JP2002198240A - R-Fe-B PERMANENT MAGNET AND MANUFACTURING METHOD THEREFOR - Google Patents

R-Fe-B PERMANENT MAGNET AND MANUFACTURING METHOD THEREFOR

Info

Publication number
JP2002198240A
JP2002198240A JP2000397920A JP2000397920A JP2002198240A JP 2002198240 A JP2002198240 A JP 2002198240A JP 2000397920 A JP2000397920 A JP 2000397920A JP 2000397920 A JP2000397920 A JP 2000397920A JP 2002198240 A JP2002198240 A JP 2002198240A
Authority
JP
Japan
Prior art keywords
plating
film
permanent magnet
pyrophosphate
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000397920A
Other languages
Japanese (ja)
Other versions
JP3796567B2 (en
Inventor
Masaki Kasashima
匡樹 笠嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000397920A priority Critical patent/JP3796567B2/en
Publication of JP2002198240A publication Critical patent/JP2002198240A/en
Application granted granted Critical
Publication of JP3796567B2 publication Critical patent/JP3796567B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an R-Fe-B permanent magnet which can be used in an environment where the temperature in the environment fluctuates very much and can very effectively contribute to the recent emphasized energy conservation, and to provide a method of manufacturing the magnet. SOLUTION: This R-Fe-B permanent magnet (where, R denotes at least one kind of rare-earth element, including Sc and Y) is covered with a metal coating film. The coating film is composed of a first plated metal coated film, having a thickness of 0.1-1.0 μm and substantially containing no pores, and a second plated metal coating film, including pores having major axes of 0.1-1.5 μm in length at their cross sections.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、急激な温度変化の
ある環境下や連続した高温環境下での使用に適したR−
Fe−B系永久磁石(RはSc、Yを含む希土類元素の
少なくとも1種、以下同様)及びその製造方法に関す
る。
[0001] The present invention relates to an R-type light emitting device suitable for use in an environment having a rapid temperature change or a continuous high temperature environment.
The present invention relates to an Fe—B-based permanent magnet (R is at least one of rare earth elements including Sc and Y, and the same applies hereinafter) and a method for producing the same.

【0002】[0002]

【従来の技術】希土類系永久磁石は優れた磁気特性と経
済性のため、電気・電子の分野で多用されているが、近
年において特に省エネルギーモーター用としての需要が
増大し、その応用範囲の拡大が切望されている。このう
ち特にNd系希土類永久磁石は、Sm系希土類永久磁石
と比較し、主要元素であるNdがSmよりも豊富に存在
すること、高価なCoを多量に用いないでもすむことか
ら安価で、磁気特性についても、Sm系希土類永久磁石
をはるかにしのぐ極めて優れた永久磁石材料であるた
め、Sm系希土類永久磁石が用いられてきた小型磁気回
路はこれに置き換えられるだけでなく、コスト面からも
ハードフェライトあるいは電磁石が用いられていた分野
にも広く用いられようとしている。しかし、Ndをはじ
め希土類金属材料は、一般に湿気の多い空気中では極め
て短時間のうちに容易に酸化してしまうため、それに伴
って生じる磁気特性の劣化や磁石材料の脱落により引き
起こされる汚染が欠点として存在する。このため、一般
的な使用にあっては、該磁石の表面に保護被膜として特
開昭60−54406号公報にあるようなメッキ金属被
膜、特開平9−63833号公報にあるような無機質被
膜、特開平9−180922号公報にあるような有機質
被膜などを施すことが提唱されている。また、最近で
は、被膜と磁石の間に残存するメッキ液によって磁石が
腐食劣化してしまう問題に対して、特開平7−7404
3号公報にあるように該磁石表面をイオンプレーティン
グを用いたアルミなどの金属蒸着膜等により乾式被覆す
る方法が提唱されるなど、従来問題とされてきた酸化劣
化については対策がとられつつある。
2. Description of the Related Art Rare-earth permanent magnets are widely used in the fields of electricity and electronics due to their excellent magnetic properties and economical efficiency. Is eagerly awaited. Among them, Nd-based rare earth permanent magnets are particularly inexpensive because compared with Sm-based rare-earth permanent magnets, Nd, which is a main element, is more abundant than Sm, and it does not require a large amount of expensive Co. In terms of characteristics, it is an extremely excellent permanent magnet material, far superior to Sm-based rare-earth permanent magnets. It is going to be widely used in fields where ferrites or electromagnets have been used. However, rare earth metal materials such as Nd generally oxidize easily in a very short period of time in humid air, and consequently the deterioration of magnetic properties and contamination caused by falling off of the magnet material are disadvantageous. Exists as Therefore, in general use, as a protective coating on the surface of the magnet, a plated metal coating as disclosed in JP-A-60-54406, an inorganic coating as disclosed in JP-A-9-63833, It has been proposed to apply an organic coating or the like as disclosed in JP-A-9-180922. Also, recently, a problem that the magnet is corroded and deteriorated by a plating solution remaining between the coating and the magnet is disclosed in Japanese Patent Application Laid-Open No. 7-7404.
As disclosed in Japanese Patent Application Publication No. 3 (1993) -3, a method of dry-coating the magnet surface with a metal deposition film of aluminum or the like using ion plating has been proposed, and measures against oxidation deterioration, which has been a problem in the past, are being taken. is there.

【0003】しかしながら、用途の広がりとともにR−
Fe−B系永久磁石の扱われかたも大きく変化し、近年
のモーター組み立てにおいては、400℃前後に加熱し
た部品に磁石を組み込み固定する焼きばめなどの手法が
用いられるようになるなど、従来の耐酸化性をこのよう
な高温環境においても示しつつ、さらに加えて、室温〜
400℃程度の耐熱衝撃性や400℃程度の耐熱性、さ
らにこのような高温にさらされても磁気特性が極端に低
下しない耐熱劣化性など、新たな耐久性が要求されるよ
うになっている。
However, with the expansion of applications, R-
The handling of Fe-B permanent magnets has also changed drastically, and in recent motor assembly, shrink-fitting techniques such as mounting magnets on parts heated to around 400 ° C and fixing them have been used. While exhibiting the conventional oxidation resistance even in such a high temperature environment, in addition, from room temperature to
New durability is required, such as heat shock resistance of about 400 ° C., heat resistance of about 400 ° C., and heat deterioration resistance in which magnetic properties are not extremely reduced even when exposed to such high temperatures. .

【0004】このような要求について、特に室温〜40
0℃程度の耐熱衝撃性については、これまで考慮されて
いなかったため、程度差はあるが、従来の保護被膜で
は、磁石素地と被膜金属との熱膨張・収縮が大きく異な
ることや皮膜自体が持つ応力の影響、さらに冷却される
ときに生じる組織変態からくる皮膜強度の低下などか
ら、被膜にキレツ、ワレ、フクレが生じたり、更に進ん
で被膜のハガレや被膜自体の熱分解などが発生するなど
して、保護機能の著しい低下を招くなどの問題が生じ、
要求を十分に満足させることができなくなってきた。
[0004] With respect to such demands, particularly, from room temperature to 40
Although the thermal shock resistance at about 0 ° C. has not been considered so far, there is a difference in the degree. However, in the conventional protective coating, the thermal expansion and shrinkage of the magnet substrate and the coating metal are greatly different, and the coating itself has Due to the effects of stress and the decrease in film strength caused by the structural transformation that occurs when the film is further cooled, the film may have cracks, cracks, or blisters, and may further develop peeling of the film or thermal decomposition of the film itself. As a result, problems such as significantly reducing the protection function occur,
The demands have not been able to be fully satisfied.

【0005】というのも、膨張・収縮の違いからくる問
題については、磁石がNdやFeを主成分とした複数成
分からなる合金の焼結体であることと、焼結体の形状が
多岐にわたっていることなどから、磁石素地と被膜金属
との膨張・収縮率を合わせることが困難であるため十分
な解決策がないこと、また、保護被膜の応力に起因する
問題では被膜中に応力を減少させるような元素を添加す
る等の方法が有効であるが、このような添加物を用いた
場合は、被膜を脆くしたり腐食されやすくするなどの悪
影響があるため、添加物による解決ができずにいた。
[0005] Regarding the problem caused by the difference between expansion and contraction, the magnet is a sintered body of an alloy composed of a plurality of components mainly composed of Nd and Fe, and the shape of the sintered body varies widely. It is difficult to match the expansion and contraction rates of the magnet base and the coating metal because of the fact that there is no sufficient solution.For problems caused by the stress of the protective coating, reduce the stress in the coating. The method of adding such an element is effective, but when such an additive is used, there is an adverse effect such as making the coating brittle or easily corroded. Was.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明では、
R−Fe−B系永久磁石の応用範囲を拡大させるべく、
従来求められてきた皮膜の機能に加え、極端な温度差の
ある環境下での使用や、高温での使用においても被膜の
ワレ、フクレ、ハガレが無いことで耐食性が維持される
R−Fe−B系磁石および該磁石を製造する方法を提供
することを目的とする。
Therefore, in the present invention,
In order to expand the application range of R-Fe-B permanent magnets,
In addition to the function of the coating that has been required in the past, even in use under an environment with an extreme temperature difference or in use at high temperatures, the corrosion resistance is maintained because there is no cracking, blistering or peeling of the coating. It is an object to provide a B-based magnet and a method for manufacturing the magnet.

【0007】[0007]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成し、従来の不利や欠点を解消
するべく検討の結果、下地として実質的に空孔の無いメ
ッキ金属皮膜で保護したのちに、内部に空孔を有するメ
ッキ金属皮膜を析出させ保護することが効果的であるこ
と、この場合これらメッキ金属皮膜を特定組成のピロ燐
酸銅電気メッキ液を用いて形成することが好適であるこ
とを見出し、本発明を完成させた。
Means for Solving the Problems and Embodiments of the Invention The present inventor has studied to achieve the above object and to solve the disadvantages and disadvantages of the prior art. After protection with a film, it is effective to deposit and protect a plating metal film having pores inside, in which case these plating metal films are formed using a copper pyrophosphate electroplating solution having a specific composition. Have been found to be preferable, and have completed the present invention.

【0008】従って、本発明は、金属皮膜を有するR−
Fe−B(RはSc、Yを含む希土類元素の少なくとも
1種)系永久磁石において、上記金属皮膜として、1層
目に0.1〜1.0μmの厚みを有する実質的に空孔の
ないメッキ金属皮膜を被覆し、その上に断面の長径が
0.1〜1.5μmである空孔を内包する2層目のメッ
キ金属皮膜を被覆したことを特徴とするR−Fe−B系
永久磁石、及びR−Fe−B(RはSc、Yを含む希土
類元素の少なくとも1種)系永久磁石の表面に0.1〜
1.0μmの厚みを有する実質的に空孔のない1層目の
メッキ金属皮膜を被覆し、その上に断面の長径が0.1
〜1.5μmである空孔を内包する2層目のメッキ金属
皮膜を被覆することを特徴とするR−Fe−B系永久磁
石の製造方法を提供する。
Accordingly, the present invention provides an R-
In the Fe-B (R is at least one kind of rare earth element including Sc and Y) -based permanent magnet, the metal layer has substantially no pores in the first layer having a thickness of 0.1 to 1.0 μm. R-Fe-B permanent coating characterized by coating a plated metal film and further coating thereon a second layer of plated metal film containing pores having a major axis of 0.1 to 1.5 [mu] m in cross section. The surface area of the magnet and R-Fe-B (R is at least one of rare earth elements including Sc and Y) -based permanent magnets
A first-layer plating metal film having a thickness of 1.0 μm and having substantially no voids is coated, and the major axis of the cross-section is 0.1 μm.
Provided is a method for producing an R-Fe-B-based permanent magnet, which comprises coating a second-layer plated metal film containing pores of up to 1.5 µm.

【0009】この場合、2層目のメッキ金属皮膜上に、
ニッケルメッキ皮膜、ニッケル合金メッキ皮膜、複合粒
子が共析した複合ニッケルメッキ皮膜のうち少なくとも
一つを被覆することができる。また、1層目及び2層目
のメッキ金属皮膜をそれぞれピロ燐酸銅電気メッキによ
り形成することが好ましいが、この際上記1層目のメッ
キ金属皮膜の形成を、ピロ燐酸カリウムまたはピロ燐酸
ナトリウムを1〜10wt%含む水溶液を用いたメッキ
前処理を行い、ついで、ピロ燐酸カリウムまたはピロ燐
酸ナトリウムが200〜300g/l、ピロ燐酸銅が1
0〜30g/l、クエン酸カリウムまたはクエン酸ナト
リウムが10〜30g/l、アンモニアが0.1〜1m
l/lである水溶液を用いて電気銅メッキを施すことに
より行うこと、また上記2層目のメッキ金属皮膜の形成
を、ピロ燐酸カリウムまたはピロ燐酸ナトリウムが20
0〜450g/l、ピロ燐酸銅が60〜100g/l、
クエン酸カリウムまたはクエン酸ナトリウムが40〜8
0g/l、アンモニアが0.5〜5ml/lである水溶
液を用いて電気銅メッキを施すことにより行うことが有
効である。
In this case, on the second plating metal film,
At least one of a nickel plating film, a nickel alloy plating film, and a composite nickel plating film in which composite particles are eutectoid can be coated. The first and second plating metal films are preferably formed by copper pyrophosphate electroplating. In this case, the formation of the first plating metal film is performed using potassium pyrophosphate or sodium pyrophosphate. A plating pretreatment using an aqueous solution containing 1 to 10 wt% is performed, and then potassium pyrophosphate or sodium pyrophosphate is 200 to 300 g / l, and copper pyrophosphate is 1
0-30 g / l, potassium citrate or sodium citrate 10-30 g / l, ammonia 0.1-1 m
1 / l of an aqueous solution of electrolytic copper is applied, and the formation of the second plating metal film is performed by using potassium pyrophosphate or sodium pyrophosphate for 20 minutes.
0 to 450 g / l, copper pyrophosphate 60 to 100 g / l,
40-8 potassium citrate or sodium citrate
It is effective to perform electrolytic copper plating using an aqueous solution containing 0 g / l and ammonia of 0.5 to 5 ml / l.

【0010】以下、本発明につき更に詳しく説明する。Hereinafter, the present invention will be described in more detail.

【0011】本発明のR−Fe−B系永久磁石は、永久
磁石の表面に第1層の金属皮膜として、実質的に空孔の
ないメッキ金属皮膜が形成され、その上に第2層の金属
皮膜として空孔を内包するメッキ金属皮膜が形成され、
必要により第3層にニッケル系メッキ皮膜が形成された
ものである。
In the R-Fe-B permanent magnet of the present invention, a plated metal film having substantially no voids is formed as a first layer metal film on the surface of the permanent magnet, and a second layer metal film is formed thereon. A plated metal film containing pores is formed as a metal film,
If necessary, a nickel-based plating film is formed on the third layer.

【0012】なお、本発明における内部に空孔を有する
金属皮膜とは、その長径が0.1〜1.5μmの空孔を
内包する金属皮膜であり、実質的に空孔のない金属皮膜
とは、それらの空孔が電子顕微鏡などミクロンオーダー
で観察可能な機器を用いても殆ど観察されない被膜のこ
とであり、一般的なメッキ被膜で不可避に生じるとされ
ているボイドなど、ナノオーダー以下のものの存在は許
容する。また、本発明における空孔とは、素地に付着し
た異物や気泡に起因して発生するピンホールではなく、
特定のメッキ条件下で意図的に発生させた閉じた孔のこ
とである。
The metal film having pores therein in the present invention is a metal film containing pores having a major axis of 0.1 to 1.5 μm, and a metal film having substantially no pores. Is a coating in which these vacancies are hardly observed even when using a device that can be observed on the micron order such as an electron microscope. The existence of things is acceptable. Further, the vacancy in the present invention is not a pinhole generated due to foreign matter or bubbles attached to the substrate,
A closed hole intentionally created under specific plating conditions.

【0013】ここで、本発明が対象とする永久磁石(焼
結磁石)は、R−Fe−B系であり、RはSc、Yを含
む希土類元素の少なくとも1種から選ばれ、具体的には
Sc、Y、La、Ce、Pr、Nd、Pm、Sm、E
u、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu
のうち少なくとも1種の希土類金属を含有し、その含有
量は5〜40wt%である。さらに、前記焼結磁石体は
Feを50〜90wt%、Coを15wt%以下、Bを
0.2〜8wt%、および添加物としてNi、Nb、A
l、Ti、Zr、Cr、V、Mo、Si、Sn、Ga、
Cu、Znから選ばれる少なくとも1種の元素を8wt
%以下含有し、これに加えてC、O、P、S、N等の工
業的に不可避な不純物を含有する。
Here, the permanent magnet (sintered magnet) to which the present invention is applied is of the R-Fe-B type, and R is selected from at least one of the rare earth elements including Sc and Y. Are Sc, Y, La, Ce, Pr, Nd, Pm, Sm, E
u, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
At least one rare earth metal, and the content is 5 to 40 wt%. Further, the sintered magnet body contains 50 to 90 wt% of Fe, 15 wt% or less of Co, 0.2 to 8 wt% of B, and Ni, Nb, and A as additives.
1, Ti, Zr, Cr, V, Mo, Si, Sn, Ga,
8 wt% of at least one element selected from Cu and Zn
% Or less, and additionally contains industrially unavoidable impurities such as C, O, P, S, and N.

【0014】本発明においては、上記磁石上に、実質的
に空孔のない第1層メッキ皮膜、その上に空孔を内包し
た第2層メッキ皮膜を形成する。この場合、内部に空孔
を有した皮膜を磁石に直接施した場合、空孔内部に若干
のメッキ液を残存させるため、腐食しにくいメッキ液を
用いて析出させた場合でも、磁石素地の極近傍に空孔が
存在した場合、経時におけるメッキ液のシミ出しの可能
性もあり、その結果、磁石腐食を発生させるため、まず
磁石素地に空孔やピンホールの殆ど無い金属皮膜を0.
1〜1μm程度析出させて磁石を保護したうえで、その
上に耐熱衝撃性を有する空孔を内包した金属皮膜を析出
させる。
In the present invention, a first-layer plating film having substantially no voids is formed on the magnet, and a second-layer plating film containing voids is formed thereon. In this case, when a coating having pores inside is directly applied to the magnet, a slight plating solution remains in the pores. If there are vacancies in the vicinity, there is a possibility that the plating solution will stain over time, and as a result, magnet corrosion will occur.
After protecting the magnet by depositing about 1 to 1 μm, a metal film containing pores having thermal shock resistance is deposited thereon.

【0015】この1層目の皮膜を析出させるメッキ液
は、磁石が直接ふれるため、できるだけ腐食しにくいも
のが望ましいが、本発明のR−Fe−B系永久磁石の場
合では、メッキ液のpHを基準として考えたとき、一般
的に酸性のメッキ液には腐食されやすく、弱酸性〜アル
カリ性のメッキ液に腐食されにくい傾向があるため、中
性近傍からアルカリ性のpHとなるメッキ液を用いるの
が良い。このような液性を有するメッキ浴には、無電解
のニッケルリンメッキ、無電解の銅メッキ、ピロ燐酸電
気銅メッキ、ピロ燐酸スズメッキ、ピロ燐酸スズニッケ
ルメッキ、有機酸スズ鉛メッキなどがある。これらの中
では、電気メッキ、特に後述する特定の前処理を施した
後、特定組成のピロ燐酸銅メッキ液を用いて1層目の皮
膜を形成することが好ましい。
The plating solution for depositing the first layer of the coating is desirably as hard to corrode as possible because the magnet is directly shaken. However, in the case of the R-Fe-B permanent magnet of the present invention, the pH of the plating solution is When considered on the basis of, generally, the plating solution tends to be easily corroded by an acidic plating solution, and hardly corroded by a weakly acidic to alkaline plating solution. Is good. The plating bath having such a liquid property includes electroless nickel phosphorus plating, electroless copper plating, pyrophosphate copper electroplating, tin pyrophosphate plating, tin nickel pyrophosphate plating, and tin lead organic acid plating. Among these, it is preferable to form a first layer using a copper pyrophosphate plating solution having a specific composition after performing electroplating, particularly a specific pretreatment described later.

【0016】この場合、この1層目の皮膜厚さは0.1
〜1.0μmとする。0.1μmより薄いと、2層目の
メッキ皮膜に内包される空孔からのメッキのシミ出しを
防ぐことができない。1.0μmより厚いと熱衝撃によ
り磁石素地から剥れる可能性が大きくなる。なお、皮膜
の厚みは、検量線法を用いた蛍光X線測定器で測定し、
確認することができる。
In this case, the film thickness of the first layer is 0.1
To 1.0 μm. If the thickness is less than 0.1 μm, it is not possible to prevent plating stains from coming out of the holes included in the second plating film. If it is thicker than 1.0 μm, the possibility of peeling off from the magnet substrate due to thermal shock increases. The thickness of the film was measured with a fluorescent X-ray measuring instrument using a calibration curve method.
You can check.

【0017】次に、2層目の空孔を内包したメッキ皮膜
を形成するメッキ液は、特に制限されないが、電気メッ
キ液、特に電気銅メッキ液、中でも後述する特定組成の
ピロ燐酸銅電気メッキ液とすることが好ましい。
Next, the plating solution for forming the plating film containing the pores of the second layer is not particularly limited, but is an electroplating solution, particularly an electrocopper plating solution, and especially a copper pyrophosphate electroplating having a specific composition described later. Preferably, it is a liquid.

【0018】この2層目のメッキ皮膜の厚さは適宜選定
されるが、3〜10μm程度とすることが好ましい。ま
た、空孔の大きさは、その長径が0.1〜1.5μmで
ある。空孔の長径が1.5μmより大きくなると皮膜の
もっとも薄い部分の厚みが不足して、耐食性や耐摩耗性
が極端に低下するし、0.1μmより小さくなると熱衝
撃を緩和する能力が不足してしまう。
The thickness of the second plating film is appropriately selected, but is preferably about 3 to 10 μm. The pores have a major axis of 0.1 to 1.5 μm. When the major axis of the pores is larger than 1.5 μm, the thickness of the thinnest portion of the coating becomes insufficient, and the corrosion resistance and abrasion resistance are extremely reduced. When it is smaller than 0.1 μm, the ability to mitigate thermal shock is insufficient. Would.

【0019】なお、メッキ皮膜中に存在する空孔は、各
々が独立に存在するようにして、空孔内部に残存するメ
ッキ液がメッキ表面や磁石素地にしみだすことを防ぐ。
空孔の形状は、その断面が真円でも楕円となる形でもよ
い。
The holes present in the plating film are made to exist independently of each other to prevent the plating solution remaining inside the holes from seeping into the plating surface or the magnet substrate.
The shape of the hole may be such that its cross section is a perfect circle or an ellipse.

【0020】また、空孔の数については、測定前処理に
よって一部の空孔が潰れるため正確な数を求めることが
困難な場合があるが、膜断面において、おおよそ16個
/μm2以下、更に好ましくは3〜10個/μm2である
ことが望ましい。
Further, the number of vacancies, but it may be difficult to determine the exact number for collapsing a portion of the pores by measuring pretreatment, the film cross-section, approximately 16 / [mu] m 2 or less, More preferably, it is 3 to 10 particles / μm 2 .

【0021】この空孔を有する皮膜は、空孔を殆ど含ま
ない皮膜に比べ、耐食性や耐摩耗性においてはやや劣る
傾向があるため、これらの特性をさらに高めたい場合に
は、空孔を含む皮膜の上に空孔を殆ど含まない皮膜を2
〜10μm程度積層させれば良い。
The film having pores tends to be slightly inferior in corrosion resistance and abrasion resistance as compared with a film containing almost no pores. Two films containing almost no voids on the film
The thickness may be about 10 to 10 μm.

【0022】皮膜の種類については、NiやCuなどの
公知のめっき方法で析出できるものであれば特に問わな
いが、約400℃近傍にまで加熱されることを前提とし
ているため、この温度に十分耐えられる被膜であること
が必要であり、3層目のメッキ皮膜としてニッケル系メ
ッキの処理をすることが望ましい。
The type of film is not particularly limited as long as it can be deposited by a known plating method such as Ni or Cu, but it is assumed that the film is heated to about 400 ° C. The coating must be durable, and it is desirable to perform nickel plating as the third plating film.

【0023】このようなニッケル系メッキとしては、ニ
ッケルメッキ、ニッケル−リンメッキ、ニッケル−ホウ
素メッキ、ニッケル−亜鉛メッキ等のニッケル合金メッ
キ、SiC、WC等の複合粒子(共析粒子)が分散し、
これら複合粒子がニッケル皮膜中に共析する複合メッキ
などが挙げられ、これらは電気メッキでもよく、無電解
メッキでもよいが、好ましくは電気メッキである。
As such nickel-based plating, nickel alloy plating such as nickel plating, nickel-phosphorus plating, nickel-boron plating, nickel-zinc plating, and composite particles (eutectoid particles) such as SiC and WC are dispersed.
Examples include composite plating in which these composite particles are eutectoid in the nickel film. These may be electroplating or electroless plating, but are preferably electroplating.

【0024】上記のようなメッキ皮膜が2層、必要によ
り3層以上形成されたR−Fe−B系永久磁石を電気メ
ッキ法により得る場合は、この焼結磁石表面に前処理工
程、活性化処理工程を行い、次いで電気メッキ金属皮膜
を析出させる。前処理工程では、従来のメッキ処理で行
われている、錆落とし、脱脂、不活性物の除去を順次行
うが、磁石組成にあわせて適宜条件を変更する。次の活
性化処理工程は、前処理で受けた影響を取り除き、次工
程のメッキ析出を良好にするために行う。具体的には以
下の通りである。
When an R-Fe-B-based permanent magnet having two or more, if necessary, three or more plating films as described above is obtained by electroplating, a pre-treatment step, activation A processing step is performed, and then an electroplated metal film is deposited. In the pretreatment step, rust removal, degreasing, and removal of inert substances are performed sequentially in the conventional plating treatment, but conditions are appropriately changed according to the magnet composition. The next activation treatment step is performed in order to remove the influence of the pretreatment and improve the plating deposition in the next step. Specifically, it is as follows.

【0025】[前処理工程] 1.錆落とし 錆落としは、希土類磁石表面の酸化被膜除去を目的とし
て行うものであり、砥石あるいはバフによる研磨、バレ
ル研磨、サンドブラストまたはホーニング、ブラシがけ
などにより磁石表面の錆、汚れその他の不純物を除去す
る。 2.溶剤脱脂 溶剤脱脂は、希土類磁石表面の油脂等による汚れを除去
する目的で行うものであり、エステル、エーテル、アル
コールなどの有機溶剤に該磁石を浸せきするかまたは該
溶剤を噴霧するなどして行う。 3.アルカリ脱脂 アルカリ脱脂は、一般的には上記溶剤脱脂に次いで行
い、該磁石表面の油脂類の汚れを除去することを目的と
して行うもので、水酸化カリウム、水酸化ナトリウム、
炭酸ナトリウム、炭酸カリウム、オルソケイ酸ナトリウ
ム、メタケイ酸ナトリウム、リン酸3ナトリウム、キレ
ート剤などの少なくとも1種以上を合計で5g/l以上
200g/l以下含む水溶液であり、これに少量の界面
活性剤を添加したのち、常温以上90℃以下に加熱した
なかに希土類磁石を浸せきする。 4.不活性物除去 酸洗いは、前工程で除去できなかった酸化被膜や前工程
中に新たに生成した不活性な被膜、さらには付着した金
属塩などの不純物を除去するために行う。
[Pretreatment Step] Rust removal Rust removal is performed for the purpose of removing the oxide film on the surface of the rare earth magnet. Rust, dirt and other impurities on the magnet surface are removed by polishing with a grindstone or buff, barrel polishing, sand blasting or honing, brushing, etc. . 2. Solvent degreasing Solvent degreasing is performed for the purpose of removing dirt from the surface of the rare earth magnet due to oils and fats, and is performed by immersing the magnet in an organic solvent such as an ester, ether, or alcohol, or spraying the solvent. . 3. Alkaline degreasing Alkaline degreasing is generally performed following the above solvent degreasing, and is performed for the purpose of removing dirt from oils and fats on the magnet surface, and includes potassium hydroxide, sodium hydroxide,
An aqueous solution containing at least one of sodium carbonate, potassium carbonate, sodium orthosilicate, sodium metasilicate, trisodium phosphate, and a chelating agent in a total amount of 5 g / l to 200 g / l, and a small amount of a surfactant Is added, and then the rare earth magnet is immersed in the mixture while being heated to a temperature not lower than room temperature and not higher than 90 ° C. 4. Removal of Inert Substances Pickling is performed to remove impurities such as oxide films that could not be removed in the previous step, inactive films newly generated in the previous step, and attached metal salts.

【0026】処理液は、硫酸、硝酸、塩酸やリン酸、シ
ュウ酸、酢酸、蟻酸、クエン酸、酒石酸およびこれらの
カリウム塩やナトリウム塩のうち少なくとも1種類以上
を合計で1〜40wt%含む水溶液を10〜60℃の範
囲とし、これに該磁石を浸せきして処理を行う。
The treatment liquid is an aqueous solution containing 1 to 40% by weight of sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, oxalic acid, acetic acid, formic acid, citric acid, tartaric acid and at least one of these potassium salts and sodium salts in total. Is in the range of 10 to 60 ° C., and the magnet is immersed in this for treatment.

【0027】以上の4種、1〜4の操作は、該磁石表面
の汚れや量に応じて少なくとも1種類を選択するが、2
種類以上を組み合わせて行うのが望ましく、それぞれの
処理時間も適宜変え得る。また各処理を行った後は必ず
十分に水洗する必要がある。
In the above-mentioned four operations, ie, operations 1 to 4, at least one operation is selected according to the amount of dirt on the surface of the magnet.
It is desirable to perform a combination of more than one type, and the processing time of each can be appropriately changed. In addition, after each treatment, it is necessary to thoroughly wash with water.

【0028】[活性化処理工程]活性化処理は希土類磁
石の表面エネルギー状態を予め昂揚しておいて、メッキ
膜と該磁石との間の密着力を向上させるために行う。
[Activation Treatment Step] The activation treatment is performed to increase the surface energy state of the rare-earth magnet in advance, and to improve the adhesion between the plating film and the magnet.

【0029】活性化処理に用いる薬液は、リン酸、シュ
ウ酸、酢酸、蟻酸、クエン酸、酒石酸およびこれらのカ
リウム塩やナトリウム塩のうち少なくとも1種類以上を
合計で1〜40wt%含む水溶液を用いることができる
が、さらに効果を上げる場合には、ラウリン酸ナトリウ
ム、ミリスチン酸ナトリウム、パルミチン酸ナトリウ
ム、ステアリン酸ナトリウム等の高級脂肪酸アルカリ
塩、アルキルスルフォン酸塩、アルキルアリールスルフ
ォン酸塩などの陰イオン界面活性剤、または高級アミン
ハロゲン酸塩、第四級アンモニウム塩などのカチオン界
面活性剤、さらにはポリエチレングリコールアルキルエ
ーテルポリエチレングリコール脂肪酸エステル、脂肪酸
モノグリセリドなどの非イオン活性剤、アミノ酸などの
両性表面活性剤を添加するのが望ましい場合がある。
The chemical used for the activation treatment is an aqueous solution containing at least one of phosphoric acid, oxalic acid, acetic acid, formic acid, citric acid, tartaric acid and at least one of these potassium salts and sodium salts in total. However, in order to further enhance the effect, anionic interface such as alkali salts of higher fatty acids such as sodium laurate, sodium myristate, sodium palmitate and sodium stearate, alkyl sulfonates, alkyl aryl sulfonates, etc. Activators or cationic surfactants such as higher amine halides and quaternary ammonium salts, as well as nonionic surfactants such as polyethylene glycol alkyl ether polyethylene glycol fatty acid esters and fatty acid monoglycerides, and amphoteric surfactants such as amino acids. Addition It may be desirable for that.

【0030】また、活性化処理液の寿命を長くするた
め、トリポリリン酸ナトリウム、テトラポリリン酸ナト
リウム、ヘキサメタリン酸ナトリウムなどの無機金属イ
オン封止剤やクエン酸、グルコン酸、酒石酸およびそれ
らの塩、EDTAなどの有機金属イオン封止剤を少なく
とも1種以上、合計で5wt%以下添加しても良い。
In order to extend the life of the activation treatment solution, an inorganic metal ion sealing agent such as sodium tripolyphosphate, sodium tetrapolyphosphate, sodium hexametaphosphate, citric acid, gluconic acid, tartaric acid and salts thereof, EDTA At least one kind of an organic metal ion sealing agent such as a total of 5 wt% or less may be added.

【0031】上記の薬液を10〜60℃の範囲としてこ
の中に該磁石を浸せきして活性化処理を行う。
The magnet is immersed in the above solution at a temperature in the range of 10 to 60 ° C. to perform an activation process.

【0032】[メッキ工程]第1層メッキ 1層目のメッキは、2層目に施すメッキが電気メッキで
あることから工程的に電気メッキが望ましいこと、40
0℃以上の耐熱性を有すること、ピンホールの原因とも
なるメッキ中のガス発生が少ない陰極効率の高いことを
条件に検討したところ、種々のメッキ液のうちで、ピロ
燐酸銅メッキが最も好ましい結果が得られた。
[Plating Step] The plating of the first layer of the first layer is preferably electroplating because the plating applied to the second layer is electroplating.
When examined under the conditions of having a heat resistance of 0 ° C. or higher and a high cathode efficiency with little gas generation during plating that causes pinholes, among various plating solutions, copper pyrophosphate plating is most preferable. The result was obtained.

【0033】しかしながら、ピロ燐酸銅メッキにおい
て、公知文献「金属表面技術 Vol.19 No.9
1968」に記載の一般的な浴組成では、本発明で用
いるR−Fe−B系永久磁石に対して被膜を完全に形成
させることができないか、実用的に十分な密着強度を有
する被膜を得ることが極めて困難であったため、浴組成
および添加剤、前処理などを含めて製造法を再検討し、
ピロ燐酸カリウムまたはピロ燐酸ナトリウムを1〜10
wt%含む水溶液を用いたメッキ前処理を行い、つい
で、ピロ燐酸カリウムまたはピロ燐酸ナトリウムが20
0〜300g/l、ピロ燐酸銅が10〜30g/l、ク
エン酸カリウムまたはクエン酸ナトリウムが10〜30
g/l、アンモニアが0.1〜1ml/lであって、か
つP比(P27/Cu)が14〜28の範囲であるアル
カリ性メッキ液を用いることが極めて有効である知見を
得た。
However, in the case of copper pyrophosphate plating, a known document “Metal Surface Technology Vol. 19 No. 9”
With the general bath composition described in 1968, it is not possible to completely form the coating on the R-Fe-B permanent magnet used in the present invention, or to obtain a coating having practically sufficient adhesion strength. Because it was extremely difficult, we reviewed the production method including bath composition and additives, pretreatment, etc.,
1 to 10 potassium pyrophosphate or sodium pyrophosphate
A plating pretreatment using an aqueous solution containing 20% by weight is performed.
0-300 g / l, copper pyrophosphate 10-30 g / l, potassium citrate or sodium citrate 10-30
g / l, ammonia is 0.1-1 ml / l, and it is extremely effective to use an alkaline plating solution having a P ratio (P 2 O 7 / Cu) in the range of 14-28. Was.

【0034】この場合、前処理であるピロ燐酸塩浸せき
は、磁石表面の状態にも依存するが、液温度20℃〜6
0℃において10秒〜3分程度行う。
In this case, the pyrophosphate soaking, which is a pretreatment, depends on the state of the magnet surface, but the liquid temperature is 20 ° C. to 6 ° C.
This is performed at 0 ° C. for about 10 seconds to 3 minutes.

【0035】次いで、上述したメッキ液を用い、pH8
〜12、20〜60℃、空気攪拌又はスクリュー式攪拌
棒を用いた機械攪拌を行いながら陰極電流密度0.5〜
3.0A/dm2、陽極に銅を用いてメッキを行うこと
が好ましい。
Next, using the plating solution described above,
-12, 20-60 ° C., while performing air stirring or mechanical stirring using a screw-type stirring rod, the cathode current density 0.5-
Plating is preferably performed using copper at 3.0 A / dm 2 and the anode.

【0036】第2層メッキ 上記したメッキ液を用いて1層目皮膜を電気メッキし
て、実質的に空孔のない被膜相を形成したのち、空孔を
内包した金属被膜を室温〜400℃程度の温度範囲での
熱衝撃に耐えられるように約3〜10μmの厚みで電気
メッキする。
Second-layer plating The first-layer coating is electroplated using the above-mentioned plating solution to form a coating phase having substantially no voids, and then the metal coating containing the voids is subjected to room temperature to 400 ° C. Electroplating is performed to a thickness of about 3 to 10 μm so as to withstand a thermal shock in a temperature range of the order.

【0037】空孔を内包する皮膜は、磁石素地近傍の金
属イオン濃度を通常濃度の20〜70%まで薄くした
り、メッキ浴温を低くしたり、エアブローなどによる浴
の撹拌をやめ、メッキ液の循環を磁石近傍のみ悪くする
などして、分極が生じやすい状態を作りだし、被膜の析
出が部分的に異なるようにすることで得られる。
The film containing the pores is formed by reducing the metal ion concentration in the vicinity of the magnet base to 20 to 70% of the normal concentration, lowering the plating bath temperature, stopping stirring of the bath by air blowing or the like, and removing the plating solution. This is obtained by creating a state in which polarization is likely to occur by, for example, worsening the circulation of magnets only in the vicinity of the magnet, and making the deposition of the coating partially different.

【0038】ただし、過度の分極はR−Fe−B系永久
磁石にとって悪影響を及ぼすおそれのある水素ガスを発
生させるので、メッキ中の電流密度を好ましくは0.5
A/dm2〜3.0A/dm2の範囲にするなどの注意も
必要である。
However, since excessive polarization generates hydrogen gas which may adversely affect the R—Fe—B permanent magnet, the current density during plating is preferably set at 0.5%.
Note, such as in the range of A / dm 2 ~3.0A / dm 2 is also required.

【0039】この場合、2層目皮膜を形成する電気メッ
キ液としては、ピロ燐酸銅メッキ液、特にピロ燐酸カリ
ウム又はピロ燐酸ナトリウムが200〜450g/l、
ピロ燐酸銅が60〜100g/l、クエン酸カリウム又
はクエン酸ナトリウムが40〜80g/l、アンモニア
が0.5〜5ml/lであるメッキ液を用いることが好
ましい。
In this case, as the electroplating solution for forming the second layer film, copper pyrophosphate plating solution, especially potassium pyrophosphate or sodium pyrophosphate is 200 to 450 g / l,
It is preferable to use a plating solution containing 60 to 100 g / l of copper pyrophosphate, 40 to 80 g / l of potassium citrate or sodium citrate, and 0.5 to 5 ml / l of ammonia.

【0040】このメッキ液を用い、好ましくはpH8〜
12、メッキ液温度20〜60℃、弱い空気攪拌又はヒ
ーターによる熱対流攪拌など穏やかな攪拌下で、陰極電
流密度0.5〜3.0A/dm2、好ましくは0.5〜
1.8A/dm2の範囲において、陽極に銅を用いてメ
ッキを行うことが好ましい。
Using this plating solution, preferably a pH of 8 to
12. The plating current temperature is from 20 to 60 ° C., and the cathode current density is from 0.5 to 3.0 A / dm 2 , preferably from 0.5 to 3.0 A, under mild stirring such as weak air stirring or thermal convection stirring using a heater.
In the range of 1.8 A / dm 2 , it is preferable to perform plating using copper as an anode.

【0041】第3層メッキ このような空孔を内包した被膜を析出させたのち、更な
る被膜の高機能化を図る場合には、第3層メッキとして
上述したニッケルメッキ、ニッケル合金メッキ、又は複
合ニッケルメッキを行い、2〜10μm形成することが
できる。
Third-layer plating After depositing a film containing such voids, if the film is to be further enhanced in function, the above-mentioned nickel plating, nickel alloy plating, or By performing composite nickel plating, a thickness of 2 to 10 μm can be formed.

【0042】具体的には、上記のような2層の電気メッ
キ金属保護をおこなった磁石を特に清浄な環境において
用いる場合は、この上に電気ニッケルメッキなどの電気
メッキ金属皮膜を施せば良い。
More specifically, when a magnet protected by two layers of electroplated metal as described above is used in a particularly clean environment, an electroplated metal film such as electronickel plating may be applied thereon.

【0043】また、耐磨耗性をさらに求める場合は、こ
のような2層の電気メッキ金属保護を行った磁石の上層
に、電気ニッケルリンメッキ、電気ニッケルSiCメッ
キなどを施せばよい。
When further abrasion resistance is required, an electric nickel phosphorous plating, an electric nickel SiC plating, or the like may be applied to the upper layer of the magnet having the two-layer electroplated metal protection.

【0044】このほかに、上記以外でより安価でかつ高
い耐食性を求める場合などは、電気ニッケル亜鉛メッキ
などを施せば良い。
In addition to the above, when a more inexpensive and higher corrosion resistance is required in addition to the above, electric nickel zinc plating or the like may be applied.

【0045】[後処理]後処理は、メッキ工程で付着し
た金属塩やその他不純物を除去するために行う。一般的
には、純水中に浸せきまたは純水噴霧するなどして洗浄
することにより除去を行う。ついで、全体を温風にて乾
燥させる。
[Post-treatment] The post-treatment is performed to remove metal salts and other impurities attached in the plating step. Generally, removal is performed by washing by immersing in pure water or spraying with pure water. Then, the whole is dried with warm air.

【0046】[0046]

【実施例】以下に本発明の実施例を具体的に説明する
が、本発明はこれに限定されるものではない。
The present invention will now be described in detail with reference to Examples, but it should not be construed that the present invention is limited thereto.

【0047】[実施例、比較例]Ar雰囲気の高周波溶解
により、Nd32wt%、B1.2wt%、Fe59.
8wt%、Co7wt%なる組成の鋳塊を作成した。こ
れをジョウクラッシャーで粗粉砕し、さらに窒素ガスを
用いたジェットミルで微粉砕して、平均粒径が3.5μ
mの微粉末を得た。そして、この微粉末を10kOe磁
界が印加された金型内に充填し、1.0t/cm2の圧
力で成形した。次いで、真空中1100℃×2時間焼結
し、さらに550℃で1時間、時効処理を施し、永久磁
石とした。
[Examples and Comparative Examples] Nd 32 wt%, B 1.2 wt%, Fe 59.
An ingot having a composition of 8% by weight and 7% by weight of Co was prepared. This was coarsely pulverized with a jaw crusher, and further finely pulverized with a jet mill using nitrogen gas to have an average particle size of 3.5 μm.
m was obtained. Then, this fine powder was filled in a mold to which a magnetic field of 10 kOe was applied, and molded at a pressure of 1.0 t / cm 2 . Next, sintering was performed at 1100 ° C. for 2 hours in a vacuum, and aging treatment was further performed at 550 ° C. for 1 hour to obtain a permanent magnet.

【0048】得られた永久磁石から、長さ20mm×幅
5mm×厚4mm寸法の磁石片を切り出し、次の各条件
に従いメッキを施した。実施例1では実質的に空孔のな
い皮膜厚み0.5μmの銅メッキ、空孔を有する皮膜厚
み5μmの銅メッキ、実質的に空孔のない皮膜厚み3μ
mのニッケルメッキを、実施例2では実質的に空孔のな
い皮膜厚み0.5μmの銅メッキ、空孔を有する皮膜厚
み6μmの銅メッキ、実施例3では実質的に空孔のない
皮膜厚み0.5μmの銅メッキ、空孔を有する皮膜厚み
5μmの銅メッキ、実質的に空孔のない皮膜厚み4μm
のニッケルリンメッキを施したものを作成した。
From the obtained permanent magnet, a magnet piece having a length of 20 mm × a width of 5 mm × a thickness of 4 mm was cut out and plated according to the following conditions. In Example 1, copper plating having a film thickness of 0.5 μm having substantially no pores, copper plating having a film thickness of 5 μm having pores, and a film thickness of 3 μm having substantially no pores
m, nickel plating having a film thickness of 0.5 μm with substantially no pores in Example 2, copper plating having a film thickness of 6 μm with pores in Example 2, and a film thickness having substantially no pores in Example 3. Copper plating of 0.5 μm, copper plating with a pore thickness of 5 μm, coating thickness of substantially void-free coating of 4 μm
A nickel-phosphorous-plated product was prepared.

【0049】また、比較例1では実質的に空孔のない皮
膜厚み9μmの無光沢ニッケルメッキを、比較例2では
実質的に空孔のない皮膜厚み4〜5μmの無光沢ニッケ
ルメッキと光沢ニッケルメッキを施した。
Further, in Comparative Example 1, a matte nickel plating having a coating thickness of 9 μm substantially having no pores was used, and in Comparative Example 2, a matte nickel plating having a coating thickness of 4 to 5 μm having substantially no pores was used. Plated.

【0050】これらの皮膜の断面を観察し、実施例・比
較例の皮膜の種類、厚さ、被膜中の空孔数を調べた結果
を表1に示した。
Table 1 shows the results obtained by observing the cross sections of these films and examining the types and thicknesses of the films and the number of pores in the films in Examples and Comparative Examples.

【0051】作成したサンプル各5ヶを電気炉にて35
0℃×30minに加熱保持したのち、約25℃の耐火
煉瓦上に直ちに放置することで熱衝撃テストを行った結
果と、150℃×24時間試験前後の磁気特性(bH
c)の低下率(%)を測定した熱劣化テスト結果と、湿
度100%、圧力0.2MPa、120℃×48時間に
おける被膜密着性テスト結果、および温度80℃、湿度
90%での環境試験による耐食性テスト結果のそれぞれ
をまとめて表2に、実施例2のサンプルの断面写真を図
1に示す。
Each of the five samples thus prepared was placed in an electric furnace for 35 times.
After being heated and maintained at 0 ° C. × 30 min, it was immediately left on a refractory brick at about 25 ° C. to perform a thermal shock test.
c) A thermal degradation test result obtained by measuring a decrease rate (%), a film adhesion test result at a humidity of 100%, a pressure of 0.2 MPa, 120 ° C. for 48 hours, and an environmental test at a temperature of 80 ° C. and a humidity of 90% Table 2 collectively shows the results of the corrosion resistance test according to Example 1, and a cross-sectional photograph of the sample of Example 2 is shown in FIG.

【0052】なお、以下に各例の前処理、メッキ処理、
後処理の方法を示す。
The pretreatment, plating,
The method of post-processing is shown.

【0053】 [実施例1] 錆落とし :遠心バレル研磨 10分 アルカリ脱脂:水酸化ナトリウム 30g/l 炭酸ナトリウム 20g/l オルソケイ酸ナトリウム 50g/l 界面活性剤 2g/l 浴温度 40℃ 浸せき時間 10min 不活性物除去:硝酸 3wt% 浴温度 40℃ 浸せき時間 1min 活性化 :ピロ燐酸カリウム 10wt% 浴温度 40℃ 浸せき時間 1min メッキ1 :ピロ燐酸銅3水塩 30g/l ピロ燐酸カリウム 280g/l クエン酸カリウム1水塩 30g/l アンモニア 0.5ml/l pH 10〜11 P比 15 浴温度 40℃ 電流密度 0.7A/dm2 攪拌 エア攪拌 メッキ2 :ピロ燐酸銅3水塩 60g/l ピロ燐酸カリウム 210g/l クエン酸カリウム1水塩 40g/l アンモニア 1ml/l 浴温度 40℃ 撹拌 熱対流攪拌 電流密度 1.0A/dm2 メッキ3 :硫酸ニッケル6水塩 300g/l 塩化ニッケル6水塩 40g/l ホウ酸 40g/l pH 3〜4 温度 60℃ 電流密度 1.5A/dm2 撹拌 エア攪拌 後処理 :純水洗浄 1min 温度 35℃ 温風乾燥 10minExample 1 Rust removal: centrifugal barrel polishing 10 minutes Alkaline degreasing: sodium hydroxide 30 g / l sodium carbonate 20 g / l sodium orthosilicate 50 g / l surfactant 2 g / l bath temperature 40 ° C. immersion time 10 min Removal of active substance: nitric acid 3 wt% Bath temperature 40 ° C immersion time 1 min Activation: potassium pyrophosphate 10 wt% bath temperature 40 ° C immersion time 1 min Plating 1: copper pyrophosphate trihydrate 30 g / l potassium pyrophosphate 280 g / l potassium citrate Monohydrate 30 g / l Ammonia 0.5 ml / l pH 10-11 P ratio 15 Bath temperature 40 ° C. Current density 0.7 A / dm 2 stirring Air stirring Plating 2: Copper pyrophosphate trihydrate 60 g / l potassium pyrophosphate 210 g / L Potassium citrate monohydrate 40g / l Ammonia 1ml / l Bath temperature 40 ° C. Stirring Heat convection stirring Current density 1.0 A / dm 2 Plating 3: Nickel sulfate hexahydrate 300 g / l Nickel chloride hexahydrate 40 g / l Boric acid 40 g / l pH 3-4 Temperature 60 ° C. Current density 1.5 A / Dm 2 stirring Air stirring Post-treatment: pure water washing 1 min Temperature 35 ° C. Hot air drying 10 min

【0054】 [実施例2] 錆落とし :遠心バレル研磨 10分 アルカリ脱脂:水酸化ナトリウム 30g/l 炭酸ナトリウム 20g/l オルソケイ酸ナトリウム 50g/l 界面活性剤 2g/l 浴温度 40℃ 浸せき時間 10min 不活性物除去:硝酸 3wt% 浴温度 40℃ 浸せき時間 1min 活性化 :ピロ燐酸ナトリウム 10wt% 浴温度 40℃ 浸せき時間 1min メッキ1 :ピロ燐酸銅3水塩 30g/l ピロ燐酸カリウム 300g/l クエン酸カリウム1水塩 30g/l アンモニア 0.5ml/l pH 10〜11 P比 16 浴温度 40℃ 攪拌 エア撹拌 電流密度 0.7A/dm2 メッキ2 :ピロ燐酸銅3水塩 60g/l ピロ燐酸カリウム 210g/l クエン酸カリウム1水塩 40g/l アンモニア 1ml/l 浴温度 40℃ 電流密度 1.0A/dm2 攪拌 熱対流攪拌 後処理 :純水洗浄 1min 温度 35℃ 温風乾燥 10minExample 2 Rust removal: centrifugal barrel polishing 10 minutes Alkaline degreasing: sodium hydroxide 30 g / l sodium carbonate 20 g / l sodium orthosilicate 50 g / l surfactant 2 g / l bath temperature 40 ° C. immersion time 10 min Removal of active substances: nitric acid 3 wt% bath temperature 40 ° C. immersion time 1 min activation: sodium pyrophosphate 10 wt% bath temperature 40 ° C. immersion time 1 min Plating 1: copper pyrophosphate trihydrate 30 g / l potassium pyrophosphate 300 g / l potassium citrate Monohydrate 30 g / l Ammonia 0.5 ml / l pH 10-11 P ratio 16 Bath temperature 40 ° C. Stirring Air stirring Current density 0.7 A / dm 2 Plating 2: Copper pyrophosphate trihydrate 60 g / l Potassium pyrophosphate 210 g / L Potassium citrate monohydrate 40g / l Ammonia 1ml / l Temperature 40 ° C. Current density 1.0A / dm 2 stirred convection stirring Workup: pure water cleaning 1min temperature 35 ° C. hot air drying 10min

【0055】 [実施例3] 錆落とし :遠心バレル研磨 10分 アルカリ脱脂:水酸化ナトリウム 30g/l 炭酸ナトリウム 20g/l オルソケイ酸ナトリウム 50g/l 界面活性剤 2g/l 浴温度 40℃ 浸せき時間 10min 不活性物除去:硝酸 3wt% 浴温度 40℃ 浸せき時間 1min 活性化 :ピロ燐酸ナトリウム 10wt% 浴温度 40℃ 浸せき時間 1min メッキ1 :ピロ燐酸銅3水塩 25g/l ピロ燐酸カリウム 300g/l クエン酸カリウム1水塩 30g/l アンモニア 0.5ml/l pH 10〜11 P比 19 浴温度 40℃ 電流密度 0.7A/dm2 攪拌 エア攪拌 メッキ2 :ピロ燐酸銅3水塩 70g/l ピロ燐酸カリウム 320g/l クエン酸カリウム1水塩 60g/l アンモニア 1ml/l 浴温度 40℃ 撹拌 熱対流攪拌 電流密度 1.0A/dm2 メッキ3 :硫酸ニッケル6水塩 200g/l 塩化ニッケル6水塩 100g/l 亜燐酸 10g/l 燐酸 50g/l 温度 50℃ 電流密度 1.5A/dm2 攪拌 エア攪拌 後処理 :純水洗浄 1min 温度 35℃ 温風乾燥 10minExample 3 Rust removal: centrifugal barrel polishing 10 minutes Alkaline degreasing: sodium hydroxide 30 g / l sodium carbonate 20 g / l sodium orthosilicate 50 g / l surfactant 2 g / l bath temperature 40 ° C. immersion time 10 min Removal of active substances: nitric acid 3 wt% bath temperature 40 ° C. immersion time 1 min Activation: sodium pyrophosphate 10 wt% bath temperature 40 ° C. immersion time 1 min Plating 1: copper pyrophosphate trihydrate 25 g / l potassium pyrophosphate 300 g / l potassium citrate Monohydrate 30 g / l Ammonia 0.5 ml / l pH 10-11 P ratio 19 Bath temperature 40 ° C. Current density 0.7 A / dm 2 stirring Air stirring Plating 2: Copper pyrophosphate trihydrate 70 g / l Potassium pyrophosphate 320 g / L Potassium citrate monohydrate 60g / l Ammonia 1ml / l Temperature 40 ° C. stirred convection stirring current density 1.0A / dm 2 Plating 3: Nickel sulfate hexahydrate 200 g / l of nickel chloride hexahydrate 100 g / l phosphorous acid 10 g / l phosphate 50 g / l Temperature 50 ° C. Current density 1. 5A / dm 2 stirring Air stirring Post-treatment: pure water washing 1min Temperature 35 ° C Hot air drying 10min

【0056】 [比較例1] 錆落とし :遠心バレル研磨 10分 アルカリ脱脂:水酸化ナトリウム 30g/l 炭酸ナトリウム 20g/l オルソケイ酸ナトリウム 50g/l 界面活性剤 2g/l 浴温度 40℃ 浸せき時間 10min 不活性物除去:硝酸 3wt% 浴温度 40℃ 浸せき時間 1min メッキ :硫酸ニッケル6水塩 300g/l 塩化ニッケル6水塩 40g/l ホウ酸 40g/l 浴温度 50℃ pH 3〜4 電流密度 1.5A/dm2 攪拌 エア攪拌 後処理 :純水洗浄 1min 温度 35℃ 温風乾燥 10min[Comparative Example 1] Rust removal: centrifugal barrel polishing 10 minutes Alkaline degreasing: sodium hydroxide 30 g / l sodium carbonate 20 g / l sodium orthosilicate 50 g / l surfactant 2 g / l bath temperature 40 ° C. immersion time 10 min Removal of active substances: nitric acid 3 wt% bath temperature 40 ° C. immersion time 1 min Plating: nickel sulfate hexahydrate 300 g / l nickel chloride hexahydrate 40 g / l boric acid 40 g / l bath temperature 50 ° C. pH 3-4 current density 1.5 A / Dm 2 stirring Air stirring Post-treatment: pure water washing 1 min Temperature 35 ° C Hot air drying 10 min

【0057】 [比較例2] 錆落とし :遠心バレル研磨 10分 アルカリ脱脂:水酸化ナトリウム 30g/l 炭酸ナトリウム 20g/l オルソケイ酸ナトリウム 50g/l 界面活性剤 2g/l 浴温度 40℃ 浸せき時間 10min 不活性物除去:硝酸 3wt% 浴温度 40℃ 浸せき時間 1min メッキ1 :硫酸ニッケル6水塩 300g/l 塩化ニッケル6水塩 40g/l ホウ酸 40g/l pH 3〜4 浴温度 50℃ 電流密度 1.5A/dm2 攪拌 エア攪拌 メッキ2 :硫酸ニッケル6水塩 300g/l 塩化ニッケル6水塩 40g/l ホウ酸 40g/l 光沢剤 5ml/l 浴温度 50℃ 電流密度 1.5A/dm2 攪拌 エア攪拌 後処理 :純水洗浄 1min 温度 35℃ 温風乾燥 10min[Comparative Example 2] Rust removal: centrifugal barrel polishing 10 minutes Alkaline degreasing: sodium hydroxide 30 g / l sodium carbonate 20 g / l sodium orthosilicate 50 g / l surfactant 2 g / l bath temperature 40 ° C. immersion time 10 min Removal of active substances: nitric acid 3 wt% bath temperature 40 ° C. immersion time 1 min Plating 1: nickel sulfate hexahydrate 300 g / l nickel chloride hexahydrate 40 g / l boric acid 40 g / l pH 3-4 bath temperature 50 ° C. current density 1. 5 A / dm 2 stirring Air stirring Plating 2: Nickel sulfate hexahydrate 300 g / l Nickel chloride hexahydrate 40 g / l Boric acid 40 g / l Brightener 5 ml / l Bath temperature 50 ° C. Current density 1.5 A / dm 2 stirring Air Stirring Post-treatment: Pure water washing 1 min Temperature 35 ° C Hot air drying 10 min

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】[0060]

【発明の効果】本発明によるR−Fe−B系永久磁石お
よびその製造法は、永久磁石を極端な温度差のある環境
下でも応用可能とし、近年の省エネルギー化に貢献する
ものとして極めて有効なものである。
The R-Fe-B permanent magnet and the method of manufacturing the same according to the present invention make it possible to apply the permanent magnet even in an environment having an extreme temperature difference, and it is extremely effective as contributing to energy saving in recent years. Things.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の磁石の断面の顕微鏡写真である。FIG. 1 is a micrograph of a cross section of a magnet of an example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02K 15/03 H01F 1/04 H Fターム(参考) 4K023 AA19 BA12 CA09 4K024 AA03 AA09 AB02 AB03 AB12 AB19 BA02 BB14 CA02 GA16 5E040 AA04 BC01 BC08 CA01 HB14 NN05 5E062 AA06 CD04 CG07 5H622 AA03 CA02 DD02 QA02 QA08──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02K 15/03 H01F 1/04 HF term (Reference) 4K023 AA19 BA12 CA09 4K024 AA03 AA09 AB02 AB03 AB12 AB19 BA02 BB14 CA02 GA16 5E040 AA04 BC01 BC08 CA01 HB14 NN05 5E062 AA06 CD04 CG07 5H622 AA03 CA02 DD02 QA02 QA08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 金属皮膜を有するR−Fe−B(RはS
c、Yを含む希土類元素の少なくとも1種)系永久磁石
において、上記金属皮膜として、1層目に0.1〜1.
0μmの厚みを有する実質的に空孔のないメッキ金属皮
膜を被覆し、その上に断面の長径が0.1〜1.5μm
である空孔を内包する2層目のメッキ金属皮膜を被覆し
たことを特徴とするR−Fe−B系永久磁石。
An R—Fe—B having a metal film (R is S
c, at least one rare earth element containing Y) -based permanent magnet, wherein the metal film is 0.1 to 1..
A metal film having a thickness of 0 μm and having substantially no pores, and a major axis of a cross section of 0.1 to 1.5 μm
An R-Fe-B-based permanent magnet, characterized by being coated with a second plated metal film containing voids.
【請求項2】 R−Fe−B系永久磁石の2層目のメッ
キ金属皮膜上に、3層目の皮膜としてニッケルメッキ皮
膜、ニッケル合金メッキ皮膜、複合粒子が共析した複合
ニッケルメッキ皮膜のうち少なくとも一つを被覆したこ
とを特徴とする請求項1記載のR−Fe−B系永久磁
石。
2. A nickel plating film, a nickel alloy plating film, and a composite nickel plating film in which composite particles are eutectoid as a third film on the second plating metal film of the R—Fe—B permanent magnet. The R-Fe-B-based permanent magnet according to claim 1, wherein at least one of the permanent magnets is coated.
【請求項3】 1層目及び2層目のメッキ金属皮膜が、
それぞれピロ燐酸銅電気メッキにより形成された銅メッ
キ皮膜である請求項1又は2記載のR−Fe−B系永久
磁石。
3. The method according to claim 1, wherein the first and second plating metal films are
The R-Fe-B permanent magnet according to claim 1 or 2, wherein each of the R-Fe-B-based permanent magnets is a copper plating film formed by copper pyrophosphate electroplating.
【請求項4】 R−Fe−B(RはSc、Yを含む希土
類元素の少なくとも1種)系永久磁石の表面に0.1〜
1.0μmの厚みを有する実質的に空孔のない1層目の
メッキ金属皮膜を被覆し、その上に断面の長径が0.1
〜1.5μmである空孔を内包する2層目のメッキ金属
皮膜を被覆することを特徴とするR−Fe−B系永久磁
石の製造方法。
4. An R—Fe—B (R is at least one of rare earth elements including Sc and Y) -based permanent magnet
A first-layer plating metal film having a thickness of 1.0 μm and having substantially no voids is coated, and the major axis of the cross-section is 0.1 μm.
A method for producing an R-Fe-B-based permanent magnet, which comprises coating a second plated metal film containing pores of up to 1.5 [mu] m.
【請求項5】 2層目のメッキ金属皮膜上に、ニッケル
メッキ皮膜、ニッケル合金メッキ皮膜、複合粒子が共析
した複合ニッケルメッキ皮膜のうち少なくとも一つを被
覆することを特徴とする請求項4記載のR−Fe−B系
永久磁石の製造方法。
5. The plating metal film of the second layer is coated with at least one of a nickel plating film, a nickel alloy plating film, and a composite nickel plating film in which composite particles are eutectoid. A method for producing the R-Fe-B-based permanent magnet described in the above.
【請求項6】 上記1層目のメッキ金属皮膜の形成を、
ピロ燐酸カリウムまたはピロ燐酸ナトリウムを1〜10
wt%含む水溶液を用いたメッキ前処理を行い、つい
で、ピロ燐酸カリウムまたはピロ燐酸ナトリウムが20
0〜300g/l、ピロ燐酸銅が10〜30g/l、ク
エン酸カリウムまたはクエン酸ナトリウムが10〜30
g/l、アンモニアが0.1〜1ml/lである水溶液
を用いて電気銅メッキを施すことにより行うことを特徴
とする請求項4又は5に記載のR−Fe−B系永久磁石
の製造方法。
6. The formation of the first-layer plated metal film,
1 to 10 potassium pyrophosphate or sodium pyrophosphate
A plating pretreatment using an aqueous solution containing 20% by weight is performed.
0-300 g / l, copper pyrophosphate 10-30 g / l, potassium citrate or sodium citrate 10-30
The R-Fe-B-based permanent magnet according to claim 4 or 5, wherein the electroless copper plating is performed using an aqueous solution containing 0.1 to 1 ml / l of ammonia and 0.1 to 1 ml / l of ammonia. Method.
【請求項7】 上記2層目のメッキ金属皮膜の形成を、
ピロ燐酸カリウムまたはピロ燐酸ナトリウムが200〜
450g/l、ピロ燐酸銅が60〜100g/l、クエ
ン酸カリウムまたはクエン酸ナトリウムが40〜80g
/l、アンモニアが0.5〜5ml/lである水溶液を
用いて電気銅メッキを施すことにより行うことを特徴と
する請求項4、5又は6に記載のR−Fe−B系永久磁
石の製造方法。
7. The formation of the second plating metal film,
Potassium pyrophosphate or sodium pyrophosphate is 200 to
450 g / l, copper pyrophosphate 60-100 g / l, potassium citrate or sodium citrate 40-80 g
The R-Fe-B-based permanent magnet according to claim 4, 5 or 6, wherein the electroless copper plating is performed using an aqueous solution containing 0.5 to 5 ml / l of ammonia. Production method.
JP2000397920A 2000-12-27 2000-12-27 R-Fe-B permanent magnet and manufacturing method thereof Expired - Lifetime JP3796567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000397920A JP3796567B2 (en) 2000-12-27 2000-12-27 R-Fe-B permanent magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000397920A JP3796567B2 (en) 2000-12-27 2000-12-27 R-Fe-B permanent magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002198240A true JP2002198240A (en) 2002-07-12
JP3796567B2 JP3796567B2 (en) 2006-07-12

Family

ID=18862982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000397920A Expired - Lifetime JP3796567B2 (en) 2000-12-27 2000-12-27 R-Fe-B permanent magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3796567B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057216A1 (en) * 2004-11-25 2006-06-01 Honda Motor Co., Ltd. Process for producing permanent magnet for use in automotive ipm motor
JP2007273825A (en) * 2006-03-31 2007-10-18 Tdk Corp Rare-earth magnet
WO2008140054A1 (en) * 2007-05-09 2008-11-20 Hitachi Metals, Ltd. R-Fe-B SINTERED MAGNET PROVIDED ON ITS SURFACE WITH VAPOR DEPOSITION COATING OF ALUMINUM OR ITS ALLOY AND PROCESS FOR PRODUCING THE SAME

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057216A1 (en) * 2004-11-25 2006-06-01 Honda Motor Co., Ltd. Process for producing permanent magnet for use in automotive ipm motor
JP2007273825A (en) * 2006-03-31 2007-10-18 Tdk Corp Rare-earth magnet
JP4548378B2 (en) * 2006-03-31 2010-09-22 Tdk株式会社 Rare earth magnets
WO2008140054A1 (en) * 2007-05-09 2008-11-20 Hitachi Metals, Ltd. R-Fe-B SINTERED MAGNET PROVIDED ON ITS SURFACE WITH VAPOR DEPOSITION COATING OF ALUMINUM OR ITS ALLOY AND PROCESS FOR PRODUCING THE SAME
US8163106B2 (en) 2007-05-09 2012-04-24 Hitachi Metals, Ltd. R-Fe-B based sintered magnet having on the surface thereof vapor deposited film of aluminum or alloy thereof, and method for producing the same
JP5263153B2 (en) * 2007-05-09 2013-08-14 日立金属株式会社 R-Fe-B based sintered magnet having a deposited film of aluminum or its alloy on the surface and method for producing the same

Also Published As

Publication number Publication date
JP3796567B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
JP2520450B2 (en) Method for manufacturing corrosion resistant rare earth magnet
EP1467385A1 (en) Rare earth element sintered magnet and method for producing rare earth element sintered magnet
JP4241906B1 (en) Rare earth permanent magnet
KR100693902B1 (en) A double nickel plating method of a permanent magnet with Nd-Fe-B
JP3796567B2 (en) R-Fe-B permanent magnet and manufacturing method thereof
CN111101173A (en) Multilayer nickel plating and dehydrogenation process for neodymium iron boron permanent magnet material
JP4506965B2 (en) R-T-M-B rare earth permanent magnet and method for producing the same
JP7237108B2 (en) Corrosion resistant neodymium iron boron magnet, surface treatment method and use of hydroxyl compound
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP2968605B2 (en) Manufacturing method of permanent magnet
JPH09270310A (en) Rare earth permanent magnet
JP3724739B2 (en) Rare earth magnet manufacturing method
JP2003249405A (en) Rare-earth permanent magnet and surface treatment method thereof
JP2001257112A (en) Permanent magnet material
JPH04288804A (en) Permanent magnet and manufacture thereof
JP3935092B2 (en) R-TM-B permanent magnet
JPH03173104A (en) Manufacture of corrosion resistant rare earth magnet
JP4770556B2 (en) magnet
JP5708123B2 (en) Magnet member
JPH0756849B2 (en) Method for manufacturing corrosion resistant rare earth magnet
JP4591729B2 (en) Surface treatment method for RTB permanent magnet
JP4506964B2 (en) R-T-M-B rare earth permanent magnet and method for producing the same
JPH069168B2 (en) High corrosion resistance rare earth permanent magnet
JPH01223712A (en) Manufacture of corrosion-resistant permanent magnet
JPS62120003A (en) Permanent magnet with excellent corrosion resistance and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3796567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150428

Year of fee payment: 9

EXPY Cancellation because of completion of term