JP2002198069A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP2002198069A
JP2002198069A JP2000392177A JP2000392177A JP2002198069A JP 2002198069 A JP2002198069 A JP 2002198069A JP 2000392177 A JP2000392177 A JP 2000392177A JP 2000392177 A JP2000392177 A JP 2000392177A JP 2002198069 A JP2002198069 A JP 2002198069A
Authority
JP
Japan
Prior art keywords
gas
flow path
fuel cell
gas flow
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000392177A
Other languages
Japanese (ja)
Other versions
JP3972581B2 (en
Inventor
Takeshi Takahashi
剛 高橋
Toshiyuki Suzuki
稔幸 鈴木
Yasuyuki Asai
康之 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000392177A priority Critical patent/JP3972581B2/en
Publication of JP2002198069A publication Critical patent/JP2002198069A/en
Application granted granted Critical
Publication of JP3972581B2 publication Critical patent/JP3972581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell with improved drainage of condensed water at a gas flow path. SOLUTION: (1) With the fuel cell 10 with faces of a separator 18 directed upward and downward and equipped with gas flow passages 27, 28 for oxidized or fuel gas at a contact face of the separator with an electrode, drainage passes 30, 31 capable of draining water trapped in the gas flow passage out of the fuel cell are fitted at places other than a gas inlet and a gas outlet of the gas flow passages 27, 28. (2) The fuel cell is provided with a switching valve 32 at the drainage paths 30, 31. (3) The fuel cell is provided with a valve switching control device 33 which controls opening and closing of the valve 32 according to an operation state of the fuel cell. (4) The fuel cell is equipped with the drainage passes 30, 31 at that gas flow path in which gas flows upward from bottom out of the gas flow passages for oxidized gas or fuel gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池に関し、
とくに固体高分子電解質型燃料電池の生成水の排出を良
好にした燃料電池に関する。
TECHNICAL FIELD The present invention relates to a fuel cell,
In particular, the present invention relates to a fuel cell in which generated water of a solid polymer electrolyte fuel cell is discharged well.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は、イオン
交換膜からなる電解質膜とこの電解質膜の一面に配置さ
れた触媒層および拡散層からなる電極(アノード、燃料
極)および電解質膜の他面に配置された触媒層および拡
散層からなる電極(カソード、空気極)とからなる膜−
電極アッセンブリ(MEA:Membrane-Electrode Assem
bly )と、アノード、カソードに燃料ガス(水素)およ
び酸化ガス(酸素、通常は空気)を供給するための流体
通路を形成するセパレータとからセルを構成し、複数の
セルを積層してモジュールとし、モジュールを積層して
モジュール群を構成し、モジュール群のセル積層方向両
端に、ターミナル、インシュレータ、エンドプレートを
配置してスタックを構成し、スタックをセル積層体積層
方向に延びる締結部材(たとえば、テンションプレー
ト)にて締め付け、固定したものからなる。固体高分子
電解質型燃料電池では、アノード側では、水素を水素イ
オンと電子にする反応が行われ、水素イオンは電解質膜
中をカソード側に移動し、カソード側では酸素と水素イ
オンおよび電子(隣りのMEAのアノードで生成した電
子がセパレータを通してくる)から水を生成する反応が
行われる。 アノード側:H2 →2H+ +2e- カソード側:2H+ +2e- +(1/2)O2 →H2 O カソードでの水生成反応で出る熱とジュール熱とにより
セルの温度が上昇するので、セパレータ間には、各セル
毎にあるいは複数個のセル毎に、冷媒(通常は冷却水)
が流れる冷媒流路が形成されており、燃料電池を冷却し
ている。酸化ガスは、入口側で乾燥(ドライ)しやすく
途中で反応生成水で湿潤されていき出口側で湿潤過多
(フラッディング)を生じやすい。また、燃料ガスは、
電解質膜を通して酸化ガスの水分が拡散してくるので、
燃料ガス出口側が入口側より湿潤状態になる。燃料電池
で水素イオンが電解質膜中を移行して上記の発電反応が
円滑に行われるためには、電解質膜が適度の水分を含ん
でいなければならない。また、電解質膜の全域で正常な
発電反応が行われるには、セル面内方向に水分分布が均
一化されることが必要である。何となれば、水分分布が
偏って電解質膜が局部的に乾燥すると上記発電反応が得
られなくなるからであり、また反応による生成水によっ
て湿潤過多となると、生成・凝縮した水滴によって酸化
ガスのカソードへの酸素の供給が阻止されるからであ
る。特開2000−82482は、ガス流入孔からガス
流出孔までの気流によって、凝縮水が流出方向に排出さ
れ得る、サーペンタイン(蛇行)型のガス供給流路をも
つ固体高分子型燃料電池を開示している。
2. Description of the Related Art A polymer electrolyte fuel cell comprises an electrolyte membrane comprising an ion exchange membrane, electrodes (anode and fuel electrode) comprising a catalyst layer and a diffusion layer disposed on one side of the electrolyte membrane, and an electrolyte membrane. Membrane consisting of catalyst layer and diffusion layer electrodes (cathode, air electrode) arranged on the surface
Electrode assembly (MEA: Membrane-Electrode Assem
bly) and a separator that forms a fluid passage for supplying fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) to the anode and cathode, and a plurality of cells are stacked to form a module. A module is formed by stacking the modules, a terminal, an insulator, and an end plate are arranged at both ends of the module group in the cell stacking direction to form a stack, and a fastening member extending the stack in the cell stacking direction (for example, (Tension plate). In a solid polymer electrolyte fuel cell, on the anode side, a reaction is performed to convert hydrogen into hydrogen ions and electrons. The hydrogen ions move through the electrolyte membrane to the cathode side, and oxygen, hydrogen ions and electrons (neighboring atoms) move on the cathode side. (The electrons generated at the anode of the MEA pass through the separator) to produce water. Anode side: H 2 → 2H + + 2e Cathode side: 2H + + 2e + (1 /) O 2 → H 2 O The temperature of the cell rises due to the heat generated in the water production reaction at the cathode and the Joule heat. Between the separators, for each cell or for a plurality of cells, a coolant (usually cooling water)
Is formed to cool the fuel cell. The oxidizing gas is easily dried (dried) on the inlet side and wetted by the reaction product water on the way, and easily over-wet (flooding) on the outlet side. The fuel gas is
As the moisture of the oxidizing gas diffuses through the electrolyte membrane,
The fuel gas outlet side becomes wet from the inlet side. In order for hydrogen ions to move through the electrolyte membrane in the fuel cell and the above-described power generation reaction to be performed smoothly, the electrolyte membrane must contain an appropriate amount of water. Further, in order for a normal power generation reaction to take place over the entire area of the electrolyte membrane, it is necessary to make the water distribution uniform in the cell plane direction. This is because the power generation reaction cannot be obtained if the water distribution is biased and the electrolyte membrane is locally dried, and if the water produced by the reaction becomes excessively wet, the generated and condensed water droplets cause the oxidation gas to reach the cathode of the oxidizing gas. This is because the supply of oxygen is stopped. Japanese Patent Application Laid-Open No. 2000-82482 discloses a polymer electrolyte fuel cell having a serpentine (meandering) type gas supply flow path in which condensed water can be discharged in an outflow direction by an air flow from a gas inflow hole to a gas outflow hole. ing.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の従来燃
料電池では、ガス流路が長くなると、凝縮水が流出孔ま
で到達するのが難しくなる。特に流出孔まで凝縮水が自
重落下できるような傾斜が設けられていないガス流路を
もつセパレータでは、その排水性悪化が顕著になる。本
発明の目的は、ガス流路の凝縮水の排水性を改善した燃
料電池を提供することにある。
However, in the above-mentioned conventional fuel cell, it is difficult for condensed water to reach the outflow hole when the gas flow path is long. In particular, in a separator having a gas flow path that is not provided with an inclination such that condensed water can fall to its outflow hole under its own weight, the drainability of the separator becomes remarkable. An object of the present invention is to provide a fuel cell with improved drainage of condensed water in a gas passage.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明はつぎの通りである。 (1) セパレータ面を上下方向に向け、セパレータの
電極との接触面に酸化ガスあるいは燃料ガスのガス流路
を設けた燃料電池において、前記ガス流路のガス入口、
ガス出口以外の途中の位置に、ガス流路に溜まる水を燃
料電池外に排水可能な排水通路を開口させたことを特徴
とする燃料電池。 (2) 前記排水通路に開閉可能なバルブを設けた
(1)記載の燃料電池。 (3) 燃料電池の運転状態に応じて前記バルブを開閉
制御するバルブ開閉制御装置を設けた(2)記載の燃料
電池。 (4) 酸化ガスあるいは燃料ガスのガス流路のうちガ
スが下方から上方に流れるガス流路に前記排水通路を設
けた(1)記載の燃料電池。 (5) 酸化ガスあるいは燃料ガスのガス流路のうち一
方のガス流路ではガスが下方から上方に流れ、他方のガ
ス流路ではガスが上方から下方に流れ、前記ガスが下方
から上方に流れるガス流路に前記排水通路を設けた
(1)記載の燃料電池。 (6) ガス流路を上流から下流に向けて絞った請求項
1記載の燃料電池。 (7) 冷媒流路を有し、酸化ガス流路ではガスが下方
から上方に流れ、冷媒流路では冷媒が下方から上方に流
れる請求項1記載の燃料電池。
The present invention to achieve the above object is as follows. (1) In a fuel cell in which a separator surface is oriented vertically and a gas flow path for oxidizing gas or fuel gas is provided on a contact surface of a separator with an electrode, a gas inlet of the gas flow path;
A fuel cell, characterized in that a drain passage through which water remaining in a gas flow path can be drained out of the fuel cell is opened at an intermediate position other than the gas outlet. (2) The fuel cell according to (1), wherein an openable / closable valve is provided in the drain passage. (3) The fuel cell according to (2), further including a valve opening / closing control device that controls opening / closing of the valve according to an operation state of the fuel cell. (4) The fuel cell according to (1), wherein the drain passage is provided in a gas passage in which a gas flows upward from below from among gas passages of an oxidizing gas or a fuel gas. (5) In one of the gas flow paths of the oxidizing gas or the fuel gas, the gas flows upward from below, and in the other gas flow path, the gas flows downward from above, and the gas flows upward from below. The fuel cell according to (1), wherein the drain passage is provided in a gas passage. (6) The fuel cell according to claim 1, wherein the gas flow path is narrowed from upstream to downstream. (7) The fuel cell according to claim 1, further comprising a refrigerant flow path, wherein the gas flows upward from below in the oxidizing gas flow path, and the refrigerant flows upward from below in the refrigerant flow path.

【0005】上記(1)の燃料電池では、排水通路を設
けたので、排水通路を介して凝縮水を排出でき、排水性
を改善できる。また、セパレータ面を上下方向に向けた
ので、たとえガス流路内に水滴が生じても、重力でガス
流路を下方に流れ、セル面全域が水分により覆われるこ
とは起こらない。上記(2)の燃料電池では、排水通路
にバルブを設けたので、排水時以外はバルブを閉にして
おくことにより、ガスが排水通路を介して系外に排出さ
れることを防止でき、かつ排水時も系外に排出されるガ
ス量を制御でき、これらによって、ガス流路におけるガ
ス流速低下を最小限にすることができる。上記(3)の
燃料電池では、燃料電池の運転状態に応じてバルブを開
閉制御するバルブ開閉制御装置を設けたので、燃料電池
の運転状態に応じた最適な排水を行うことができる。上
記(4)の燃料電池では、下方から上方に流れるガス流
路に排水通路を設けたので、水に重力と反対方向にガス
流が作用してガス流路の途中に水がたまっても、排水通
路により効率よく排水することができる。また、重力と
ガス流が同じ方向に作用して効率よくガス出口から排水
できる流路には、排水通路を必ずしも設けなくてもよ
く、排水通路によるセル構造の複雑化を最小限にするこ
とができる。上記(5)の燃料電池では、上記(4)の
燃料電池において、酸化ガスと燃料ガスをMEAの表裏
で互いに対向させて流したので、上記(4)の作用に加
えて、アノード側とカソード側の反応面における湿度分
布が互いに逆分布となり、水分が、電解質膜を通して、
酸化ガス出口部近傍から燃料ガス入口部近傍に、さらに
燃料ガス出口部近傍から酸化ガス入口部近傍(酸化ガス
入口部近傍は最も乾きやすい部位である)に拡散、移行
し、セル内を水分が循環して、水分分布の均一化、フラ
ッディング防止(最も湿潤過多になる酸化ガス出口部近
傍のフラッディング防止)がはかられるという作用が得
られる。上記(6)の燃料電池では、ガス流路を上流側
から下流側に向けて絞ったので、ガス流速が速くなる、
または水生成反応におけるガス消費によるガス流速の低
減が抑制される。早められたガス流速によって、ガス流
路の途中にたまった水の、該水より下流側にある、ガス
出口または排水通路への排水性がよくなる。上記(7)
の燃料電池では、酸化ガス流路ではガスが下方から上方
に流れ、冷媒流路では冷媒が下方から上方に流れるの
で、最も乾きやすい酸化ガス流路入口近傍の温度を最も
下げることができ、酸化ガス流路入口近傍の飽和蒸気圧
を下げて乾きにくくすることができる。また、冷媒流路
内に気泡が生じても、浮力によって上方にある冷媒出口
へと向かうので、冷媒流路の気泡(ガス溜まり)による
ガスロックを防止することができる。冷媒を上から入れ
て下に流すとガス溜まりができた時にガスロックしうる
が、それを防止することができる。
[0005] In the fuel cell of the above (1), since a drain passage is provided, condensed water can be discharged through the drain passage, and drainage can be improved. In addition, since the separator surface is oriented in the vertical direction, even if water droplets are generated in the gas flow path, they flow down the gas flow path due to gravity, and the entire cell surface is not covered with moisture. In the fuel cell of the above (2), since the valve is provided in the drain passage, by closing the valve except when draining, gas can be prevented from being discharged out of the system through the drain passage, and The amount of gas discharged out of the system can also be controlled during drainage, thereby minimizing a decrease in gas flow velocity in the gas flow path. In the fuel cell of the above (3), since the valve opening / closing control device that controls the opening / closing of the valve according to the operation state of the fuel cell is provided, it is possible to perform optimal drainage according to the operation state of the fuel cell. In the fuel cell of the above (4), since the drain passage is provided in the gas flow path flowing upward from below, even if the gas flow acts on the water in the direction opposite to the gravity and water accumulates in the gas flow path, Drainage can be efficiently drained by the drainage passage. In addition, it is not always necessary to provide a drain passage in a flow path where gravity and gas flow act in the same direction to efficiently drain the gas from the gas outlet, and it is possible to minimize the complexity of the cell structure due to the drain passage. it can. In the fuel cell of the above (5), in the fuel cell of the above (4), the oxidizing gas and the fuel gas are flowed so as to face each other on the front and back of the MEA. Humidity distribution on the reaction surface on the side is opposite to that of the other, moisture is passed through the electrolyte membrane,
Diffusion and transfer from the vicinity of the oxidizing gas outlet to the vicinity of the fuel gas inlet, and further from the vicinity of the fuel gas outlet to the vicinity of the oxidizing gas inlet (the vicinity of the oxidizing gas inlet is the easiest to dry), and moisture in the cell is released. By circulating, it is possible to obtain an effect that uniformity of moisture distribution and prevention of flooding (prevention of flooding in the vicinity of an oxidizing gas outlet portion where the wetness is excessive) can be achieved. In the fuel cell of (6), the gas flow path is narrowed from the upstream side to the downstream side.
Alternatively, reduction in gas flow rate due to gas consumption in the water generation reaction is suppressed. The increased gas flow rate improves the drainage of the water accumulated in the gas flow path to the gas outlet or the drain passage downstream of the water. The above (7)
In the fuel cell described above, the gas flows upward from below in the oxidizing gas flow path, and the refrigerant flows upward from below in the refrigerant flow path. The saturated vapor pressure in the vicinity of the gas flow path inlet can be reduced to make it difficult to dry. Further, even if bubbles are generated in the coolant flow path, the bubbles are directed toward the upper coolant outlet by buoyancy, so that gas lock due to bubbles (gas pool) in the coolant flow path can be prevented. If a refrigerant is introduced from above and flows downward, gas lock may occur when gas accumulation occurs, but this can be prevented.

【0006】[0006]

【発明の実施の形態】以下に、本発明の燃料電池を図1
〜図6を参照して、説明する。図1〜図4は本発明の何
れの実施例にも適用可能であり、図5は本発明の実施例
1を示し、図6は本発明の実施例2を示す。本発明の全
実施例にわたって共通する部分には、本発明の全実施例
にわたって同じ符号を付してある。まず、本発明の全実
施例にわたって共通する部分または共通に適用可能な部
分を、図1〜図4を参照して説明する。本発明の燃料電
池は固体高分子電解質型燃料電池10である。本発明の
燃料電池10は、たとえば燃料電池自動車に搭載され
る。ただし、自動車以外に用いられてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A fuel cell according to the present invention is described below with reference to FIG.
This will be described with reference to FIGS. 1 to 4 are applicable to any of the embodiments of the present invention, FIG. 5 shows a first embodiment of the present invention, and FIG. 6 shows a second embodiment of the present invention. Portions common to all embodiments of the present invention are denoted by the same reference numerals throughout all embodiments of the present invention. First, common parts or commonly applicable parts throughout all embodiments of the present invention will be described with reference to FIGS. The fuel cell of the present invention is a solid polymer electrolyte fuel cell 10. The fuel cell 10 of the present invention is mounted on, for example, a fuel cell vehicle. However, it may be used other than a car.

【0007】固体高分子電解質型燃料電池10は、図
1、図2に示すように、イオン交換膜からなる電解質膜
11とこの電解質膜11の一面に配置された触媒層12
および拡散層13からなる電極14(アノード、燃料
極)および電解質膜11の他面に配置された触媒層15
および拡散層16からなる電極17(カソード、空気
極)とからなる膜−電極アッセンブリ(MEA:Membra
ne-Electrode Assembly )と、電極14、17に燃料ガ
ス(水素)および酸化ガス(酸素、通常は空気)を供給
するための反応ガス流路27(単に、ガス流路ともい
う)および燃料電池冷却用の冷媒(通常は冷却水)が流
れる冷媒流路26(冷却水流路ともいう)を形成するセ
パレータ18とを重ねてセルを形成し、該セルを複数積
層してモジュール19とし、モジュール19を積層して
モジュール群を構成し、モジュール19群のセル積層方
向(燃料電池積層方向)両端に、ターミナル20、イン
シュレータ21、エンドプレート22を配置してスタッ
ク23を構成し、スタック23を積層方向に締め付けス
タック23の外側で燃料電池積層体積層方向に延びる締
結部材24(たとえば、テンションプレート)とボルト
25で固定したものからなる。
As shown in FIGS. 1 and 2, a solid polymer electrolyte fuel cell 10 comprises an electrolyte membrane 11 composed of an ion exchange membrane and a catalyst layer 12 disposed on one surface of the electrolyte membrane 11.
And an electrode 14 (anode, fuel electrode) composed of a diffusion layer 13 and a catalyst layer 15 disposed on the other surface of the electrolyte membrane 11.
-Electrode assembly (MEA: Membra) composed of a diffusion layer 16 and an electrode 17 (cathode, air electrode)
ne-Electrode Assembly), a reaction gas flow path 27 (also simply referred to as a gas flow path) for supplying a fuel gas (hydrogen) and an oxidizing gas (oxygen, usually air) to the electrodes 14 and 17, and fuel cell cooling. And a separator 18 forming a coolant flow path 26 (also referred to as a cooling water flow path) through which a cooling medium (usually cooling water) flows. A cell is formed. A module group is formed by stacking, and a terminal 20, an insulator 21, and an end plate 22 are arranged at both ends of the module 19 group in the cell stacking direction (fuel cell stacking direction) to form a stack 23, and the stack 23 is stacked in the stacking direction. It is composed of a fastening member 24 (for example, a tension plate) extending in the stacking direction of the fuel cell stack outside the fastening stack 23 and fixed by bolts 25. .

【0008】燃料電池10は、セル積層方向を重力と垂
直方向にして、配置される。したがって、セル面、セパ
レータ面は鉛直方向(上下方向)に向けられている。冷
媒流路26はセル毎に、または複数のセル毎に、設けら
れる。たとえば、2つのセル毎に1つの冷媒流路26が
設けられる。冷媒流路26には冷媒、たとえば冷却水が
流れる。
The fuel cells 10 are arranged with the cell stacking direction perpendicular to gravity. Therefore, the cell surface and the separator surface are oriented in the vertical direction (vertical direction). The coolant passage 26 is provided for each cell or for each of a plurality of cells. For example, one coolant channel 26 is provided for every two cells. A coolant, for example, cooling water flows through the coolant channel 26.

【0009】セパレータ18は、燃料ガスと酸化ガス、
燃料ガスと冷却水、酸化ガスと冷却水、の何れかを区画
するとともに、隣り合うセルのアノードからカソードに
電子が流れる電気の通路を形成している。セパレータ1
8は、カーボン板に冷媒流路26やガス流路27を形成
したもの、または、導電性粒子を混入して導電性をもた
せた樹脂板に冷媒流路26やガス流路27、28を形成
したもの、または、冷媒流路26、ガス流路27、28
を形成する凹凸のある金属板またはそれを複数枚重ね合
わせたもの、の何れかからなる。各ガス流路27、28
は、図示例のように複数の突起により隔てられた2枚の
平板の間のスペース(格子状流路)であってもよいし、
互いに並行する複数のガス流路からなるガス流路群であ
ってもよい。ただし、排水性の点から格子状流路が望ま
しい。ガス流路27、28は、流路長、流速をかせぐた
めにたとえばサーペンタイン(蛇行)流路からなり、流
路の折り返し部を除き流路は水平かほぼ水平、または上
下方向に延び、隣接する流路は流路の折り返し部を除き
仕切壁29で仕切られていることが望ましい。
The separator 18 comprises a fuel gas and an oxidizing gas,
Either the fuel gas or the cooling water or the oxidizing gas and the cooling water is partitioned, and an electric passage for electrons to flow from the anode to the cathode of an adjacent cell is formed. Separator 1
Reference numeral 8 denotes a structure in which a refrigerant flow path 26 and a gas flow path 27 are formed in a carbon plate, or a method in which a refrigerant flow path 26 and gas flow paths 27 and 28 are formed in a resin plate having conductive particles mixed with conductive particles. Or a refrigerant passage 26, gas passages 27, 28
Is formed of a metal plate having unevenness or a plurality of stacked metal plates. Each gas flow path 27, 28
May be a space (lattice-like flow path) between two flat plates separated by a plurality of protrusions as in the illustrated example,
A gas flow path group including a plurality of gas flow paths parallel to each other may be used. However, a grid-like channel is desirable from the viewpoint of drainage. The gas flow paths 27 and 28 are formed of, for example, serpentine (meandering) flow paths in order to increase the flow path length and flow velocity. It is desirable that the path is partitioned by a partition wall 29 except for the folded portion of the flow path.

【0010】ガス流路27、28は、燃料ガスが流れる
燃料ガス流路27と酸化ガスが流れる酸化ガス流路28
とからなる。燃料ガス流路27はMEAの一側に、酸化
ガス流路28はMEAの他側に設けられる。したがっ
て、燃料ガス流路27と酸化ガス流路28とは、MEA
を挟んで、MEAの表裏に位置する。セルの燃料ガス流
路27は、燃料ガス流路27aと、燃料ガス流路27a
への燃料ガス入口27bと、燃料ガス流路27aからの
燃料ガス出口27cと、からなる。同様に、セルの酸化
ガス流路28は、酸化ガス流路28aと、酸化ガス流路
28aへの酸化ガス入口28bと、酸化ガス流路28a
からの酸化ガス出口28cと、からなる。
The gas passages 27 and 28 are composed of a fuel gas passage 27 through which fuel gas flows and an oxidizing gas passage 28 through which oxidizing gas flows.
Consists of The fuel gas channel 27 is provided on one side of the MEA, and the oxidizing gas channel 28 is provided on the other side of the MEA. Therefore, the fuel gas flow path 27 and the oxidizing gas flow path 28
Are located on the front and back of the MEA. The fuel gas passage 27 of the cell includes a fuel gas passage 27a and a fuel gas passage 27a.
, And a fuel gas outlet 27c from the fuel gas flow path 27a. Similarly, the oxidizing gas passage 28 of the cell includes an oxidizing gas passage 28a, an oxidizing gas inlet 28b to the oxidizing gas passage 28a, and an oxidizing gas passage 28a.
And an oxidizing gas outlet 28c.

【0011】ガス流路27のガス入口27b、ガス出口
27c以外の途中の位置に、ガス流路27aに溜まる水
を燃料電池10外に排出可能な排水通路30が開口され
ている。同様に、ガス流路28のガス入口28b、ガス
出口28c以外の途中の位置に、ガス流路28aに溜ま
る水を燃料電池10外に排出可能な排水通路31が開口
されている。排水通路30、31は、ガス流路27a、
28aから分岐して排水マニホールド30b、31bま
で延びる分岐流路30a、31a、セル積層方向に延び
て各セルの分岐流路30a、31aを集める排水マニホ
ールド30b、31b、および一端が排水マニホールド
30b、31bに接続し、他端が系外に接続または開放
する排水ホース30c、31cを有する。
A drain passage 30 is formed in the gas flow passage 27 at a position other than the gas inlet 27b and the gas outlet 27c so as to discharge water accumulated in the gas flow passage 27a to the outside of the fuel cell 10. Similarly, a drain passage 31 is formed at a position other than the gas inlet 28b and the gas outlet 28c of the gas passage 28 so as to discharge water accumulated in the gas passage 28a to the outside of the fuel cell 10. The drain passages 30 and 31 are provided with gas passages 27a,
Branch passages 30a, 31a branching from 28a and extending to drain manifolds 30b, 31b, drain manifolds 30b, 31b extending in the cell stacking direction to collect branch passages 30a, 31a of each cell, and drain manifolds 30b, 31b at one end. And drain hoses 30c and 31c whose other ends are connected or opened outside the system.

【0012】排水通路30、31には、たとえば排水ホ
ース30c、31cには、排水通路30、31を開閉可
能なバルブ32が設けられており、あるタイミングでバ
ルブ32が開放されることにより、排水(ガスと共の排
水)が実施される。排水通路30、31は互いに独立で
あるが、バルブ32より系外側は共通でもよい。バルブ
32より系外側で排水ホース30c、31cを共通とす
る場合は排水通路30、31のバルブ32は、水素とエ
アまたは酸素との混じりを防止するために、時間をずら
して開とするようにする。
In the drain passages 30, 31, for example, drain valves 30c, 31c are provided with a valve 32 capable of opening and closing the drain passages 30, 31. When the valve 32 is opened at a certain timing, the drain 32 is opened. (Drainage with gas) will be implemented. The drain passages 30 and 31 are independent of each other, but may be common outside the system from the valve 32. When the drainage hoses 30c and 31c are common to the outside of the system from the valve 32, the valves 32 of the drainage passages 30 and 31 should be opened at different times in order to prevent mixing of hydrogen and air or oxygen. I do.

【0013】燃料電池10の運転状態に応じてバルブ3
2を開閉制御するバルブ開閉制御装置33が設けられて
いる。バルブ開閉制御装置33は、たとえばECU(El
ectronic Control Unit)からなる。ECUは、時間(た
とえば、一定時間毎に抜く)、燃料電池の運転条件、負
荷(負荷が小さければ間隔を長くする)、湿度(湿度大
だと水抜きのタイミングを早める)、圧力(圧力が低い
方が流速が速いので水を抜きやすいので、水抜きのタイ
ミングは長くてもよい)、温度(セル温度が低いと凝縮
しやすいので、バルブ32の開タイミングを早める)、
等により、予め設定されたマップ、もしくはこれらのデ
ータより水量を算出し、適正なタイミングでバルブ32
を開き、セパレータ面内の水を系外に排水する。バルブ
32開によりガスも排出されるので、一瞬ガス流路2
7、28の流速が増し、それによってもガス流路27、
28内の反応生成水が排出され、電極へのガスの供給が
改善され、燃料電池10の性能が改善される。
The valve 3 according to the operating state of the fuel cell 10
2 is provided with a valve opening / closing control device 33 for controlling the opening / closing of the valve 2. The valve opening / closing control device 33 includes, for example, an ECU (El
ectronic Control Unit). The ECU determines the time (for example, at regular intervals), the operating conditions of the fuel cell, the load (longer the interval if the load is smaller), the humidity (the higher the humidity, the faster the drainage timing), and the pressure (the pressure The lower the flow rate is, the faster the flow rate is, so that water can be easily drained, so the draining timing may be long.)
The amount of water is calculated from a map set in advance or these data, and the valve 32 is set at an appropriate timing.
And drain the water in the separator surface out of the system. Since gas is also discharged by opening the valve 32, the gas flow path 2
7, 28, which also increases the gas flow path 27,
The reaction water in 28 is discharged, the gas supply to the electrodes is improved, and the performance of the fuel cell 10 is improved.

【0014】排水通路30、31は、燃料ガス流路27
あるいは酸化ガス流路28のうちガスが下方から上方に
流れるガス流路(ガス入口がガス出口より下にあるガス
流路)に設けられる。ただし、排水通路30、31は、
ガスが上方から下方に流れるガス流路にも設けられても
よい。たとえば、酸化ガスあるいは燃料ガスのガス流路
27、28のうち一方のガス流路ではガスが下方から上
方に流れ、他方のガス流路ではガスが上方から下方に流
れる場合、排水通路30、31はガスが下方から上方に
流れるガス流路(ガス入口がガス出口より下にあるガス
流路)に設けられる。
The drain passages 30 and 31 are provided in the fuel gas passage 27.
Alternatively, the oxidizing gas flow path 28 is provided in a gas flow path in which gas flows upward from below (a gas flow path in which a gas inlet is lower than a gas outlet). However, the drain passages 30 and 31
A gas flow path in which gas flows downward from above may also be provided. For example, in a case where gas flows upward from below in one of the gas passages 27 and 28 of the oxidizing gas or the fuel gas, and when gas flows downward from above in the other gas passage, the drain passages 30 and 31 Is provided in a gas flow path in which gas flows upward from below (a gas flow path in which a gas inlet is lower than a gas outlet).

【0015】燃料ガス流路27あるいは酸化ガス流路2
8も上流から下流に向けて絞られている。反応生成水の
生成につれて燃料ガスおよび酸化ガスが消費されるの
で、ガス流路では下流側にいくにしたがってガス流速が
遅くなろうとするので、ガス流速の低下を少なくするか
または逆にガス流速を増すように、ガス流路27、28
の通路断面積が下流側に向けて徐々にまたは段階的に絞
られている。この通路断面積の絞りは、ガス流路27の
幅、または深さを下流側に向けて徐々にまたは段階的に
小にすることによって得られる。
The fuel gas passage 27 or the oxidizing gas passage 2
8 is also narrowed from upstream to downstream. Since the fuel gas and the oxidizing gas are consumed as the reaction product water is generated, the gas flow rate tends to be slower toward the downstream side in the gas flow path. The gas flow paths 27, 28
Is gradually or gradually narrowed toward the downstream side. This restriction of the passage cross-sectional area is obtained by gradually or stepwise reducing the width or depth of the gas flow path 27 toward the downstream side.

【0016】冷媒流路26のガスロック(冷媒流路26
で生じたまたは混入したガスにより流路が閉塞されて冷
媒が流れなくなる現象)を防止するに、冷媒流路26で
ガスが浮力により浮上する時に冷媒の流れがそれを妨げ
ないように、冷媒流路26では、冷媒が下から上に流さ
れる(冷媒入口が冷媒出口より下にある)ことが望まし
い。ただし、冷媒は上から下に流されてもよい。冷媒が
下から上に流される場合、酸化ガスも下から上に流され
ることが望ましい。そうすることによって、酸化ガス入
口と冷媒入口を対応させることができ、最も乾きやすい
酸化ガス入口を低温の冷媒で冷却することができ、酸化
ガス入口近傍の飽和蒸気圧を下げてその近傍の電解質膜
のドライアップを抑制することができる。ただし、冷媒
の流れ方向と酸化ガスの流れ方向を対向させてもよい。
The gas lock of the refrigerant passage 26 (the refrigerant passage 26
(A phenomenon in which the flow path is blocked by the gas generated or mixed in the flow path and the refrigerant stops flowing), so that the flow of the refrigerant does not hinder the flow of the refrigerant in the refrigerant flow path 26 when the gas floats by buoyancy. In the passage 26, it is desirable that the refrigerant flows upward from below (the refrigerant inlet is below the refrigerant outlet). However, the refrigerant may be flowed from top to bottom. When the refrigerant is flowed from bottom to top, it is desirable that the oxidizing gas is also flowed from bottom to top. By doing so, the oxidizing gas inlet and the refrigerant inlet can be made to correspond, the oxidizing gas inlet which is the easiest to dry can be cooled by a low-temperature refrigerant, the saturated vapor pressure near the oxidizing gas inlet is lowered, and the electrolyte near the oxidizing gas inlet is lowered. Dry-up of the film can be suppressed. However, the flow direction of the refrigerant and the flow direction of the oxidizing gas may be opposed.

【0017】燃料ガスと酸化ガスの流れ方向は互いに対
向することが望ましい。すなわち、アノード側とカソー
ド側の反応面における湿度分布が互いに逆分布となるよ
うに、燃料ガスの供給口27b、排出口27c、および
ガス流路27aおよび酸化ガスの供給口28b、排出口
28c、およびガス流路28aが配置されている。ま
た、セルの燃料ガス流路27aと酸化ガス流路28aと
は、互いに平行である。そして、セルの燃料ガス流路2
7aの上流側(燃料ガス流路27aの中間点より燃料ガ
ス流れ方向上流側)と酸化ガス流路28aの下流側(酸
化ガス流路28aの中間点より酸化ガス流れ方向下流
側)とが対応させて設けられ、セルの燃料ガス流路27
aの下流側(燃料ガス流路27aの中間点より燃料ガス
流れ方向下流側)と酸化ガス流路28aの上流側(酸化
ガス流路28aの中間点より酸化ガス流れ方向上流側)
とが対応させて設けられる。
It is desirable that the flow directions of the fuel gas and the oxidizing gas face each other. That is, the fuel gas supply port 27b, the discharge port 27c, the gas flow path 27a and the oxidizing gas supply port 28b, the discharge port 28c, so that the humidity distributions on the reaction surfaces on the anode side and the cathode side are opposite to each other. And a gas passage 28a. The fuel gas flow path 27a and the oxidizing gas flow path 28a of the cell are parallel to each other. Then, the fuel gas flow path 2 of the cell
The upstream side of 7a (upstream in the fuel gas flow direction from the intermediate point of the fuel gas flow path 27a) corresponds to the downstream side of the oxidizing gas flow path 28a (downstream in the oxidizing gas flow direction from the intermediate point of the oxidizing gas flow path 28a). And the fuel gas flow path 27 of the cell.
a (downstream of the middle point of the fuel gas flow path 27a in the fuel gas flow direction) and upstream of the oxidizing gas flow path 28a (upstream of the middle point of the oxidizing gas flow path 28a in the oxidizing gas flow direction).
Are provided correspondingly.

【0018】本発明の全実施例に共通または適用可能な
上記構成の作用を説明する。排水通路30、31を設け
たので、あるタイミングでバルブ32を開にして、排水
通路30、31を介してガス流路27、28の途中の凝
縮水を系外に排出でき、排水性を改善できる。これによ
って、燃料電池10の出力性能のよい連続運転が可能に
なる。また、セパレータ面を上下方向に向けたので、た
とえガス流路内に水滴が生じても、重力でガス流路を下
方に流れ、排出性がよく、セル面が水平配置される場合
に起こり得るセル面全域が水分により覆われる事態は起
こらない。
The operation of the above configuration which is common or applicable to all embodiments of the present invention will be described. Since the drain passages 30 and 31 are provided, the valve 32 is opened at a certain timing, and condensed water in the gas passages 27 and 28 can be discharged to the outside of the system through the drain passages 30 and 31 to improve drainage. it can. Thus, continuous operation with good output performance of the fuel cell 10 becomes possible. In addition, since the separator surface is oriented in the vertical direction, even if water droplets are generated in the gas flow path, it flows downward in the gas flow path by gravity, has good dischargeability, and may occur when the cell surface is horizontally arranged. A situation in which the entire cell surface is covered with moisture does not occur.

【0019】また、排水通路30、31にバルブ32を
設けたので、排水実行時以外はバルブ32を閉にしてお
くことにより、燃料ガス、酸化ガスが排水通路を介して
系外に排出されることを防止でき、かつ排水時も系外に
排出されるガス量を制御でき、これらによって、ガス流
路27、28におけるガス流速低下を最小限にすること
ができる。バルブ32はバルブ開閉制御装置33により
燃料電池の運転状態に応じて開閉制御されるので、燃料
電池の運転状態に応じた最適な排水を行うことができ
る。
Further, since the valves 32 are provided in the drain passages 30 and 31, the fuel gas and the oxidizing gas are discharged out of the system through the drain passages by closing the valve 32 except when the drain is executed. This can be prevented, and the amount of gas discharged out of the system can be controlled even during drainage, so that a decrease in gas flow velocity in the gas flow paths 27 and 28 can be minimized. The opening and closing of the valve 32 is controlled by the valve opening / closing control device 33 in accordance with the operating state of the fuel cell, so that optimal drainage according to the operating state of the fuel cell can be performed.

【0020】ガスが下方から上方に流れるガス流路に排
水通路を設けた場合、ガス流路に生じた水には重力と反
対方向にガス流が作用するので、ガス流路の途中に水が
たまりやすくなるが、ガス流路の途中に水がたまって
も、排水通路30、31により効率よく排水することが
できる。また、重力とガス流が同じ方向に作用して効率
よくガス出口から排水できるガス流路には、排水通路を
必ずしも設けなくてもよく、排水通路を設けたことによ
るセル構造の複雑化(排水マニホールドをもうけなくて
はならないので、ガスマニホールドや冷媒マニホールド
を設けるスペースが制限され、構造が複雑化すること)
を最小限にすることができる。
When a drain passage is provided in a gas passage through which gas flows upward from below, gas generated in the gas passage acts on the water in a direction opposite to gravity, so that water flows in the gas passage. Although it is easy to collect, even if water accumulates in the middle of the gas flow path, the water can be efficiently drained through the drain passages 30 and 31. In addition, the gas flow path through which the gravity and the gas flow act in the same direction to efficiently drain the gas from the gas outlet does not necessarily need to be provided with a drain passage. Since a manifold must be provided, the space for installing the gas manifold and the refrigerant manifold is limited, and the structure becomes complicated.)
Can be minimized.

【0021】酸化ガスと燃料ガスをMEAの表裏で互い
に対向させて流した場合は、アノード側とカソード側の
反応面における湿度分布が互いに逆分布となり、水分
が、電解質膜11を通して、酸化ガス出口部近傍から燃
料ガス入口部近傍に、さらに燃料ガス出口部近傍から酸
化ガス入口部近傍(酸化ガス入口部近傍は最も乾きやす
い部位である)に拡散、移行し、セル内を水分が循環し
て、水分分布の均一化、フラッディング防止(最も湿潤
過多になる酸化ガス出口部近傍のフラッディング防止)
がはかられる。
When the oxidizing gas and the fuel gas flow on the front and back sides of the MEA so as to face each other, the humidity distributions on the reaction surfaces on the anode side and the cathode side become opposite to each other. From the vicinity of the fuel gas inlet to the vicinity of the fuel gas outlet, and further from the vicinity of the fuel gas outlet to the vicinity of the oxidizing gas inlet (the vicinity of the oxidizing gas inlet is the easiest to dry), and water circulates in the cell. , Uniformity of water distribution, prevention of flooding (prevention of flooding near the outlet of oxidizing gas, which is the most excessively wet)
Is peeled off.

【0022】また、ガス流路27、28が上流側から下
流側に向けて絞られているので、ガス流速が速くなる、
または水生成反応におけるガス消費によるガス流速の低
減が抑制される。早められたガス流速によって、ガス流
路27、28の途中にたまった水の、該水より下流側に
ある、ガス出口27c、28cまたは排水通路30、3
1への排水性がよくなり、湿潤過多、フラッディングが
防止される。
Further, since the gas flow paths 27 and 28 are constricted from the upstream side to the downstream side, the gas flow velocity becomes high.
Alternatively, reduction in gas flow rate due to gas consumption in the water generation reaction is suppressed. Due to the accelerated gas flow velocity, the water accumulated in the middle of the gas passages 27, 28, the gas outlets 27c, 28c or the drain passages 30, 3 downstream of the water.
Drainability to 1 is improved, and excessive wetting and flooding are prevented.

【0023】また、酸化ガス流路28で酸化ガスが下方
から上方に流れ、冷媒流路26で冷媒が下方から上方に
流れる場合は、最も乾きやすい酸化ガス流路入口近傍の
温度を最も下げることができ、酸化ガス流路入口近傍の
飽和蒸気圧を下げてその近傍の電解質膜11を乾きにく
くすることができる。また、冷媒流路26内に気泡が生
じても、浮力によって上方にある冷媒出口へと向かうの
で、冷媒流路の気泡(ガス溜まり)によるガスロックを
防止することができる。冷媒を上から入れて下に流すと
ガス溜まりができた時にガスロックしうるが、それを防
止することができる。
When the oxidizing gas flows upward from below in the oxidizing gas flow path 28 and the refrigerant flows upward from below in the refrigerant flow path 26, the temperature near the inlet of the oxidizing gas flow path, which is the easiest to dry, should be minimized. Thus, the saturated vapor pressure in the vicinity of the oxidizing gas flow path inlet can be lowered, and the electrolyte membrane 11 in the vicinity can be made harder to dry. Further, even if bubbles are generated in the coolant flow path 26, the bubbles are directed toward the upper coolant outlet by buoyancy, so that gas lock due to bubbles (gas pool) in the coolant flow path can be prevented. If a refrigerant is introduced from above and allowed to flow downward, gas can be locked when gas accumulation occurs, but this can be prevented.

【0024】つぎに、本発明の各実施例に特有な部分を
説明する。本発明の実施例1では、同じ方向からセパレ
ータ面を見た図5に示すように、燃料ガス(水素)は燃
料ガス流路27を上から下に流れ、酸化ガス(空気)は
酸化ガス流路28を下から上に流れ、冷媒(冷却水)は
冷媒流路26を下から上に流れる。燃料ガスと酸化ガス
は逆方向に流れ、酸化ガスと冷媒は同じ方向に流れる。
セパレータ面は重力方向にあり、ガス流路、冷媒流路は
サーペンタイン流路となっている。酸化ガス流路28に
は、ガス入口とガス出口との間の流路途中部分に排水通
路31が設けられている。この構成によって、反応生成
水が酸化ガス流路28に生じても、排水通路31を介し
て水を効率よく系外に排出することができる。また、燃
料ガスと酸化ガスの対向流によって、水分のセル内循環
が可能になり、効率よく、酸化ガス流路のフラッディン
グ防止、電解質膜のドライアップ防止をはかることがで
きる。また、酸化ガスと冷媒の同方向流および下から上
への流れによって、酸化ガス入口近傍の電解質膜のドラ
イアップ防止と冷媒のガスロックの防止をはかることが
できる。
Next, parts unique to each embodiment of the present invention will be described. In the first embodiment of the present invention, as shown in FIG. 5 when the separator surface is viewed from the same direction, the fuel gas (hydrogen) flows through the fuel gas flow path 27 from top to bottom, and the oxidizing gas (air) flows through the oxidizing gas flow. The refrigerant (cooling water) flows from the bottom to the top in the path 28, and flows from the bottom to the top in the refrigerant passage 26. The fuel gas and the oxidizing gas flow in opposite directions, and the oxidizing gas and the refrigerant flow in the same direction.
The separator surface is in the direction of gravity, and the gas flow path and the refrigerant flow path are serpentine flow paths. The oxidizing gas flow path 28 is provided with a drain passage 31 at an intermediate part of the flow path between the gas inlet and the gas outlet. With this configuration, even if the reaction product water is generated in the oxidizing gas flow path 28, the water can be efficiently discharged to the outside through the drain passage 31. In addition, the counter flow of the fuel gas and the oxidizing gas allows the water to circulate in the cell, thereby effectively preventing the flooding of the oxidizing gas flow path and the dry-up of the electrolyte membrane. In addition, the flow of the oxidizing gas and the refrigerant in the same direction and the flow from the bottom to the top can prevent dry-up of the electrolyte membrane near the oxidizing gas inlet and gas lock of the refrigerant.

【0025】本発明の実施例2では、同じ方向からセパ
レータ面を見た図6に示すように、燃料ガス(水素)は
燃料ガス流路27を下から上に流れ、酸化ガス(空気)
は酸化ガス流路28を上から下に流れ、冷媒(冷却水)
は冷媒流路26を下から上に流れる。燃料ガスと酸化ガ
スは逆方向に流れ、燃料ガスと冷媒は同じ方向に流れ
る。セパレータ面は重力方向にあり、ガス流路、冷媒流
路はサーペンタイン流路となっている。酸化ガス流路2
8と燃料ガス流路27の少なくとも一方には、ガス入口
とガス出口との間の流路途中部分に排水通路31が設け
られている。この構成によって、反応生成水が生じて
も、排水通路31を介して水を効率よく系外に排出する
ことができる。また、燃料ガスと酸化ガスの対向流によ
って、水分のセル内循環が可能になり、効率よく、酸化
ガス流路のフラッディング防止、電解質膜のドライアッ
プ防止をはかることができる。また、冷媒の下から上へ
の流れによって、冷媒のガスロックを防止することがで
きる。
In the second embodiment of the present invention, as shown in FIG. 6 when the separator surface is viewed from the same direction, the fuel gas (hydrogen) flows through the fuel gas flow path 27 from below to the oxidizing gas (air).
Flows through the oxidizing gas flow path 28 from above to below, and a refrigerant (cooling water)
Flows from the bottom to the top in the refrigerant channel 26. The fuel gas and the oxidizing gas flow in opposite directions, and the fuel gas and the refrigerant flow in the same direction. The separator surface is in the direction of gravity, and the gas flow path and the refrigerant flow path are serpentine flow paths. Oxidizing gas channel 2
In at least one of the fuel gas flow path 8 and the fuel gas flow path 27, a drain passage 31 is provided in a part of the flow path between the gas inlet and the gas outlet. With this configuration, even if the reaction water is generated, the water can be efficiently discharged out of the system through the drain passage 31. In addition, the counter flow of the fuel gas and the oxidizing gas allows the water to circulate in the cell, thereby effectively preventing the flooding of the oxidizing gas flow path and the dry-up of the electrolyte membrane. Further, the refrigerant is prevented from being locked by the upward flow of the refrigerant.

【0026】[0026]

【発明の効果】請求項1の燃料電池によれば、排水通路
を設けたので、ガス流路途中の凝縮水を排水通路を介し
て排出でき、ガス流路からの排水性を改善できる。ま
た、セパレータ面を上下方向に向けたので、たとえガス
流路内に水滴が生じても、重力でガス流路を下方に流
れ、セル面全域が水分により覆われることは起こらな
い。請求項2の燃料電池によれば、排水通路にバルブを
設けたので、排水時以外はバルブを閉にしておくことに
より、ガスが排水通路を介して系外に排出されることを
防止でき、かつ排水時も系外に排出されるガス量を制御
でき、これらによって、ガス流路におけるガス流速低下
を最小限にすることができる。請求項3の燃料電池によ
れば、燃料電池の運転状態に応じてバルブを開閉制御す
るバルブ開閉制御装置を設けたので、燃料電池の運転状
態に応じた最適な排水を行うことができる。請求項4の
燃料電池によれば、下方から上方に流れるガス流路に排
水通路を設けたので、水に重力と反対方向にガス流が作
用してガス流路の途中に水がたまっても、排水通路によ
り効率よく排水することができる。また、重力とガス流
が同じ方向に作用して効率よくガス出口から排水できる
流路には、排水通路を必ずしも設けなくてもよく、排水
通路によるセル構造の複雑化を最小限にすることができ
る。請求項5の燃料電池によれば、酸化ガスと燃料ガス
をMEAの表裏で互いに対向させて流したので、アノー
ド側とカソード側の反応面における湿度分布が互いに逆
分布となり、水分が、電解質膜を通して、酸化ガス出口
部近傍から燃料ガス入口部近傍に、さらに燃料ガス出口
部近傍から酸化ガス入口部近傍に拡散、移行し、セル内
を水分が循環して、水分分布の均一化、フラッディング
防止がはかられる。請求項6の燃料電池によれば、ガス
流路を上流側から下流側に向けて絞ったので、ガス流速
が速くなる、または水生成反応におけるガス消費による
ガス流速の低減が抑制される。早められたガス流速によ
って、ガス流路の途中にたまった水のガス出口または排
水通路への排水性がよくなる。請求項7の燃料電池によ
れば、酸化ガス流路ではガスが下方から上方に流れ、冷
媒流路では冷媒が下方から上方に流れるので、最も乾き
やすい酸化ガス流路入口近傍の温度を最も下げることが
でき、酸化ガス流路入口近傍の飽和蒸気圧を下げて乾き
にくくすることができる。また、冷媒流路内に気泡が生
じても、浮力によって上方にある冷媒出口へと向かうの
で、冷媒流路の気泡(ガス溜まり)によるガスロックを
防止することができる。
According to the fuel cell of the first aspect, since the drain passage is provided, the condensed water in the middle of the gas passage can be discharged through the drain passage, and the drainage from the gas passage can be improved. In addition, since the separator surface is oriented in the vertical direction, even if water droplets are generated in the gas flow path, they flow down the gas flow path due to gravity, and the entire cell surface is not covered with moisture. According to the fuel cell of the second aspect, since the valve is provided in the drain passage, by closing the valve except during drainage, gas can be prevented from being discharged out of the system through the drain passage, In addition, the amount of gas discharged to the outside of the system can be controlled even at the time of drainage, so that a decrease in gas flow velocity in the gas flow path can be minimized. According to the fuel cell of the third aspect, since the valve opening / closing control device for controlling the opening / closing of the valve according to the operation state of the fuel cell is provided, it is possible to perform the optimal drainage according to the operation state of the fuel cell. According to the fuel cell of the fourth aspect, since the drain passage is provided in the gas flow path flowing upward from below, even if the gas flow acts on the water in the direction opposite to the gravity, the water accumulates in the gas flow path. The drain can be efficiently drained by the drain passage. In addition, it is not always necessary to provide a drain passage in a flow path where gravity and the gas flow act in the same direction to efficiently drain the gas from the gas outlet, and it is possible to minimize the complexity of the cell structure due to the drain passage. it can. According to the fuel cell of the fifth aspect, since the oxidizing gas and the fuel gas flow on the front and back sides of the MEA so as to face each other, the humidity distributions on the reaction surfaces on the anode side and the cathode side are opposite to each other, and the water is removed from the electrolyte membrane. Through the oxidizing gas outlet to the fuel gas inlet, and from the fuel gas outlet to the oxidizing gas inlet, the water circulates in the cell, uniformizing the water distribution and preventing flooding. Is peeled off. According to the fuel cell of the sixth aspect, since the gas flow path is narrowed from the upstream side to the downstream side, the gas flow velocity is increased, or the reduction of the gas flow velocity due to gas consumption in the water production reaction is suppressed. The increased gas flow speed improves the drainage of water accumulated in the gas flow path to the gas outlet or drain passage. According to the fuel cell of the present invention, the gas flows upward from below in the oxidizing gas flow path, and the refrigerant flows upward from below in the refrigerant flow path. Thus, the saturated vapor pressure near the oxidizing gas flow path inlet can be reduced to make it difficult to dry. Further, even if bubbles are generated in the coolant flow path, the bubbles are directed toward the upper coolant outlet by buoyancy, so that gas lock due to bubbles (gas pool) in the coolant flow path can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池と排水システムの全体概略斜
視図である。
FIG. 1 is an overall schematic perspective view of a fuel cell and a drainage system according to the present invention.

【図2】本発明の燃料電池の全体概略図である。FIG. 2 is an overall schematic diagram of the fuel cell of the present invention.

【図3】本発明の燃料電池の一部拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view of the fuel cell of the present invention.

【図4】本発明の燃料電池のガス流路(たとえば、酸化
ガス流路)の正面図である。
FIG. 4 is a front view of a gas flow path (for example, an oxidizing gas flow path) of the fuel cell of the present invention.

【図5】本発明の実施例1の燃料電池の、燃料ガス流路
と酸化ガス流路と冷媒流路とをセル面をずらして示し
た、正面図である。
FIG. 5 is a front view of the fuel cell according to the first embodiment of the present invention, showing the fuel gas flow path, the oxidizing gas flow path, and the refrigerant flow path shifted from each other;

【図6】本発明の実施例2の燃料電池の、燃料ガス流路
と酸化ガス流路と冷媒流路とをセル面をずらして示し
た、正面図である。
FIG. 6 is a front view of a fuel cell according to a second embodiment of the present invention, showing a fuel gas flow path, an oxidizing gas flow path, and a refrigerant flow path with their cell surfaces shifted;

【符号の説明】[Explanation of symbols]

10 (固体高分子電解質型)燃料電池 11 電解質膜 12 触媒層 13 拡散層 14 電極(アノード、燃料極) 15 触媒層 16 拡散層 17 電極(カソード、空気極) 18 セパレータ 19 モジュール 20 ターミナル 21 インシュレータ 22 エンドプレート 23 スタック 24 テンションプレート 25 ボルト 26 冷媒流路 27 燃料ガス流路 27a 燃料ガス流路 27b 燃料ガス流路入口 27c 燃料ガス流路出口 28 酸化ガス流路 28a 酸化ガス流路 28b 酸化ガス流路入口 28c 酸化ガス流路出口 29 仕切壁 30、31 排水通路 32 バルブ 33 バルブ開閉制御装置 Reference Signs List 10 (Solid polymer electrolyte type) fuel cell 11 Electrolyte membrane 12 Catalyst layer 13 Diffusion layer 14 Electrode (anode, fuel electrode) 15 Catalyst layer 16 Diffusion layer 17 Electrode (cathode, air electrode) 18 Separator 19 Module 20 Terminal 21 Insulator 22 End plate 23 Stack 24 Tension plate 25 Bolt 26 Refrigerant flow path 27 Fuel gas flow path 27a Fuel gas flow path 27b Fuel gas flow path inlet 27c Fuel gas flow path exit 28 Oxidizing gas flow path 28a Oxidizing gas flow path 28b Oxidizing gas flow path Inlet 28c Oxidizing gas flow path outlet 29 Partition wall 30, 31 Drainage passage 32 Valve 33 Valve opening and closing control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅井 康之 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 5H026 AA06 CC03 CC08 CC10 HH03 5H027 AA06 CC06 MM03 MM08  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yasuyuki Asai 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F-term (reference) 5H026 AA06 CC03 CC08 CC10 HH03 5H027 AA06 CC06 MM03 MM08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 セパレータ面を上下方向に向け、セパレ
ータの電極との接触面に酸化ガスあるいは燃料ガスのガ
ス流路を設けた燃料電池において、前記ガス流路のガス
入口、ガス出口以外の途中の位置に、ガス流路に溜まる
水を燃料電池外に排出可能な排水通路を開口させたこと
を特徴とする燃料電池。
In a fuel cell in which a separator surface is oriented vertically and a gas flow path for an oxidizing gas or a fuel gas is provided on a contact surface of a separator with an electrode, a portion other than a gas inlet and a gas outlet of the gas flow passage is provided. A fuel cell, characterized in that a drain passage through which water accumulated in the gas flow path can be discharged to the outside of the fuel cell is opened at the position (1).
【請求項2】 前記排水通路に開閉可能なバルブを設け
た請求項1記載の燃料電池。
2. The fuel cell according to claim 1, wherein an openable / closable valve is provided in the drain passage.
【請求項3】 燃料電池の運転状態に応じて前記バルブ
を開閉制御するバルブ開閉制御装置を設けた請求項2記
載の燃料電池。
3. The fuel cell according to claim 2, further comprising a valve opening / closing control device that controls opening / closing of the valve according to an operation state of the fuel cell.
【請求項4】 酸化ガスあるいは燃料ガスのガス流路の
うちガスが下方から上方に流れるガス流路に前記排水通
路を設けた請求項1記載の燃料電池。
4. The fuel cell according to claim 1, wherein the drain passage is provided in a gas flow path in which a gas flows upward from below from among gas flow paths of an oxidizing gas or a fuel gas.
【請求項5】 酸化ガスあるいは燃料ガスのガス流路の
うち一方のガス流路ではガスが下方から上方に流れ、他
方のガス流路ではガスが上方から下方に流れ、前記ガス
が下方から上方に流れるガス流路に前記排水通路を設け
た請求項4記載の燃料電池。
5. A gas flow from one side of an oxidizing gas or fuel gas flow path from a lower side to an upper side, a gas flows from an upper side to a lower side in the other gas flow path, and the gas flows from a lower side to an upper side. 5. The fuel cell according to claim 4, wherein the drain passage is provided in a gas flow path flowing through the fuel cell.
【請求項6】 ガス流路を上流から下流に向けて絞った
請求項1記載の燃料電池。
6. The fuel cell according to claim 1, wherein the gas flow path is narrowed from upstream to downstream.
【請求項7】 冷媒流路を有し、酸化ガス流路ではガス
が下方から上方に流れ、冷媒流路では冷媒が下方から上
方に流れる請求項1記載の燃料電池。
7. The fuel cell according to claim 1, further comprising a refrigerant passage, wherein the gas flows upward from below in the oxidizing gas passage, and the refrigerant flows upward from below in the refrigerant passage.
JP2000392177A 2000-12-25 2000-12-25 Fuel cell Expired - Fee Related JP3972581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000392177A JP3972581B2 (en) 2000-12-25 2000-12-25 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000392177A JP3972581B2 (en) 2000-12-25 2000-12-25 Fuel cell

Publications (2)

Publication Number Publication Date
JP2002198069A true JP2002198069A (en) 2002-07-12
JP3972581B2 JP3972581B2 (en) 2007-09-05

Family

ID=18858206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000392177A Expired - Fee Related JP3972581B2 (en) 2000-12-25 2000-12-25 Fuel cell

Country Status (1)

Country Link
JP (1) JP3972581B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102718A1 (en) * 2003-05-16 2004-11-25 Toyota Jidosha Kabushiki Kaisha Control of operation of fuel cell system
JP2005149851A (en) * 2003-11-13 2005-06-09 Nissan Motor Co Ltd Solid polymer type fuel cell
JP2007073192A (en) * 2005-09-02 2007-03-22 Toyota Motor Corp Fuel cell and fuel cell system equipped with it
KR100778583B1 (en) 2005-12-09 2007-11-28 현대자동차주식회사 A common distribution device of fuel cell for vehicle
US7326486B2 (en) 2002-07-24 2008-02-05 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell
US7468217B2 (en) 2003-02-13 2008-12-23 Toyota Jidosha Kabushiki Kaisha Separator passage structure of fuel cell
JP2010245012A (en) * 2009-04-01 2010-10-28 Chung-Hsin Electric & Machinery Manufacturing Corp Fuel cell structure having composite electrode plate, and its composite electrode plate structure
US7838163B2 (en) 2004-11-16 2010-11-23 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2010272350A (en) * 2009-05-21 2010-12-02 Toyota Motor Corp Fuel cell and fuel cell system
DE112009002060T5 (en) 2008-08-27 2011-07-14 Toyota Jidosha Kabushiki Kaisha, Aichi-ken fuel cell
JP2017076536A (en) * 2015-10-15 2017-04-20 本田技研工業株式会社 Fuel battery stack
CN113224341A (en) * 2021-04-28 2021-08-06 上海空间电源研究所 Series flow channel bipolar plate and segmented drainage pile structure
KR20220052720A (en) * 2020-10-21 2022-04-28 한국에너지기술연구원 Electrolysis cell frame for reducing shunt currents

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326486B2 (en) 2002-07-24 2008-02-05 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell
US7468217B2 (en) 2003-02-13 2008-12-23 Toyota Jidosha Kabushiki Kaisha Separator passage structure of fuel cell
JP2004342473A (en) * 2003-05-16 2004-12-02 Toyota Motor Corp Operation control of fuel cell system
WO2004102718A1 (en) * 2003-05-16 2004-11-25 Toyota Jidosha Kabushiki Kaisha Control of operation of fuel cell system
US7943264B2 (en) 2003-05-16 2011-05-17 Toyota Jidosha Kabushiki Kaisha Operation control of a fuel cell system
JP4617661B2 (en) * 2003-11-13 2011-01-26 日産自動車株式会社 Fuel cell stack
JP2005149851A (en) * 2003-11-13 2005-06-09 Nissan Motor Co Ltd Solid polymer type fuel cell
US7838163B2 (en) 2004-11-16 2010-11-23 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2007073192A (en) * 2005-09-02 2007-03-22 Toyota Motor Corp Fuel cell and fuel cell system equipped with it
KR100778583B1 (en) 2005-12-09 2007-11-28 현대자동차주식회사 A common distribution device of fuel cell for vehicle
DE112009002060T5 (en) 2008-08-27 2011-07-14 Toyota Jidosha Kabushiki Kaisha, Aichi-ken fuel cell
US9450253B2 (en) 2008-08-27 2016-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2010245012A (en) * 2009-04-01 2010-10-28 Chung-Hsin Electric & Machinery Manufacturing Corp Fuel cell structure having composite electrode plate, and its composite electrode plate structure
JP2010272350A (en) * 2009-05-21 2010-12-02 Toyota Motor Corp Fuel cell and fuel cell system
JP2017076536A (en) * 2015-10-15 2017-04-20 本田技研工業株式会社 Fuel battery stack
KR20220052720A (en) * 2020-10-21 2022-04-28 한국에너지기술연구원 Electrolysis cell frame for reducing shunt currents
KR102411386B1 (en) * 2020-10-21 2022-06-21 한국에너지기술연구원 Electrolysis cell frame for reducing shunt currents
CN113224341A (en) * 2021-04-28 2021-08-06 上海空间电源研究所 Series flow channel bipolar plate and segmented drainage pile structure
CN113224341B (en) * 2021-04-28 2022-08-09 上海空间电源研究所 Series flow channel bipolar plate and segmented drainage pile structure

Also Published As

Publication number Publication date
JP3972581B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
US9761889B2 (en) Fuel cell flow field channel with partially closed end
RU2269842C2 (en) Fuel-cell module using solid polymeric electrolyte, fuel cell pile, and method for feeding chemically active gas to fuel cell
JP2002184428A (en) Fuel cell
JP4753599B2 (en) Fuel cell
US7691511B2 (en) Fuel cell having coolant flow field wall
JP3801096B2 (en) Fuel cell having a stack structure
KR100798451B1 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
US9608282B2 (en) Fuel cell having perforated flow field
US6794077B2 (en) Passive water management fuel cell
JP3972581B2 (en) Fuel cell
EP3331076B1 (en) Separator plate and fuel cell stack comprising same
JP5768882B2 (en) Fuel cell
JP5098128B2 (en) Fuel cell
JP5642172B2 (en) Operation method of fuel cell
KR100700073B1 (en) Fuel cell with drain structure of condensate
JP2000311696A (en) Fuel cell stack
JP4967199B2 (en) Fuel cell piping structure
JP2010129482A (en) Fuel cell separator, fuel cell stack, and fuel cell system
JP2004055481A (en) Separator for fuel cell
JP4507453B2 (en) Fuel cell manifold
KR100921568B1 (en) Fuel Cell Seperator Having Differential Channel Length of Cooling Passage and Fuel Cell Stack with the Same
JP2004055220A (en) Separator of fuel cell
JP4992180B2 (en) Fuel cell separator
JP4925078B2 (en) Polymer electrolyte fuel cell
JP2004139817A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees