材を含有する塗料を塗布するこ
と、吹き付けることなどである。したがって、これらの
方法により物の表面を遠赤外線放射材で覆うためには、
その表面に遠赤外線放射材を上記した結合剤(接着剤)
にて接着する必要がある。なお、結合剤は、接着剤と同
義語であり、使用の仕方により名称が異なるのみであ
り、上記した人工無機質接着剤、天然有機質接着剤、合
成樹脂系接着剤、天然及び合成ゴム系接着剤などであ
る。そして、この遠赤外線放射材の用途物は、利用目的
にあわせて様々な形状のものに適用される。具体的な用
途としては、各種衣服、各種容器、各種板材、各種建
材、各種家具などである。
As long as the object can be covered with the above-mentioned far-infrared radiating material, there is no limitation on the shape such as a linear shape, a fibrous shape, a sheet shape, a plate shape, a block shape such as a sphere or a cube. . To cover the surface of an object with a far-infrared radiating material, for example, by applying a far-infrared radiating material to the surface, applying a paint containing the far-infrared radiating material to the surface, spraying, etc. is there. Therefore, in order to cover the surface of an object with far-infrared radiation material by these methods,
A binder (adhesive) with a far-infrared radiation material on its surface
It is necessary to adhere with. Note that the binder is synonymous with the adhesive, and has only a different name depending on how it is used. The above-mentioned artificial inorganic adhesive, natural organic adhesive, synthetic resin adhesive, natural and synthetic rubber adhesive And so on. The application of the far-infrared radiation material is applied to various shapes according to the purpose of use. Specific applications are various clothes, various containers, various plates, various building materials, various furniture, and the like.

【0035】また、請求項8の発明は、請求項1、2又
は3記載の遠赤外線放射材をシート状物にて覆ってなる
ことを特徴とする遠赤外線放射材の用途物である。
An eighth aspect of the present invention is an application of a far-infrared radiating material characterized in that the far-infrared radiating material according to the first, second or third aspect is covered with a sheet.

【0036】前記シート状物は、紙、樹脂シート、織布
及び不織布などの繊維布、樹脂フィルムなどであり、主
に可撓性を有するものであるが、無くても良い。ただ
し、余り肉厚のものでは、遠赤外線放射材の遠赤外線放
射エネルギーを阻害するので好ましくない。遠赤外線放
射材をシート状物にて覆うには、請求項7の発明と同様
に、これらの間に接着剤を介在させる必要がある。この
遠赤外線放射材の用途物は、利用目的にあわせて様々な
形状のものに適用される。具体的な用途としては、各種
衣服、寝具関連、各種容器、各種建材、各種家具などで
ある。
The sheet-like material is paper, a resin sheet, a fiber cloth such as a woven or non-woven fabric, a resin film, or the like, and mainly has flexibility, but may be omitted. However, if the thickness is too large, the far-infrared radiation material of the far-infrared radiation material is unfavorably hindered. In order to cover the far-infrared radiation material with a sheet-like material, it is necessary to interpose an adhesive between them, as in the invention of claim 7. The application of the far-infrared radiation material is applied to various shapes according to the purpose of use. Specific applications include various clothing, bedding-related, various containers, various building materials, and various furniture.

【0037】[0037]

【発明の実施の形態】以下、本発明の実施の態様につい
て詳述する。まず、上記構成になる遠赤外線放射材及び
その用途物の種々の効果を確認するための調査及び試験
を行ったので、その状況を説明する。したがって、遠赤
貝化石自体の遠赤外線放射エネルギー及び遠赤外線放射
率は、すでに述べてあるので、遠赤外線放射材の用途物
とした場合に、遠赤外線放射率がどの程度低下するかを
検証する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail. First, investigations and tests for confirming various effects of the far-infrared radiating material having the above-described configuration and its application were conducted, and the situation will be described. Therefore, the far-infrared radiant energy and far-infrared emissivity of the far-infrared shell fossil itself have already been described, and it will be examined how far-infrared emissivity is reduced when used as a far-infrared radiating material.

【0038】〔実施例1〕紙に遠赤外線放射材である7
3μmの微粉末の遠赤貝化石15%梳き込み、約100
g/mの遠赤外線放射材含有紙とし、これを前記した
富山Aの遠赤貝化石の30mmアンダーのものと、73
μm微粉体のものとを測定したのと同条件で、遠赤外線
放射率を測定する。 〔比較例1〕約100g/mの普通紙を実施例1と同
じ条件で遠赤外線放射率を測定する。 〔実施例2〕ポリエチレンに10μmの微粉末の遠赤貝
化石15%まぜ、0.1mmのフィルムとし、これを実
施例1と同じ条件で遠赤外線放射率を測定する。 〔比較例2〕0.1mmのポリエチレンフィルムを実施
例1と同じ条件で遠赤外線放射率を測定する。 〔実施例3〕セメントに砂と3mm粒径の遠赤貝化石を
混ぜ、厚み20mmの板とした。この配合比率をコンク
リートの配合の表示法に従って示すと、遠赤貝化石を細
骨材として748kg/m、砂利を粗骨材として11
12kg/m、セメントが268kg/m、水が1
55kg/m、混和剤が0.67kg/mであり、
748/(748+1112+268+)×100=3
5%の混合比率となる。この20mm板を実施例1と同
じ条件で遠赤外線放射率を測定する。 〔比較例3〕実施例3の細骨材としてとしての遠赤貝化
石の代わりに、砂を748kg/m配合し、厚み20
mmの板として、この板を実施例1と同じ条件で遠赤外
線放射率を測定する。 〔実施例4〕1mm前後の粒径の遠赤貝化石にフェノー
ル樹脂溶液を板状に結合させることが出来る程度に含浸
させて、10mmの板とし、この板を実施例1と同じ条
件で遠赤外線放射率を測定する。 〔比較例4〕1mm前後の粒径の砂にフェノール樹脂溶
液を板状に結合させることが出来る程度に含浸させて、
10mmの板とし、この板を実施例1と同じ条件で遠赤
外線放射率を測定する。 〔実施例5〕6mm厚みのベニヤ板にエポキシ系接着剤
を0.5mm程度の厚みに塗布し、その上に73μmの
微粉末の遠赤貝化石を約1mm前後載せて接着する。こ
の遠赤貝化石モールド板を実施例1と同じ条件で遠赤外
線放射率を測定する。 〔比較例5〕6mm厚みのベニヤ板を実施例1と同じ条
件で遠赤外線放射率を測定する。以上、得られたデータ
を表4に示す。
[Example 1] 7 which is far-infrared radiation material on paper
Combine 15% of 3 μm fine powder far-red shell fossils, about 100
g / m 2 of far-infrared radiating material-containing paper, which is 30 mm below the Toyama A far-red shellfish fossil,
The far-infrared emissivity is measured under the same conditions as those for the micron fine powder. Comparative Example 1 The far-infrared emissivity of plain paper of about 100 g / m 2 was measured under the same conditions as in Example 1. [Example 2] A film of 0.1 mm was mixed with polyethylene by mixing 15% of a fine powder of 10 μm of far-red shell fossil, and the film was measured for far-infrared emissivity under the same conditions as in Example 1. Comparative Example 2 A 0.1 mm polyethylene film was measured for far-infrared emissivity under the same conditions as in Example 1. [Example 3] Sand and fossil shellfish having a particle diameter of 3 mm were mixed with cement to form a plate having a thickness of 20 mm. When this mixing ratio is shown in accordance with the notation of the mixing ratio of the concrete, it is 748 kg / m 3 using far-infrared shell fossil as fine aggregate and 11% using gravel as coarse aggregate.
12 kg / m 3 , cement 268 kg / m 3 , water 1
55 kg / m 3, the admixture is 0.67 kg / m 3,
748 / (748 + 1112 + 268 +) × 100 = 3
The mixture ratio becomes 5%. The far-infrared emissivity of this 20 mm plate is measured under the same conditions as in Example 1. [Comparative Example 3] 748 kg / m 3 of sand was blended in place of fossil shellfish as the fine aggregate of Example 3 and the thickness was 20%.
The far-infrared emissivity of this plate is measured under the same conditions as in Example 1. [Example 4] A 10 mm plate was impregnated with a phenol resin solution to a far red seashell fossil having a particle size of about 1 mm so that it could be bound in a plate shape. Measure emissivity. [Comparative Example 4] A sand having a particle size of about 1 mm was impregnated with a phenol resin solution to an extent that it could be bonded in a plate shape.
A 10 mm plate is used, and this plate is measured for far-infrared emissivity under the same conditions as in Example 1. Example 5 An epoxy-based adhesive was applied to a thickness of about 0.5 mm on a 6 mm-thick plywood, and about 73 mm of fine powdered far-red shell fossil was placed thereon and adhered thereto. The far-infrared emissivity of this far-infrared shell fossil mold plate is measured under the same conditions as in Example 1. Comparative Example 5 Far-infrared emissivity of a 6 mm thick plywood was measured under the same conditions as in Example 1. Table 4 shows the obtained data.

【0039】[0039]

【表4】 [Table 4]

【0040】表4によれば、実施例1乃至5は、遠赤外
線放射材である遠赤貝化石自体の遠赤外線放射率より若
干低いものの、非常に高い遠赤外線放射率を維持してい
る。したがって、この遠赤外線放射材は単品使用、複合
使用とも非常に高い遠赤外線放射率を持った製品を得る
ことが出来る。一方、比較例1乃至5は、いずれも遠赤
外線効果を得ることができない。
According to Table 4, Examples 1 to 5 maintain a very high far-infrared emissivity, though slightly lower than the far-infrared emissivity of the far-infrared shell fossil itself, which is a far-infrared radiating material. Therefore, this far-infrared radiating material can obtain a product having a very high far-infrared emissivity both in single use and in combined use. On the other hand, none of Comparative Examples 1 to 5 can obtain the far-infrared effect.

【0041】[0041]

【発明の効果】以上詳述したように、本発明の遠赤外線
放射材及びその用途物によれば、以下のような効果が期
待できる。請求項1の発明は、魚介類の養殖の環境整備
に傾倒し、その目的がほぼ達成出来たことを踏まえて、
養殖魚介類を如何に上手に調理すべきかの探査の過程に
おいて、発明しえたものであり、真の環境保全、地球温
暖化のために、莫大なエネルギーを消費することなく、
単に利用形態に合わせて鉱石を粉砕するだけの操作によ
り、極めて高い遠赤外線効果を得ることができ、この高
い遠赤外線効果の結果加熱利用の際省エネルギーとな
り、しかも加工度が低いから、安価で入手することが出
来る。
As described above in detail, the following effects can be expected from the far-infrared radiating material of the present invention and its uses. The invention of claim 1 is devoted to improving the environment for the cultivation of fish and shellfish, and based on the fact that the object has been almost achieved,
In the process of exploring how to cook cultured fish and shellfish well, it was invented, and without consuming enormous energy for real environmental conservation and global warming,
An extremely high far-infrared effect can be obtained simply by crushing the ore in accordance with the usage pattern. As a result of this high far-infrared effect, energy can be saved when using heating, and the processing rate is low. You can do it.

【0042】請求項2の発明は、遠赤外線放射材である
遠赤貝化石に含まれる微量元素と主成分とが織りなすこ
とで、上記効果をなお一層顕著にする。
According to the second aspect of the present invention, the above effects are further enhanced by weaving trace elements and main components contained in the far-red shell fossils, which are far-infrared radiating materials.

【0043】請求項3の発明は、上記効果に加えて、遠
赤外線放射材である遠赤貝化石に腐植貝化石を混合する
ことで、両者の性能を補完しあい、遠赤外線効果に強い
ミネラル効果、強い吸着効果が追加され、その用途が広
くなり、且つ遠赤外線効果との相乗効果が期待出来る。
According to the third aspect of the present invention, in addition to the above-mentioned effects, by mixing humus fossils with far-infrared shell fossils, which are far-infrared radiating materials, the performances of both are complemented, and a mineral effect that is strong against far-infrared effects. A strong adsorption effect is added, the application is widened, and a synergistic effect with the far-infrared effect can be expected.

【0044】請求項4の発明は、上記請求項に記載の遠
赤外線放射材を天然及び合成有機物に含有させてなるこ
とで、全ての有機物に遠赤外線効果を付与でき、単品使
用の場合より遙にその遠赤外線効果の用途が広がり、更
に遠赤外線効果ばかりか、強いミネラル効果、強い吸着
効果も身近に利用出来る。
According to a fourth aspect of the present invention, the far-infrared radiating material according to the above-mentioned aspect is contained in natural and synthetic organic substances, whereby a far-infrared effect can be imparted to all organic substances, which is far more than the case of single use. The use of the far-infrared effect has expanded, and not only the far-infrared effect but also a strong mineral effect and a strong adsorption effect can be used.

【0045】請求項5の発明は、上記請求項に記載の遠
赤外線放射材を天然及び人工無機物に含有させてなるこ
とで、全ての無機物に遠赤外線効果を付与でき、単品使
用の場合より遙にその赤外線効果の用途が広がり、更に
赤外線効果ばかりか、強いミネラル効果、強い吸着効果
も身近に利用出来る。
According to a fifth aspect of the present invention, a far-infrared ray radiating material according to the above-mentioned claim is included in a natural or artificial inorganic substance, whereby a far-infrared ray effect can be imparted to all inorganic substances, which is far more than that of a single product. In addition, the application of the infrared effect is expanded, and not only the infrared effect, but also the strong mineral effect and the strong adsorption effect can be used.

【0046】請求項6の発明は、上記請求項に記載の遠
赤外線放射材を結合剤にて所定形状に形成することで、
種々の形状のものを遠赤外線放射材にて形成出来、強い
遠赤外線効果を得ることができ、採掘鉱石の形状のまま
や、粒状、粉粒状、粉状、微粉状などで使用する場合よ
り、遙にその赤外線効果の用途が広がり、更に赤外線効
果ばかりか、強いミネラル効果、強い吸着効果も身近に
利用出来る。
According to a sixth aspect of the present invention, the far-infrared radiating material according to the first aspect is formed into a predetermined shape with a binder.
Various shapes can be formed with far-infrared radiating material, and a strong far-infrared effect can be obtained, and the mined ore can be used as it is or in the form of granules, powder, granules, powder, fine powder, etc. The application of the infrared effect is far widened, and not only the infrared effect, but also a strong mineral effect and a strong adsorption effect can be used.

【0047】請求項7の発明は、上記請求項に記載の遠
赤外線放射材にて物の表面を覆うことで、そのものの形
状を有していながら、表面は遠赤外線放射材にて形成さ
れているから、強い遠赤外線効果を得ることができ、単
品使用の場合より遙にその赤外線効果の用途が広がり、
更に赤外線効果ばかりか、強いミネラル効果、強い吸着
効果も身近に利用出来る。
According to a seventh aspect of the present invention, the surface of an object is covered with the far-infrared radiating material according to the above-mentioned aspect, so that the surface is formed of the far-infrared radiating material while having the shape of itself. As a result, a strong far-infrared effect can be obtained, and the application of the infrared effect spreads far more than in the case of single use,
Furthermore, not only the infrared effect, but also the strong mineral effect and the strong adsorption effect can be used at hand.

【0048】請求項8の発明は、上記請求項に記載の遠
赤外線放射材をシート状物にて覆うことで、表面はシー
ト状物でありながら、内側にある遠赤外線放射材によ
り、強い遠赤外線効果を得ることができ、単品使用の場
合より遙にその赤外線効果の用途が広がる。
According to an eighth aspect of the present invention, the far-infrared ray radiating material according to the above-mentioned claim is covered with a sheet-like material, so that the far-infrared ray radiating material on the inside has a strong far-infrared radiation while the surface is a sheet-like material. An infrared effect can be obtained, and the application of the infrared effect is far more widespread than when a single product is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の30mmアンダーの遠赤外線放射材に
おける遠赤外線放射エネルギーを示す特性図。
FIG. 1 is a characteristic diagram showing far-infrared radiation energy in a far-infrared radiation material of 30 mm under according to the present invention.

【図2】本発明の73μm微粉体の遠赤外線放射材にお
ける遠赤外線放射エネルギーを示す特性図。
FIG. 2 is a characteristic diagram showing far-infrared radiation energy in a far-infrared radiation material of 73 μm fine powder of the present invention.

【図3】本発明の30mmアンダーの遠赤外線放射材に
おける遠赤外線放射率を示す特性図。
FIG. 3 is a characteristic diagram showing far-infrared emissivity of a far-infrared radiating material of 30 mm under according to the present invention.

【図4】本発明の73μm微粉体の遠赤外線放射材にお
ける遠赤外線放射率を示す特性図。
FIG. 4 is a characteristic diagram showing far-infrared emissivity of a far-infrared radiating material of 73 μm fine powder of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】SiO:63.9〜78.3%(重量
%、以下同じ)、Al:11.6〜14.2%、
Fe:3.60〜4.40%、MgO:1.52
〜1.86%、CaO:1.73〜2.13%、K
O:2.70〜3.32%、P:0.054〜
0.068%を主成分とし、残部に他の微量元素を含有
する貝化石を、有効成分とすることを特徴とする遠赤外
線放射材。
1. SiO 2 : 63.9 to 78.3% (% by weight, the same applies hereinafter), Al 2 O 3 : 11.6 to 14.2%,
Fe 2 O 3 : 3.60 to 4.40%, MgO: 1.52
11.86%, CaO: 1.73 to 2.13%, K
2 O: 2.70 to 3.32%, P 2 O 5 : 0.054 to
A far-infrared ray radiating material comprising, as an active ingredient, shell fossils containing 0.068% as a main component and the balance containing other trace elements.
【請求項2】前記微量元素は、Sr、Zr、Ru、Y、
Ga、Zn、Cu、Ni、Mn、Ti、Cl、Naであ
る請求項1記載の遠赤外線放射材。
2. The method according to claim 1, wherein the trace elements are Sr, Zr, Ru, Y,
The far-infrared radiation material according to claim 1, wherein the far-infrared radiation material is Ga, Zn, Cu, Ni, Mn, Ti, Cl, or Na.
【請求項3】請求項1又は2記載の貝化石に、石灰質や
珪酸等からなる各種ネクトン、プランクトン、藻類、海
藻等が埋没して堆積し、腐植溶性を帯びた結晶体からな
る貝化石を、混合してなることを特徴とする遠赤外線放
射材。
3. A shell fossil composed of a humus-soluble crystal, in which various nekton, plankton, algae, seaweed and the like made of calcareous or silicic acid are buried and deposited on the shell fossil of claim 1 or 2. , Far-infrared radiation material characterized by being mixed.
【請求項4】請求項1、2又は3記載の遠赤外線放射材
を天然及び合成有機物に含有させてなることを特徴とす
る遠赤外線放射材の用途物。
4. Use of a far-infrared radiating material comprising the far-infrared radiating material according to claim 1, 2 or 3 in a natural or synthetic organic substance.
【請求項5】請求項1、2又は3記載の遠赤外線放射材
を天然及び人工無機物に含有させてなることを特徴とす
る遠赤外線放射材の用途物。
5. Use of a far-infrared radiating material, characterized in that the far-infrared radiating material according to claim 1, 2 or 3 is contained in a natural or artificial inorganic substance.
【請求項6】請求項1、2又は3記載の遠赤外線放射材
を結合剤にて所定形状に形成してなることを特徴とする
遠赤外線放射材の用途物。
6. An application of a far-infrared radiating material, wherein the far-infrared radiating material according to claim 1, 2 or 3 is formed into a predetermined shape with a binder.
【請求項7】請求項1、2又は3記載の遠赤外線放射材
にて物の表面を覆ってなることを特徴とする遠赤外線放
射材の用途物。
7. Use of a far-infrared radiating material characterized by being covered with the far-infrared radiating material according to claim 1, 2 or 3.
【請求項8】請求項1、2又は3記載の遠赤外線放射材
をシート状物にて覆ってなることを特徴とする遠赤外線
放射材の用途物。
8. A use of far-infrared radiating material, wherein the far-infrared radiating material according to claim 1, 2 or 3 is covered with a sheet.
JP2000404964A 2000-12-31 2000-12-31 Far-infrared radiating material and application thereof Pending JP2002201458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000404964A JP2002201458A (en) 2000-12-31 2000-12-31 Far-infrared radiating material and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000404964A JP2002201458A (en) 2000-12-31 2000-12-31 Far-infrared radiating material and application thereof

Publications (1)

Publication Number Publication Date
JP2002201458A true JP2002201458A (en) 2002-07-19

Family

ID=18868777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000404964A Pending JP2002201458A (en) 2000-12-31 2000-12-31 Far-infrared radiating material and application thereof

Country Status (1)

Country Link
JP (1) JP2002201458A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460526B1 (en) * 2002-03-07 2004-12-08 이 흥 권 High functional composition having action on minus ion and far infrared ray
JP2006016227A (en) * 2004-06-30 2006-01-19 Koyo Denki Kogyo Kk Method for producing porous sintered compact
KR100547646B1 (en) * 2002-09-24 2006-01-31 박경순 Method for manufacturing negative ion and far infrared ray emitting ornaments and ornaments
WO2007037014A1 (en) * 2005-09-29 2007-04-05 Toyo Tex Co., Ltd Building material and method of producing the same
KR100952907B1 (en) 2008-06-18 2010-04-16 주식회사 세진 Method for applying rock rock irradiating far infrared ray to humman body
CN102766961A (en) * 2012-06-28 2012-11-07 吴江亚太化纺有限公司 Chinlon 66 far-infrared PDY (Partially Drawn Yarn) filament fiber
CN102766942A (en) * 2012-06-27 2012-11-07 吴江亚太化纺有限公司 Far-infrared nylon 66 draw-twisting stretch yarn
JP2015523248A (en) * 2013-05-15 2015-08-13 ベンテックス カンパニー,リミテッド Fiber sheet for clothing that emits bioactive energy
KR101619768B1 (en) 2014-10-10 2016-05-16 강정호 Material For Protecting Water Vein Wave Including Gritstone Powder and the Method of Making the Same
JP2021095326A (en) * 2019-12-17 2021-06-24 鄭修志 Far infrared energy-saving radiation coating for high-temperature furnace

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460526B1 (en) * 2002-03-07 2004-12-08 이 흥 권 High functional composition having action on minus ion and far infrared ray
KR100547646B1 (en) * 2002-09-24 2006-01-31 박경순 Method for manufacturing negative ion and far infrared ray emitting ornaments and ornaments
JP2006016227A (en) * 2004-06-30 2006-01-19 Koyo Denki Kogyo Kk Method for producing porous sintered compact
WO2007037014A1 (en) * 2005-09-29 2007-04-05 Toyo Tex Co., Ltd Building material and method of producing the same
KR100952907B1 (en) 2008-06-18 2010-04-16 주식회사 세진 Method for applying rock rock irradiating far infrared ray to humman body
CN102766942A (en) * 2012-06-27 2012-11-07 吴江亚太化纺有限公司 Far-infrared nylon 66 draw-twisting stretch yarn
CN102766961A (en) * 2012-06-28 2012-11-07 吴江亚太化纺有限公司 Chinlon 66 far-infrared PDY (Partially Drawn Yarn) filament fiber
JP2015523248A (en) * 2013-05-15 2015-08-13 ベンテックス カンパニー,リミテッド Fiber sheet for clothing that emits bioactive energy
KR101619768B1 (en) 2014-10-10 2016-05-16 강정호 Material For Protecting Water Vein Wave Including Gritstone Powder and the Method of Making the Same
JP2021095326A (en) * 2019-12-17 2021-06-24 鄭修志 Far infrared energy-saving radiation coating for high-temperature furnace
JP7112639B2 (en) 2019-12-17 2022-08-04 郭嘉川 Far-infrared radiating substrate, method for preparing far-infrared radiating substrate, energy-saving far-infrared radiating paint for high-temperature furnace, and energy-saving far-infrared radiating coating layer for high-temperature furnace

Similar Documents

Publication Publication Date Title
JP2002201458A (en) Far-infrared radiating material and application thereof
JP2008308396A (en) Water-containing composition, utilization and treatment method, and non-polluting water-resistant treated object
CN1593103A (en) Environment friendly plant culture medium
CN106116516A (en) Coal ash light through hole haydite
Monteiro et al. Evaluation of coating mortars with addition of açaí seed (Euterpe oleracea Mart.) in different processing conditions
CN110511041A (en) A kind of filter effect is good and free of contamination ardealite haydite preparation method
CN104386935B (en) The preparation method of the ultralight coarse aggregate of a kind of cotton stalk
CN106116632A (en) Basalt lightweight through hole haydite
CN108178572B (en) Preparation method of coral reef ceramsite
JP2006348733A (en) Stone powder plaster material, stone powder plaster, and wall type structure
CN107540326B (en) Phosphogypsum ceramsite for landscaping and preparation method thereof
CN103641394B (en) A kind of wide aperture eco-concrete for artificial seashore and preparation method thereof
CN106431330A (en) Production method of multifunctional quincuncial boric sludge light through-hole ceramsite
CN106631089A (en) Production method of multifunctional quincunx light porous ceramsites made from agricultural waste
JP2020066550A (en) Clinker ash compact and method for producing the same
CN115710437B (en) Composite clay and preparation method and application thereof
RU2201406C2 (en) Biological activator for septic tank or an equivalent thereof
CN103496950B (en) Ceramsite for concrete and preparation method of ceramsite
CN102850010B (en) Plant fiber homogeneous material and its preparation method
KR102165905B1 (en) deep fire and its manufacturing method
Madu et al. Development of Plaster Of Paris From Gypsum Deposit Of North Eastern Nigeria
CN107399919B (en) A kind of floating bed lightweight aggregate and preparation method thereof
CN106116493A (en) Maifanitum lightweight through hole haydite
Zhang et al. An insight into the effect of rice straw biochar on compressive strength and thermal conductivity of cement
CN106083155A (en) Attapulgite lightweight through hole haydite