JP2002200182A - Method for confirming radiation irradiation position - Google Patents

Method for confirming radiation irradiation position

Info

Publication number
JP2002200182A
JP2002200182A JP2000400776A JP2000400776A JP2002200182A JP 2002200182 A JP2002200182 A JP 2002200182A JP 2000400776 A JP2000400776 A JP 2000400776A JP 2000400776 A JP2000400776 A JP 2000400776A JP 2002200182 A JP2002200182 A JP 2002200182A
Authority
JP
Japan
Prior art keywords
irradiation
radiation
irradiation position
ray source
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000400776A
Other languages
Japanese (ja)
Inventor
Osamu Azuma
修 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000400776A priority Critical patent/JP2002200182A/en
Publication of JP2002200182A publication Critical patent/JP2002200182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new method for confirming a radiation irradiation position that helps correctly confirm the positional relationship between an irradiation position and an affected site during radiation irradiation. SOLUTION: An X-ray source 14 is provided on the extended line of an irradiation axis of radiation, the irradiation position is irradiated with an X-ray from the X-ray source 14 when radiation is not being irradiated, the image is taken and the position of an affected site is confirmed in real time during radiation irradiation, whereby as the positional relationship between an irradiation position and an affected site can be correctly confirmed even during the irradiation of radiation, radiotherapy that has previously required an advanced operation technique and experience can be executed easily and accurately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、患者の患部に対し
て陽子線や重放射線等の放射線を照射して治療するため
の放射線照射位置確認方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation irradiation position confirming method for irradiating an affected part of a patient with radiation such as a proton beam or heavy radiation for treatment.

【0002】[0002]

【従来の技術】近年、ガン等の悪性腫瘍の治療方法の一
つとして注目を浴びている放射線治療方法は、放射線源
からでた陽子線や重粒子線等の電離性放射線を偏向電磁
石等によって患部近傍に導き、これをコリメータやボー
ラス等の放射性調整部材で調整してから患部に対して局
部的に照射してガン細胞のみを死滅させるようにしたも
のであり、従来主流となっている外科手術や投薬等によ
る治療方法に比べて患者に与える肉体的,精神的負担が
大幅に軽減される等といった優れた長所を有している。
2. Description of the Related Art In recent years, a radiation therapy method which has attracted attention as one of methods for treating malignant tumors such as cancer is a method in which an ionizing radiation such as a proton beam or a heavy ion beam from a radiation source is irradiated by a bending magnet or the like. It is guided to the vicinity of the affected area, adjusted with a radioactive adjustment member such as a collimator or bolus, and then locally irradiated to the affected area to kill only cancer cells. Compared to treatment methods such as surgery and medication, it has excellent advantages such as significantly reducing the physical and mental burden on the patient.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
放射線治療方法にあっては、照射治療前に患者をベッド
に固定し、その患部にのみ放射線が照射されるように正
確に位置決めすることが重要であるが、従来では照射開
始後はその照射状況を正確に確認することができないた
め、放射線治療に際しては高度な操作技術や豊富な経験
等を要するといった課題がある。
By the way, in such a radiotherapy method, it is necessary to fix a patient to a bed before irradiation treatment and to accurately position the patient so that only the affected area is irradiated with radiation. Although it is important, the irradiation condition cannot be confirmed accurately after the start of irradiation in the past, and therefore, there is a problem that radiotherapy requires advanced operation techniques and abundant experience.

【0004】すなわち、従来の放射線治療方法は、患者
を治療装置の照射ベッドに固定した後にX線撮影装置を
用いて照射軸方向及びその直交方向等から患部と照射位
置とを正確に位置決めしてから治療を開始するようにし
ているが、位置決め後はこのX線撮影装置が放射線照射
の邪魔になることから、照射位置から撤退させる必要が
ある。そのため、照射開始後は照射軸方向から患部の位
置を確認することができず、仮に照射中に患者が動くな
どして照射位置がずれた場合にはそのずれ具合等を正確
に把握することができなかった。
That is, in the conventional radiotherapy method, after the patient is fixed to the irradiation bed of the treatment apparatus, the affected part and the irradiation position are accurately positioned from the irradiation axis direction and the orthogonal direction using an X-ray imaging apparatus. After the positioning, the X-ray imaging apparatus hinders the irradiation of radiation, so it is necessary to withdraw from the irradiation position. Therefore, after the start of irradiation, the position of the affected part cannot be confirmed from the irradiation axis direction, and if the irradiation position shifts due to movement of the patient during irradiation, it is possible to accurately grasp the degree of the shift. could not.

【0005】そこで、本発明はこのような課題を有効に
解決するために案出されたものであり、その目的は、放
射線照射中においても照射位置と患部との位置関係を正
確に確認することができる新規な放射線照射位置確認方
法を提供するものである。
Accordingly, the present invention has been devised to effectively solve such a problem, and an object of the present invention is to accurately confirm the positional relationship between an irradiation position and an affected part even during irradiation. It is intended to provide a new method for confirming the irradiation position of radiation.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明は、請求項1に示すように、放射線源からでた
放射線を偏向電磁石で曲げてから所定の患部にのみ間欠
的に照射するようにした放射線照射治療方法において、
この放射線の照射軸上にX線源を備え、放射線が照射さ
れていないときにそのX線源から照射位置にX線を照射
し、その映像を撮像して患部の位置を放射線照射中にリ
アルタイムで確認するようにしたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, according to the present invention, a radiation emitted from a radiation source is bent by a deflection electromagnet and then applied only to a predetermined affected part intermittently. In a radiation irradiation treatment method adapted to
An X-ray source is provided on the irradiation axis of this radiation, and when the radiation is not irradiated, the X-ray source irradiates the irradiation position with X-rays. It is to confirm with.

【0007】これによって放射線照射中においても照射
位置と患部との位置関係を正確に把握することが可能と
なり、仮にずれが確認された場合には、放射線の照射を
中止したり、あるいはずれを修正する等といった適切な
処理を直ちに実施することができる。
[0007] This makes it possible to accurately grasp the positional relationship between the irradiation position and the affected part even during irradiation, and if a shift is confirmed, the irradiation of radiation is stopped or the shift is corrected. Appropriate processing can be immediately performed.

【0008】また、このX線源から照射位置へのX線の
照射に際しては、請求項2に示すように、上記偏向電磁
石の折曲げ位置の外側に通過孔を形成し、この通過孔を
介して上記X線源からX線を照射位置に照射するように
すれば、照射されたX線が偏向電磁石やそのケーシング
などと直接干渉することなく正確に照射位置に照射する
ことができる。
Further, when the X-ray is irradiated from the X-ray source to the irradiation position, a passing hole is formed outside the bending position of the bending electromagnet. By irradiating the irradiation position with the X-rays from the X-ray source, it is possible to accurately irradiate the irradiation position with the irradiated X-rays without directly interfering with the bending electromagnet or its casing.

【0009】[0009]

【発明の実施の形態】次に、本発明を実施する好適一形
態を添付図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

【0010】図1は本発明の放射線照射位置確認方法で
使用する放射線治療装置の実施の一形態を示したもので
ある。
FIG. 1 shows an embodiment of a radiotherapy apparatus used in the radiation irradiation position confirmation method of the present invention.

【0011】図において、1は放射線源から発生した陽
子線や重粒子線等の放射線を患者の患部近傍に案内する
偏向電磁石、2,3はこの偏向電磁石1の端部から出た
放射線の線量を計測する線量モニター、4は放射線の照
射深さ方向の位置を調整するレンジシフター、5は放射
線の照射範囲を決定すべく患者皮膚から10〜20cm
の位置に設けられるマルチリーフコリメーター、6はこ
のマルチリーフコリメーター5の近傍であって生体内へ
の放射線の飛程を調節するボーラス、7,8は偏向電磁
石で案内される放射線の軸を調整するX,Yスキャン電
磁石、9は放射線の照射ビーム幅を調節する散乱体、1
0は患者を固定しつつ可動自在な固定ベッド、11はこ
れら照射機構を患者回りに旋回させる旋回機構であり、
これらの構成及び作用は従来の放射線照射装置と同様と
なっている。
In FIG. 1, reference numeral 1 denotes a deflection electromagnet for guiding radiation such as proton beams and heavy ion beams generated from a radiation source to the vicinity of an affected part of a patient, and reference numerals 2 and 3 denote radiation doses emitted from the ends of the deflection electromagnet 1. 4 is a range shifter that adjusts the position in the irradiation depth direction of radiation, and 5 is 10 to 20 cm from the patient's skin to determine the irradiation range of radiation.
, A bolus 6 near the multi-leaf collimator 5 for adjusting the range of radiation into the living body, and 7, 8 the axes of the radiation guided by the bending electromagnet. X and Y scanning electromagnets for adjusting, 9 are scatterers for adjusting the irradiation beam width of radiation,
Reference numeral 0 denotes a fixed bed that is movable while fixing the patient, 11 denotes a turning mechanism that turns these irradiation mechanisms around the patient,
These configurations and operations are the same as those of the conventional radiation irradiation apparatus.

【0012】また、このマルチリーフコリメーター5の
近傍には、位置決め用X線源(X線管)12が照射位置
(照射軸)方向に移動自在に設けられており、照射位置
から患部にX線を照射し、透過してきたX線をその患部
の底部に設けられたX線撮像管13で受けて透過画像と
して得るようになっている。
In the vicinity of the multi-leaf collimator 5, a positioning X-ray source (X-ray tube) 12 is provided so as to be movable in the direction of an irradiation position (irradiation axis). The X-rays are radiated, and the transmitted X-rays are received by an X-ray imaging tube 13 provided at the bottom of the affected part to obtain a transmitted image.

【0013】そして、本発明にあっては、この照射軸上
にさらにもう一つの位置確認用のX線源(X線管)14
が設けられている。
In the present invention, another X-ray source (X-ray tube) 14 for position confirmation is provided on the irradiation axis.
Is provided.

【0014】この位置確認用X線源14は、上方から下
方に緩やかにカーブした偏向電磁石1の出射端部の外側
であって放射線の照射軸の延長線上に設けられており、
照射軸の延長線上から照射位置にX線を照射し、その透
過X線を上記位置決め用X線源12と同じく患部の底部
に設けられたX線撮像管13で受けて透過画像として得
るようになっている。
The position confirming X-ray source 14 is provided outside the emission end of the bending electromagnet 1 gently curved from the upper side to the lower side and on an extension of the radiation irradiation axis.
X-rays are irradiated to the irradiation position from an extension of the irradiation axis, and the transmitted X-rays are received by an X-ray imaging tube 13 provided at the bottom of the affected area similarly to the X-ray source for positioning 12 so as to obtain a transmission image. Has become.

【0015】すなわち、図2(A)に示すように、この
偏向電磁石1の出射端部の外周側には、照射軸の延長線
上に位置する貫通孔15が形成されており、この貫通孔
15から偏向電磁石1内にX線源14からX線を照射す
ることで偏向電磁石1と干渉することなく放射線照射位
置と同じ位置にX線を照射できるようになっている。
尚、この偏向電磁石1は同図に示すように、断面H型の
空間を有するいわゆるH型マグネットを放射線路に沿っ
て並べたものであり、その中央部に沿って放射線が案内
されるようになっている。
That is, as shown in FIG. 2A, a through hole 15 is formed on the outer peripheral side of the emission end of the bending electromagnet 1 and is located on an extension of the irradiation axis. By irradiating the deflection electromagnet 1 with X-rays from the X-ray source 14, X-rays can be irradiated to the same position as the radiation irradiation position without interfering with the deflection electromagnet 1.
As shown in FIG. 1, the bending electromagnet 1 is formed by arranging so-called H-shaped magnets having an H-shaped cross section along a radiation path, so that the radiation is guided along the center. Has become.

【0016】次に、このような構成をした放射線治療装
置を用いて本発明の放射線照射位置確認方法の一例を説
明する。
Next, an example of the radiation irradiation position confirmation method of the present invention using the radiotherapy apparatus having the above-described configuration will be described.

【0017】先ず、患者を固定ベッド11に固定し、そ
の患部が照射位置にくるように固定ベッド11を移動さ
せた後、位置決め用のX線源12を放射線の照射位置に
移動させ、その位置から患部にX線を照射し、そのX線
透過像をCRT等でモニタリングしながら固定ベッド1
1あるいは旋回機構10側を微調整して照射患部と照射
位置とを正確に位置決めする。尚、患部(臓器)の種類
によってはX線像で見え難い場合があるため、位置決め
する前に予めその照射患部に直接、あるいはその近傍に
金属片や金属球等を埋め込んでおき、これを目安(マー
カー)として位置決めする場合もある。
First, the patient is fixed on the fixed bed 11, and the fixed bed 11 is moved so that the affected part is located at the irradiation position. Then, the X-ray source 12 for positioning is moved to the irradiation position of the radiation. Irradiates the affected area with X-rays, and monitors the X-ray transmission image on a CRT or the like, while the fixed bed 1
1 or the turning mechanism 10 side is finely adjusted to accurately position the irradiation affected part and the irradiation position. Note that, depending on the type of the affected part (organ), it may be difficult to see in the X-ray image. Therefore, before positioning, a metal piece or a metal sphere is buried directly before or in the vicinity of the irradiated part, and this is used as a guide. (Marker) in some cases.

【0018】次に、このようにして照射患部と照射位置
とが正確に位置決めされたなら、放射線と干渉しないよ
うにその位置決め用X線源12を照射ラインからずらし
た後、放射線源から所定量の放射線を発生させてこれを
偏向電磁石1で患部に導き、その出射端部から直線状に
患部に照射することになるが、通常、この放射線照射
は、治療開始から終了まで連続して照射されるのではな
く、パルス運転、すなわち一定の間隔をおいて数分間に
亘って間欠的に照射されるようになっている。例えば、
一回の照射時間が0.5秒間であれば、その後の1.5
秒間は無照射状態となるように2秒周期の照射パターン
を数分間に亘って繰り返し行うような照射方法が採用さ
れている。
Next, when the irradiated diseased part and the irradiation position are accurately positioned in this way, the positioning X-ray source 12 is shifted from the irradiation line so as not to interfere with the radiation, and then a predetermined amount is moved from the radiation source. The radiation is generated and guided to the affected part by the bending electromagnet 1, and the irradiated part is irradiated linearly from the emission end. Usually, the radiation is continuously applied from the start to the end of the treatment. Instead, the pulsed operation, that is, the irradiation is performed intermittently over several minutes at regular intervals. For example,
If one irradiation time is 0.5 seconds, then 1.5 times
An irradiation method is employed in which an irradiation pattern of a 2-second cycle is repeated over several minutes so that no irradiation occurs for a second.

【0019】そのため、この放射線治療中においては、
放射線無照射時間が一定の間隔で発生することから、こ
の放射線無照射時間内を利用して偏向電磁石1外側の監
視用X線源14から照射位置に対してX線を照射する。
すると、そのX線のみが放射線の照射ラインに沿って患
部に到達し、これを通過してX線撮像部13で透過画像
として得られ、その時間帯における患部と照射位置との
位置関係をリアルタイムに観察することができる。この
偏向電磁石1の出射端部と患部との間に位置する線量モ
ニター2,3は、放射線,X線に関係なくその線量をカ
ウントするため、これらは混合する線量を放射線パルス
運転に同期して分別、或いはX線照射時にはカウントし
ないようにするための回路等を布設することが望まし
い。
Therefore, during this radiotherapy,
Since the non-radiation time occurs at regular intervals, the monitoring X-ray source 14 outside the bending electromagnet 1 irradiates the irradiation position with X-rays using the non-radiation time.
Then, only the X-ray reaches the affected part along the radiation irradiation line, passes through it, is obtained as a transmission image by the X-ray imaging unit 13, and the positional relationship between the affected part and the irradiation position in that time zone is real-time. Can be observed. The dose monitors 2 and 3 located between the exit end of the bending electromagnet 1 and the affected part count the dose irrespective of radiation and X-rays. It is desirable to provide a circuit or the like for preventing the counting or counting during the classification or X-ray irradiation.

【0020】そして、このX線による照射位置の観察の
結果、仮に放射線照射位置と患部とにずれが生じていた
場合には、そのずれを迅速且つ正確に確認することがで
き、その後の対応、例えば、そのずれが許容値範囲内で
あればそのまま放射線照射を継続し、また、そのずれが
許容値を越えて健全な臓器に悪影響を及ぼすおそれがあ
る等の場合には位置修正を行ったり、あるいは直ちに照
射を中止する等のいった適切な処置を迅速且つ正確に執
ることが可能となる。尚、放射線照射の有無に拘わら
ず、治療中、常にX線による観察を行えれば理想的であ
るが、法規制上、放射線照射と同時にX線を照射するこ
とは現在のところ許されていない。
If, as a result of the observation of the irradiation position by the X-rays, a deviation occurs between the radiation irradiation position and the affected part, the deviation can be quickly and accurately confirmed. For example, if the deviation is within the allowable value range, the radiation irradiation is continued as it is, and if the deviation exceeds the allowable value and may adversely affect a healthy organ, the position is corrected, Alternatively, it is possible to quickly and accurately take appropriate measures such as immediately stopping irradiation. It is ideal if X-rays can always be observed during treatment regardless of the presence or absence of radiation irradiation. However, irradiation with X-rays at the same time as irradiation is currently not permitted due to legal regulations. .

【0021】このように本発明方法は放射線の照射軸上
に新たなX線源14を備え、放射線が照射されていない
ときにそのX線源14から照射位置にX線を照射するよ
うにしたことから、位置決め用X線源12等では正確に
確認することができなかった照射位置と患部との位置を
放射線照射中にリアルタイムで確認することができるた
め、従来方法のように高度な操作技術や経験を要するこ
となく、常に最適な放射線治療を容易に施すことが可能
となる。
As described above, in the method of the present invention, a new X-ray source 14 is provided on the irradiation axis of radiation, and X-rays are irradiated from the X-ray source 14 to the irradiation position when radiation is not being irradiated. Therefore, since the irradiation position and the position of the affected part, which could not be accurately confirmed by the positioning X-ray source 12 or the like, can be confirmed in real time during radiation irradiation, advanced operation techniques as in the conventional method are used. It is possible to always provide the optimal radiation treatment easily without requiring any experience.

【0022】ここで、本実施の形態では、放射線の照射
方向上流側にX線源14を備え、照射方向上流側からX
線を照射するようにしたものであるが、その反対、すな
わち図3に示すように、このX線源14を患者の患部底
部に備えると共に、その放射線の照射方向上流側に新た
なX線撮像部16を設置して患者の患部底部側からX線
を照射してその位置を確認するようにしても良い。
Here, in the present embodiment, the X-ray source 14 is provided on the upstream side in the irradiation direction of radiation,
The X-ray source 14 is provided at the bottom of the affected part of the patient as shown in FIG. 3, and a new X-ray imaging is performed on the upstream side in the irradiation direction of the radiation. The position may be confirmed by installing the unit 16 and irradiating X-rays from the bottom of the affected part of the patient.

【0023】また、放射線を案内する偏向電磁石1とし
て図2(2)に示すように、いわゆるC型マグネットか
らなるものを採用した場合には、その切欠き部17が外
側に位置している場合には、その切欠き部17からその
まま照射位置にX線を照射することが可能となるため、
上記のようにH型マグネットからなる偏向電磁石1を用
いた場合のようにX線を通過するための通過孔15を新
たに加工する必要がなくなる。
As shown in FIG. 2B, when the bending electromagnet 1 for guiding radiation is a so-called C-shaped magnet, when the notch 17 is located on the outside. , It becomes possible to irradiate the irradiation position as it is from the notch 17,
As described above, there is no need to newly process the passage hole 15 for passing X-rays as in the case of using the bending electromagnet 1 composed of the H-shaped magnet.

【0024】さらに、この位置確認用X線源14は照射
治療開始前の位置決め用X線源も兼用することができる
ため、従来設置されていたマルチリーフコリメーター5
の近傍の位置決め用X線源12を省略することも可能と
なる。
Further, since the position confirming X-ray source 14 can be used also as the positioning X-ray source before the start of the irradiation treatment, the multi-leaf collimator 5 conventionally installed is used.
It is also possible to omit the positioning X-ray source 12 near.

【0025】尚、この位置確認用X線源14からの照射
条件として具体的な一例を挙げると、X線源14とX線
撮像部13との距離が1.3mという条件で肺(水相当
20cm)を撮影する場合には、X線管設定85kV,
23mA,30ms程度で十分に患部の位置を透視確認
することが可能となる。また、それらの距離が3.5m
の場合にもX線管設定85kV,170mA,30ms
程度で透視可能であり、汎用の医療用X線管の上限値
(85kV,600mA,30ms)より十分に低い値
で可能である。そのため、挿入機器である線量モニター
2,3やレンジシフター4,ボーラス6は勿論、さらに
コリメーター5の上方にバイナリデグレータ等を設置し
た場合でも汎用のX線による患部の透視は十分に可能と
いえる。
As a specific example of the irradiation conditions from the position confirmation X-ray source 14, a lung (water equivalent) is provided under the condition that the distance between the X-ray source 14 and the X-ray imaging unit 13 is 1.3 m. 20cm), an X-ray tube setting of 85 kV,
The position of the affected part can be sufficiently confirmed by fluoroscopy at about 23 mA and about 30 ms. Also, their distance is 3.5m
X-ray tube setting 85kV, 170mA, 30ms
This is possible with a value sufficiently lower than the upper limit value (85 kV, 600 mA, 30 ms) of a general-purpose medical X-ray tube. Therefore, even when a binary degrader or the like is installed above the collimator 5 as well as the dose monitors 2 and 3 and the range shifter 4 and the bolus 6 which are insertion devices, it is possible to sufficiently see through the affected part with general-purpose X-rays. I can say.

【0026】[0026]

【発明の効果】以上要するに本発明によれば、照射位置
と患部との位置関係を放射線照射中においてもリアルタ
イムで正確に確認することができるため、従来高度な操
作技術や経験を要する放射線治療を容易かつ的確に実施
することができる。この結果、放射線治療の信頼性及び
効果が大幅に向上すると共に、放射線治療方法の普及促
進に大いに貢献することができる等といった優れた効果
を発揮する。
In summary, according to the present invention, the positional relationship between the irradiation position and the affected part can be accurately confirmed in real time even during irradiation, so that conventional radiotherapy requiring advanced operation techniques and experience can be performed. It can be implemented easily and accurately. As a result, the reliability and effect of the radiotherapy are greatly improved, and excellent effects such as greatly contributing to the spread and promotion of the radiotherapy method are exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を適用する放射線治療装置の実施の
一形態を示す全体概略図である。
FIG. 1 is an overall schematic view showing one embodiment of a radiotherapy apparatus to which the method of the present invention is applied.

【図2】本発明方法で使用する偏向電磁石の実施の一形
態を示す透過斜視図である。
FIG. 2 is a transparent perspective view showing one embodiment of a bending electromagnet used in the method of the present invention.

【図3】本発明方法を適用する放射線治療装置の他の実
施形態を示す全体概略図である。
FIG. 3 is an overall schematic diagram showing another embodiment of the radiation therapy apparatus to which the method of the present invention is applied.

【符号の説明】[Explanation of symbols]

1 偏向電磁石 2,3 線量モニター 4 レンジシフター 5 コリメーター 6 ボーラス 11 固定ベッド 12 位置決め用X線源 13 X線撮像部 14 位置確認用X線源 15 貫通孔 DESCRIPTION OF SYMBOLS 1 Bending magnet 2,3 Dose monitor 4 Range shifter 5 Collimator 6 Bolus 11 Fixed bed 12 X-ray source for positioning 13 X-ray imaging unit 14 X-ray source for position confirmation 15 Through hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 放射線源からでた放射線を偏向電磁石で
曲げてから所定の患部にのみ間欠的に照射するようにし
た放射線照射治療方法において、この放射線の照射軸の
延長線上にX線源を備え、放射線が照射されていないと
きにそのX線源から照射位置にX線を照射し、その映像
を撮像して患部の位置を放射線照射中にリアルタイムで
確認するようにしたことを特徴とする放射線照射位置確
認方法。
1. A radiation irradiation treatment method in which radiation emitted from a radiation source is bent by a bending electromagnet and then applied only intermittently to a predetermined affected part, and an X-ray source is provided on an extension of an irradiation axis of the radiation. X-rays are irradiated from the X-ray source to the irradiation position when radiation is not being irradiated, and the image is taken to check the position of the affected part in real time during irradiation. Radiation irradiation position confirmation method.
【請求項2】 上記偏向電磁石の折曲げ位置の外側に通
過孔を形成し、この通過孔を介して上記X線源からX線
を照射位置に照射するようにしたことを特徴とする請求
項1に記載の放射線照射位置確認方法。
2. The apparatus according to claim 1, wherein a passing hole is formed outside the bending position of the bending electromagnet, and X-rays are emitted from the X-ray source to the irradiation position through the passing hole. The method for confirming a radiation irradiation position according to claim 1.
JP2000400776A 2000-12-28 2000-12-28 Method for confirming radiation irradiation position Pending JP2002200182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000400776A JP2002200182A (en) 2000-12-28 2000-12-28 Method for confirming radiation irradiation position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000400776A JP2002200182A (en) 2000-12-28 2000-12-28 Method for confirming radiation irradiation position

Publications (1)

Publication Number Publication Date
JP2002200182A true JP2002200182A (en) 2002-07-16

Family

ID=18865301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000400776A Pending JP2002200182A (en) 2000-12-28 2000-12-28 Method for confirming radiation irradiation position

Country Status (1)

Country Link
JP (1) JP2002200182A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080981A1 (en) * 2006-01-12 2007-07-19 National University Corporation Gunma University Device for determining aim position of charged particle beam, its using method, and treatment device employing device for determining aim position
JP2008532597A (en) * 2005-03-09 2008-08-21 パウル・シェラー・インスティトゥート System and method for taking X-ray images by beam-eye view (BEV) with wide field of view simultaneously with proton beam treatment
JP2009189725A (en) * 2008-02-18 2009-08-27 Sumitomo Heavy Ind Ltd Neutron beam irradiation apparatus
US10342558B2 (en) 2003-09-30 2019-07-09 Koninklijke Philips N.V. Target tracking method and apparatus for radiation treatment planning and delivery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10342558B2 (en) 2003-09-30 2019-07-09 Koninklijke Philips N.V. Target tracking method and apparatus for radiation treatment planning and delivery
JP2008532597A (en) * 2005-03-09 2008-08-21 パウル・シェラー・インスティトゥート System and method for taking X-ray images by beam-eye view (BEV) with wide field of view simultaneously with proton beam treatment
WO2007080981A1 (en) * 2006-01-12 2007-07-19 National University Corporation Gunma University Device for determining aim position of charged particle beam, its using method, and treatment device employing device for determining aim position
US7952081B2 (en) 2006-01-12 2011-05-31 National University Corporation Gunma University Device for determining aim position of charged particle beam, method of using the device, and treatment device employing device for determining aim position
JP5137071B2 (en) * 2006-01-12 2013-02-06 国立大学法人群馬大学 Charged particle beam aiming position determination apparatus and treatment apparatus using the aiming position determination apparatus
JP2009189725A (en) * 2008-02-18 2009-08-27 Sumitomo Heavy Ind Ltd Neutron beam irradiation apparatus

Similar Documents

Publication Publication Date Title
US10773102B2 (en) Radiotherapy and imaging apparatus
US9694206B2 (en) Radiotherapy and imaging apparatus
EP1885452B1 (en) Small field intensity modulated radiation therapy machine
US7834334B2 (en) Particle therapy system
US10500420B2 (en) Small beam area, mid-voltage radiotherapy system with reduced skin dose, reduced scatter around the treatment volume, and improved overall accuracy
JP2005124852A (en) Particle therapy system
WO2018003179A1 (en) Radiation treatment device
JP2021505243A (en) Radiation therapy systems, methods and software
KR102117680B1 (en) Device for radiotherapy and method for quality assurance for the same
JP2017213184A (en) Radiography apparatus and particle beam treatment apparatus
CN112004576B (en) Particle beam guidance system and method and related radiation therapy system
JP2002200182A (en) Method for confirming radiation irradiation position
JP2016106756A (en) Radiotherapy system
KR101678681B1 (en) Device for radiotherapy and method for quality assurance for the same
KR102080162B1 (en) Device for radiotherapy and method for quality assurance for the same
KR102158861B1 (en) Magnetic field generating apparatus and dose control radiotherapy apparatus including the same
KR20210131903A (en) Magnetic field generating apparatus and control method thereof
US20110201918A1 (en) Radiotherapy and imaging apparatus
JPH05161720A (en) Radiotherapeutic device
KR20210051629A (en) Radiation therapy apparatus capable of magnetic resonance image guidance and dose control
JP7408839B2 (en) Magnetic field generator and its control method
KR102411368B1 (en) Magnetic field generating apparatus and control method thereof
KR101231742B1 (en) Minimally invasive particle beam cancer therapy apparatus
JP2023183289A (en) Particle beam therapy system, range measurement device, and beam monitoring method