JP2002199035A - Receiver and method for compensating frequency error - Google Patents

Receiver and method for compensating frequency error

Info

Publication number
JP2002199035A
JP2002199035A JP2000369056A JP2000369056A JP2002199035A JP 2002199035 A JP2002199035 A JP 2002199035A JP 2000369056 A JP2000369056 A JP 2000369056A JP 2000369056 A JP2000369056 A JP 2000369056A JP 2002199035 A JP2002199035 A JP 2002199035A
Authority
JP
Japan
Prior art keywords
receiver
carrier frequency
signal
frequency
transmission signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000369056A
Other languages
Japanese (ja)
Other versions
JP4820957B2 (en
Inventor
Hiroshi Hayashi
宏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Priority to JP2000369056A priority Critical patent/JP4820957B2/en
Publication of JP2002199035A publication Critical patent/JP2002199035A/en
Application granted granted Critical
Publication of JP4820957B2 publication Critical patent/JP4820957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost radio receiver capable of fast detecting synchronization even when a carrier offset exists. SOLUTION: This receiver for receiving a transmission signal including a prescribed digital synchronous code that is modulated by a transmitter carrier frequency and transmitted by radio and synchronizing with the transmission signal by detecting the synchronous code consists of a local oscillator (40), a demodulator (15) for demodulating the received transmission signal from a carrier frequency into a baseband on the basis of a receiver local frequency from the local oscillator, analog-to-digital converters (23 and 30) for digitizing a demodulated analog signal and outputting the digital signal, complex multipliers (44 and 46) for multiplying the digital signal by such a compensation rotation complex coefficient that can compensate the error between the transmitter carrier frequency and the receiver local frequency to obtain a 1st multiplication output and also multiplying the digital signal by the conjugate complex number of the compensation rotation complex coefficient to obtain a 2nd multiplication output, and an adder (42) for adding at least the 1st and 2nd multiplication outputs and outputting the added multiplication outputs to a correlator (10).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、周波数誤差を補償
する受信機および方法に関し、特に所定のデジタル同期
コードを検出することにより送信信号との同期をとる際
に周波数誤差を補償する受信機および方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a receiver and a method for compensating for a frequency error. It is about the method.

【0002】[0002]

【従来の技術】例えばCDMA等のスペクトラム拡散方式を
用いた無線通信において、基地局である送信機と移動機
である受信機との間に、シンボル境界の同期が必要とな
る。このため、送信機から所定の同期コードである拡散
符号 [A0 〜 AN-1] をデータ送信前に送信する。一方、
受信機は相関器を備え、受信信号に含まれる同期コード
と受信機内に準備してある拡散符号との相関をとること
により同期を検出することができる。
2. Description of the Related Art In radio communication using a spread spectrum system such as CDMA, for example, it is necessary to synchronize symbol boundaries between a transmitter as a base station and a receiver as a mobile station. Therefore, the transmitter transmits a spread code [A 0 to A N−1 ] as a predetermined synchronization code before data transmission. on the other hand,
The receiver includes a correlator, and can detect synchronization by correlating a synchronization code included in the received signal with a spreading code prepared in the receiver.

【0003】図1は、受信機内で同期検出を行う従来の
相関器10の構成例を示す図である。受信機のアンテナ
から受信され、直交復調器で復調されアナログデジタル
変換された信号が、入力端子1へ入力される。一般に、
スペクトラム拡散用受信機では、受信信号の同相成分と
直交成分を各々サンプリングし、同相成分I を実部、直
交成分Q を虚部とする複素信号 I + jQ として信号を扱
う。図1の入力端子1へは、このような複素信号が入力
されるものとする。
FIG. 1 is a diagram showing an example of the configuration of a conventional correlator 10 for detecting synchronization in a receiver. A signal received from the antenna of the receiver, demodulated by the quadrature demodulator, and subjected to analog-to-digital conversion is input to the input terminal 1. In general,
The spread spectrum receiver samples the in-phase component and the quadrature component of the received signal, and treats the signal as a complex signal I + jQ having the in-phase component I as a real part and the quadrature component Q as an imaginary part. It is assumed that such a complex signal is input to the input terminal 1 in FIG.

【0004】入力端子1へ入力された受信信号には、所
定の同期コードである拡散符号 [A0〜 AN-1] が含まれ
ている。受信信号は、各々1チップ期間 T の遅延を有
する遅延素子を経て、図示のように各乗算器へ入力され
る。各乗算器では、逆拡散符号であるタップ係数 [C0
〜 CN-1] が受信信号に乗算される。ここで、逆拡散符
号 Cnは An の共役複素数であり、Cn = An * ( n = 0, 1,
…, N-1) で表される。
[0004] The received signal input to the input terminal 1 contains a spread code [A 0 to A N-1 ] which is a predetermined synchronization code. The received signal is input to each multiplier as shown in the figure via delay elements each having a delay of one chip period T. In each multiplier, tap coefficients [C 0
~ C N-1 ] is multiplied by the received signal. Here, the despreading code C n is the complex conjugate of A n, C n = A n * (n = 0, 1,
…, N-1).

【0005】各乗算器の出力は、加算された後、電力測
定部2へ入力される。電力測定部2は、複素電力 (I2 +
Q2)を計算し、出力端子3から測定した相関電力値を出
力する。
[0005] The outputs of the multipliers are added to each other and then input to the power measuring unit 2. The power measuring unit 2 calculates the complex power (I 2 +
Q 2 ) is calculated, and the measured correlation power value is output from the output terminal 3.

【0006】上述のとおり、送信機における拡散符号が
An = [A0〜AN-1]であり、相関器10における逆拡散符
号Cn = [C0〜CN-1]が An の複素共役になっているの
で、送信信号のシンボル境界において、強い相関が得ら
れる。
As described above, the spreading code at the transmitter is
A n = a [A 0 ~A N-1] , since the despreading code C n by the correlators 10 = [C 0 ~C N- 1] is in the complex conjugate of A n, the symbol of the transmission signal At the boundaries, a strong correlation is obtained.

【0007】図2のグラフは、N = 31としたときの出力
端子3の理想状態における出力例であり、縦軸は出力端
子3の出力、横軸はサンプル時刻である。送信シンボル
境界であるサンプル時刻 = 0 のところに強いピークが
現れている。このようにして、相関電力値のピークを検
出することにより、シンボル境界の同期を検出すること
ができる。
FIG. 2 is a graph showing an output example of the output terminal 3 in an ideal state when N = 31. The vertical axis represents the output of the output terminal 3 and the horizontal axis represents the sampling time. A strong peak appears at the transmission symbol boundary at the sample time = 0. Thus, by detecting the peak of the correlation power value, the synchronization of the symbol boundary can be detected.

【0008】[0008]

【発明が解決しようとする課題】現実的には、送信機の
キャリア(搬送波)周波数ωc と受信機の直交復調器内
の局部発振周波数との間に誤差(キャリヤオフセット)
が存在し、前述の相関器の同期性能が著しく劣化する。
キャリヤオフセットが存在する場合、受信信号は復調器
内において複素平面上での位相回転を受ける。例えば、
キャリヤオフセットの各周波数値をΔω、拡散符号を
An、逆拡散符号をAn *とすると、相関値(図1の電力測
定部2の出力)のピークS0は、
In practice, there is an error (carrier offset) between the carrier frequency ω c of the transmitter and the local oscillation frequency in the quadrature demodulator of the receiver.
And the synchronization performance of the correlator described above is significantly degraded.
If a carrier offset exists, the received signal undergoes a phase rotation on the complex plane in the demodulator. For example,
Δω for each frequency value of carrier offset and spreading code for
A n, when the despreading code to A n *, the peak S 0 of the correlation value (the output of the power measurement unit 2 of FIG. 1)

【0009】[0009]

【数1】 となる。ただし、aは、拡散符号および逆拡散符号の振
幅とする。S0の大きさは、Δωが0から離れるにつれ小
さくなり、±2π/NT(rad/sec)となったとき、ついにS0
= 0となる。これは、指数関数 exp(jθ)を1周期分積分
すれば0となることからも分かる。
(Equation 1) Becomes Here, a is the amplitude of the spreading code and the despreading code. The magnitude of S 0 decreases as Δω moves away from 0 , and finally reaches S 0 when ± 2π / NT (rad / sec).
= 0. This can be seen from the fact that the integral of the exponential function exp (jθ) for one cycle becomes 0.

【0010】図2のグラフは、N=31とし、キャリヤオフ
セットΔωを2π/NT(rad/sec)としたときの、出力端子
3の出力例である。このキャリヤオフセット2π/NTは、
1シンボル期間(31チップ期間)に、位相が2π回転する
ような大きなキャリヤオフセットである。従って、図3
に示すように、最悪の場合(Δω = ±2π/NT(rad/sec)
のとき)、相関電力値は0となり、シンボル境界を検出
することが不可能となる。しかしキャリヤオフセットΔ
ωを小さくできるような高精度発振器は高価である。
The graph of FIG. 2 is an output example of the output terminal 3 when N = 31 and the carrier offset Δω is 2π / NT (rad / sec). This carrier offset 2π / NT is
This is a large carrier offset such that the phase is rotated by 2π during one symbol period (31 chip periods). Therefore, FIG.
As shown in the figure, the worst case (Δω = ± 2π / NT (rad / sec)
), The correlation power value becomes 0, and it becomes impossible to detect a symbol boundary. But carrier offset Δ
High-precision oscillators that can reduce ω are expensive.

【0011】この問題を解決するために、従来の同期検
出器として、図4のように構成されているものがあっ
た。図4において、アンテナ14から受信された送信信
号は、直交復調器15によりベースバンドへと復調され
る。復調された同相・直交相信号がそれぞれA/D変換器
28,30によりアナログ・デジタル変換されて、I 信
号、Q 信号として相関器へと供給される。直交復調器1
5は、局部発振器20からの周波数に基づいて復調動作
をするが、局部発振器20の局部発振周波数が送信機の
キャリア周波数からΔωだけずれていると、上述のよう
な問題点が生ずる。受信信号を直交復調器内において一
定の周波数 -ωkで回転させて相関器10へ入力すると
いう試みがある。そうするために、局部発振器20の発
振周波数(ωc + Δω)を-ωkだけずらす。通常、同期
を確立する以前に、同期検出器ではキャリヤオフセット
量Δωを知り得ないため、ずらす量としては、例えば-
ωk、0,+ωkの3種類を試行し、これらについて受信
信号と拡散符号との相関をとる。もしΔω = ωk とな
れば、そのとき相関器10から大きな出力が得られ、同
期を確立することができる。
In order to solve this problem, there has been a conventional synchronous detector configured as shown in FIG. In FIG. 4, a transmission signal received from an antenna 14 is demodulated to a baseband by a quadrature demodulator 15. The demodulated in-phase and quadrature-phase signals are analog-to-digital converted by A / D converters 28 and 30, respectively, and supplied to the correlator as I and Q signals. Quadrature demodulator 1
5 performs a demodulation operation based on the frequency from the local oscillator 20, but if the local oscillation frequency of the local oscillator 20 is shifted from the carrier frequency of the transmitter by Δω, the above-described problem occurs. Attempts have been made to rotate the received signal at a constant frequency -ω k in the quadrature demodulator and to input it to the correlator 10. To do so, the oscillation frequency (ω c + Δω) of the local oscillator 20 is shifted by -ω k . Usually, before synchronization is established, the carrier detector cannot know the carrier offset amount Δω.
Three types of ω k , 0 and + ω k are tried, and the correlation between the received signal and the spread code is obtained for these. If Δω = ω k , then a large output is obtained from the correlator 10 and synchronization can be established.

【0012】しかしながら、従来の同期検出器では、例
えば-ωk、0,+ωkの3種類を試行しなければならず、
同期確立までに長時間を要していた。キャリヤ周波数が
高くかつ伝送帯域幅が狭い場合、キャリヤオフセットが
伝送帯域幅に対し相対的に大きくなり、特に問題となっ
ていた。
However, in the conventional synchronous detector, for example, three types of -ω k , 0 and + ω k must be tried.
It took a long time to establish synchronization. When the carrier frequency is high and the transmission bandwidth is narrow, the carrier offset becomes relatively large with respect to the transmission bandwidth, which has been a particular problem.

【0013】そこで、本発明は、キャリヤオフセットが
存在する場合でも高速に同期検出が可能でありかつ安価
な受信機を提供することを目的とする。
An object of the present invention is to provide an inexpensive receiver that can detect synchronization at high speed even when a carrier offset exists.

【0014】[0014]

【実施例】以下に本発明の実施例について図面を参照し
て説明する。図5において相関器に直交復調信号を供給
する様子が示されている。送信される信号は、所定の同
期コードを含むデジタル変調無線通信信号ならどのよう
なものでも良く、例えばQPSK, BPSK, QAMなどがある。
アンテナ14から受信された送信信号は、直交復調器1
5によりベースバンドへと復調される。復調された同相
・直交相信号がそれぞれA/D変換器28,30によりア
ナログ・デジタル変換されて、I 信号、Q 信号として出
力される。直交復調器15は、局部発振器40からの周
波数に基づいて復調動作をするが、局部発振器40の局
部発振周波数が送信機のキャリア周波数からΔωだけず
れていると、やはり上述のような問題点が生ずる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 5 shows how the quadrature demodulated signal is supplied to the correlator. The signal to be transmitted may be any digitally modulated wireless communication signal including a predetermined synchronization code, such as QPSK, BPSK, and QAM.
The transmission signal received from the antenna 14 is transmitted to the quadrature demodulator 1
5 demodulates to baseband. The demodulated in-phase and quadrature-phase signals are converted from analog to digital by A / D converters 28 and 30, respectively, and output as I and Q signals. The quadrature demodulator 15 performs a demodulation operation based on the frequency from the local oscillator 40. However, if the local oscillation frequency of the local oscillator 40 is shifted from the carrier frequency of the transmitter by Δω, the above-described problem still remains. Occurs.

【0015】本実施例においては、局部発振器40の発
信周波数をずらすということをしない。A/D変換器2
8,30から出力された複素信号 I + jQに対して相関
器10に入力する前に、ある乗算を施してオフセット補
償をする。
In this embodiment, the oscillation frequency of the local oscillator 40 is not shifted. A / D converter 2
Before the complex signal I + jQ output from 8, 30 is input to the correlator 10, a certain multiplication is performed to perform offset compensation.

【0016】複素信号 I + jQは、例えば3つに分けら
れ、それぞれ異なる複数の角周波数で回転され、その和
が相関器10へと入力される。例えば、複数の異なる周
波数として -ωk、0、+ωk を考える。図5に示すよう
に、乗算器44において複素信号 I + jQに対して exp
(-jwkTn) が乗算される。乗算器46において複素信号I
+ jQに対して exp(+jwkTn) が乗算される。加算器42
が、上記の2つの乗算結果出力と複素信号 I + jQその
ままとを加算して、加算出力を相関器10に入力する。
相関器10の構成は、従来の技術と同様で良い。複素信
号 I + jQをRn、相関器10への入力信号をWnとする
と、Wn は次式で表される。
The complex signal I + jQ is, for example, divided into three, rotated at a plurality of different angular frequencies, and the sum is input to the correlator 10. For example, consider -ω k , 0, + ω k as a plurality of different frequencies. As shown in FIG. 5, the multiplier 44 performs exp
(-jw k T n ). In the multiplier 46, the complex signal I
+ jQ is multiplied by exp (+ jw k T n ). Adder 42
Add the two multiplication result outputs and the complex signal I + jQ as they are, and input the added output to the correlator 10.
The configuration of the correlator 10 may be the same as in the related art. Assuming that the complex signal I + jQ is R n and the input signal to the correlator 10 is W n , W n is represented by the following equation.

【0017】[0017]

【数2】 Wn = Rn x exp(-jwkTn) + Rn + Rn x exp(+jwkTn)
(n = 0, 1, …, N-1) もし正の方向にキャリヤオフセットΔωが存在しΔωが
ωkに近い場合、第1項(乗算器44からの出力)が相
関値に対し寄与する。もし負の方向にキャリヤオフセッ
ト -Δωが存在しΔωがωkに近い場合、第3項(乗算
器46からの出力)が相関値に対し寄与する。キャリヤ
オフセットΔωが0に近い場合には第2項(スルー)の
信号が相関値に対し寄与することになる。他の2つの出
力はノイズとなってしまうが、1つの出力から得られた
ピークから同期を検出することができる。
[Number 2] W n = R n x exp ( -jw k T n) + R n + R n x exp (+ jw k T n)
(n = 0, 1, ... , N-1) if if positive direction to present a carrier offset [Delta] [omega [Delta] [omega is close to omega k, the first term (output from the multiplier 44) contribute to the correlation value . If in the negative direction is present carrier offset -Derutaomega [Delta] [omega is close to omega k, (the output from the multiplier 46) the third term contributes to the correlation value. When the carrier offset Δω is close to 0, the signal of the second term (through) contributes to the correlation value. Although the other two outputs become noise, synchronization can be detected from the peak obtained from one output.

【0018】図7および図8に、ωk =π/NT(rad/sec)
としたときの、相関電力値の計算例を示す。図7は、キ
ャリヤオフセットが存在しない(Δω= 0)場合、図8
はΔω = +2π/NT(rad/sec)のキャリヤオフセットが加
わった場合の例である。図8より、図3の例では生じな
かった相関電力値のピークが現れていることが分かる。
また、図7より、図2の例と同様に、キャリヤオフセッ
トが存在しない場合でも、相関電力値のピークが発生す
ることが分かる。
FIGS. 7 and 8 show that ω k = π / NT (rad / sec)
An example of the calculation of the correlation power value is shown below. FIG. 7 shows a case where no carrier offset exists (Δω = 0).
Is an example where a carrier offset of Δω = + 2π / NT (rad / sec) is added. From FIG. 8, it can be seen that a peak of the correlation power value that has not occurred in the example of FIG. 3 appears.
Also, from FIG. 7, it can be seen that the peak of the correlation power value occurs even when there is no carrier offset, as in the example of FIG.

【0019】さらに、本発明の補償乗算器は、図6のよ
うに単一の構成することもできる。この実施例では、複
素信号 I + jQを回転させる操作として、複素信号 I +
jQに1 + 2cosωktを乗算すれば良い。2cosωkt は、exp
(-jwkt) + exp(+jwkt)に等価であるからである。この実
施例では、「複素数×複素数」ではなく、「複素数×実
数」の演算で済むため、処理量を減らすことができ、か
つ回路も簡略化できる。
Further, the compensating multiplier of the present invention may be configured as a single unit as shown in FIG. In this embodiment, as an operation of rotating the complex signal I + jQ, the complex signal I +
It should be multiplied by 1 + 2cosω k t to jQ. 2cosω k t is, exp
This is because it is equivalent to (−jw k t) + exp (+ jw k t). In this embodiment, it is sufficient to perform the operation of “complex number × real number” instead of “complex number × complex number”, so that the processing amount can be reduced and the circuit can be simplified.

【0020】[0020]

【実施例の効果】本発明の実施例は、上述のとおり、受
信複素信号 I + jQを複数の異なる角周波数で回転さ
せ、それらの和を相関器へ入力するように構成したの
で、キャリヤオフセットが存在する場合でも、短時間低
コストでの同期確立を可能になる。従って、本発明を携
帯無線電話通信に応用した場合には、電源投入時から短
時間で使用可能となる無線端末(携帯電話等)を提供する
ことができる。
According to the embodiment of the present invention, as described above, the received complex signal I + jQ is rotated at a plurality of different angular frequencies and the sum thereof is input to the correlator. Can be established in a short time and at low cost. Therefore, when the present invention is applied to portable wireless telephone communication, it is possible to provide a wireless terminal (such as a portable telephone) that can be used in a short time after power-on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】受信機内で同期検出を行う従来の相関器の構成
例を示す図である。
FIG. 1 is a diagram illustrating a configuration example of a conventional correlator that performs synchronization detection in a receiver.

【図2】出力端子3の理想状態における相関出力値を示
したグラフであり、ピークを表している。
FIG. 2 is a graph showing a correlation output value of the output terminal 3 in an ideal state, and shows a peak.

【図3】出力端子3の最悪の場合の相関出力値を示した
グラフであり、シンボル境界の検出不可能を表してい
る。
FIG. 3 is a graph showing a worst case correlation output value of an output terminal 3, which indicates that a symbol boundary cannot be detected.

【図4】従来の同期検出器としての受信機構成を示す。FIG. 4 shows a configuration of a receiver as a conventional synchronization detector.

【図5】本発明の実施例である同期検出器としての受信
機構成を示す。
FIG. 5 shows a configuration of a receiver as a synchronization detector according to an embodiment of the present invention.

【図6】本発明の他の実施例である補償乗算器を含む受
信機構成を示す。
FIG. 6 shows a configuration of a receiver including a compensation multiplier according to another embodiment of the present invention.

【図7】キャリヤオフセットが存在しない(Δω= 0)
場合における、本発明の実施例により得られる相関電力
値の計算例を示す。
FIG. 7: No carrier offset (Δω = 0)
In the case, a calculation example of the correlation power value obtained by the embodiment of the present invention is shown.

【図8】キャリアオフセットがΔω = +2π/NT(rad/se
c)の場合における、本発明の実施例により得られる相関
電力値の計算例を示す。
FIG. 8 shows a carrier offset Δω = + 2π / NT (rad / se
An example of calculation of a correlation power value obtained by the embodiment of the present invention in the case of c) will be described.

【符号の説明】[Explanation of symbols]

40 局部発振器 15, 直交復調器 28,30 アナログ・デジタル変換器 44,46,48 乗算器 42 加算器 10 相関器 40 local oscillator 15, quadrature demodulator 28,30 analog / digital converter 44,46,48 multiplier 42 adder 10 correlator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5K004 AA05 AA08 FH08 JH05 5K022 EE02 EE21 EE36 5K047 AA02 AA13 BB01 CC01 EE02 EE04 GG34 GG37 HH01 HH03 HH15 HH42 MM13  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5K004 AA05 AA08 FH08 JH05 5K022 EE02 EE21 EE36 5K047 AA02 AA13 BB01 CC01 EE02 EE04 GG34 GG37 HH01 HH03 HH15 HH42 MM13

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 送信機キャリア周波数で変調され無線送
信された所定のデジタル同期コードを含む送信信号を受
信し、該同期コードを検出することにより、前記送信信
号との同期をとる受信機であって:局部発振器;該局部
発振器からの受信機局部周波数に基づいて、受信した前
記送信信号をキャリア周波数からベースバンドへと復調
する復調器;復調されたアナログ信号をデジタル化して
デジタル信号を出力するアナログデジタル変換器;前記
送信機キャリア周波数と前記受信機局部周波数との誤差
を補償できるような補償回転複素係数を前記デジタル信
号に乗算して第1乗算出力とし、かつ前記補償回転複素
係数の共役複素数を前記デジタル信号に乗算して第2乗
算出力とする、複素乗算器;少なくとも前記第1乗算出
力と前記第2乗算出力とを加算して、相関器に出力する
加算器;から構成される受信機。
1. A receiver for receiving a transmission signal containing a predetermined digital synchronization code modulated by a transmitter carrier frequency and wirelessly transmitted, and detecting the synchronization code to synchronize with the transmission signal. T: a local oscillator; a demodulator for demodulating the received transmission signal from a carrier frequency to a baseband based on a local frequency of a receiver from the local oscillator; digitizing the demodulated analog signal and outputting a digital signal An analog-to-digital converter; multiplying the digital signal by a compensated rotation complex coefficient capable of compensating for an error between the transmitter carrier frequency and the receiver local frequency to obtain a first multiplied output, and conjugate the compensated rotation complex coefficient A complex multiplier for multiplying the digital signal by a complex number to obtain a second multiplication output; at least the first multiplication output and the second square calculation An adder that adds the force and outputs the result to a correlator.
【請求項2】 請求項1に記載された受信機であって:
前記加算器が、前記第1乗算出力と前記第2乗算出力と
前記デジタル信号とを加算する;ことを特徴とする受信
機。
2. The receiver according to claim 1, wherein:
The receiver, wherein the adder adds the first multiplied output, the second multiplied output, and the digital signal.
【請求項3】 送信機キャリア周波数で変調され無線送
信された所定のデジタル同期コードを含む送信信号を受
信し、該同期コードを検出することにより、前記送信信
号との同期をとる受信機であって:局部発振器;該局部
発振器からの受信機局部周波数に基づいて、受信した前
記送信信号をキャリア周波数からベースバンドへと復調
する復調器;復調されたアナログ信号をデジタル化して
デジタル信号を出力するアナログデジタル変換器;前記
送信機キャリア周波数と前記受信機局部周波数との誤差
を補償できるような補償回転複素係数とその共役複素数
と1を加算して得た実数値補償係数を前記デジタル信号
に乗算して、相関器に出力する乗算器;から構成される
受信機。
3. A receiver for receiving a transmission signal containing a predetermined digital synchronization code modulated by a transmitter carrier frequency and wirelessly transmitted, and detecting the synchronization code to synchronize with the transmission signal. T: a local oscillator; a demodulator for demodulating the received transmission signal from a carrier frequency to a baseband based on a local frequency of a receiver from the local oscillator; digitizing the demodulated analog signal and outputting a digital signal Analog-to-digital converter; multiplies the digital signal by a real-valued compensation coefficient obtained by adding a compensation rotation complex coefficient and its conjugate complex number that can compensate for an error between the transmitter carrier frequency and the receiver local frequency and 1 And a multiplier for outputting to a correlator.
【請求項4】 送信機キャリア周波数で変調され無線送
信された所定のデジタル同期コードを含む送信信号を受
信し、該同期コードを検出することにより、前記送信信
号との同期をとる受信機において、前記送信機キャリア
周波数と受信機局部周波数との誤差を補償する方法であ
って:局部発振器からの前記受信機局部周波数に基づ
き、受信した前記送信信号をキャリア周波数からベース
バンドへと復調する段階;復調されたアナログ信号をデ
ジタル化してデジタル信号を出力する段階;前記送信機
キャリア周波数と前記受信機局部周波数との誤差を補償
できるような補償回転複素係数を前記デジタル信号に乗
算して第1乗算出力とし、かつ前記補償回転複素係数の
共役複素数を前記デジタル信号に乗算して第2乗算出力
とする段階;少なくとも前記第1乗算出力と前記第2乗
算出力とを加算して、相関器に出力する加算段階;から
構成される方法。
4. A receiver for receiving a transmission signal including a predetermined digital synchronization code modulated by a transmitter carrier frequency and wirelessly transmitted, and detecting the synchronization code to synchronize with the transmission signal. A method for compensating for an error between the transmitter carrier frequency and a receiver local frequency, comprising: demodulating the received transmission signal from a carrier frequency to baseband based on the receiver local frequency from a local oscillator; Digitizing the demodulated analog signal and outputting a digital signal; multiplying the digital signal by a compensation rotation complex coefficient capable of compensating for an error between the transmitter carrier frequency and the receiver local frequency; Output, and multiplying the digital signal by a conjugate complex number of the compensation rotation complex coefficient to obtain a second multiplied output; Adding the first multiplied output and the second multiplied output and outputting the sum to a correlator.
【請求項5】 請求項1に記載された方法であって:前
記加算段階が、前記第1乗算出力と前記第2乗算出力と
前記デジタル信号とを加算する段階である;ことを特徴
とする方法。
5. The method according to claim 1, wherein the adding step is a step of adding the first multiplied output, the second multiplied output, and the digital signal. Method.
【請求項6】 送信機キャリア周波数で変調され無線送
信された所定のデジタル同期コードを含む送信信号を受
信し、該同期コードを検出することにより、前記送信信
号との同期をとる受信機において、前記送信機キャリア
周波数と受信機局部周波数との誤差を補償する方法であ
って:局部発振器からの前記受信機局部周波数に基づ
き、受信した前記送信信号をキャリア周波数からベース
バンドへと復調する段階;復調されたアナログ信号をデ
ジタル化してデジタル信号を出力する段階;前記送信機
キャリア周波数と前記受信機局部周波数との誤差を補償
できるような補償回転複素係数とその共役複素数と1を
加算して得た実数値補償係数を前記デジタル信号に乗算
して相関器に出力する段階;から構成される方法。
6. A receiver for receiving a transmission signal containing a predetermined digital synchronization code modulated by a transmitter carrier frequency and wirelessly transmitted, and detecting the synchronization code to synchronize with the transmission signal, A method for compensating for an error between the transmitter carrier frequency and a receiver local frequency, comprising: demodulating the received transmission signal from a carrier frequency to baseband based on the receiver local frequency from a local oscillator; Digitizing the demodulated analog signal and outputting a digital signal; adding a compensated rotation complex coefficient and its conjugate complex number that can compensate for an error between the transmitter carrier frequency and the receiver local frequency, and 1; Multiplying said digital signal by said real-valued compensation coefficient and outputting it to a correlator.
JP2000369056A 2000-12-04 2000-12-04 Receiver and method for compensating frequency error Expired - Lifetime JP4820957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000369056A JP4820957B2 (en) 2000-12-04 2000-12-04 Receiver and method for compensating frequency error

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000369056A JP4820957B2 (en) 2000-12-04 2000-12-04 Receiver and method for compensating frequency error

Publications (2)

Publication Number Publication Date
JP2002199035A true JP2002199035A (en) 2002-07-12
JP4820957B2 JP4820957B2 (en) 2011-11-24

Family

ID=18839154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000369056A Expired - Lifetime JP4820957B2 (en) 2000-12-04 2000-12-04 Receiver and method for compensating frequency error

Country Status (1)

Country Link
JP (1) JP4820957B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503494A (en) * 2002-10-15 2006-01-26 ノードナフ・テクノロジーズ・アーベー Spread spectrum signal processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248651A (en) * 1990-02-27 1991-11-06 Nec Corp Signal detector of signal synchronizing system
JPH07321769A (en) * 1994-05-26 1995-12-08 Matsushita Electric Ind Co Ltd Synchronization equipment
JPH1028076A (en) * 1996-07-10 1998-01-27 Toshiba Corp Direct spread-spectrum signal receiver and synchronous acquisition circuit
JPH11112470A (en) * 1997-10-03 1999-04-23 Matsushita Electric Ind Co Ltd Mobile radio terminal using code division multiple access system
JPH11313009A (en) * 1998-04-24 1999-11-09 Nec Corp Reception synchronizing device by chirp signal
JP2000278254A (en) * 1999-03-25 2000-10-06 Hitachi Denshi Ltd Frame detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248651A (en) * 1990-02-27 1991-11-06 Nec Corp Signal detector of signal synchronizing system
JPH07321769A (en) * 1994-05-26 1995-12-08 Matsushita Electric Ind Co Ltd Synchronization equipment
JPH1028076A (en) * 1996-07-10 1998-01-27 Toshiba Corp Direct spread-spectrum signal receiver and synchronous acquisition circuit
JPH11112470A (en) * 1997-10-03 1999-04-23 Matsushita Electric Ind Co Ltd Mobile radio terminal using code division multiple access system
JPH11313009A (en) * 1998-04-24 1999-11-09 Nec Corp Reception synchronizing device by chirp signal
JP2000278254A (en) * 1999-03-25 2000-10-06 Hitachi Denshi Ltd Frame detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503494A (en) * 2002-10-15 2006-01-26 ノードナフ・テクノロジーズ・アーベー Spread spectrum signal processing method
JP2010028875A (en) * 2002-10-15 2010-02-04 Nordnav Technologies Ab Spread spectrum signal processing method
US8422601B2 (en) 2002-10-15 2013-04-16 Nordnav Technologies Ab Spread spectrum signal processing

Also Published As

Publication number Publication date
JP4820957B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US7889782B2 (en) Joint de-spreading and frequency correction using a correlator
US7200188B2 (en) Method and apparatus for frequency offset compensation
US5594754A (en) Spread spectrum communication receiver
JP2741336B2 (en) Frequency error correction device for spread spectrum signal receiver
US5724384A (en) PN code sync device using an adaptive threshold
JP4095249B2 (en) Frequency acquisition tracking method and apparatus for DS-SSCDMA receiver
US20030220084A1 (en) Frequency offset estimator
JP4701572B2 (en) Timing acquisition / offset correction method and apparatus
JP4710210B2 (en) Offset correction method and apparatus
KR100758302B1 (en) Apparatus and Method for Phase Recovery and I/Q Imbalance Compensation in a quadrature demodulating receiver
US7430247B2 (en) Carrier frequency detection for N-ary phase modulated signal
WO2000048346A2 (en) A non-coherent, non-data-aided pseudo-noise synchronization and carrier synchronization for qpsk or oqpsk modulated cdma system
JP3418981B2 (en) Spread spectrum communication synchronization acquisition circuit
JP4820957B2 (en) Receiver and method for compensating frequency error
WO2001050698A1 (en) Offset correction in a spread spectrum communication system
JP3637812B2 (en) CDMA communication apparatus
JP3297654B2 (en) CDMA radio receiving apparatus and CDMA radio receiving method
JP2001102960A (en) Spread spectrum receiver
JP2001045082A (en) Frequency offset quantity detector
JPH06244820A (en) Signal processing circuit
JP3094940B2 (en) Quadrature modulated wave receiving method and apparatus
EP1241818A1 (en) Receiver apparatus and method for controlling reference frequency in the receiver apparatus
JP3058820B2 (en) Demodulation method for spread spectrum communication and demodulation device using the method
JP3035513B2 (en) Delay time measuring device
JPH07177125A (en) Pilot signal detection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110202

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110302

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

R150 Certificate of patent or registration of utility model

Ref document number: 4820957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term