JP2002193661A - Dielectric ceramic and dielectric resonator using the same - Google Patents

Dielectric ceramic and dielectric resonator using the same

Info

Publication number
JP2002193661A
JP2002193661A JP2000396308A JP2000396308A JP2002193661A JP 2002193661 A JP2002193661 A JP 2002193661A JP 2000396308 A JP2000396308 A JP 2000396308A JP 2000396308 A JP2000396308 A JP 2000396308A JP 2002193661 A JP2002193661 A JP 2002193661A
Authority
JP
Japan
Prior art keywords
dielectric
crystal
present
tio
dielectric porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000396308A
Other languages
Japanese (ja)
Other versions
JP4688289B2 (en
Inventor
Yoshihiro Okawa
善裕 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000396308A priority Critical patent/JP4688289B2/en
Publication of JP2002193661A publication Critical patent/JP2002193661A/en
Application granted granted Critical
Publication of JP4688289B2 publication Critical patent/JP4688289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a dielectric ceramic in which a high ε r and a high Q value, a temperature coefficient τ f of a resonance frequency is small and fracture toughness is large are obtained in a high frequency region. SOLUTION: The dielectric ceramic comprises an oxide including at least Nd, Al, Ca and Ti as a metal element and contains a crystal where a crystal structure is identified in at least one or more kinds among CaAl2O4, Nd2TiO6, Ca2Al2O6, Nd4Ti9O24 and Ca3Ti8Al12O37.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波、ミリ
波等の高周波領域において、高い比誘電率εr 、共振の
先鋭度Q値を有する誘電体磁器及び誘電体共振器に関
し、例えば前記高周波領域において使用される種々の共
振器用材料やMIC(Monolithic IC)用誘電体基板
材料、誘電体導波路用材料や積層型セラミックコンデン
サー等に使用される誘電体磁器及びこれを用いた誘電体
共振器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric porcelain and a dielectric resonator having a high relative dielectric constant .epsilon.r and a resonance sharpness Q value in a high frequency region such as a microwave and a millimeter wave. Dielectric materials used in various resonator materials, dielectric substrate materials for MIC (Monolithic IC), dielectric waveguide materials, multilayer ceramic capacitors, etc., and dielectric resonators using the same. .

【0002】[0002]

【従来の技術】誘電体磁器は、マイクロ波やミリ波等の
高周波領域において、誘電体共振器、MIC用誘電体基
板や導波路等に広く利用されている。その要求される特
性としては、(1)誘電体中では伝搬する電磁波の波長
が(1/εr)1/2に短縮されるので、小型化の要求に
対して比誘電率が大きいこと、(2)高周波領域での誘
電損失が小さいこと、すなわち高Qであること、(3)
共振周波数の温度に対する変化が小さいこと、即ち比誘
電率εrの温度依存性が小さく且つ安定であること、以
上の3特性が主として挙げられる。
2. Description of the Related Art Dielectric ceramics are widely used in dielectric resonators, MIC dielectric substrates, waveguides, and the like in high-frequency regions such as microwaves and millimeter waves. The required characteristics are: (1) Since the wavelength of an electromagnetic wave propagating in a dielectric is reduced to (1 / εr) 1/2 , the relative dielectric constant is large for the demand for miniaturization; 2) low dielectric loss in a high frequency region, that is, high Q; (3)
The three main characteristics are that the change of the resonance frequency with respect to the temperature is small, that is, the temperature dependence of the relative permittivity εr is small and stable.

【0003】この様な誘電体磁器として、例えば特開平
4−118807にはCaO−TiO2−Nb25−M
O(MはZn、Mg、Co、Mn等)系からなる誘電体
磁器が示されている。しかし、この誘電体磁器では、1
GHzに換算した時のQ値が1600〜25000程度
と低く、共振周波数の温度係数τfが215〜835p
pm/℃程度と大きいため、Q値を向上させ、かつτf
を小さくするという課題があった。
[0003] As such dielectric ceramics, for example, in JP-A 4-118807 CaO-TiO 2 -Nb 2 O 5 -M
A dielectric ceramic made of O (M is Zn, Mg, Co, Mn, etc.) is shown. However, in this dielectric porcelain, 1
The Q value when converted to GHz is as low as about 1600 to 25000, and the temperature coefficient τf of the resonance frequency is 215 to 835p
pm / ° C, so that the Q value can be improved and τf
There was a problem of reducing the size.

【0004】そこで、本出願人は、LnAlCaTi系
の誘電体磁器(特開平6−76633号公報参照、Ln
は稀土類元素)、LnAlSrCaTi系の誘電体磁器
(特開平11−278927号参照)およびLnAlC
aSrBaTi系の誘電体磁器(特開平11−1062
55号参照)を提案した。
Accordingly, the applicant of the present invention has proposed an LnAlCaTi-based dielectric porcelain (see Japanese Patent Application Laid-Open No. 6-76633,
Is a rare earth element), LnAlSrCaTi-based dielectric porcelain (see JP-A-11-278927) and LnAlC
aSrBaTi based dielectric porcelain (JP-A-11-1062)
No. 55).

【0005】[0005]

【発明が解決しようとする課題】LnAlCaTi系誘
電体磁器(特開平6−76633号公報参照、Lnは稀
土類元素)、LnAlSrCaTi系の誘電体磁器(特
開平11−278927号参照)、LnAlCaSrB
aTi系の誘電体磁器(特開平11−106255号参
照)では、比誘電率εrが30〜48でQ値が2000
0〜75000であり、これらの特性は実用的には大き
な問題なかった。
Problems to be Solved by the Invention LnAlCaTi-based dielectric porcelain (see JP-A-6-76633, Ln is a rare earth element), LnAlSrCaTi-based dielectric porcelain (see JP-A-11-278927), LnAlCaSrB
In an aTi-based dielectric porcelain (see Japanese Patent Application Laid-Open No. H11-106255), the relative dielectric constant εr is 30 to 48 and the Q value is 2000.
0 to 75000, and these characteristics were not a serious problem in practical use.

【0006】しかし、例えば携帯電話の基地局において
電波を送受信するために用いる大型の誘電体共振器に内
蔵される誘電体磁器は、欠けやクラックが発生すると誘
電体共振器の共振周波数が変化するため、基地局の電波
の送受信ができなくなるなど大きな問題が発生してい
る。このため、欠けやクラックが発生しにくい破壊靱性
の大きい誘電体磁器が求められている。
However, the dielectric frequency of a dielectric ceramic built in a large-sized dielectric resonator used for transmitting and receiving radio waves in a base station of a cellular phone, for example, changes the resonance frequency of the dielectric resonator when chipping or cracking occurs. As a result, a major problem has occurred such as the inability to transmit and receive radio waves from the base station. For this reason, a dielectric porcelain with high fracture toughness that is less likely to cause chipping or cracking is required.

【0007】本発明は、上記事情に鑑みて完成されたも
ので、その目的は比誘電率εrが30〜48の範囲にお
いてQ値30000以上と高く、共振周波数の温度によ
る変化率が小さい、すなわち共振周波数の温度係数τf
が小さく、かつ破壊靱性が大きい誘電体磁器及びこれを
用いた誘電体共振器を提供することである。
The present invention has been completed in view of the above circumstances, and has as its object a high relative Q value of 30,000 or more in the range of 30 to 48, and a small change rate of the resonance frequency due to temperature. Temperature coefficient of resonance frequency τ f
An object of the present invention is to provide a dielectric porcelain having a low fracture toughness and a high fracture toughness, and a dielectric resonator using the same.

【0008】[0008]

【課題を解決するための手段】本発明の誘電体磁器は、
金属元素として少なくともNd、Al、Ca及びTiを
含有する酸化物からなり、結晶構造がCaAl24、N
2TiO6、Ca2Al26、Nd4Ti924およびC
3Ti8Al1237のうち少なくとも1種以上の結晶を
含有することを特徴とする。
According to the present invention, there is provided a dielectric porcelain comprising:
It is composed of an oxide containing at least Nd, Al, Ca and Ti as metal elements, and has a crystal structure of CaAl 2 O 4 , N
d 2 TiO 6 , Ca 2 Al 2 O 6 , Nd 4 Ti 9 O 24 and C
It is characterized by containing at least one or more crystals of a 3 Ti 8 Al 12 O 37 .

【0009】また、金属元素としてMn、WおよびTa
のうち少なくとも1種を合計でMnO2、WO3およびT
25換算で0.01〜3重量%含有することを特徴と
する。
Further, Mn, W and Ta are used as metal elements.
At least one of MnO 2 , WO 3 and T
characterized in that it contains 0.01 to 3 wt% in a 2 O 5 basis.

【0010】また、前記誘電体磁器が、金属元素として
少なくともNd、Al、CaおよびTiを含有し、組成
式を aNd23・bAl23・cCaO・dTiO2 と表したときa、b、c、dが、 0.056≦a≦0.214 0.056≦b≦0.214 0.286≦c≦0.500 0.230<d<0.470 a+b+c+d=1 を満足することを特徴とする。
Further, the dielectric ceramic is at least Nd, Al, and containing Ca and Ti, a when a composition formula represented as aNd 2 O 3 · bAl 2 O 3 · cCaO · dTiO 2 as the metal element, b , C, d satisfy that 0.056 ≦ a ≦ 0.214 0.056 ≦ b ≦ 0.214 0.286 ≦ c ≦ 0.500 0.230 <d <0.470 a + b + c + d = 1 Features.

【0011】さらに、本発明の誘電体共振器は、一対の
入出力端子間に上記誘電体磁器を配置し、電磁界結合に
より作動する誘電体共振器を構成したものである。
Further, the dielectric resonator according to the present invention has the above-mentioned dielectric porcelain arranged between a pair of input / output terminals to constitute a dielectric resonator operated by electromagnetic field coupling.

【0012】[0012]

【作用】本発明の誘電体磁器では、金属元素として少な
くともNd、Al、Ca及びTiを含有する酸化物から
なり、結晶構造がCaAl24、Nd2TiO6、Ca2
Al26、Nd4Ti924およびCa3Ti8Al1237
のうち少なくとも1種以上の結晶を含有することにより
破壊靱性を大きくすることができる。
The dielectric ceramic according to the present invention comprises an oxide containing at least Nd, Al, Ca and Ti as metal elements, and has a crystal structure of CaAl 2 O 4 , Nd 2 TiO 6 , Ca 2
Al 2 O 6 , Nd 4 Ti 9 O 24 and Ca 3 Ti 8 Al 12 O 37
By containing at least one crystal among them, the fracture toughness can be increased.

【0013】また、金属元素としてMn、WおよびTa
のうち少なくとも1種を合計でMnO2、WO3およびT
25換算で合計0.01〜3重量%含有とすることに
より、さらにQ値を向上させることができる。
Further, Mn, W and Ta are used as metal elements.
At least one of MnO 2 , WO 3 and T
With total 0.01 to 3 wt% contained in a 2 O 5 in terms, it is possible to further enhance the Q value.

【0014】なお、本発明の誘電体磁器は、不定比組成
からなるチタン酸カルシウムを仮焼合成し、得られた仮
焼体AとCa、Ti、Nd、Alの酸化物または焼成に
より酸化物となりうる化合物のうち少なくとも1種とを
混合後造粒して造粒体Bを作製し、不定比組成からなる
アルミン酸ネオジムを仮焼合成し、得られた仮焼体Cと
Ca、Ti、Nd、Alの酸化物または焼成により酸化
物となりうる化合物のうち少なくとも1種とを混合後造
粒して造粒体Dを作製し、造粒体Bと造粒体Dとを混合
後、成形し、1500℃〜1650℃で2時間以上保持
して焼成する製造方法により、結晶構造がCaAl
24、Ca2Al26、Nd4Ti924およびCa3Ti
8Al1237のうち少なくとも1種以上で同定される結
晶を含有させ大きな破壊靱性を有する誘電体磁器を得る
ことができる。
The dielectric porcelain of the present invention is obtained by calcining and synthesizing calcium titanate having a non-stoichiometric composition, and calcining the obtained calcined body A with an oxide of Ca, Ti, Nd, Al or an oxide by firing. After mixing with at least one of the possible compounds, granulation is performed to produce a granulated body B, and neodymium aluminate having a non-stoichiometric composition is calcined and synthesized, and the obtained calcined body C and Ca, Ti, After mixing with at least one of oxides of Nd and Al or compounds that can be converted into oxides by firing, granulation is performed to produce granules D, and the granules B and D are mixed, and then molded. And, by a manufacturing method of firing at 1500 ° C. to 1650 ° C. for 2 hours or more, the crystal structure is CaAl.
2 O 4 , Ca 2 Al 2 O 6 , Nd 4 Ti 9 O 24 and Ca 3 Ti
8 Al 12 contain a crystal identified by at least one or more of O 37 can be obtained a dielectric ceramic having a large fracture toughness.

【0015】[0015]

【発明の実施の形態】本発明について以下に説明する。DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below.

【0016】本発明における誘電体磁器とは、未焼結体
を成形し、焼成して得られる焼結体のことを意味してい
る。そして、Q値を高くするためには、金属元素として
少なくともNd、Al、Ca及びTiを含有する酸化物
からなり、結晶構造がCaAl24、Nd2TiO6、C
2Al26、Nd4Ti924およびCa3Ti8Al1 2
37のうち少なくとも1種以上の結晶を含有している。
本発明の誘電体磁器の破壊靱性をさらに向上させるため
には、結晶構造がCaAl24、Nd2TiO6、Ca2
Al26、Nd4Ti924およびCa3Ti8Al1237
のうち少なくとも2種以上の結晶を含有することが望ま
しい。特に望ましくは、結晶構造がCaAl24、Nd
2TiO6、Ca2Al26、Nd4Ti924およびCa3
Ti8Al1237のうち少なくとも3種以上の結晶を含
有することにより破壊靱性を最も向上させることができ
る。
The dielectric porcelain in the present invention means a sintered body obtained by molding and firing a green body. In order to increase the Q value, it is made of an oxide containing at least Nd, Al, Ca and Ti as metal elements, and has a crystal structure of CaAl 2 O 4 , Nd 2 TiO 6 , C
a 2 Al 2 O 6, Nd 4 Ti 9 O 24 and Ca 3 Ti 8 Al 1 2
It contains at least one crystal of O 37 .
In order to further improve the fracture toughness of the dielectric porcelain of the present invention, the crystal structure should be CaAl 2 O 4 , Nd 2 TiO 6 , Ca 2
Al 2 O 6 , Nd 4 Ti 9 O 24 and Ca 3 Ti 8 Al 12 O 37
It is desirable to contain at least two or more of these crystals. Particularly preferably, the crystal structure is CaAl 2 O 4 , Nd
2 TiO 6 , Ca 2 Al 2 O 6 , Nd 4 Ti 9 O 24 and Ca 3
By including at least three or more crystals of Ti 8 Al 12 O 37, the fracture toughness can be most improved.

【0017】本発明の誘電体磁器において破壊靱性を大
きくすることができるのは、結晶構造がCaAl24
Nd2TiO6、Ca2Al26、Nd4Ti924および
Ca3Ti8Al1237のうち少なくとも1種以上の結晶
を含有させることによって液相焼結が促進され、焼結体
の結晶粒界強度が向上することにより破壊靱性が向上す
るためであると考えられる。
In the dielectric porcelain of the present invention, the fracture toughness can be increased because the crystal structure is CaAl 2 O 4 ,
Liquid phase sintering is promoted by containing at least one crystal of Nd 2 TiO 6 , Ca 2 Al 2 O 6 , Nd 4 Ti 9 O 24 and Ca 3 Ti 8 Al 12 O 37 , and the sintering is promoted. It is considered that the fracture toughness is improved by improving the crystal grain boundary strength of the body.

【0018】前記結晶を含有させると破壊靱性が向上す
るのは、以下のように考えられる。
The reason why the fracture toughness is improved when the crystal is contained is considered as follows.

【0019】本発明の誘電体磁器の主結晶相はペロブス
カイト型結晶構造からなるCaTiO3とNdAlO3
の固溶体である。本発明の誘電体磁器の破壊靱性を向上
させるためには焼結過程において前記固溶体からなる結
晶粒子に固溶しやすい液相が生成し、前記固溶体からな
る結晶粒子と液相とが強固に結合させる作用を有する結
晶の生成が必要である。該作用を有する結晶が本発明の
誘電体磁器に含有される結晶構造がCaAl24、Nd
2TiO6、Ca2Al26、Nd4Ti924およびCa3
Ti8Al1237のうち少なくとも1種以上の結晶であ
る。これ以外の結晶、例えばNd2Ti27、CaAl6
13等は前記固溶体からなる結晶に固溶しにくいため前
記固溶体からなる結晶との結合強度が低く、焼結体に機
械的応力が発生した場合粒界にクラックが生じ易く、結
果として破壊靱性が小さくなる。
The main crystal phase of the dielectric ceramic according to the present invention is a solid solution of CaTiO 3 and NdAlO 3 having a perovskite crystal structure. In order to improve the fracture toughness of the dielectric porcelain of the present invention, a liquid phase that easily forms a solid solution with the crystal particles of the solid solution is generated in the sintering process, and the crystal particles of the solid solution and the liquid phase are strongly bonded. It is necessary to produce a crystal having an effect of causing the crystal to have a function of causing a crystal to be formed. The crystal having the action is contained in the dielectric porcelain of the present invention, and the crystal structure is CaAl 2 O 4 , Nd.
2 TiO 6 , Ca 2 Al 2 O 6 , Nd 4 Ti 9 O 24 and Ca 3
It is a crystal of at least one kind among Ti 8 Al 12 O 37 . Other crystals such as Nd 2 Ti 2 O 7 , CaAl 6
O 13 and the like hardly form a solid solution with the solid solution crystal, so that the bonding strength with the solid solution crystal is low, and when mechanical stress occurs in the sintered body, cracks are likely to occur in the grain boundaries, resulting in fracture toughness. Becomes smaller.

【0020】なお、本発明の誘電体磁器と同様な組成か
らなる従来の誘電体磁器においては、前記結晶を含有し
ないため破壊靱性は低い。
The conventional dielectric porcelain having a composition similar to that of the dielectric porcelain of the present invention does not contain the crystals, and thus has a low fracture toughness.

【0021】ここで、本発明の誘電体磁器に含まれるC
aAl24、Nd2TiO6、Ca2Al26、Nd4Ti
924およびCa3Ti8Al1237の結晶の存在は透過
電子顕微鏡を用いた制限視野電子回折像による解析、X
線回折法、微小X線回折法などによる測定等により行
う。また、これらの結晶は30体積%以下含有すること
が望ましく、特に破壊靱性を向上させるためには0.1
〜10体積%含有することが特に望ましい。また、これ
らの結晶の含有量(体積%)を測定する場合は、透過電
子顕微鏡を用いた制限視野電子回折像による解析による
測定を行う。
Here, C contained in the dielectric porcelain of the present invention
aAl 2 O 4 , Nd 2 TiO 6 , Ca 2 Al 2 O 6 , Nd 4 Ti
The presence of crystals of 9 O 24 and Ca 3 Ti 8 Al 12 O 37 was analyzed by a selected area electron diffraction image using a transmission electron microscope.
The measurement is performed by a line diffraction method, a minute X-ray diffraction method, or the like. Further, it is desirable that these crystals are contained in an amount of 30% by volume or less.
It is particularly desirable to contain 10 to 10% by volume. When measuring the content (% by volume) of these crystals, measurement is performed by analysis using a selected area electron diffraction image using a transmission electron microscope.

【0022】透過電子顕微鏡を用いた制限視野電子回折
像による解析により、本発明の誘電体磁器に含まれるC
aAl24、Nd2TiO6、Ca2Al26、Nd4Ti
92 4およびCa3Ti8Al1237の結晶の同定を行う
場合は、例えば誘電体磁器の内部の結晶を倍率2000
〜8000倍程度で、5×10-3〜5×10-2mm2
度の面積を写真および制限視野回折像により観察し、各
結晶の電子回折像を解析し結晶構造を同定する。前記面
積のうちCaAl24、Nd2TiO6、Ca2Al
26、Nd4Ti924およびCa3Ti8Al1237のう
ち少なくとも1種が占める割合を前記含有量(体積%)
とする。
Analysis by a selected area electron diffraction image using a transmission electron microscope reveals that C contained in the dielectric porcelain of the present invention.
aAl 2 O 4 , Nd 2 TiO 6 , Ca 2 Al 2 O 6 , Nd 4 Ti
9 O 2 4 and Ca 3 Ti 8 Al 12 when performing the identification of crystal O 37, for example a magnification internal crystal dielectric ceramic 2000
An area of about 5 × 10 −3 to 5 × 10 −2 mm 2 at about 8000 times is observed by a photograph and a selected area diffraction image, and an electron diffraction image of each crystal is analyzed to identify a crystal structure. Of the area, CaAl 2 O 4 , Nd 2 TiO 6 , Ca 2 Al
The content (vol.%) Is defined as the proportion occupied by at least one of 2 O 6 , Nd 4 Ti 9 O 24 and Ca 3 Ti 8 Al 12 O 37.
And

【0023】なお、測定装置は例えばJEOL社の透過
型電子顕微鏡JEM2010Fを用いる。
As a measuring device, for example, a transmission electron microscope JEM2010F manufactured by JEOL is used.

【0024】本発明の誘電体磁器に含有される結晶構造
がCaAl24、Nd2TiO6、Ca2Al26、Nd4
Ti924およびCa3Ti8Al1237のうち少なくと
も1種以上の結晶を生成させるための製造方法は次の通
りである。
The crystal structure contained in the dielectric porcelain of the present invention is CaAl 2 O 4 , Nd 2 TiO 6 , Ca 2 Al 2 O 6 , Nd 4
The production method for producing at least one crystal of Ti 9 O 24 and Ca 3 Ti 8 Al 12 O 37 is as follows.

【0025】本発明の誘電体磁器の製造方法としては、
チタン元素とカルシウム元素の比率が異なる不定比組成
のチタン酸カルシウムを仮焼合成し、得られた仮焼体A
とCa、Ti、Nd、Alの酸化物または焼成により酸
化物となりうる化合物のうち少なくとも1種とを混合後
造粒して造粒体Bを作製し、ネオジウム元素とアルミニ
ウム元素の比率が異なる不定比組成のアルミン酸ネオジ
ムを仮焼合成し、得られた仮焼体CとCa、Ti、N
d、Alの酸化物または焼成により酸化物となりうる化
合物のうち少なくとも1種とを混合後造粒して造粒体D
を作製し、造粒体Bと造粒体Dとを混合後、成形し、1
500℃〜1650℃で2時間以上保持して焼成するこ
とを特徴とする。
The method of manufacturing the dielectric porcelain of the present invention includes:
A calcined body obtained by calcining and synthesizing calcium titanate having a non-stoichiometric composition in which the ratio of the titanium element to the calcium element is different.
And at least one of oxides of Ca, Ti, Nd, and Al or compounds that can be turned into oxides by firing, and then granulating to produce granulated body B, wherein the ratio of neodymium element to aluminum element is different. Neodymium aluminate having a specific composition is calcined and synthesized, and the calcined body C and Ca, Ti, N
d, mixed with at least one of Al oxides or compounds that can be converted into oxides by firing, and then granulating the granulated product D
Is prepared, and the granules B and D are mixed and then molded.
It is characterized by firing at a temperature of 500 ° C. to 1650 ° C. for 2 hours or more.

【0026】この製造方法を用いることにより、焼成中
に結晶構造がCaAl24、Nd2TiO6、Ca2Al2
6、Nd4Ti924およびCa3Ti8Al1237のう
ち少なくとも1種以上の結晶からなる液相が生成し、そ
の結果焼結体の結晶粒界強度が向上することにより破壊
靱性が向上すると考えられる。焼成中にこれらの結晶が
生成するメカニズムは以下のように考えられる。
By using this manufacturing method, the crystal structure during firing is CaAl 2 O 4 , Nd 2 TiO 6 , Ca 2 Al 2
A liquid phase composed of at least one crystal of O 6 , Nd 4 Ti 9 O 24 and Ca 3 Ti 8 Al 12 O 37 is generated, and as a result, the strength of the crystal grain boundary of the sintered body is improved, so that the sintered body is broken. It is thought that the toughness is improved. The mechanism by which these crystals are formed during firing is considered as follows.

【0027】また、前記造粒体Bは前記不定比組成のチ
タン酸カルシウムと化学的に結合していないCa、T
i、Nd、Alの酸化物または焼成により酸化物となり
うる化合物のうち少なくとも1種からなる。また、前記
造粒体Dは前記不定比組成のアルミン酸ネオジムと化学
的に結合していないCa、Ti、Nd、Alの酸化物ま
たは焼成により酸化物となりうる化合物のうち少なくと
も1種からなる。前記造粒体Bおよび前記造粒体Dに含
有する化学的に結合していない前記Ca、Ti、Nd、
Alの酸化物または焼成により酸化物となりうる化合物
は、焼結過程において、互いに反応しやすいため液相成
分を生成すると考えられる。前記Ca、Ti、Nd、A
lの酸化物または焼成により酸化物となりうる化合物の
うち前記液相成分を生成に寄与しない化合物は、前記チ
タン酸カルシウムおよび前記アルミン酸ネオジムと化学
的に結合し、前記の固溶体の生成に寄与すると考えられ
る。
The granules B may contain Ca, T which is not chemically bonded to the non-stoichiometric calcium titanate.
It is made of at least one of oxides of i, Nd, and Al or compounds that can be turned into oxides by firing. The granule D is made of at least one of oxides of Ca, Ti, Nd, and Al which are not chemically bonded to neodymium aluminate having the non-stoichiometric composition or compounds which can be converted into oxides by firing. The Ca, Ti, Nd, not chemically bonded, contained in the granules B and D,
Al oxides or compounds that can be converted into oxides by firing tend to react with each other during the sintering process, and are considered to produce liquid phase components. The Ca, Ti, Nd, A
Compounds that do not contribute to the formation of the liquid phase component among the oxides of l or compounds that can be turned into oxides by firing chemically bind to the calcium titanate and the neodymium aluminate and contribute to the formation of the solid solution. Conceivable.

【0028】また、造粒体Aおよび造粒体Bの平均粒径
を50〜100μmに制御することにより、本発明の誘
電体磁器中に焼結過程において液相焼結が促進され結晶
構造がCaAl24、Nd2TiO6、Ca2Al26
Nd4Ti924およびCa3Ti8Al1237のうち少な
くとも2種以上で同定される結晶が生成し、これによっ
てさらに破壊靱性を向上させることができる。
Further, by controlling the average particle size of the granules A and B to 50 to 100 μm, the liquid phase sintering is promoted in the sintering process in the dielectric porcelain of the present invention, and the crystal structure is improved. CaAl 2 O 4 , Nd 2 TiO 6 , Ca 2 Al 2 O 6 ,
Crystals identified by at least two of Nd 4 Ti 9 O 24 and Ca 3 Ti 8 Al 12 O 37 are generated, which can further improve the fracture toughness.

【0029】さらに本発明の誘電体磁器の破壊靱性を向
上させるためには、前記造粒体Bと前記造粒体Dの平均
粒径は50〜100μmが好ましい。これにより、焼結
体の結晶粒径を均一に制御できるため破壊靱性をさらに
向上させることができる。
In order to further improve the fracture toughness of the dielectric porcelain of the present invention, the average particle size of the granules B and D is preferably 50 to 100 μm. Thereby, the crystal grain size of the sintered body can be uniformly controlled, so that the fracture toughness can be further improved.

【0030】また、本発明の誘電体磁器の製造方法とし
て、前記不定組成からなるチタン酸カルシウムの仮焼体
Aおよび/または前記不定比組成からなるアルミン酸ネ
オジムの仮焼体Bにさらに金属元素としてMn、Wおよ
びTaのうち少なくとも1種をMnO2、WO3およびT
25換算で全量中合計で0.01〜3重量%含有する
造粒体を前記の工程により製造することにより、さらに
Q値の高い誘電体磁器を得ることができる。
Further, as a method of manufacturing a dielectric porcelain of the present invention, a calcined body A of calcium titanate having the above-mentioned non-stoichiometric composition and / or a calcined body B of neodymium aluminate having the above-mentioned non-stoichiometric composition are further added with a metal element At least one of Mn, W and Ta is MnO 2 , WO 3 and T
By manufacturing a granulated body containing 0.01 to 3 wt% in total in total volume a 2 O 5 in terms by the process, it is possible to further obtain a high dielectric ceramic Q value.

【0031】また、本発明の誘電体磁器は金属元素とし
てMn、WおよびTaのうち少なくとも1種以上をMn
2、WO3およびTa25換算で0.01〜3重量%含
有することが好ましい。Mn、WおよびTaのうち少な
くとも1種以上をMnO2、WO3およびTa25換算で
0.01〜3重量%含有するのは、0.01〜3重量%
含有すると著しくQ値が向上するからである。Q値を高
くするためにはMn、WおよびTaのうち少なくとも1
種を全量中MnO2、WO3およびTa25換算で特に
0.02〜2重量%含有することが好ましく、さらにM
nをMnO2換算で0.02〜0.5重量%含有するこ
とが好ましい。
The dielectric porcelain according to the present invention is characterized in that at least one of Mn, W and Ta as a metal element is Mn.
The content is preferably 0.01 to 3% by weight in terms of O 2 , WO 3 and Ta 2 O 5 . The content of at least one of Mn, W and Ta of 0.01 to 3% by weight in terms of MnO 2 , WO 3 and Ta 2 O 5 is 0.01 to 3% by weight.
This is because when the content is contained, the Q value is remarkably improved. In order to increase the Q value, at least one of Mn, W and Ta is required.
Preferably contains especially from 0.02 to 2 wt% in a total amount in MnO 2, WO 3 and Ta 2 O 5 in terms of species, further M
n is preferably contained in an amount of 0.02 to 0.5% by weight in terms of MnO 2 .

【0032】さらに、本発明における誘電体磁器は、金
属元素として少なくともNd、Al、CaおよびTiを
含有し、組成式を aNd23・bAl23・cCaO・dTiO2 と表したときa、b、c、dが、 0.056≦a≦0.214 0.056≦b≦0.214 0.286≦c≦0.500 0.230<d<0.470 a+b+c+d=1 を満足することが好ましい。
Furthermore, the dielectric ceramic of the present invention, at least Nd, Al, and containing Ca and Ti, a when a composition formula represented as aNd 2 O 3 · bAl 2 O 3 · cCaO · dTiO 2 as the metal element , B, c, and d satisfy the following condition: 0.056 ≦ a ≦ 0.214 0.056 ≦ b ≦ 0.214 0.286 ≦ c ≦ 0.500 0.230 <d <0.470 a + b + c + d = 1 Is preferred.

【0033】本発明の誘電体磁器において、各成分のモ
ル比a、b、c、dを上記の範囲に限定した理由は以下
の通りである。
The reasons for limiting the molar ratios a, b, c, and d of the respective components to the above ranges in the dielectric ceramic of the present invention are as follows.

【0034】即ち、0.056≦a≦0.214とした
のは、0.056≦a≦0.214の場合、εrが大き
く、Q値が高く、共振周波数の温度係数τfの絶対値が
小さくなるからである。特に、0.078≦a≦0.1
80が好ましい。
That is, when 0.056 ≦ a ≦ 0.214, when 0.056 ≦ a ≦ 0.214, εr is large, Q value is high, and the absolute value of the temperature coefficient τf of the resonance frequency is large. This is because it becomes smaller. In particular, 0.078 ≦ a ≦ 0.1
80 is preferred.

【0035】0.056≦b≦0.214としたのは、
0.056≦b≦0.214の場合、εrが大きく、Q
値が高く、τfの絶対値が小さくなるからである。特
に、0.078≦b≦0.180が好ましい。
The reason for setting 0.056 ≦ b ≦ 0.214 is that
When 0.056 ≦ b ≦ 0.214, εr is large and Q
This is because the value is high and the absolute value of τf becomes small. In particular, 0.078 ≦ b ≦ 0.180 is preferable.

【0036】0.286≦c≦0.500としたのは、
0.286≦c≦0.500の場合、εrが大きく、Q
値が高く、τfの絶対値が小さくなるからである。特
に、0.330≦c≦0.470が好ましい。
The reason that 0.286 ≦ c ≦ 0.500 is as follows.
When 0.286 ≦ c ≦ 0.500, εr is large and Q
This is because the value is high and the absolute value of τf becomes small. Particularly, 0.330 ≦ c ≦ 0.470 is preferable.

【0037】0.230<d<0.470としたのは、
0.230<d<0.470の場合、εrが大きく、Q
値が高く、τfの絶対値が小さくなるからである。特
に、0.340≦d≦0.45が好ましい。
The reason for 0.230 <d <0.470 is that
When 0.230 <d <0.470, εr is large and Q
This is because the value is high and the absolute value of τf becomes small. Particularly, 0.340 ≦ d ≦ 0.45 is preferable.

【0038】本発明においてはQ値を高くするためには
0.75≦(b+d)/(a+c)≦1.25が好まし
い。さらにQ値を高くするためには0.85≦(b+
d)/(a+c)≦1.15であることが特に好まし
い。
In the present invention, in order to increase the Q value, it is preferable that 0.75 ≦ (b + d) / (a + c) ≦ 1.25. To further increase the Q value, 0.85 ≦ (b +
It is particularly preferred that d) / (a + c) ≦ 1.15.

【0039】本発明の誘電体磁器の製造方法は具体的に
は、例えば以下の工程(1a)〜(10a)から成る。
Specifically, the method for manufacturing a dielectric ceramic according to the present invention comprises, for example, the following steps (1a) to (10a).

【0040】(1a)出発原料として、炭酸カルシウム
(CaCO3)および酸化チタン(TiO2)の各粉末を
用いて、所望の割合となるように秤量後、純水を加え、
混合原料の平均粒径が2.0μm以下となるようジルコ
ニアボール等を使用したボールミルにより湿式混合及び
粉砕を行いスラリーを得る。なお、この場合CaCO3
とTiO2のモル比が異なるように秤量を行う。
(1a) Each powder of calcium carbonate (CaCO 3 ) and titanium oxide (TiO 2 ) was weighed to a desired ratio as a starting material, and pure water was added.
A slurry is obtained by wet mixing and pulverization by a ball mill using zirconia balls or the like so that the average particle size of the mixed raw material is 2.0 μm or less. In this case, CaCO 3
And TiO 2 are weighed so that the molar ratios are different.

【0041】(2a)(1a)のスラリーを乾燥後、1
000〜1300℃で1〜10時間仮焼し、仮焼物Aを
得る。
(2a) After drying the slurry of (1a),
Calcination is performed at 000 to 1300 ° C. for 1 to 10 hours to obtain a calcined product A.

【0042】(3a)前記仮焼物Aに酸化ネオジム(N
23)、酸化アルミニウム(Al 23)、炭酸マンガ
ン(MnCO3)、酸化タングステン(WO3)、酸化タ
ンタル(Ta25)を添加し、ボールミルにより湿式粉
砕する。
(3a) Neodymium oxide (N
dTwoOThree), Aluminum oxide (Al TwoOThree), Carbonated manga
(MnCOThree), Tungsten oxide (WOThree), Oxidation
(Ta)TwoOFive) And wet milled
Crush.

【0043】(4a)(3a)で得られたスラリーにバ
インダーを添加後噴霧乾燥法により造粒体の平均粒径を
50〜100μmに造粒し、造粒体Bを得る。
(4a) After adding a binder to the slurry obtained in (3a), granules are granulated to have an average particle size of 50 to 100 μm by a spray drying method to obtain granules B.

【0044】(5a)出発原料として、高純度の酸化ネ
オジム(Nd23)および酸化アルミニウム(Al
23)の各粉末を用いて、所望の割合となるように秤量
後、純水を加え、混合原料の平均粒径が2.0μm以下
となるようジルコニアボール等を使用したボールミルに
より湿式混合及び粉砕を行いスラリーを得る。なお、こ
の場合Nd23とAl23のモル比が異なるように秤量
を行う。
(5a) As starting materials, high-purity neodymium oxide (Nd 2 O 3 ) and aluminum oxide (Al
After weighing each powder of 2 O 3 ) to a desired ratio, adding pure water and wet-mixing with a ball mill using zirconia balls or the like so that the average particle size of the mixed raw material is 2.0 μm or less. And pulverization to obtain a slurry. In this case, weighing is performed so that the molar ratio between Nd 2 O 3 and Al 2 O 3 is different.

【0045】(6a)(5a)で得られたスラリーを乾
燥後、1000〜1300℃で1〜10時間仮焼し、仮
焼物Cを得る。
(6a) After drying the slurry obtained in (5a), it is calcined at 1000 to 1300 ° C. for 1 to 10 hours to obtain a calcined product C.

【0046】(7a)前記仮焼物Cに炭酸カルシウム
(CaCO3)、酸化チタン(TiO2)、炭酸マンガン
(MnCO3)、酸化タングステン(WO3)、酸化タン
タル(Ta25)を添加し、ボールミルにより湿式粉砕
する。
(7a) Calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ), manganese carbonate (MnCO 3 ), tungsten oxide (WO 3 ), and tantalum oxide (Ta 2 O 5 ) are added to the calcined product C. And wet grinding with a ball mill.

【0047】(8a)(7a)で得られたスラリーにバ
インダーを添加後噴霧乾燥法により造粒体の平均粒径を
50〜100μmに造粒し、造粒体Dを得る。
(8a) After adding a binder to the slurry obtained in (7a), the granules are granulated to have an average particle size of 50 to 100 μm by a spray drying method to obtain granules D.

【0048】(9a)造粒体Bと造粒体Dとを均一に混
合し、得られた混合体を公知の成型法、例えば金型プレ
ス法、冷間静水圧プレス法、押し出し成形法等により任
意の形状に成形する。 (10a)得られた成形体を1500℃〜1650℃で
2時間以上保持して焼成し、本発明の誘電体磁器を得る
ことができる。
(9a) The granules B and D are uniformly mixed, and the obtained mixture is molded by a known molding method, for example, a die pressing method, a cold isostatic pressing method, an extrusion molding method and the like. To form an arbitrary shape. (10a) The obtained molded body is kept at 1500 ° C. to 1650 ° C. for 2 hours or more and fired to obtain the dielectric ceramic of the present invention.

【0049】更に、本発明の誘電体磁器は、さらにZn
O、NiO、SnO2、Co34、ZrO2、LiC
3、Rb2CO3、Sc23、V25、CuO、Si
2、BaCO3、MgCO3、Cr23、B23、Ge
2、Sb25、Nb25、Ga2 3等を添加しても良
い。これらは、その添加成分にもよるが、εrや共振周
波数の温度係数τfの値の適正化、機械的強度の向上な
どを目的として主成分100重量部に対して合計5重量
部以下の割合で添加することができる。
Further, the dielectric porcelain of the present invention further comprises Zn
O, NiO, SnOTwo, CoThreeOFour, ZrOTwo, LiC
OThree, RbTwoCOThree, ScTwoOThree, VTwoOFive, CuO, Si
OTwo, BaCOThree, MgCOThree, CrTwoOThree, BTwoOThree, Ge
OTwo, SbTwoOFive, NbTwoOFive, GaTwoO ThreeMay be added
No. These vary depending on the added components, but εr and resonance frequency.
Optimization of wave number temperature coefficient τf and improvement of mechanical strength
5 weight in total for 100 parts by weight of main component
Parts by weight or less.

【0050】また、本発明の誘電体磁器は、特に誘電体
共振器の誘電体磁器として最も好適に用いられる。図1
に、TEモ−ド型の誘電体共振器の概略図を示した。図
1の誘電体共振器は、金属ケース1内壁の相対する両側
に入力端子2及び出力端子3を設け、これらの入出力端
子2、3の間に上記誘電体磁器からなる誘電体磁器4を
配置して構成される。このようなTEモ−ド型誘電体共
振器は、入力端子2からマイクロ波が入力され、マイク
ロ波は誘電体磁器4と自由空間との境界の反射によって
誘電体磁器4内に閉じこめられ、特定の周波数で共振を
起こす。この信号が出力端子3と電磁界結合して出力さ
れる。
The dielectric porcelain of the present invention is most preferably used as a dielectric porcelain of a dielectric resonator. FIG.
FIG. 1 shows a schematic view of a TE mode type dielectric resonator. The dielectric resonator shown in FIG. 1 is provided with an input terminal 2 and an output terminal 3 on opposite sides of an inner wall of a metal case 1, and a dielectric porcelain 4 made of the above dielectric porcelain is provided between these input / output terminals 2 and 3. Arranged and configured. In such a TE mode type dielectric resonator, a microwave is input from the input terminal 2, and the microwave is confined in the dielectric porcelain 4 by reflection at a boundary between the dielectric porcelain 4 and free space, and specified. Resonance occurs at the frequency of This signal is electromagnetically coupled to the output terminal 3 and output.

【0051】また、図示しないが、本発明の誘電体磁器
を、TEMモードを用いた同軸型共振器やストリップ線
路共振器、TMモードの誘電体磁器共振器、その他の共
振器に適用して良いことは勿論である。更には、入力端
子2及び出力端子3を誘電体磁器4に直接設けても誘電
体共振器を構成できる。
Although not shown, the dielectric ceramic of the present invention may be applied to a coaxial resonator, a strip line resonator using a TEM mode, a dielectric ceramic resonator of a TM mode, and other resonators. Of course. Further, a dielectric resonator can be formed by directly providing the input terminal 2 and the output terminal 3 on the dielectric ceramic 4.

【0052】上記誘電体磁器4は、本発明の誘電体磁器
からなる所定形状の共振媒体であるが、その形状は直方
体、立方体、板状体、円板、円柱、多角柱、その他共振
が可能な立体形状であればよい。また、入力される高周
波信号の周波数は1〜500GHz程度であり、共振周
波数としては2GHz〜80GHz程度が実用上好まし
い。
The above-mentioned dielectric porcelain 4 is a resonance medium of a predetermined shape made of the dielectric porcelain of the present invention, and its shape is a rectangular parallelepiped, cubic, plate-like, disk, column, polygonal column, etc. What is necessary is just a three-dimensional shape. The frequency of the input high-frequency signal is about 1 to 500 GHz, and the resonance frequency is preferably about 2 GHz to 80 GHz for practical use.

【0053】尚、本発明は上記実施形態に限定されるも
のではなく、本発明の要旨を変更しない範囲で種々の変
更は何等差し支えない。
Note that the present invention is not limited to the above-described embodiment, and various changes may be made without departing from the scope of the present invention.

【0054】[0054]

【実施例】(1b)〜(11b)の通り本発明の誘電体
磁器の試料を作製した。
EXAMPLES As shown in (1b) to (11b), samples of the dielectric porcelain of the present invention were prepared.

【0055】(1b)出発原料として、炭酸カルシウム
(CaCO3)および酸化チタン(TiO2)の各粉末を
秤量後、純水を加え、混合原料の平均粒径が0.5〜
1.5μmとなるようジルコニアボール等を使用したボ
ールミルにより湿式混合及び粉砕を行った。
(1b) After weighing each powder of calcium carbonate (CaCO 3 ) and titanium oxide (TiO 2 ) as a starting material, pure water was added thereto, and the mixed material had an average particle size of 0.5 to 0.5%.
Wet mixing and pulverization were performed by a ball mill using zirconia balls or the like so as to have a thickness of 1.5 μm.

【0056】(2b)(1a)の粉砕物を乾燥後、12
00℃で2時間仮焼し、仮焼物Tを得た。
(2b) After drying the pulverized product of (1a), 12
Calcination was performed at 00 ° C. for 2 hours to obtain a calcined product T.

【0057】(3b)前記仮焼物Tに酸化ネオジム(N
23)、酸化アルミニウム(Al 23)、炭酸マンガ
ン(MnCO3)、酸化タングステン(WO3)、酸化タ
ンタル(Ta25)を添加し、ボールミルにより湿式粉
砕した。
(3b) Neodymium oxide (N
dTwoOThree), Aluminum oxide (Al TwoOThree), Carbonated manga
(MnCOThree), Tungsten oxide (WOThree), Oxidation
(Ta)TwoOFive) And wet milled
Crushed.

【0058】(4b)(3b)で得られたスラリーにバ
インダーを添加後噴霧乾燥法により造粒体の平均粒径を
50〜100μmに造粒し、造粒体Uを得た。
(4b) After adding a binder to the slurry obtained in (3b), the granules were granulated to have an average particle size of 50 to 100 μm by a spray drying method to obtain granules U.

【0059】(5b)出発原料として、高純度の酸化ネ
オジム(Nd23)および酸化アルミニウム(Al
23)の各粉末を秤量後、純水を加え、混合原料の平均
粒径が0.5〜1.5μmとなるようジルコニアボール
等を使用したボールミルにより湿式混合及び粉砕を行っ
た。
(5b) As starting materials, high-purity neodymium oxide (Nd 2 O 3 ) and aluminum oxide (Al
After weighing each powder of 2 O 3 ), pure water was added, and wet mixing and pulverization were performed by a ball mill using zirconia balls or the like so that the mixed raw material had an average particle size of 0.5 to 1.5 μm.

【0060】(6b)(5b)の粉砕物を乾燥後、12
00℃で2時間仮焼し、仮焼物Vを得る。
(6b) After drying the pulverized product of (5b), 12
Calcination is performed at 00 ° C. for 2 hours to obtain a calcined product V.

【0061】(7b)得られた仮焼物Vに炭酸カルシウ
ム(CaCO3)、酸化チタン(TiO2)、炭酸マンガ
ン(MnCO3)、酸化タングステン(WO3)、酸化タ
ンタル(Ta25)を添加し、ボールミルにより湿式粉
砕した。
(7b) Calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ), manganese carbonate (MnCO 3 ), tungsten oxide (WO 3 ), and tantalum oxide (Ta 2 O 5 ) are added to the obtained calcined product V. And wet-pulverized by a ball mill.

【0062】(8b)(7b)で得られたスラリーにバ
インダーを添加後噴霧乾燥法により造粒体の平均粒径を
50〜100μmに造粒し、造粒体Wを得た。
(8b) After the binder was added to the slurry obtained in (7b), the granules were granulated to have an average particle size of 50 to 100 μm by a spray drying method to obtain granules W.

【0063】(9b)造粒体Uと造粒体Wとを均一に混
合し、得られた混合体を約1ton/cm2の圧力で円
板状に成形後脱脂した。
(9b) The granules U and W were uniformly mixed, and the resulting mixture was formed into a disk at a pressure of about 1 ton / cm 2 and degreased.

【0064】(10b)得られた成形体を空気中150
0℃〜1650℃で2時間以上保持して焼成し焼結体を
得た。
(10b) The obtained molded body is placed in the air for 150 hours.
It was kept at 0 ° C. to 1650 ° C. for 2 hours or more and fired to obtain a sintered body.

【0065】(11b)得られた焼結体の円板部(主
面)を平面研磨し、アセトン中で超音波洗浄し、150
℃で1時間乾燥し、本発明の実施例の試料を得た。
(11b) The disk (main surface) of the obtained sintered body is polished flat, and ultrasonically cleaned in acetone,
It dried at 1 degreeC for 1 hour, and obtained the sample of the Example of this invention.

【0066】得られた試料を用いて、円柱共振器法によ
り測定周波数3.5〜4.5GHzで比誘電率εr、Q
値、共振周波数の温度係数τfを測定した。Q値は、マ
イクロ波誘電体において一般に成立する(Q値)×(測
定周波数f)=(一定)の関係から、1GHzでのQ値
に換算した。共振周波数の温度係数は、25℃の時の共
振周波数を基準にして、25〜85℃の温度係数τfを
算出した。また、JIS規格R1607記載のIF法に
より破壊靱性KCを測定した。
Using the obtained sample, the relative permittivity εr, Q at a measurement frequency of 3.5 to 4.5 GHz was measured by the cylindrical resonator method.
The value and the temperature coefficient τf of the resonance frequency were measured. The Q value was converted to a Q value at 1 GHz from the relationship (Q value) × (measurement frequency f) = (constant) that generally holds in microwave dielectrics. As the temperature coefficient of the resonance frequency, a temperature coefficient τf of 25 to 85 ° C. was calculated based on the resonance frequency at 25 ° C. Further, the fracture toughness K C was measured by the IF method described in JIS standard R1607.

【0067】また、焼結体をTechnoorg Li
nda製イオンシニング装置を用いて加工し、透過電子
顕微鏡による観察、制限視野電子回折像による解析によ
り、焼結体中の結晶の結晶構造を下記の通り測定した。
Further, the sintered body was used as a Technology Li
It processed using the ion thinning apparatus made from nda, and the crystal structure of the crystal in a sintered compact was measured as follows by observation with a transmission electron microscope and analysis by a limited area electron diffraction image.

【0068】JEOL社の透過型電子顕微鏡JEM20
10Fを用いて、焼結体の内部の結晶を倍率5000倍
で、1×10-3mm2以上の面積を制限視野回折像によ
り観察し、1試料につき5個以上の結晶の制限視野電子
回折像を解析し、結晶構造の同定を行った。表2におい
て○印は、試料中の結晶が○印を付けた結晶構造で同定
されたことを示す。
JEOL's transmission electron microscope JEM20
Using 10F, the area of 1 × 10 −3 mm 2 or more of the crystal inside the sintered body was observed by a selected area diffraction image at a magnification of 5,000 times, and the selected area electron diffraction of 5 or more crystals per sample was performed. The images were analyzed and the crystal structure was identified. In Table 2, ○ indicates that the crystal in the sample was identified by the crystal structure with ○.

【0069】これらの結果を表1、2に示す 表1、2から明らかなように、本発明の範囲内の試料N
o.1〜27は、比誘電率εrが30〜48、1GHz
に換算した時のQ値が30000以上と高く、τfが±
30(ppm/℃)以内、破壊靱性KCが2.0〜2.
5MPa・m1/2と大きい優れた特性が得られた。
The results are shown in Tables 1 and 2. As is clear from Tables 1 and 2, Sample N within the scope of the present invention was used.
o. 1 to 27 have relative permittivity εr of 30 to 48 and 1 GHz
Q value when converted to is as high as 30,000 or more, and τ f is ±
Within 30 (ppm / ° C.), fracture toughness K C is 2.0-2.
Excellent characteristics as large as 5 MPa · m 1/2 were obtained.

【0070】一方、比較例として次のように試料を作製
した。
On the other hand, a sample was prepared as follows as a comparative example.

【0071】出発原料として高純度の炭酸カルシウム
(CaCO3)、酸化チタン(TiO2)、酸化ネオジム
(Nd23)、酸化アルミニウム(Al23)の各粉末
を秤量、混合、粉砕後、1200℃で2時間仮焼し、得
られた仮焼物を平均粒径2.0μm以下に湿式粉砕しス
ラリーを得た。得られたスラリーに5重量%のバインダ
ーを加え、噴霧乾燥法により平均粒径30〜40μmに
造粒し、造粒体を約1ton/cm2の圧力で円板状に
成形後脱脂し、大気中で1500〜1600℃で2時間
保持して焼成した。得られた試料を上述した実施例と同
様に研磨、洗浄、乾燥後、同様に比誘電率εr、Q値、
共振周波数の温度係数τf、破壊靱性Kcを測定した。
As starting materials, high-purity calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ), neodymium oxide (Nd 2 O 3 ), and aluminum oxide (Al 2 O 3 ) powders were weighed, mixed, and pulverized. After calcining at 1200 ° C. for 2 hours, the calcined product was wet-pulverized to an average particle size of 2.0 μm or less to obtain a slurry. 5% by weight of a binder was added to the obtained slurry, and granulated to an average particle size of 30 to 40 μm by a spray drying method. The granulated product was formed into a disc shape at a pressure of about 1 ton / cm 2 and then degreased. It was calcined at 1500 to 1600 ° C. for 2 hours. The obtained sample was polished, washed, and dried in the same manner as in the above-described examples, and then similarly, the relative dielectric constant εr, Q value,
The temperature coefficient τ f of the resonance frequency and the fracture toughness K c were measured.

【0072】表1、2からわかるように本発明の範囲外
の試料No.28〜30は破壊靱性KCが1.7MPa
・m1/2よりも小さくなった。
As can be seen from Tables 1 and 2, the sample Nos. 28 to 30 have a fracture toughness K C of 1.7 MPa.
・ It became smaller than m 1/2 .

【0073】[0073]

【表1】 [Table 1]

【0074】[0074]

【表2】 [Table 2]

【0075】[0075]

【発明の効果】本発明において、金属元素として少なく
ともNd、Al、Ca及びTiを含有する酸化物からな
り、結晶構造がCaAl24、Nd2TiO6、Ca2
26、Nd4Ti924およびCa3Ti8Al1237
うち少なくとも1種以上で同定される結晶を含有するこ
とすることにより、高周波領域において高い比誘電率ε
r、高いQ値、および大きな破壊靱性を有する誘電体磁
器を得ることができる。これにより、マイクロ波やミリ
波領域において使用される共振器用材料やMIC用誘電
体基板材料、誘電体導波路、誘電体アンテナ、その他の
各種電子部品等に適用することができる。
According to the present invention, an oxide containing at least Nd, Al, Ca and Ti as a metal element has a crystal structure of CaAl 2 O 4 , Nd 2 TiO 6 , Ca 2 A.
By containing a crystal identified by at least one of l 2 O 6 , Nd 4 Ti 9 O 24 and Ca 3 Ti 8 Al 12 O 37 , a high relative dielectric constant ε in a high frequency region is obtained.
A dielectric porcelain having r, high Q value, and large fracture toughness can be obtained. As a result, the present invention can be applied to resonator materials, MIC dielectric substrate materials, dielectric waveguides, dielectric antennas, and other various electronic components used in microwave and millimeter wave regions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の誘電体共振器を示す断面図である。FIG. 1 is a sectional view showing a dielectric resonator of the present invention.

【符号の説明】[Explanation of symbols]

1:金属ケ−ス 2:入力端子 3:出力端子 4:誘電体磁器 1: metal case 2: input terminal 3: output terminal 4: dielectric porcelain

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】金属元素として少なくともNd、Al、C
a及びTiを含有する酸化物からなり、結晶構造がCa
Al24、Nd2TiO6、Ca2Al26、Nd4Ti9
24およびCa3Ti8Al1237のうち少なくとも1種
以上の結晶を含有することを特徴とする誘電体磁器。
(1) at least Nd, Al, C
a and an oxide containing Ti and having a crystal structure of Ca
Al 2 O 4 , Nd 2 TiO 6 , Ca 2 Al 2 O 6 , Nd 4 Ti 9
A dielectric ceramic comprising at least one crystal of O 24 and Ca 3 Ti 8 Al 12 O 37 .
【請求項2】金属元素としてMn、WおよびTaのうち
少なくとも1種を合計でMnO2、WO3およびTa25
換算で合計0.01〜3重量%含有することを特徴とす
る請求項1に記載の誘電体磁器。
2. A metal element comprising at least one of Mn, W and Ta in total of MnO 2 , WO 3 and Ta 2 O 5
2. The dielectric porcelain according to claim 1, wherein the content is 0.01 to 3% by weight in total.
【請求項3】金属元素として少なくともNd、Al、C
aおよびTiを含有し、組成式を aNd23・bAl23・cCaO・dTiO2 と表したときa、b、c、dが、 0.056≦a≦0.214 0.056≦b≦0.214 0.286≦c≦0.500 0.230<d<0.470 a+b+c+d=1 を満足することを特徴とする請求項1、2のいずれかに
記載の誘電体磁器。
3. At least Nd, Al, C as a metal element
containing a and Ti, a when a composition formula represented as aNd 2 O 3 · bAl 2 O 3 · cCaO · dTiO 2, b, c, d is, 0.056 ≦ a ≦ 0.214 0.056 ≦ 3. The dielectric ceramic according to claim 1, wherein b ≦ 0.214 0.286 ≦ c ≦ 0.500 0.230 <d <0.470 a + b + c + d = 1 is satisfied.
【請求項4】一対の入出力端子間に請求項1〜3のいず
れかに記載の誘電体磁器を配置してなり、電磁界結合に
より作動するようにしたことを特徴とする誘電体共振
器。
4. The dielectric resonator according to claim 1, wherein said dielectric ceramic is arranged between a pair of input / output terminals and is operated by electromagnetic field coupling. .
JP2000396308A 2000-12-26 2000-12-26 Dielectric porcelain and dielectric resonator using the same Expired - Fee Related JP4688289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396308A JP4688289B2 (en) 2000-12-26 2000-12-26 Dielectric porcelain and dielectric resonator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396308A JP4688289B2 (en) 2000-12-26 2000-12-26 Dielectric porcelain and dielectric resonator using the same

Publications (2)

Publication Number Publication Date
JP2002193661A true JP2002193661A (en) 2002-07-10
JP4688289B2 JP4688289B2 (en) 2011-05-25

Family

ID=18861622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396308A Expired - Fee Related JP4688289B2 (en) 2000-12-26 2000-12-26 Dielectric porcelain and dielectric resonator using the same

Country Status (1)

Country Link
JP (1) JP4688289B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235337A (en) * 2009-03-30 2010-10-21 Kyocera Corp Dielectric ceramic and dielectric resonator
CN111592348A (en) * 2020-05-28 2020-08-28 杭州电子科技大学 Low-dielectric-constant microwave dielectric ceramic with excellent temperature stability and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676633A (en) * 1992-06-24 1994-03-18 Kyocera Corp Dielectric ceramic composition and dielectric resonator
JPH0877829A (en) * 1994-06-30 1996-03-22 Kyocera Corp Dielectric ceramic composition and dielectric resonator
JPH11130544A (en) * 1997-08-19 1999-05-18 Kyocera Corp Dielectric ceramic composition and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676633A (en) * 1992-06-24 1994-03-18 Kyocera Corp Dielectric ceramic composition and dielectric resonator
JPH0877829A (en) * 1994-06-30 1996-03-22 Kyocera Corp Dielectric ceramic composition and dielectric resonator
JPH11130544A (en) * 1997-08-19 1999-05-18 Kyocera Corp Dielectric ceramic composition and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235337A (en) * 2009-03-30 2010-10-21 Kyocera Corp Dielectric ceramic and dielectric resonator
CN111592348A (en) * 2020-05-28 2020-08-28 杭州电子科技大学 Low-dielectric-constant microwave dielectric ceramic with excellent temperature stability and preparation method thereof

Also Published As

Publication number Publication date
JP4688289B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
EP0915066A1 (en) Dielectric ceramic composition and dielectric resonator made by using the same
JP3229528B2 (en) Dielectric porcelain and dielectric resonator
US6756335B2 (en) Dielectric porcelain and resonator using the same
JP2010235337A (en) Dielectric ceramic and dielectric resonator
KR100729998B1 (en) Dielectric porcelain, dielectric porcelain composition, method of manufacturing the same and dielectric resonator using the same
JP3974723B2 (en) Dielectric porcelain manufacturing method
JP2003055039A (en) Microwave dielectric composition and production method therefor
JP2003034573A (en) Dielectric ceramic and dielectric resonator using the same
JP2003238242A (en) Dielectric porcelain and dielectric resonator using the same
EP0727789A1 (en) Dielectric procelain composition and its manufacture
JP4688289B2 (en) Dielectric porcelain and dielectric resonator using the same
JPH11130528A (en) Dielectric ceramic composition and dielectric resonator produced by using the composition
JP5187997B2 (en) Dielectric porcelain, method of manufacturing the same, and dielectric resonator using the same
JP2000095561A (en) Dielectric porcelain composition and dielectric resonator using the same
JP4535589B2 (en) Dielectric porcelain and dielectric resonator using the same
JP4303369B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP3830342B2 (en) Dielectric porcelain and dielectric resonator using the same
JP3605295B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JPH11130544A (en) Dielectric ceramic composition and its production
JP2009263166A (en) Dielectric porcelain and its manufacturing method
JP4959043B2 (en) Dielectric porcelain composition, method for producing the same, and dielectric resonator
JP2002187771A (en) Dielectric porcelain and dielectric resonator using the same
JP3330024B2 (en) High frequency dielectric ceramic composition
JPH0729415A (en) Dielectric porcelain serving also as antenna
JP3359427B2 (en) High frequency dielectric ceramic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4688289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees