JP2002198684A - Electromagnetic wave absorber - Google Patents

Electromagnetic wave absorber

Info

Publication number
JP2002198684A
JP2002198684A JP2000396307A JP2000396307A JP2002198684A JP 2002198684 A JP2002198684 A JP 2002198684A JP 2000396307 A JP2000396307 A JP 2000396307A JP 2000396307 A JP2000396307 A JP 2000396307A JP 2002198684 A JP2002198684 A JP 2002198684A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic metal
electromagnetic wave
wave absorber
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000396307A
Other languages
Japanese (ja)
Other versions
JP4446593B2 (en
Inventor
Koji Enokida
功治 榎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000396307A priority Critical patent/JP4446593B2/en
Publication of JP2002198684A publication Critical patent/JP2002198684A/en
Application granted granted Critical
Publication of JP4446593B2 publication Critical patent/JP4446593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic wave absorber capable of having electromagnetic bonding and radiation noise reduction effects in electronic equipment. SOLUTION: This electromagnetic wave absorber is constituted of composite materials in which soft magnetic metal made of Ni by 79.0 to 81.0 wt.%, Mo by 3.0 to 6.0 wt.%, and residual Fe is contained so as to be spread in synthetic resin by 60 to 90 vol.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アンテナ間の結合
抑制部品、定在波抑制部品、電子部品又は電子回路基板
の使用に適した電磁波吸収体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave absorber suitable for use in a component for suppressing coupling between antennas, a component for suppressing standing waves, an electronic component, or an electronic circuit board.

【0002】[0002]

【従来の技術】従来、電磁波を利用する設備、機器、及
びその周囲において、電磁波の不要な反射、散乱、干
渉、結合が生じる箇所に装着することによって、入射し
た電磁波を電磁波吸収層で吸収し、電磁波エネルギーを
熱エネルギーに変換する電磁波吸収体を用いることで、
種々のトラブルを抑制することができる。
2. Description of the Related Art Conventionally, incident electromagnetic waves are absorbed by an electromagnetic wave absorbing layer by being installed in a place where unnecessary reflection, scattering, interference, or coupling of electromagnetic waves occurs in facilities, equipment, and surroundings using electromagnetic waves. By using an electromagnetic wave absorber that converts electromagnetic wave energy into heat energy,
Various troubles can be suppressed.

【0003】一般に、絶縁体中に磁性材料を分散含有
し、その磁気損失、誘電損失を利用して電磁波を減衰さ
せることで、放射雑音の抑制を行う電磁波吸収体が知ら
れている。
In general, there is known an electromagnetic wave absorber in which a magnetic material is dispersed and contained in an insulator and an electromagnetic wave is attenuated by utilizing its magnetic loss and dielectric loss to suppress radiation noise.

【0004】上記電磁波吸収体を構成する材質として
は、ゴム、熱可塑性樹脂、熱硬化性樹脂中に、磁性材料
を所定の比率で配合した複合材が使用されており(特開
平10−74611号公報、特開平5−27060号公
報、特開平4−213803号公報参照)、この電磁波
吸収体は通常、射出成形、押出成形、ブロー成形、圧縮
成形、トランスファー成形、鋳込み成形、無延伸フィル
ム加工、延伸フィルム加工等により製作されていた。
As a material constituting the electromagnetic wave absorber, a composite material in which a magnetic material is blended in a predetermined ratio in rubber, a thermoplastic resin, or a thermosetting resin is used (JP-A-10-74611). JP-A-5-27060 and JP-A-4-213803), and this electromagnetic wave absorber is usually formed by injection molding, extrusion molding, blow molding, compression molding, transfer molding, casting molding, non-stretched film processing, It was manufactured by stretched film processing and the like.

【0005】一般に、使用周波数帯域に合わせて、種々
の材料を電磁波吸収体として使い分けているが、近年、
小型化の要求と各種デバイスの高機能化に伴って、広帯
域に亘って放射雑音・電磁結合・電磁干渉・定在波の抑
制効果に優れた電磁波吸収体が強く望まれている。
[0005] In general, various materials are selectively used as electromagnetic wave absorbers according to the frequency band used.
With the demand for miniaturization and the sophistication of various devices, there is a strong demand for an electromagnetic wave absorber having an excellent effect of suppressing radiation noise, electromagnetic coupling, electromagnetic interference, and standing waves over a wide band.

【0006】[0006]

【発明が解決しようとする課題】近年、前述した部品に
おいては小型化の要求が厳しく、広範囲の周波数帯域に
おける電磁波を、厚みの薄い電磁波吸収層で吸収するこ
とが求められていた。そこで、従来の成形法で作製され
た電磁波吸収体においては、例えば、フェノール樹脂発
泡材に黒鉛、炭素繊維等を添加し、比重を0.1〜0.
8程度と軽量化し、低コストを図っている(特開平6−
314894号公報、特開平9−92996号公報)。
しかし、このようなものは発泡剤を添加しているために
強度が低く、厚みを薄くすることができない、あるいは
構造部材としての機能を兼ね備えることができないとい
った問題があった。
In recent years, there has been a strong demand for miniaturization of the above-mentioned components, and it has been required that electromagnetic waves in a wide frequency band be absorbed by a thin electromagnetic wave absorbing layer. Therefore, in an electromagnetic wave absorber manufactured by a conventional molding method, for example, graphite, carbon fiber, or the like is added to a phenol resin foam material, and the specific gravity is 0.1 to 0.1.
The weight is reduced to about 8 and the cost is reduced (Japanese Unexamined Patent Publication No.
314894, JP-A-9-92996).
However, such a material has a problem that the strength is low and the thickness cannot be reduced due to the addition of the foaming agent, or the function as a structural member cannot be provided.

【0007】また、射出成形、押出成形、ブロー成形、
圧縮成形、トランスファー成形、鋳込み成形、無延伸フ
ィルム加工、延伸フィルム加工等は、所定の金型内ある
いはロールで、樹脂を溶融した状態で成形するため、樹
脂の流動方向へフィラーが配向し、線膨張係数の異方性
等が発生するといった問題があった。加えて、複合材の
流動性を良くするために、フィラーを高充填することが
出来ないといった問題があった。また、フィラー間の接
触による電気抵抗率の低下が原因で、電磁波の反射量が
増大するといった問題があった。
Also, injection molding, extrusion molding, blow molding,
In compression molding, transfer molding, cast molding, non-stretched film processing, stretched film processing, etc., the resin is melted and molded in a predetermined mold or roll, so the filler is oriented in the flow direction of the resin, There has been a problem that anisotropy of the expansion coefficient occurs. In addition, in order to improve the fluidity of the composite material, there is a problem that it is not possible to highly fill the filler. Further, there is a problem that the amount of reflection of electromagnetic waves increases due to a decrease in electric resistivity due to contact between fillers.

【0008】そこで、高い電気抵抗率を得るため、図5
に示すように粉末の厚さを表皮深さ程度に扁平化した鱗
片状または片状の軟磁性金属52を合成樹脂51中に分
散した電磁波吸収体50が製造されている。しかし、こ
のような鱗片状または片状の軟磁性金属52を用いる
と、射出成形、圧縮成形、トランスファー成形等では、
高充填、かつ均一分散が困難であるため、これらの成形
法の特徴でもある複雑な構造の成形体を製造することが
出来ないといった問題があった。また、前記扁平化した
鱗片状または片状の軟磁性金属は配向しやすいため、線
膨張係数の異方性が発生するといった問題があった。
Therefore, in order to obtain a high electric resistivity, FIG.
As shown in the figure, an electromagnetic wave absorber 50 is manufactured in which a scale-like or flaky soft magnetic metal 52 whose powder thickness is flattened to the skin depth is dispersed in a synthetic resin 51. However, when such a flaky or flaky soft magnetic metal 52 is used, injection molding, compression molding, transfer molding, etc.
Since high filling and uniform dispersion are difficult, there is a problem that a molded article having a complicated structure, which is a feature of these molding methods, cannot be produced. In addition, since the flat scale-like or flaky soft magnetic metal is easily oriented, there is a problem that anisotropy of a linear expansion coefficient occurs.

【0009】また、従来の電磁波吸収体は電子機器の放
射雑音・電磁結合・電磁干渉・定在波を抑制し、且つ、
高い機械的強度、寸法安定性を得ることは困難であると
いう問題があった。
Further, the conventional electromagnetic wave absorber suppresses radiation noise, electromagnetic coupling, electromagnetic interference, and standing waves of electronic equipment, and
There was a problem that it was difficult to obtain high mechanical strength and dimensional stability.

【0010】[0010]

【課題を解決するための手段】そこで本発明は、合成樹
脂に、Ni79.0〜83.0重量%、Mo3.0〜
6.0重量%、残部がFeからなる軟磁性金属粒子を6
0〜90体積%分散含有した複合材からなる電磁波吸収
体を用いることによって、電磁波・放射雑音の抑制効果
を向上できる様にしたものである。また、本発明の前記
軟磁性金属粒子の表面の少なくとも一部に酸化膜を有
し、その厚みを1μm以下としたことを特徴とする。
Accordingly, the present invention provides a synthetic resin containing 79.0 to 83.0% by weight of Ni and 3.0 to 2.0% of Mo.
6.0% by weight of soft magnetic metal particles consisting of
By using an electromagnetic wave absorber made of a composite material containing 0 to 90% by volume of dispersion, the effect of suppressing electromagnetic waves and radiation noise can be improved. Further, the soft magnetic metal particles of the present invention have an oxide film on at least a part of the surface thereof, and have a thickness of 1 μm or less.

【0011】さらに、本発明は、前記軟磁性金属粒子を
略無配向としたことを特徴とする。
Further, the present invention is characterized in that the soft magnetic metal particles are substantially non-oriented.

【0012】また、前記軟磁性金属の平均アスペクト比
が1.1以上10以下であることを特徴とする。
The soft magnetic metal may have an average aspect ratio of 1.1 or more and 10 or less.

【0013】また、前記軟磁性金属が平均粒径1μm以
上300μm以下、最大粒径500μm以下であること
を特徴とする。
Further, the soft magnetic metal has an average particle diameter of 1 μm or more and 300 μm or less, and a maximum particle diameter of 500 μm or less.

【0014】また、前記軟磁性金属の平均粒径をDとし
たとき、該軟磁性金属の40体積%以上が0.1D〜1
0Dの範囲であることを特徴とする。
When the average particle diameter of the soft magnetic metal is D, 40% by volume or more of the soft magnetic metal is 0.1D to 1D.
It is characterized by being in the range of 0D.

【0015】また、前記複合材の気孔率が0.1〜10
体積%であることを特徴とする。
Further, the porosity of the composite material is 0.1 to 10
% By volume.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0017】本発明の電磁波吸収体は、図1に示すよう
に、合成樹脂11中に軟磁性金属粒子12を分散含有し
た複合材からなり、気孔13を有するものである。そし
て、上記軟磁性金属粒子12は、Ni79.0〜83.
0重量%、Mo3.0〜6.0重量%、残部がFeから
なり、この軟磁性金属粒子12を全体の60〜90体積
%含有している。このような電磁波吸収体は、上記組成
になるように調合された原料を造粒し、その造粒体を粉
末加圧成型法により成形し、金型から取り出した後、所
定の温度で一定時間加熱することで作製できる。
As shown in FIG. 1, the electromagnetic wave absorber of the present invention is made of a composite material in which soft magnetic metal particles 12 are dispersed and contained in a synthetic resin 11 and has pores 13. The soft magnetic metal particles 12 are composed of Ni 79.0 to 83.
0 wt%, Mo 3.0 to 6.0 wt%, the balance being Fe, and the soft magnetic metal particles 12 are contained in an amount of 60 to 90% by volume. Such an electromagnetic wave absorber is obtained by granulating a raw material prepared so as to have the above-described composition, molding the granulated body by a powder pressure molding method, removing the molded body from a mold, and then performing a predetermined time at a predetermined temperature. It can be produced by heating.

【0018】ここで、合成樹脂11に混合する軟磁性金
属粒子12は、電磁波吸収体の複素比透磁率、複素比誘
電率を調整するために含有するもので、その含有量を増
やすことで電磁波吸収体の複素比透磁率、複素比誘電率
を高めることができる。
Here, the soft magnetic metal particles 12 mixed with the synthetic resin 11 are contained for adjusting the complex relative magnetic permeability and the complex relative permittivity of the electromagnetic wave absorber. The complex relative magnetic permeability and the complex relative permittivity of the absorber can be increased.

【0019】尚、前記軟磁性金属粒子12の含有量を6
0〜90体積%としたのは、60体積%未満では、上記
のような製造方法では、加熱硬化後に膨れ・変形が発生
し保型することができない為である。
The content of the soft magnetic metal particles 12 is set to 6
The reason for setting the volume to 0 to 90% by volume is that if the volume is less than 60% by volume, the above-described production method causes swelling / deformation after heat curing, so that the shape cannot be retained.

【0020】逆に、軟磁性金属粒子12の含有量が90
体積%より多くなると、フィラー表面に樹脂を均一に被
覆することができず、強度が著しく低下する。また、電
気抵抗率が低下することから高周波での磁気特性が良く
ない。
Conversely, when the content of the soft magnetic metal particles 12 is 90
When the content is more than the volume%, the resin cannot be uniformly coated on the filler surface, and the strength is significantly reduced. Also, the magnetic properties at high frequencies are not good because the electrical resistivity is reduced.

【0021】なお、本発明の複合材中の断面または表面
を波長分散型X線マイクロアナライザ−を用いて反射電
子像により観察すると、軟磁性金属粒子12を構成する
元素を含む粒子が特定できる。
By observing the cross section or surface of the composite material of the present invention with a backscattered electron image using a wavelength dispersive X-ray microanalyzer, particles containing the elements constituting the soft magnetic metal particles 12 can be specified.

【0022】また、軟磁性金属粒子12の含有率は反射
電子像の写真を画像解析するか、写真をトレースし、写
真中の軟磁性金属粒子12の面積占有率を測定し、この
面積占有率を軟磁性金属の含有率と定義する。画像解析
する場合は、観察面を加工する際に軟磁性金属粒子12
の変形や脱粒などの影響を受けない様にすることが必要
である。また、上記軟磁性金属粒子12の組成を、Ni
79.0〜83.0重量%、Mo3.0〜6.0重量
%、残部がFeからなるようにしたのは電磁波吸収体の
透磁率を大きくするためである。Niが79.0重量%
未満であると透磁率が小さくなり、またNiが83.0
重量%を超えても小さくなる。またMoが3.0重量%
未満であると透磁率が小さくなり、6.0重量%を超え
ても小さくなる。尚、上記軟磁性金属粒子12には、
C、Si、Mn、P、S、Cu、Cr、O等の成分が少
量存在しても何ら差し支えない。
The content of the soft magnetic metal particles 12 is determined by image analysis of a photograph of the backscattered electron image or by tracing the photograph and measuring the area occupancy of the soft magnetic metal particles 12 in the photograph. Is defined as the content of the soft magnetic metal. When performing image analysis, the soft magnetic metal particles 12
It is necessary not to be affected by deformation or grain dropping. Further, the composition of the soft magnetic metal particles 12 is changed to Ni
The reason for using 79.0 to 83.0% by weight, 3.0 to 6.0% by weight of Mo, and the balance of Fe is to increase the magnetic permeability of the electromagnetic wave absorber. 79.0% by weight of Ni
If it is less than, the magnetic permeability becomes small, and the Ni content is 83.0.
Even if it exceeds weight%, it becomes small. Mo is 3.0% by weight
If it is less than 10, the magnetic permeability becomes small, and even if it exceeds 6.0% by weight, it becomes small. The soft magnetic metal particles 12 include:
A small amount of components such as C, Si, Mn, P, S, Cu, Cr, and O may be present at all.

【0023】また、例えば、図1に示すように前記軟磁
性金属粒子12の表面の少なくとも一部に酸化膜14を
形成することが好ましく、これは、軟磁性金属粒子12
間の接触抵抗を高くするためである。このような構造に
することによって、複合材の体積抵抗率が高くなり、高
周波での磁気特性が向上する。しかし、前記酸化膜14
の厚みが1μmより大きくなると、軟磁性金属粒子12
と酸化膜14の熱膨張係数の違いにより剥離しやすくな
るため、厚さは1μm以下が好ましい。
For example, as shown in FIG. 1, it is preferable to form an oxide film 14 on at least a part of the surface of the soft magnetic metal particles 12,
This is to increase the contact resistance between them. With such a structure, the volume resistivity of the composite material is increased, and the magnetic characteristics at high frequencies are improved. However, the oxide film 14
Is larger than 1 μm, the soft magnetic metal particles 12
The thickness is preferably 1 μm or less because the film is easily peeled off due to the difference in thermal expansion coefficient between the oxide film 14 and the oxide film 14.

【0024】尚、軟磁性金属粒子12の表面に酸化膜を
形成する方法は、例えば以下の通りである。
The method for forming an oxide film on the surface of the soft magnetic metal particles 12 is, for example, as follows.

【0025】前記軟磁性金属粒子12を空気中または酸
素を含むガス雰囲気中200〜800℃で熱処理する加
熱処理法か、または塩酸、硝酸などの酸性水溶液と前記
軟磁性金属粒子を混合、加熱する酸処理法か、または前
記軟磁性金属粒子をカップリング剤等で予め絶縁処理す
るカップリング法により、前記軟磁性金属粒子の少なく
とも一部に金属の酸化物からなる酸化膜を形成する。
A heat treatment method in which the soft magnetic metal particles 12 are heat-treated at 200 to 800 ° C. in air or a gas atmosphere containing oxygen, or a method in which the soft magnetic metal particles are mixed with an acidic aqueous solution such as hydrochloric acid or nitric acid and heated. An oxide film made of a metal oxide is formed on at least a part of the soft magnetic metal particles by an acid treatment method or a coupling method in which the soft magnetic metal particles are insulated in advance with a coupling agent or the like.

【0026】さらに、前記軟磁性金属粒子12は略無配
向とすることが好ましい。これは、線膨張係数の異方性
がなくなり、反り変形、実装後の剥がれ等がない優れた
電磁波吸収体が得られるためである。通常、射出成形、
押出成形、ブロー成形、圧縮成形、トランスファー成
形、鋳込み成形、無延伸フィルム加工、延伸フィルム加
工等では、樹脂の流動方向への充填材の配向や、金型面
の転写等が発生する。充填材の配向は、特にアスペクト
比が大きいフレーク状、針状、繊維状の充填材で顕著に
現れ、特定の面からの電磁波吸収特性は良好であるが、
それ以外の面では、電磁波の減衰特性の低下、線膨張係
数の異方性、電気抵抗率の低下による電波反射量の増大
があるといった問題があった。
Further, the soft magnetic metal particles 12 are preferably substantially non-oriented. This is because there is no anisotropy in the coefficient of linear expansion, and an excellent electromagnetic wave absorber free from warpage deformation, peeling after mounting, and the like can be obtained. Usually injection molding,
In extrusion molding, blow molding, compression molding, transfer molding, casting, non-stretched film processing, stretched film processing, etc., orientation of the filler in the flow direction of the resin, transfer of the mold surface, and the like occur. The orientation of the filler is particularly noticeable in flakes, needles, and fibrous fillers with a large aspect ratio, and the electromagnetic wave absorption characteristics from a specific surface are good,
In other aspects, there were problems such as a decrease in electromagnetic wave attenuation characteristics, anisotropy in linear expansion coefficient, and an increase in radio wave reflection due to a decrease in electric resistivity.

【0027】これに対し、本発明では所定の比率で配合
された造粒体を、冷間粉末加圧成形することによって配
向をなくし、これらの問題を解決したものである。
On the other hand, the present invention solves these problems by eliminating the orientation by subjecting the granules blended at a predetermined ratio to cold powder pressing.

【0028】ここで、軟磁性金属粒子12が略無配向と
は、配向が全くないか、あっても配向度が20%以下で
あることを言う。ここで言う配向度とは、任意の断面
と、その断面に直角に交差する断面、および前記二つの
断面に直角に交差する断面の、合わせて3つの断面のそ
れぞれにおいて任意の範囲を観察し、各断面において、
任意の方向を0度と規定し、該断面における軟磁性金属
粒子12の長軸の方向を0度から180度の範囲に全て
存在すると仮定したときの長軸の方向を0〜45度、4
5〜90度、90〜135度、135〜180度の4範
囲に分けて軟磁性金属粒子12の数をカウントしたとき
最大頻度である角度範囲のカウント数から最小頻度であ
る角度範囲のカウント数を引いたときの差が各角度範囲
のカウント数の合計に対して20%以下であることを言
う。
Here, that the soft magnetic metal particles 12 are substantially non-oriented means that the soft magnetic metal particles 12 have no orientation or the degree of orientation is 20% or less. The degree of orientation here refers to an arbitrary cross-section, a cross-section orthogonal to the cross-section, and a cross-section orthogonal to the two cross-sections. In each section,
An arbitrary direction is defined as 0 degree, and the direction of the long axis is assumed to be 0 to 45 degrees, assuming that the direction of the long axis of the soft magnetic metal particles 12 in the cross section is all in the range of 0 to 180 degrees.
When the number of soft magnetic metal particles 12 is counted in four ranges of 5 to 90 degrees, 90 to 135 degrees, and 135 to 180 degrees, the number of counts in the angle range that is the lowest frequency to the count number in the angle range that is the lowest frequency is counted. Is less than 20% of the total of the count numbers in each angle range.

【0029】また、上記軟磁性金属粒子12の形状は電
磁波吸収体の磁気損失、誘電損失等に重要な影響を及ぼ
すことが知られており、軟磁性金属が鱗片状、片状、フ
レーク状、針状、繊維状であると磁気損失が大きくなる
と言った利点はあるが、高充填、均一分散が困難なた
め、機械的強度、耐熱性が低下し不適当である。これに
対し、本発明の電磁波吸収体は平均アスペクト比を1.
1以上10以下、好ましくは1.1以上5以下とするこ
とにより、高充填、均一分散が容易であることから、機
械的強度、耐熱性の優れたものを得ることができる。た
だし、平均アスペクト比が10より大きくなると、軟磁
性金属を60〜90体積%と多量に配合して合成樹脂と
混合する場合、成形することが困難となる。
It is known that the shape of the soft magnetic metal particles 12 has an important effect on the magnetic loss, dielectric loss, etc. of the electromagnetic wave absorber. Acicular or fibrous forms have the advantage of increased magnetic loss, but are difficult to fill and uniformly disperse, and are unsuitable due to reduced mechanical strength and heat resistance. In contrast, the electromagnetic wave absorber of the present invention has an average aspect ratio of 1.
When the content is 1 or more and 10 or less, preferably 1.1 or more and 5 or less, high filling and uniform dispersion can be easily performed, so that a material having excellent mechanical strength and heat resistance can be obtained. However, when the average aspect ratio is larger than 10, it becomes difficult to mold the soft magnetic metal in a large amount of 60 to 90% by volume and mixing with the synthetic resin.

【0030】また、軟磁性金属粒子12の平均アスペク
ト比は、その任意の断面を走査型電子顕微鏡にて画像撮
影し、その画像から、画像解析にて粒子の長辺、短辺の
寸法を測定しその長辺/短辺を算出することで得られ
る。
The average aspect ratio of the soft magnetic metal particles 12 can be determined by taking an image of an arbitrary cross section with a scanning electron microscope and measuring the long side and short side dimensions of the particle by image analysis from the image. It is obtained by calculating the long side / short side.

【0031】また、本発明の電磁波吸収体においては軟
磁性金属粒子12の平均粒径を1μm以上300μm以
下、好ましくは3μm以上20μm以下とすることが好
ましい。これは平均粒径が1 μmよりも小さくなるとコ
ストUPとなり経済的に合わなくなるためであり、ま
た、300μmより大きくなると、軟磁性金属粒子12
の表面積が小さくなり、加熱硬化時に成形体の変形、ダ
レが発生し易くなるためである。
In the electromagnetic wave absorber of the present invention, the soft magnetic metal particles 12 preferably have an average particle size of 1 μm or more and 300 μm or less, preferably 3 μm or more and 20 μm or less. This is because if the average particle size is smaller than 1 μm, the cost is increased and the cost becomes inconsistent, and if the average particle size is larger than 300 μm, the soft magnetic metal particles 12
This is because the surface area of the molded article becomes small, and deformation and sagging of the molded body during heating and curing easily occur.

【0032】また、軟磁性金属粒子12の最大粒径は5
00μm 以下、好ましくは300μm以下とすること
が好ましい。軟磁性金属粒子12の最大粒径が500μ
mより大きくなると、樹脂との混合時における分散性が
悪いため、強度を十分に保つことが出来ないと同時に、
後述する粉末加圧成形後の離型時において欠けが発生し
易くなり好ましくないからである。
The maximum particle size of the soft magnetic metal particles 12 is 5
It is preferably at most 00 μm, more preferably at most 300 μm. The maximum particle size of the soft magnetic metal particles 12 is 500 μ
When it is larger than m, the dispersibility at the time of mixing with the resin is poor, so that the strength cannot be sufficiently maintained, and at the same time,
This is because chipping easily occurs at the time of mold release after powder pressure molding described below, which is not preferable.

【0033】平均粒径は、各軟磁性金属粒子12の前
後、左右、上下の寸法を各々測定しその平均値を算出す
ることで得られる。
The average particle diameter can be obtained by measuring the front, rear, left, right, and upper dimensions of each soft magnetic metal particle 12 and calculating the average value.

【0034】なお、軟磁性金属粒子12の最大粒径と
は、前後、左右、上下の寸法を測定した時に最も長い部
分の長さであるが、複合材から軟磁性金属の最大粒径を
求める時には、便宜的に複合材の任意の表面又は断面を
画像解析装置で分析し、その面に存在する粉末の中で、
最も長い軟磁性金属の長さを最大粒径とする。
The maximum particle size of the soft magnetic metal particles 12 is the length of the longest part when the front, rear, left, right, and top and bottom dimensions are measured. The maximum particle size of the soft magnetic metal is determined from the composite material. Sometimes, for convenience, any surface or cross section of the composite material is analyzed with an image analysis device, and among the powder present on that surface,
The length of the longest soft magnetic metal is defined as the maximum particle size.

【0035】また、本発明の電磁波吸収体においては軟
磁性金属粒子12の平均粒径をDとしたとき、軟磁性金
属粒子12の40重量%以上が0.1D〜10Dの範囲
であることが好ましい。本発明の軟磁性金属粒子12が
特定方向に配向することの無い電磁波吸収体を得るため
には、製法上、複合材を予め造粒する必要があるが、
0.1D〜10Dの範囲内の粒子が40重量%未満であ
ると、例えば、所定の粒度に調整する場合の分級処理を
行うと調合組成に対して組成ズレが起こる原因となる場
合があり、安定した電磁波吸収特性を得ることができな
い場合があるため好ましくない。
In the electromagnetic wave absorber of the present invention, when the average particle size of the soft magnetic metal particles 12 is D, 40% by weight or more of the soft magnetic metal particles 12 may be in the range of 0.1D to 10D. preferable. In order to obtain an electromagnetic wave absorber in which the soft magnetic metal particles 12 of the present invention are not oriented in a specific direction, it is necessary to granulate the composite material in advance on the manufacturing method,
If the particles in the range of 0.1D to 10D are less than 40% by weight, for example, if a classification treatment for adjusting to a predetermined particle size is performed, a composition deviation may occur with respect to the prepared composition, It is not preferable because stable electromagnetic wave absorption characteristics may not be obtained.

【0036】また、軟磁性金属粒子12の平均粒径をD
としたとき、0.1D〜10Dの範囲にある該軟磁性金
属の含有率は次の通り測定する。電磁波吸収体の任意の
断面を画像解析し、0.1D〜10Dの範囲にある該軟
磁性金属の面積占有率を測定し、この面積占有率を軟磁
性金属粒子12の含有率とする。
The average particle size of the soft magnetic metal particles 12 is represented by D
The soft magnetic metal content in the range of 0.1D to 10D is measured as follows. An arbitrary cross section of the electromagnetic wave absorber is image-analyzed, the area occupancy of the soft magnetic metal in the range of 0.1D to 10D is measured, and this area occupancy is defined as the content of the soft magnetic metal particles 12.

【0037】また、本発明の電磁波吸収体においては、
前記複合材の気孔率が10体積%未満であることが好ま
しい。気孔率が10体積%以上になると複素比誘電率、
複素比透磁率が低下するため好ましくない。一方、気孔
率が0.1体積%未満の成形体は、粉末加圧成形後離型
し、常圧で加熱硬化する製造工程を経ることから困難で
ある。
Further, in the electromagnetic wave absorber of the present invention,
Preferably, the porosity of the composite is less than 10% by volume. When the porosity is 10% by volume or more, the complex relative permittivity,
It is not preferable because the complex relative magnetic permeability decreases. On the other hand, a molded product having a porosity of less than 0.1% by volume is difficult because it undergoes a production process in which the molded product is released after powder pressure molding and heat-cured at normal pressure.

【0038】本発明の電磁波吸収体を構成する合成樹脂
11の具体例としては、例えば、エポキシ樹脂、フェノ
ール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエス
テル樹脂、ポリイミド樹脂、フラン樹脂、ポリブタジエ
ン樹脂、アイオノマー樹脂、EEA樹脂、AAS樹脂(ASA樹
脂)、AS樹脂、ACS樹脂、エチレン酢ビコポリマー、エ
チレンビニルアルコール共重合樹脂、ABS樹脂、塩化ビ
ニル樹脂、塩素化ポリエチレン樹脂、酢酸繊維素樹脂、
フッ素樹脂、ポリアセタール樹脂、ポリアミド樹脂6,6
6、ポリアミド樹脂11,12、ポリアリレート樹脂、熱可塑
性ポリウレタンエラストマー、液晶ポリマー、ポリエー
テルエーテルケトン、ポリサルフォン樹脂、ポリエーテ
ルサルフォン樹脂、高密度ポリエチレン、低密度ポリエ
チレン、直鎖状低密度ポリエチレン、ポリエチレンテレ
フタレート、ポリカーボネート樹脂、ポリスチレン樹
脂、ポリフェニレンエーテル樹脂、ポリフェニレンサル
ファイド樹脂、ポリブタジエン樹脂、ポリプロピレン樹
脂、ポリプロピレン樹脂、メタクリル樹脂、メチルペン
テンポリマー等の樹脂を使用することができ、これらの
中でも耐熱性、寸法安定性、強度等の点からフェノール
樹脂、エポキシ樹脂が好適である。
Specific examples of the synthetic resin 11 constituting the electromagnetic wave absorber of the present invention include, for example, epoxy resin, phenol resin, melamine resin, urea resin, unsaturated polyester resin, polyimide resin, furan resin, polybutadiene resin, and ionomer. Resin, EEA resin, AAS resin (ASA resin), AS resin, ACS resin, ethylene vinyl acetate copolymer, ethylene vinyl alcohol copolymer resin, ABS resin, vinyl chloride resin, chlorinated polyethylene resin, cellulose acetate resin,
Fluorine resin, polyacetal resin, polyamide resin 6,6
6, polyamide resin 11,12, polyarylate resin, thermoplastic polyurethane elastomer, liquid crystal polymer, polyetheretherketone, polysulfone resin, polyethersulfone resin, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, polyethylene Resins such as terephthalate, polycarbonate resin, polystyrene resin, polyphenylene ether resin, polyphenylene sulfide resin, polybutadiene resin, polypropylene resin, polypropylene resin, methacrylic resin, and methylpentene polymer can be used. Among them, heat resistance and dimensional stability can be used. Phenolic resins and epoxy resins are preferred from the viewpoints of strength, strength and the like.

【0039】尚、電磁波吸収体は電磁波を熱に変換する
ことで電磁波の減衰特性を得る為、熱伝導率が小さい合
成ゴムのような材料をマトリックスとして選定すると、
吸収した電磁波を変換した熱が蓄熱することによりゴム
が変質、熱変形が起こり信頼性が低下する為、本発明の
材料としては適当でない。尚、必要に応じて公知の硬化
剤、硬化助剤、滑剤、可塑剤、分散剤、離型剤、着色剤
等を少量添加しても何ら差し支えない。
The electromagnetic wave absorber converts electromagnetic waves into heat to obtain electromagnetic wave attenuation characteristics. Therefore, if a material such as synthetic rubber having a small thermal conductivity is selected as a matrix,
The rubber is degraded and thermally deformed due to the heat storage of the heat converted from the absorbed electromagnetic waves, and the reliability is lowered. Therefore, it is not suitable as the material of the present invention. In addition, if necessary, known curing agents, curing assistants, lubricants, plasticizers, dispersants, release agents, coloring agents, and the like may be added in small amounts.

【0040】また、本発明の電磁波吸収体の製造方法
は、例えば以下の通りである。
The method for producing the electromagnetic wave absorber of the present invention is, for example, as follows.

【0041】Ni79.0〜83.0重量%、Mo3.
0〜6.0重量%、残部がFeからなる軟磁性金属粒子
12を空気中または酸素を含むガス雰囲気中200〜8
00℃で熱処理する加熱処理法か、または塩酸、硝酸な
どの酸性水溶液と軟磁性金属粒子12を混合、加熱する
酸処理法か、または軟磁性金属粒子12をカップリング
剤等で予め絶縁処理するカップリング法により、軟磁性
金属粒子12の少なくとも一部に金属の酸化物からなる
酸化膜を形成する。
79.0 to 83.0% by weight of Ni, Mo3.
0 to 6.0% by weight, the balance being soft magnetic metal particles 12 consisting of Fe in air or in a gas atmosphere containing oxygen.
A heat treatment method in which heat treatment is performed at 00 ° C., or an acid treatment method in which an acidic aqueous solution such as hydrochloric acid or nitric acid is mixed with the soft magnetic metal particles 12 and heated, or the soft magnetic metal particles 12 are insulated in advance with a coupling agent or the like. An oxide film made of a metal oxide is formed on at least a part of the soft magnetic metal particles 12 by a coupling method.

【0042】次に合成樹脂に、前記の酸化膜を形成させ
た軟磁性金属粒子が60〜90体積%となるよう混合、
分散させた複合材を、所定の粒度に造粒し、粉末加圧成
型法により成形、離型後所定の温度で一定時間加熱し加
熱硬化させる。
Next, the soft magnetic metal particles having the oxide film formed thereon are mixed with the synthetic resin so as to be 60 to 90% by volume.
The dispersed composite material is granulated to a predetermined particle size, molded by a powder pressure molding method, and heated and cured by heating at a predetermined temperature for a predetermined time after releasing.

【0043】ここで、軟磁性金属粒子12の少なくとも
一部の表面に酸化膜を形成させるのは、軟磁性金属粒子
12の粒子間を電気的に遮断し電気抵抗を高くするため
である。また、酸化膜の厚さは前記熱処理温度により増
減させることができる。
Here, the reason why the oxide film is formed on at least a part of the surface of the soft magnetic metal particles 12 is to electrically block the soft magnetic metal particles 12 from each other to increase the electric resistance. Further, the thickness of the oxide film can be increased or decreased by the heat treatment temperature.

【0044】なお、上述の加熱処理法、酸処理法、カッ
プリング法を用いずに、前記加熱硬化中に、金属の腐食
を促進させる酸性、又はアルカリ性のガスを発生するよ
うな合成樹脂を用いて軟磁性金属粒子12の表面の少な
くとも一部に酸化膜を形成しても構わない。
It is to be noted that, without using the above-mentioned heat treatment method, acid treatment method and coupling method, a synthetic resin which generates an acidic or alkaline gas which promotes the corrosion of metal during the heat curing is used. Thus, an oxide film may be formed on at least a part of the surface of the soft magnetic metal particles 12.

【0045】また、本発明の製造方法において、合成樹
脂と軟磁性金属粒子12を配合する方法は特に制限は無
く、公知の方法を採用することができる。例えば、熱硬
化樹脂に軟磁性金属粒子12をミキサーで混合し、ブラ
ベンダーで混練した後、粉砕する方法や、あるいは、配
合物を加熱ロールで溶融混練後、粉砕する方法等があげ
られる。また、必要に応じて、所定の粒度になるように
造粒し、成型に用いても良い。
In the production method of the present invention, the method of mixing the synthetic resin and the soft magnetic metal particles 12 is not particularly limited, and a known method can be employed. For example, a method in which the soft magnetic metal particles 12 are mixed with the thermosetting resin by a mixer and kneaded with a Brabender and then pulverized, or a method in which the compound is melt-kneaded with a heated roll and then pulverized is used. If necessary, the particles may be granulated to have a predetermined particle size and used for molding.

【0046】本発明の電磁波吸収体の使用形態として
は、例えば基板形状としてICパッケージ、プリント回
路基板の内部、或いは上部に貼りつけたり、高周波ライ
ンケーブル上に貼りつけたり、回路基板を覆う筐体、伝
送線路を覆うカバーとしたり、或いは筐体側に貼りつけ
ることもできる。さらに、キャップとしてICパッケー
ジ全体を覆ったり、チューブとしてその中にケーブルを
通したり、ケース形状として、デジタル情報機器等の回
路あるいは素子等を覆うように実装する。
The electromagnetic wave absorber of the present invention may be used, for example, as a substrate in an IC package or a printed circuit board, on or above a high-frequency line cable, on a high-frequency line cable, on a housing that covers the circuit board, or on a transmission board. It can be used as a cover for covering the track, or attached to the housing side. Furthermore, the IC package is mounted so as to cover the entire IC package as a cap, a cable is passed through the tube as a cap, or a case-shaped circuit such as a circuit or an element of a digital information device.

【0047】例えば、所望の周波数の電磁波を通過させ
るために用いる図2に示す方向性結合器20は、裏側全
面が銅箔26で積層されたガラスエポキシ基板21に、
線路25が形成された構造である。さらに、金属製シー
ルドケース22をガラスエポキシ基板21に装脱着する
ために、金属製クリップ23が半田実装されている。前
記クリップ23はスルーホール24を介して、銅箔26
と電気的に接続されている。また、線路32と同軸ケー
ブル22を接続するために、SMAコネクター27a、
27b、27cがガラスエポキシ基板21に半田実装さ
れている。前記SMAコネクターの中心導体はスルーホ
ール24a、24b、24cを介して線路25と電気的
に接続されている。
For example, a directional coupler 20 shown in FIG. 2 used for transmitting an electromagnetic wave having a desired frequency is formed on a glass epoxy substrate 21 having an entire rear surface laminated with a copper foil 26.
This is a structure in which the line 25 is formed. Further, a metal clip 23 is mounted by soldering in order to attach and detach the metal shield case 22 to and from the glass epoxy board 21. The clip 23 is connected to a copper foil 26 through a through hole 24.
Is electrically connected to In order to connect the line 32 and the coaxial cable 22, the SMA connector 27a,
27b and 27c are mounted on the glass epoxy board 21 by soldering. The center conductor of the SMA connector is electrically connected to the line 25 via through holes 24a, 24b, 24c.

【0048】前記方向性結合記20は6GHzで結合す
るように設計されているが、金属製シールドケース22
のみでは、周波数2.5GHzでも不要な結合が生じる
ため、周波数2.5GHzでの不要な結合を抑制するた
めに本発明の電磁波吸収体29を装着する。
The directional coupling 20 is designed to couple at 6 GHz, but the metallic shield case 22
In the case of only 2.5 GHz, unnecessary coupling occurs even at a frequency of 2.5 GHz. Therefore, the electromagnetic wave absorber 29 of the present invention is mounted to suppress unnecessary coupling at a frequency of 2.5 GHz.

【0049】このように、金属製シールドケース22内
部に電磁波吸収体29を配置することによって、不要な
結合を抑制することができ、携帯電話、PHS、パソコ
ン、デジタルカメラ、GPSアンテナモジュール、光伝送
装置、BS/CSチューナー、ゲーム機器等の電子回路
に実装部品として用いることができる。また、ガスケッ
ト、アイソレータ、アッテネータ、ターミネータ、サー
キュレータ、光素子周囲の高周波磁気シールド、プリン
ト回路基板外縁、光伝送モジュール内の不要波の吸収、
強誘電体焦電形赤外センサに用いることもできる。
By disposing the electromagnetic wave absorber 29 inside the metallic shield case 22 as described above, unnecessary coupling can be suppressed, and the portable telephone, PHS, personal computer, digital camera, GPS antenna module, optical transmission It can be used as a mounting component in an electronic circuit of a device, a BS / CS tuner, a game machine, or the like. In addition, gaskets, isolators, attenuators, terminators, circulators, high-frequency magnetic shields around optical elements, outer edges of printed circuit boards, absorption of unnecessary waves in optical transmission modules,
It can also be used for a ferroelectric pyroelectric infrared sensor.

【0050】[0050]

【実施例】実施例1 軟磁性金属粒子12の配合量、組成がそれぞれ異なる電
磁波吸収体を作製し、図2に示す方向性結合記20に本
発明の電波吸収体29を装着し、図3に示すような測定
システム30を用いて次のような実験を行った。前記測
定システム30は、ベクトルネットワークアナライザー
31(アジレントテクノロジー社製)、同軸ケーブル3
2、方向性結合器20により構成されている。
EXAMPLE 1 Electromagnetic wave absorbers having different blending amounts and compositions of the soft magnetic metal particles 12 were prepared, and a radio wave absorber 29 of the present invention was attached to the directional coupling 20 shown in FIG. The following experiment was performed using the measurement system 30 shown in FIG. The measurement system 30 includes a vector network analyzer 31 (manufactured by Agilent Technologies), a coaxial cable 3
2. It is composed of a directional coupler 20.

【0051】前記方向性結合器20は、SMAコネクタ
ー27a、27bとネットワークアナライザー31のポ
ート1、ポート2にそれぞれ接続し、また、SMAコネ
クター27cは終端抵抗28によって終端されている。
電磁波吸収体29がないときのSパラメータS21(出力
側の反射係数)、金属製シールドケース22の裏面に電
磁波吸収体29をエポキシ系接着剤で貼り付けたときの
SパラメータS21(出力側の反射係数)、をそれぞれ周
波数500MHz〜10GHzまで測定し、周波数2.
5GHzでの不要なピークが何dB減衰するかを調べ
た。表1に示すように、7dB以上減衰すれば○、それ
以下の場合を×とした。
The directional coupler 20 is connected to the SMA connectors 27a and 27b and the ports 1 and 2 of the network analyzer 31, respectively, and the SMA connector 27c is terminated by a terminating resistor.
S-parameter S 21 (output side when the S parameter S 21 (the reflection coefficient of the output side), the electromagnetic wave absorber 29 on the back surface of the metal shield case 22 in the absence of the electromagnetic wave absorber 29 was affixed by epoxy adhesive Are measured at frequencies from 500 MHz to 10 GHz, respectively.
It was examined how many unnecessary peaks at 5 GHz were attenuated. As shown in Table 1, when the attenuation was 7 dB or more, it was evaluated as ○, and when it was less than 7 dB, as ×.

【0052】本実験にあたり、複合材を形成する合成樹
脂にはレゾール型フェノール樹脂、軟磁性金属粒子12
には表1に示す組成のもの用いた。これらを配合し、常
温で成形圧0.5ton/cm2〜8ton/cm2で加圧
成形・離型後、80℃〜250℃で加熱硬化し、試験片
を作製した。ここで、加熱硬化後に成形体に膨れ・変形
がある場合は成形性を×とし、膨れ・変形がない場合を
○とした。尚、試験片の寸法は、25×50×1mmと
した。
In this experiment, the synthetic resin forming the composite material was a resol type phenol resin, and the soft magnetic metal particles 12 were used.
Was used having the composition shown in Table 1. Are blended, after pressing, releasing the molding pressure 0.5ton / cm 2 ~8ton / cm 2 at room temperature, then cured by heating at 80 ° C. to 250 DEG ° C., to prepare a test piece. Here, when the molded body swelled or deformed after heat curing, the moldability was evaluated as x, and when there was no swelling or deformation, the evaluation was evaluated as ○. The dimensions of the test piece were 25 × 50 × 1 mm.

【0053】また、3点曲げ強度についてもJIS規格
K6911により測定した。
The three-point bending strength was also measured according to JIS K6911.

【0054】それぞれの結果を表1に示す。Table 1 shows the results.

【0055】表1によれば、本発明の範囲内の試料N
o.1〜No.11では、すべての電磁波吸収体におい
て、成形性は良好であった。また、3点曲げ強度につい
ても、50MPa以上であることから、好適に使用する
ことができる。さらに、2.5GHzでのS21も7dB
以上の減衰が得られたことから、不要な結合の抑制に効
果的であることが確認できた。
According to Table 1, samples N within the scope of the present invention
o. 1 to No. In No. 11, all the electromagnetic wave absorbers had good moldability. In addition, since the three-point bending strength is 50 MPa or more, it can be suitably used. In addition, S 21 in the 2.5GHz also 7dB
Since the above attenuation was obtained, it was confirmed that it was effective in suppressing unnecessary coupling.

【0056】これに対し本発明の範囲外の試料No.1
6では、樹脂充填量が多いため加熱硬化後に成形体の保
形ができないことから実用的でなかった。逆に、試料N
o.17では、樹脂量が少ないため強度が低下し実用的
でなかった。また、試料No.12〜No.15では、
Ni含有量、Mo含有量が本発明の範囲外であるため
に、結合抑制効果が得られなかった。
On the other hand, the sample Nos. 1
In the case of No. 6, it was not practical because the molded body could not be retained after heat curing due to a large amount of resin filling. Conversely, sample N
o. In No. 17, since the amount of the resin was small, the strength was lowered and was not practical. In addition, the sample No. 12-No. In 15,
Since the Ni content and the Mo content were outside the range of the present invention, the effect of suppressing the binding was not obtained.

【0057】図4は方向性結合器のS21の測定結果を示
す図である。点線が比較例、実線が実施例の代表値であ
る。図4からわかるように、本発明の電波吸収体29を
用いた場合は、実線からわかるように2.5GHz付近
の不要波がなく、放射雑音を抑制できることがわかる。
これに対し、点線で示した比較例は2.5GHz付近に
不要波があり、放射雑音を抑制できないことがわかる。
FIG. 4 is a diagram showing the measurement result of S 21 of the directional coupler. The dotted line is a comparative example, and the solid line is a representative value of the example. As can be seen from FIG. 4, when the radio wave absorber 29 of the present invention is used, there is no unnecessary wave near 2.5 GHz as can be seen from the solid line, and it can be seen that radiation noise can be suppressed.
On the other hand, in the comparative example shown by the dotted line, there is an unnecessary wave near 2.5 GHz, and it can be seen that the radiation noise cannot be suppressed.

【0058】[0058]

【表1】 [Table 1]

【0059】実施例2 次に、電磁波吸収体中に充填されている軟磁性金属粒子
12の酸化膜の厚さ、平均アスペクト比、平均粒径D、
0.1D〜10Dの粒子の含有率、最大粒径、配向度、
気孔率をそれぞれ異ならせた電磁波吸収体を作成し、実
施例1と同様に成形性、3点曲げ強度、結合抑制効果を
調べる実験を行った。また、結合抑制効果を調べる実験
で用いる試料の反り変形量についても測定した。尚、試
料No.35についてのみ鋳込み成形により作製し、そ
れ以外の試料については実施例1と同様の方法で作製し
た。尚、試料の配合比は、レゾール型フェノール樹脂3
0体積%、軟磁性金属粒子70体積%である。また、試
料の酸化膜の厚さは、軟磁性金属粒子12を予め空気中
で200〜800の範囲内で変化させることにより増減
させた。
Example 2 Next, the thickness of the oxide film of the soft magnetic metal particles 12 filled in the electromagnetic wave absorber, the average aspect ratio, the average particle size D,
Content of particles of 0.1D to 10D, maximum particle size, degree of orientation,
Electromagnetic wave absorbers having different porosity were prepared, and an experiment was conducted to examine the formability, three-point bending strength, and coupling suppression effect in the same manner as in Example 1. In addition, the amount of warpage of the sample used in the experiment for examining the coupling suppression effect was also measured. In addition, sample No. Only 35 was prepared by casting, and the other samples were prepared in the same manner as in Example 1. In addition, the compounding ratio of the sample is as follows.
0% by volume and 70% by volume of soft magnetic metal particles. The thickness of the oxide film of the sample was increased or decreased by previously changing the soft magnetic metal particles 12 in the range of 200 to 800 in air.

【0060】軟磁性金属粒子12の酸化膜の厚さ、平均
アスペクト比、平均粒径、最大粒径については電磁波吸
収体の任意の断面を画像解析し、それぞれの長さを測定
した。また、軟磁性金属粒子12の平均粒径をDとした
ときの0.1D〜10Dの含有率は、電磁波吸収体の任
意の断面を画像解析し、その面積占有率から求めた。ま
た、軟磁性金属粒子12の配向度は、任意の断面と、そ
の断面に直角に交差する断面、および前記2つの断面に
直角に交差する断面の、合わせて3つの断面のそれぞれ
において任意の範囲を画像解析し、各断面において、任
意の方向を0度と規定し、該断面における軟磁性金属1
2の長軸の方向を0度から180度の範囲に全て存在す
ると仮定したときの長軸の方向を0〜45度、45〜9
0度、90〜135度、135〜180度の4範囲に分
けて数をカウントしたとき最大頻度である角度範囲のカ
ウント数から最小頻度である角度範囲のカウント数を引
いたときの差が各角度範囲のカウント数の合計に対して
何%であるかを測定した。また、気孔率は、電磁波吸収
体の乾燥重量、飽水重量、水中重量を測定し、アルキメ
デス法により算出した。また、反り変形量は、測定長さ
40mmの変形量を表している。
Regarding the thickness of the oxide film of the soft magnetic metal particles 12, the average aspect ratio, the average particle size, and the maximum particle size, an arbitrary cross section of the electromagnetic wave absorber was subjected to image analysis, and each length was measured. The content of 0.1D to 10D when the average particle size of the soft magnetic metal particles 12 is D was obtained from image analysis of an arbitrary cross section of the electromagnetic wave absorber and its area occupancy. In addition, the degree of orientation of the soft magnetic metal particles 12 is in an arbitrary range in each of the three cross-sections including an arbitrary cross section, a cross section orthogonal to the cross section, and a cross section orthogonal to the two cross sections. Is image-analyzed, an arbitrary direction is defined as 0 degree in each section, and the soft magnetic metal 1 in the section is defined.
Assuming that the directions of the long axes of 2 are all in the range of 0 to 180 degrees, the directions of the long axes are 0 to 45 degrees, 45 to 9
When the number is divided into four ranges of 0 degree, 90 to 135 degrees, and 135 to 180 degrees, the difference when subtracting the count number of the angle range of the minimum frequency from the count number of the angle range of the maximum frequency is each The percentage of the total number of counts in the angle range was measured. The porosity was calculated by Archimedes' method by measuring the dry weight, saturated water weight, and water weight of the electromagnetic wave absorber. In addition, the amount of warpage deformation indicates the amount of deformation of a measured length of 40 mm.

【0061】それぞれの結果を表2に示す。Table 2 shows the results.

【0062】表2によれば、本発明の範囲内である試料
No.18〜No.29は、すべての電磁波吸収体にお
いて、成形性は良好であった。また、3点曲げ強度につ
いても、50MPa以上であることから、好適に使用す
ることができる。さらに、2.5GHzでのS21も7
dB以上の減衰が得られたことから、不要な結合の抑制
に効果的であることが確認できた。
According to Table 2, the sample No. within the scope of the present invention. 18-No. No. 29 had good moldability in all the electromagnetic wave absorbers. In addition, since the three-point bending strength is 50 MPa or more, it can be suitably used. Furthermore, S21 at 2.5 GHz is also 7
Since the attenuation of dB or more was obtained, it was confirmed that it was effective in suppressing unnecessary coupling.

【0063】これに対し、本発明の範囲外の試料である
No.30は、酸化膜の厚さが2.2μmと厚いため軟
磁性金属粒子とその酸化膜の剥離が生じ、3点曲げ強度
が25MPaと低くなった。また結合抑制効果も無いこ
とから実用的でなかった。また、試料No.31は、軟
磁性金属粒子のアスペクト比が10より大きいため、軟
磁性金属粒子の緩め嵩密度が低くなり、粉末加圧成形す
ることが出来なかった。また、試料No.32、No.
33はそれぞれ軟磁性金属粒子の平均粒径が300μm
より大きく、また、軟磁性金属粒子の最大粒径が500
μmより大きいことから、表面積が小さくなり、実質的
に樹脂量が増えたことになる。そのため、加熱硬化後に
保型することができなかった。
On the other hand, in the case of the sample No. In No. 30, since the thickness of the oxide film was as large as 2.2 μm, the soft magnetic metal particles and the oxide film were separated, and the three-point bending strength was as low as 25 MPa. Further, it was not practical because of no binding suppressing effect. In addition, the sample No. In No. 31, since the aspect ratio of the soft magnetic metal particles was greater than 10, the loose bulk density of the soft magnetic metal particles was low, and powder pressure molding could not be performed. In addition, the sample No. 32, no.
No. 33 has an average particle diameter of soft magnetic metal particles of 300 μm
And the maximum particle size of the soft magnetic metal particles is 500
Since it is larger than μm, the surface area is reduced, and the amount of resin is substantially increased. Therefore, it was not possible to keep the shape after heat curing.

【0064】また、試料No.34は、軟磁性金属粒子
の0.1D〜10Dの面積占有率が40面積%より低い
ことから、成形性が悪く実用的でなかった。また、軟磁
性金属粒子が配向している試料No.35は、反り変形
量が56μmと大きいことから、実用的でなかった。ま
た、試料No.36は、気孔率が10体積%より大きい
ことから、3点曲げ強度が28MPaと小さく、結合抑
制効果も無いため実用的でなかった。
The sample No. In No. 34, the area occupancy of 0.1D to 10D of the soft magnetic metal particles was lower than 40% by area. In addition, in Sample No. in which the soft magnetic metal particles are oriented. No. 35 was not practical because the amount of warpage deformation was as large as 56 μm. In addition, the sample No. Sample No. 36 was not practical because the porosity was larger than 10% by volume, the three-point bending strength was as low as 28 MPa, and there was no effect of suppressing bonding.

【0065】[0065]

【表2】 [Table 2]

【0066】[0066]

【発明の効果】本発明によれば、合成樹脂に特定組成の
軟磁性金属を分散含有した複合材を電磁波吸収体として
用いることによって、また、軟磁性金属の表面に酸化膜
を形成することによって、優れた電磁波吸収特性をもっ
た電磁波吸収体を得ることができる。これによって、電
子機器内の放射雑音、電磁結合、電磁干渉や、プリント
回路基板・アンテナの定在波を抑制する部品として、大
きく貢献することができる。
According to the present invention, a composite material in which a soft magnetic metal having a specific composition is dispersed and contained in a synthetic resin is used as an electromagnetic wave absorber, and an oxide film is formed on the surface of the soft magnetic metal. Thus, an electromagnetic wave absorber having excellent electromagnetic wave absorption characteristics can be obtained. As a result, it can greatly contribute as a component that suppresses radiation noise, electromagnetic coupling, electromagnetic interference, and standing waves of a printed circuit board and an antenna in an electronic device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電磁波吸収体を示す図である。FIG. 1 is a view showing an electromagnetic wave absorber of the present invention.

【図2】本発明の電磁波吸収体を用いた方向性結合器を
示しており、(a)は平面図、(b)は断面図、(c)
は底面図である。
FIG. 2 shows a directional coupler using the electromagnetic wave absorber of the present invention, wherein (a) is a plan view, (b) is a cross-sectional view, and (c).
Is a bottom view.

【図3】電磁結合の抑制効果を検証するための測定シス
テムを示す図である。
FIG. 3 is a diagram showing a measurement system for verifying the effect of suppressing electromagnetic coupling.

【図4】本発明の実施例および比較例における周波数と
21との関係を示すグラフである。
It is a graph showing a relationship between a frequency and S 21 in Examples and Comparative Examples of the present invention; FIG.

【図5】従来の電磁波吸収体を示す図である。FIG. 5 is a view showing a conventional electromagnetic wave absorber.

【符号の説明】[Explanation of symbols]

10:電磁波吸収体 11:合成樹脂 12:軟磁性金属粒子 13:気孔 14:酸化膜 20:方向性結合器 21:ガラスエポキシ基板 22:金属製シールドケース 23:金属製クリップ 24、24a、24b、24c:スルーホール 25:線路 26:銅箔 27a、27b、27c:SMAコネクター 28:終端抵抗 29:電磁波吸収体 30:測定システム 31:ネットワークアナライザー 32:同軸ケーブル 50:電磁波吸収体 51:合成樹脂 52:軟磁性金属箔 10: Electromagnetic wave absorber 11: Synthetic resin 12: Soft magnetic metal particles 13: Pores 14: Oxide film 20: Directional coupler 21: Glass epoxy board 22: Metal shield case 23: Metal clips 24, 24a, 24b, 24c: Through hole 25: Line 26: Copper foil 27a, 27b, 27c: SMA connector 28: Terminating resistor 29: Electromagnetic wave absorber 30: Measurement system 31: Network analyzer 32: Coaxial cable 50: Electromagnetic wave absorber 51: Synthetic resin 52 : Soft magnetic metal foil

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】合成樹脂に、Ni79.0〜83.0重量
%、Mo3.0〜6.0重量%、残部がFeからなる軟
磁性金属粒子を60〜90体積%分散含有した複合材か
らなることを特徴とする電磁波吸収体。
1. A composite material containing 60 to 90% by volume of soft magnetic metal particles containing 79.0 to 83.0% by weight of Ni, 3.0 to 6.0% by weight of Mo, and the balance Fe in a synthetic resin. An electromagnetic wave absorber characterized in that:
【請求項2】前記軟磁性金属粒子の表面の少なくとも一
部に酸化膜を有することを特徴とする請求項1に記載の
電磁波吸収体。
2. The electromagnetic wave absorber according to claim 1, wherein an oxide film is provided on at least a part of the surface of the soft magnetic metal particles.
【請求項3】前記酸化膜の厚みが1μm以下であること
を特徴とする請求項1、2のいずれかに記載の電磁波吸
収体。
3. The electromagnetic wave absorber according to claim 1, wherein said oxide film has a thickness of 1 μm or less.
【請求項4】前記軟磁性金属粒子が略無配向であること
を特徴とする請求項1〜3のいずれかに記載の電磁波吸
収体。
4. The electromagnetic wave absorber according to claim 1, wherein said soft magnetic metal particles are substantially non-oriented.
【請求項5】前記軟磁性金属の平均アスペクト比が1.
1以上10以下であることを特徴とする請求項1〜4の
いずれかに記載の電磁波吸収体。
5. The soft magnetic metal having an average aspect ratio of 1.
The electromagnetic wave absorber according to any one of claims 1 to 4, wherein the number is 1 or more and 10 or less.
【請求項6】前記軟磁性金属が、平均粒径1μm以上3
00μm以下、最大粒径500μm以下であることを特
徴とする請求項1〜5のいずれかに記載の電磁波吸収
体。
6. The soft magnetic metal has an average particle size of 1 μm or more.
The electromagnetic wave absorber according to any one of claims 1 to 5, wherein the electromagnetic wave absorber has a particle size of 00 µm or less and a maximum particle size of 500 µm or less.
【請求項7】前記軟磁性金属の平均粒径をDとしたと
き、該軟磁性金属の40体積%以上が0.1D〜10D
の範囲であることを特徴とする請求項1〜6のいずれか
に記載の電磁波吸収体。
7. When the average particle size of the soft magnetic metal is D, 40% by volume or more of the soft magnetic metal is 0.1D to 10D.
The electromagnetic wave absorber according to any one of claims 1 to 6, wherein
【請求項8】前記複合材の気孔率が0.1〜10体積%
であることを特徴とする請求項1〜7のいずれかに記載
の電磁波吸収体。
8. The porosity of the composite material is 0.1 to 10% by volume.
The electromagnetic wave absorber according to claim 1, wherein:
JP2000396307A 2000-12-26 2000-12-26 Electromagnetic wave absorber Expired - Fee Related JP4446593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396307A JP4446593B2 (en) 2000-12-26 2000-12-26 Electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396307A JP4446593B2 (en) 2000-12-26 2000-12-26 Electromagnetic wave absorber

Publications (2)

Publication Number Publication Date
JP2002198684A true JP2002198684A (en) 2002-07-12
JP4446593B2 JP4446593B2 (en) 2010-04-07

Family

ID=18861621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396307A Expired - Fee Related JP4446593B2 (en) 2000-12-26 2000-12-26 Electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP4446593B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041474A1 (en) * 2001-11-09 2003-05-15 Tdk Corporation Composite magnetic element, electromagnetic wave absorbing sheet, production method for sheet-form article, production method for electromagnetic wave absorbing sheet
JP2005265703A (en) * 2004-03-19 2005-09-29 Aica Kogyo Co Ltd Evaluation device and evaluation method for electric characteristic of substance
WO2006019172A1 (en) * 2004-08-18 2006-02-23 Teijin Limited Electromagnetic wave absorbing sheet
JP2006093416A (en) * 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd Electromagnetic wave noise suppression sheet, and its manufacturing method and usage
JP2006093413A (en) * 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd Member and method for emc countermeasure
JP2006179901A (en) * 2005-12-14 2006-07-06 Tdk Corp Electromagnetic wave absorbing sheet
CN101948968A (en) * 2010-09-26 2011-01-19 南京工业大学 Electromagnetic wave absorbent and preparation method thereof
CN101947651A (en) * 2010-09-26 2011-01-19 南京工业大学 Metal powder electromagnetic wave absorbent and preparation method thereof
JP2013232530A (en) * 2012-04-27 2013-11-14 Riken Corp Radio wave absorbing sheet
JPWO2013081043A1 (en) * 2011-11-30 2015-04-27 加川 清二 Composite electromagnetic wave absorbing sheet
WO2020067743A1 (en) * 2018-09-28 2020-04-02 주식회사 엘지화학 Composite material
WO2020067838A1 (en) * 2018-09-28 2020-04-02 주식회사 엘지화학 Wireless charging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020005015A1 (en) * 2018-06-29 2020-01-02 주식회사 엘지화학 Composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279826A (en) * 1992-04-02 1993-10-26 Nippon Steel Corp Production of 'permalloy(r)' excellent in impedance relative magnetic permeability
JPH05287471A (en) * 1992-04-07 1993-11-02 Nippon Steel Corp Manufacture of permalloy(r) excellent in impedance relative permeability in low temperature range lower than zero
JPH1093284A (en) * 1996-09-19 1998-04-10 Daido Steel Co Ltd Magnetic-shielding sheet, manufacturing thereof, and cable provided therewith
JPH10335127A (en) * 1997-05-27 1998-12-18 Tokin Corp Alloy powder
JPH11214592A (en) * 1998-01-21 1999-08-06 Hitachi Ltd Semiconductor device and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279826A (en) * 1992-04-02 1993-10-26 Nippon Steel Corp Production of 'permalloy(r)' excellent in impedance relative magnetic permeability
JPH05287471A (en) * 1992-04-07 1993-11-02 Nippon Steel Corp Manufacture of permalloy(r) excellent in impedance relative permeability in low temperature range lower than zero
JPH1093284A (en) * 1996-09-19 1998-04-10 Daido Steel Co Ltd Magnetic-shielding sheet, manufacturing thereof, and cable provided therewith
JPH10335127A (en) * 1997-05-27 1998-12-18 Tokin Corp Alloy powder
JPH11214592A (en) * 1998-01-21 1999-08-06 Hitachi Ltd Semiconductor device and electronic device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041474A1 (en) * 2001-11-09 2003-05-15 Tdk Corporation Composite magnetic element, electromagnetic wave absorbing sheet, production method for sheet-form article, production method for electromagnetic wave absorbing sheet
US7323214B2 (en) 2001-11-09 2008-01-29 Tdk Corporation Composite magnetic material electromagnetic wave absorbing sheet method for manufacturing sheet-like product and method for manufacturing electromagnetic wave absorbing sheet
JP2005265703A (en) * 2004-03-19 2005-09-29 Aica Kogyo Co Ltd Evaluation device and evaluation method for electric characteristic of substance
JP4542804B2 (en) * 2004-03-19 2010-09-15 アイカ工業株式会社 Method for evaluating the electrical properties of materials
WO2006019172A1 (en) * 2004-08-18 2006-02-23 Teijin Limited Electromagnetic wave absorbing sheet
JP2006093416A (en) * 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd Electromagnetic wave noise suppression sheet, and its manufacturing method and usage
JP2006093413A (en) * 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd Member and method for emc countermeasure
JP4611698B2 (en) * 2004-09-24 2011-01-12 信越ポリマー株式会社 EMC countermeasure member and EMC countermeasure method
JP4611700B2 (en) * 2004-09-24 2011-01-12 信越ポリマー株式会社 Electromagnetic wave noise suppression sheet and method of using the same
JP2006179901A (en) * 2005-12-14 2006-07-06 Tdk Corp Electromagnetic wave absorbing sheet
CN101948968A (en) * 2010-09-26 2011-01-19 南京工业大学 Electromagnetic wave absorbent and preparation method thereof
CN101947651A (en) * 2010-09-26 2011-01-19 南京工业大学 Metal powder electromagnetic wave absorbent and preparation method thereof
JPWO2013081043A1 (en) * 2011-11-30 2015-04-27 加川 清二 Composite electromagnetic wave absorbing sheet
JP2013232530A (en) * 2012-04-27 2013-11-14 Riken Corp Radio wave absorbing sheet
WO2020067743A1 (en) * 2018-09-28 2020-04-02 주식회사 엘지화학 Composite material
WO2020067838A1 (en) * 2018-09-28 2020-04-02 주식회사 엘지화학 Wireless charging device
KR20200036800A (en) * 2018-09-28 2020-04-07 주식회사 엘지화학 Wireless Chargeable Device
CN112771634A (en) * 2018-09-28 2021-05-07 株式会社Lg化学 Wireless charging device
JP2022501830A (en) * 2018-09-28 2022-01-06 エルジー・ケム・リミテッド Wireless charging device
KR102427058B1 (en) * 2018-09-28 2022-07-29 주식회사 엘지화학 Wireless Chargeable Device
CN112771634B (en) * 2018-09-28 2022-12-06 株式会社Lg化学 Wireless charging device and wireless charging system
US11910584B2 (en) 2018-09-28 2024-02-20 Lg Chem, Ltd. Composite material
US11962168B2 (en) 2018-09-28 2024-04-16 Lg Chem, Ltd. Wireless charging device

Also Published As

Publication number Publication date
JP4446593B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
JP4446593B2 (en) Electromagnetic wave absorber
JP4849220B2 (en) Electromagnetic interference suppression sheet and manufacturing method thereof, flat cable for high-frequency signal, and flexible printed circuit board
US7136008B2 (en) Low cost electromagnetic energy absorbers manufactured from conductive loaded resin-based materials
CN105814979B (en) Electromagnetic interference (EMI) shielding products using titanium monoxide (TIO) based materials
TWI445494B (en) Electromagnetic wave interference suppressor, flat cable for high frequency signal, flexible printed substrate, and electromagnetic wave interference suppressing sheet
JP3969618B2 (en) Electromagnetic wave absorbing heat conductive silicone gel molded sheet and method for producing the same
JP2006032929A5 (en)
JP2004143347A (en) Resin composite and electromagnetic wave absorbent using the same and package for high frequency circuits using the same
Jani et al. Size dependent percolation threshold and microwave absorption properties in nano carbon black/silicon rubber composites
JP2001156487A (en) Electromagnetic wave absorber and its manufacturing method
JP4824621B2 (en) Radio wave absorber composition, radio wave absorber, and method for producing radio wave absorber
JP2001164124A (en) Resin composite, and electric wave absorber using the same and production method thereof
KR102082810B1 (en) Sheet of complex shielding electromagnetic wave with high performance and manufacturing methods thereof
Anaele Opara et al. Progress in Polymer-based Composites as Efficient Materials for Electromagnetic Interference Shielding Applications: A Review
JP4177523B2 (en) Radio wave absorber
JP4462750B2 (en) Radio wave absorber
JP2003273568A (en) Capsule type electromagnetic wave absorption material
EP1447819A1 (en) Low cost antennas and electromagnetic (EMF) absorption in electronic circuit packages or transceivers using conductive loaded resin-based materials
JPH0730279A (en) Wave absorber and its manufacture
JP2000357893A (en) Electromagnetic wave shielding film and electromagnetic wave shielding paint
Li et al. Centimeter-and millimeter-wave attenuation properties of carbonyl iron fiber-filled foam composites
JP2006100258A (en) Dielectric resin composition and molding
JP2011080003A (en) Electromagnetic wave absorbing filler and electromagnetic wave absorbing resin composition comprising the same
JP2000223883A (en) Radio-wave absorber
JP4458684B2 (en) Electromagnetic wave absorbing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees