JP2002193657A - Polycrystal and its manufacturing method, and method for manufacturing single crystal - Google Patents

Polycrystal and its manufacturing method, and method for manufacturing single crystal

Info

Publication number
JP2002193657A
JP2002193657A JP2000390949A JP2000390949A JP2002193657A JP 2002193657 A JP2002193657 A JP 2002193657A JP 2000390949 A JP2000390949 A JP 2000390949A JP 2000390949 A JP2000390949 A JP 2000390949A JP 2002193657 A JP2002193657 A JP 2002193657A
Authority
JP
Japan
Prior art keywords
single crystal
polycrystal
crystal particles
particle diameter
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000390949A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nishizono
和博 西薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000390949A priority Critical patent/JP2002193657A/en
Publication of JP2002193657A publication Critical patent/JP2002193657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a high performance single crystalline polycrystal and single crystal, which is preferably used for optical part, electronic part, structural part or the like, without through a liquid phase, in a relatively short time, easily and at a low cost. SOLUTION: The single crystalline polycrystal in which the particle size of the central part is larger in comparison with the particle size of the surface and the single crystal which is cut off from the central part of the single crystalline polycrystal are used. The single crystalline polycrystal is obtained by disposing a formed body containing a ceramic powder and a single crystal particle in a cavity resonator and growing the single crystal particle by heating through applying a micro wave to the formed body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学特性、熱特
性、電気特性、機械特性等の諸特性に優れ、特に、光ア
イソレータ等の光部品、レーザー発振子、誘電体、圧電
体、透光性部品、超伝導体等の電子部品、機能部品、構
造材料に好適に用いることができる多結晶体とその製造
方法並びに単結晶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is excellent in various characteristics such as optical characteristics, thermal characteristics, electric characteristics, and mechanical characteristics. In particular, optical parts such as optical isolators, laser oscillators, dielectrics, piezoelectrics, and translucent materials. The present invention relates to a polycrystal that can be suitably used for electronic components such as conductive parts and superconductors, functional components, and structural materials, a method for producing the same, and a method for producing a single crystal.

【0002】[0002]

【従来技術】従来より、レーザーのような光特性を利用
するものや、特定の結晶面を利用する電子放射材料ある
いは表面弾性波(SAW)を利用したフィルター等に透
光性あるいは圧電性を有する多結晶体や単結晶が用いら
れている。これらの材料の製造方法としてはチョコラル
スキー法(CZ法)、ベルヌーイ法、帯溶融法、浮遊帯
域融解法(FZ法)、ブリッジマン法等を挙げることが
できる。
2. Description of the Related Art Conventionally, a material utilizing light characteristics such as a laser, an electron emitting material utilizing a specific crystal plane, or a filter utilizing surface acoustic waves (SAW) has a light transmitting property or a piezoelectric property. Polycrystals and single crystals are used. Examples of the method for producing these materials include the Czochralski method (CZ method), the Bernoulli method, the zone melting method, the floating zone melting method (FZ method), and the Bridgman method.

【0003】これらの方法は、いずれも液相からの単結
晶成長法であり、特別な装置が必要で、組成や形状が変
動したり、不純物が混入したり、大型単結晶が得られに
くかったり、或いは、結晶性が低いという問題があっ
た。
Each of these methods is a single crystal growth method from a liquid phase, and requires special equipment. The composition and shape are varied, impurities are mixed, and it is difficult to obtain a large single crystal. Alternatively, there is a problem that the crystallinity is low.

【0004】また、このような単結晶の製造方法では、
液相の反応性が高く、また均一高品位な単結晶を得るに
は種結晶の移動スピード、回転スピード、温度勾配等多
くの結晶成長条件を最適化しなければならず、また結晶
成長に長時間を有し、コストが高くなるといった問題が
あった。
Further, in such a method for producing a single crystal,
In order to obtain a single crystal with high reactivity in the liquid phase and high uniformity, it is necessary to optimize many crystal growth conditions such as seed crystal movement speed, rotation speed, temperature gradient, etc. And there is a problem that the cost increases.

【0005】そこで、単結晶ガーネットを多結晶体ガー
ネットに接合させ焼結させることで単結晶ガーネットを
選択的に成長させ、その後熱間静水圧プレスにより加圧
処理を行い気泡の少ない低コストな単結晶の製造方法が
特公昭63−35496号公報で提案されている。
Therefore, the single crystal garnet is bonded to the polycrystalline garnet and sintered to selectively grow the single crystal garnet. Thereafter, the single crystal garnet is subjected to a pressure treatment by a hot isostatic press to reduce the cost of the single crystal garnet. A method for producing crystals has been proposed in Japanese Patent Publication No. 63-35496.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記単
結晶の製造方法では比較的大きな種結晶が必要であり、
また、得られた単結晶は、多くの気泡を含みやすく、混
入した気泡を除去するために特殊な高圧発生装置が必要
であり、従来の単結晶の製造方法に比べて性能及びコス
トが充分ではないという問題があった。
However, the above method for producing a single crystal requires a relatively large seed crystal.
In addition, the obtained single crystal is likely to contain many bubbles, a special high-pressure generator is required to remove the mixed bubbles, and the performance and cost are not sufficient as compared with the conventional single crystal manufacturing method. There was no problem.

【0007】従って、本発明は、気泡の混入が少なく、
諸特性に優れる多結晶体とそれを低コストで量産性に優
れた製造方法、並びに多結晶体から作製する単結晶の製
造方法に関する。
Therefore, according to the present invention, the mixing of air bubbles is small,
The present invention relates to a polycrystal excellent in various properties, a method for producing the same at low cost and excellent in mass productivity, and a method for producing a single crystal produced from the polycrystal.

【0008】[0008]

【課題を解決するための手段】本発明は、セラミック粒
子と単結晶粒子とからなる成形体の内部の単結晶を選択
的に加熱することにより、内部の単結晶が選択的に粒成
長するとともに、内部の結晶中の欠陥が徐々に粒界に拡
散し、結晶性の高い単結晶を含有する多結晶体が得ら
れ、単結晶に匹敵する特性を多結晶体で実現できるとい
う知見に基づく。
SUMMARY OF THE INVENTION The present invention selectively heats a single crystal inside a compact formed of ceramic particles and single crystal particles to selectively grow the internal single crystal. It is based on the finding that a defect in an internal crystal gradually diffuses to a grain boundary, a polycrystal containing a single crystal having high crystallinity can be obtained, and characteristics comparable to a single crystal can be realized by a polycrystal.

【0009】即ち、本発明の多結晶体は、最表面部の最
大粒子径の5倍以上の最大粒子径からなる単結晶粒子を
内部に含有することを特徴とするもので、特に、内部に
含まれる前記単結晶粒子の最大粒子径が100μm以上
であることが好ましい。
That is, the polycrystal of the present invention is characterized in that it contains single crystal particles having a maximum particle diameter of at least five times the maximum particle diameter of the outermost surface portion. It is preferable that the maximum particle diameter of the contained single crystal particles is 100 μm or more.

【0010】通常の粒径が均一な多結晶体では、他元素
が粒界を拡散し、内部で化合物が形成され特性の劣化や
寿命を短くする。そのため単結晶であることが望まれる
場合があるが、単結晶では癖開性を有するものが多く、
その加工性が問題となる。したがって最表面部の最大粒
子径に対して、その5倍以上の最大粒子径を有し、欠陥
の少ない単結晶粒子を内部に含むことで、加工性等の機
械的特性を含めた特性を単結晶に近づけることができ
る。
In a normal polycrystalline material having a uniform particle size, other elements diffuse in the grain boundaries, and a compound is formed inside the polycrystalline material, thereby deteriorating characteristics and shortening the life. Therefore, a single crystal is sometimes desired, but many single crystals have a tendency to open,
The workability is a problem. Therefore, by including a single crystal particle having a maximum particle diameter that is five times or more the maximum particle diameter of the outermost surface portion and having few defects therein, characteristics including mechanical characteristics such as workability can be reduced. It can be close to a crystal.

【0011】特に、内部に含まれる前記単結晶粒子の最
大粒子径を100μm以上、及び相対密度を98%以上
とすることで、不純物の拡散が表面部分のみに抑制で
き、また電気特性、光学特性が単結晶に匹敵し、かつ強
度に優れた多結晶体とすることができる。
In particular, by setting the maximum particle diameter of the single crystal particles contained therein to 100 μm or more and the relative density to 98% or more, diffusion of impurities can be suppressed only at the surface portion, and electrical and optical characteristics can be suppressed. Can be made into a polycrystal which is comparable to a single crystal and has excellent strength.

【0012】また、前記多結晶体が、Al23、Y3
512(YAG)、TiO2、Y2 3、Pb(Zr,T
i)O3(PZT)、(Pb,La)(Zr,Ti)O3
(PLZT)、BaTiO3、Y3Fe512(YI
G)、YVO4、LiNbO3、LiTaO3、KNb
3、Si34、AlN、GaN、REBa2Cu37-x
(RE:希土類元素)の少なくとも1種の単結晶粒子を
含むことが好ましい。なお、上記の多結晶体の各元素中
には他の元素が固溶したものであってもよい。
Further, the polycrystalline material is AlTwoOThree, YThreeA
lFiveO12(YAG), TiOTwo, YTwoO Three, Pb (Zr, T
i) OThree(PZT), (Pb, La) (Zr, Ti) OThree
(PLZT), BaTiOThree, YThreeFeFiveO12(YI
G), YVOFour, LiNbOThree, LiTaOThree, KNb
OThree, SiThreeNFour, AlN, GaN, REBaTwoCuThreeO7-x
(RE: rare earth element) at least one single crystal particle
It is preferred to include. In addition, in each element of the above polycrystal,
May be a solid solution of another element.

【0013】以上のような構成により、通常単結晶作製
に液相を介し、複雑な工程、長時間を要しており高品位
な単結晶作製が困難であった光アイソレータ等の光部
品、レーザー発振子、誘電体、圧電体、透光性部品、超
伝導体等の電子部品、機能部品、構造材料等の単結晶に
特性が匹敵する多結晶体を容易に実現できる。
With the above-described structure, an optical component such as an optical isolator or the like, which usually requires a complicated process and a long time through a liquid phase for producing a single crystal, and it is difficult to produce a high-quality single crystal, It is possible to easily realize a polycrystal having characteristics comparable to those of a single crystal such as an electronic component such as an oscillator, a dielectric, a piezoelectric material, a translucent component, and a superconductor, a functional component, and a structural material.

【0014】また、本発明の多結晶体の製造方法は、セ
ラミック粉末と単結晶粒子とを含む成形体を空洞共振器
内に設置し、前記成形体にマイクロ波を照射して加熱す
ることを特徴とするものである。これにより、成形体の
内部の単結晶を選択的に加熱することができ、内部の単
結晶が選択的に粒成長するとともに、内部の結晶中の欠
陥が徐々に粒界に拡散し、結晶性の高い単結晶が実現で
きる。
The method for producing a polycrystalline body according to the present invention is characterized in that a molded body containing ceramic powder and single crystal particles is placed in a cavity resonator, and the molded body is irradiated with microwaves and heated. It is a feature. As a result, the single crystal inside the compact can be selectively heated, and the single crystal inside grows selectively, and the defects in the inside crystal gradually diffuse to the grain boundaries, and the crystallinity increases. High single crystal can be realized.

【0015】特に、前記セラミック粉末が、少なくとも
単結晶粒子の構成元素を含むことが好ましい。これによ
り、不純物混入を避けることができ、また、粒成長する
際に不純物が含まれず、高純度で高品位な単結晶が実現
できる。
In particular, it is preferable that the ceramic powder contains at least a constituent element of a single crystal particle. Thereby, impurity contamination can be avoided, and a high-purity, high-quality single crystal that does not contain impurities during grain growth can be realized.

【0016】また、前記加熱時における単結晶粒子の誘
電損率が、セラミック粉末よりも大きいことが好まし
く、これにより、誘電損失の大きな単結晶の方が選択的
にマイクロ波を吸収できるため、単結晶粒子の粒成長が
顕著にでき、より大きな単結晶が実現できる。
Further, it is preferable that the dielectric loss factor of the single crystal particles during the heating is larger than that of the ceramic powder, whereby a single crystal having a large dielectric loss can selectively absorb microwaves. The grain growth of crystal grains can be remarkable, and a larger single crystal can be realized.

【0017】さらに、表面部を除去して、最大粒子径が
100μm以上の単結晶粒子を含む多結晶体を得ること
が好ましい。これにより、結晶性が非常に高く、欠陥の
少ない結晶が得られ、さらに上記の特性が向上するとと
もに、この多結晶体から単結晶を取り出すことが可能と
なる。
Furthermore, it is preferable to remove the surface portion to obtain a polycrystal containing single crystal particles having a maximum particle diameter of 100 μm or more. As a result, a crystal having very high crystallinity and few defects can be obtained, and the above-described characteristics are improved, and a single crystal can be extracted from the polycrystal.

【0018】また、本発明の単結晶の製造方法は、上記
の方法により作製した多結晶体を切断し、単結晶粒子を
取り出すことを特徴とするもので、この方法によって欠
陥が少なく高品質で、高特性な単結晶を容易にかつ安価
に製造することができる。
Further, the method for producing a single crystal of the present invention is characterized in that the polycrystalline body produced by the above method is cut and single crystal particles are taken out. In addition, a high-performance single crystal can be easily and inexpensively manufactured.

【0019】[0019]

【発明の実施の形態】本発明は、多結晶体に関するもの
であるが、粒子径の大きな結晶粒子が多数存在し、その
特性、例えば光学特性、熱特性、電気特性又は誘電特性
等が単結晶に近い特性を有している、いわゆる擬単結晶
に関するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a polycrystal, in which a large number of crystal grains having a large particle diameter are present, and their properties, such as optical properties, thermal properties, electrical properties or dielectric properties, are single crystal. This is related to a so-called pseudo-single crystal having characteristics close to the above.

【0020】本発明によれば、セラミックスからなる多
結晶体ではあるが、内部に粒子径の大きな結晶粒子が多
数存在し、表面部には比較的小さな粒径の結晶粒子が存
在している。そして、内部に、最表面部5倍以上の最大
粒子径を有する単結晶粒子を有することが重要である。
これにより、内部は粗大結晶、表面部は細かい結晶であ
るため、通常の多結晶体よりも電気特性、光学特性に優
れた多結晶体を得ることができ、また強度に優れた多結
晶体が実現できる。
According to the present invention, although it is a polycrystalline body made of ceramics, a large number of crystal grains having a large particle diameter exist inside, and crystal grains having a relatively small particle diameter exist on the surface portion. And it is important to have a single crystal particle having a maximum particle diameter five times or more the outermost surface portion inside.
Thereby, since the inside is a coarse crystal and the surface portion is a fine crystal, a polycrystal having better electrical and optical properties than a normal polycrystal can be obtained, and a polycrystal having excellent strength can be obtained. realizable.

【0021】ここで、最大粒子径とは、各粒子の最大長
径を測定し、その中で最大の最大長径を最大粒子径と言
う。また、内部とは、表面から0.1mm以上内側にあ
る部位を言う。
Here, the maximum particle diameter refers to the maximum particle diameter of each particle measured, and the maximum maximum particle diameter is referred to as the maximum particle diameter. The term “inside” refers to a portion that is 0.1 mm or more inside from the surface.

【0022】また、詳細は後述するが、成形体の内部の
単結晶粒子を選択的に粒成長させるため、内部が表面部
よりも粒径が5倍以上大きくすることで、種々の欠陥を
排除でき、高品位な結晶を有している。
Further, as will be described in detail later, in order to selectively grow single crystal particles inside the compact, various defects are eliminated by making the inside grain size 5 times or more larger than the surface portion. It has high quality crystals.

【0023】特に、内部に最大粒子径が100μm以
上、特に200μm以上、さらには500μm以上の単
結晶粒子を有することが好ましい。このように、結晶粒
径が100μm以上であると、粒界の量が少なくなり、
かつ高純度であるため、不純物の粒界偏析などを防ぎ、
特性をさらに向上できる。
In particular, it is preferable to have single crystal particles having a maximum particle diameter of 100 μm or more, particularly 200 μm or more, and more preferably 500 μm or more inside. Thus, when the crystal grain size is 100 μm or more, the amount of the grain boundary decreases,
And high purity prevents grain boundary segregation of impurities, etc.
The characteristics can be further improved.

【0024】また、本発明の多結晶体は、相対密度が9
8%以上、特に99%以上、更には99.5%以上であ
ることが好ましい。気孔を減らして相対密度を98%以
上にすることで、気孔による特性劣化を抑制できる。
The polycrystal of the present invention has a relative density of 9%.
It is preferably at least 8%, particularly preferably at least 99%, further preferably at least 99.5%. By reducing the number of pores and increasing the relative density to 98% or more, characteristic deterioration due to pores can be suppressed.

【0025】さらに、上記の多結晶体の表面部を除去す
ることによって粒子径の大きな結晶からなる多結晶体
(擬単結晶体)が得られ、除去後の表面における最大粒
子径を100μm以上とすることによって、単結晶にほ
ぼ匹敵する特性を実現できる。
Further, by removing the surface portion of the above-mentioned polycrystal, a polycrystal (pseudo single crystal) composed of a crystal having a large particle diameter is obtained, and the maximum particle diameter on the surface after the removal is set to 100 μm or more. By doing so, it is possible to realize characteristics almost equal to those of a single crystal.

【0026】本発明の多結晶体中には、Al23、Y3
Al512(YAG)、TiO2、Y23、Pb(Zr,
Ti)O3(PZT)、(Pb,La)(Zr,Ti)
3(PLZT)、BaTiO3、Y3Fe512(YI
G)、YVO4、LiNbO3、LiTaO3、KNb
3、Si34、AlN、GaN、REBa2Cu37-x
(RE:希土類元素)の少なくとも1種の単結晶粒子を
含むことが好ましい。なお、上記の多結晶体の各元素中
には他の元素が固溶したものであってもよく、例えば、
YIGのY中にBi等が固溶していてもよい。
In the polycrystal of the present invention, Al 2 O 3 , Y 3
Al 5 O 12 (YAG), TiO 2 , Y 2 O 3 , Pb (Zr,
Ti) O 3 (PZT), (Pb, La) (Zr, Ti)
O 3 (PLZT), BaTiO 3 , Y 3 Fe 5 O 12 (YI
G), YVO 4 , LiNbO 3 , LiTaO 3 , KNb
O 3 , Si 3 N 4 , AlN, GaN, REBa 2 Cu 3 O 7-x
It is preferable to include at least one single crystal particle of (RE: rare earth element). In addition, in each element of the above-mentioned polycrystal, other elements may be a solid solution, for example,
Bi or the like may be dissolved in Y of YIG.

【0027】次に、本発明の多結晶体を製造する方法に
ついて以下に説明する。まず、原料粉末として、セラミ
ック粉末と単結晶粒子とを準備する。セラミック粉末と
しては、純度99.9%以上、平均粒子径0.1〜10
μmのセラミック粉末が、また、単結晶粒子としては、
純度99.9%以上の単結晶粒子が望ましい。ここで、
単結晶粒子の大きさは特に限定しないが、好ましくは1
000μm以下、望ましくは500μm以下、特には1
00μm以下が望ましい。1000μmより大きい単結
晶粒子を添加すると、単結晶自身の分散性が悪く、成形
体作製時の成形性が悪くなる。また、単結晶粒子の比率
は0.01vol%以上、好ましくは1vol%以上、
特には5vol%以上が望ましい。この単結晶粒子は、
1個または多数個のいずれでもよい。
Next, a method for producing the polycrystal of the present invention will be described below. First, ceramic powder and single crystal particles are prepared as raw material powders. The ceramic powder has a purity of 99.9% or more and an average particle diameter of 0.1 to 10%.
μm ceramic powder, and as single crystal particles,
Single crystal particles having a purity of 99.9% or more are desirable. here,
The size of the single crystal particles is not particularly limited, but is preferably 1
000 μm or less, desirably 500 μm or less, especially 1 μm
It is desirably not more than 00 μm. When single crystal particles having a size of more than 1000 μm are added, the dispersibility of the single crystal itself is poor, and the moldability at the time of forming a molded body is poor. Further, the ratio of the single crystal particles is 0.01 vol% or more, preferably 1 vol% or more,
In particular, 5 vol% or more is desirable. This single crystal particle
Either one or many may be used.

【0028】得られた混合粉末原料を公知の方法によっ
て成形する。例えば一軸プレス法、CIP(冷間等方プ
レス)を挙げることができるが、ドクターブレード法を
用いテープ状に成形し、該成形体を積層することで成形
体を作製することも例示できる。また、成形体の生密度
を上げるためにプレス成形後、冷間静水圧成形(CIP)
を行っても良い。
The obtained mixed powder raw material is molded by a known method. For example, a uniaxial pressing method and a CIP (cold isostatic pressing) method can be mentioned, and it is also possible to form a tape by using a doctor blade method, and to form a molded article by laminating the molded articles. In addition, cold isostatic pressing (CIP) after press molding to increase the green density of the molded body
May be performed.

【0029】本発明によれば、成形体中におけるセラミ
ックス粉末は単結晶粒子と比較して小さい粒子を用いる
ことが望ましい。これは、焼結中の単結晶粒子表面にお
ける粒成長の駆動力が粒径の違いによって生じるためで
あり、より小さいセラミックス粉末を用いることで単結
晶粒子の粒成長速度を高めることができる。
According to the present invention, it is desirable that the ceramic powder in the compact be smaller than single crystal particles. This is because the driving force of the grain growth on the surface of the single crystal particles during sintering is caused by the difference in the particle diameter, and the grain growth rate of the single crystal particles can be increased by using a smaller ceramic powder.

【0030】次に、得られた成形体を空洞共振器内に設
置し、前記成形体にマイクロ波を照射して加熱して前記
単結晶粒子を選択的に成長させることが必要である。成
形体はマイクロ波加熱装置の共振器内に配置し、マグネ
トロン、クライストロン又はジャイロトロン等の発振管
より発振され、導波管を通して空洞共振器内に導かれた
マイクロ波を成形体に照射する。
Next, it is necessary to place the obtained compact in a cavity resonator, irradiate the compact with microwaves and heat it to selectively grow the single crystal particles. The compact is placed in a resonator of a microwave heating device, and is oscillated by an oscillation tube such as a magnetron, klystron, or gyrotron, and irradiates the compact with microwaves guided into the cavity resonator through the waveguide.

【0031】ここで用いるマイクロ波の周波数はマイク
ロ波帯(300MHz〜300GHz)であれば良い
が、1GHz以上が単結晶粒子を加熱する上で好まし
く、加熱均一性の見地から10GHz以上、特には20
GHz以上が望ましい。なお、成形体はアルミナ繊維等
からなる断熱材にて周囲を囲むことで試料表面からの放
熱を抑制でき、効果的に加熱することができる。また、
試料温度は公知の測定方法、例えばタングステン−レニ
ウム等の熱電対や二色温度計等の非接触法で測定するこ
とができる。
The frequency of the microwave used here may be in the microwave band (300 MHz to 300 GHz), but is preferably 1 GHz or more for heating the single crystal particles. From the viewpoint of heating uniformity, it is 10 GHz or more, especially 20 GHz.
GHz or more is desirable. By surrounding the molded body with a heat insulating material made of alumina fiber or the like, heat radiation from the sample surface can be suppressed, and heating can be performed effectively. Also,
The sample temperature can be measured by a known measuring method, for example, a thermocouple such as tungsten-rhenium or a non-contact method such as a two-color thermometer.

【0032】セラミック粉末中に単結晶粒子を含む成形
体にマイクロ波を照射して加熱することによってマイク
ロ波の非熱的効果による拡散促進により、固相反応であ
りながら単結晶粒子の粒成長を促進でき、比較的短時間
でセラミックス単結晶を得ることができ、また粉末を溶
融させることなく単結晶を製造できるため、高価な坩堝
が必要なく、均一加熱であり熱的に安定であるため結晶
成長中に変動がなく、均一で高品位の単結晶を安価に製
造することができる。さらに加熱中の粒子内部の欠陥を
少なくすることができる。
By irradiating a microwave to the compact containing the single crystal particles in the ceramic powder and heating the same, the diffusion of the single crystal particles is promoted by the non-thermal effect of the microwave, so that the single crystal particles grow in a solid phase. The ceramic single crystal can be obtained in a relatively short time, and a single crystal can be produced without melting the powder. A uniform and high-quality single crystal can be produced at low cost without fluctuation during growth. Further, defects inside the particles during heating can be reduced.

【0033】また、前記成形体中のセラミック粉末が、
少なくとも単結晶粒子を構成する元素を含むことが望ま
しい。セラミックス粉末が単結晶粒子を構成する元素を
含んでいなければ単結晶中に不純物として残留したり、
異なる化合物を形成し、結晶粒の成長を阻害する可能性
がある。また作製した単結晶が均一で高品位なものとす
ることができない。したがってセラミック粉末が、少な
くとも単結晶粒子を構成する元素、特に単結晶の化合物
と同じ化合物を含有すること、特に単結晶粒子を構成す
る化合物を主成分とすることが望ましい。また、同一化
合物であるが、結晶構造は異なる同質多像物質であって
もよい。例えば、酸化チタンの場合、アナターゼ型、ル
チル型、Si34の場合、β型、α型などが例示され
る。
Further, the ceramic powder in the compact is
It is desirable to include at least the elements constituting the single crystal particles. If the ceramic powder does not contain the elements constituting the single crystal particles, it may remain as impurities in the single crystal,
Different compounds may form and inhibit grain growth. Further, the produced single crystal cannot be made uniform and high quality. Therefore, it is desirable that the ceramic powder contains at least an element constituting the single crystal particles, particularly the same compound as the compound of the single crystal, and particularly preferably contains a compound constituting the single crystal particle as a main component. Further, homogeneous polyimage materials having the same compound but different crystal structures may be used. For example, in the case of titanium oxide, anatase type and rutile type, and in the case of Si 3 N 4 , β type and α type are exemplified.

【0034】本発明によれば、このとき単結晶粒子の加
熱時における誘電損率(誘電率と誘電損失の積)が単結
晶粒子以外のセラミック粉末の誘電損率よりも大きいこ
とが望ましい。これは、マイクロ波加熱においては粒子
自身が受け取るエネルギー(熱)が誘電損率に依存する
ためであり、セラミックス粉末と比較して誘電損率の大
きな単結晶粒子を用いることでより単結晶粒子の選択的
な粒成長が行える。また、このときにセラミックス粉末
中には、単結晶粒子の粒成長を促進させるために焼結中
に液相を生成する添加物を加えても良い。あるいは、こ
れらは不純物として不可避に添加されているものでも良
い。高温における誘電損率は例えば、同一の形状、体
積、気孔率からなる成形体に一定出力のマイクロ波を照
射しその温度上昇を測定することで大小を把握すること
ができる。
According to the present invention, it is desirable that the dielectric loss factor (product of the dielectric constant and the dielectric loss) of the single crystal particles at the time of heating is larger than the dielectric loss ratio of the ceramic powder other than the single crystal particles. This is because in microwave heating, the energy (heat) received by the particles themselves depends on the dielectric loss factor. By using single crystal particles having a large dielectric loss factor as compared with ceramic powder, the single crystal particles are more likely to be used. Selective grain growth can be performed. At this time, an additive that generates a liquid phase during sintering may be added to the ceramic powder to promote the grain growth of the single crystal particles. Alternatively, they may be unavoidably added as impurities. The magnitude of the dielectric loss factor at a high temperature can be determined by, for example, irradiating a molded product having the same shape, volume, and porosity with a microwave having a constant output and measuring the temperature rise.

【0035】またマイクロ波の照射による加熱・粒成長
は必要に応じて酸素分圧を調整された雰囲気中や真空
中、また不活性雰囲気中で行うことができる。
Heating and grain growth by microwave irradiation can be carried out in an atmosphere in which the oxygen partial pressure is adjusted as required, in a vacuum, or in an inert atmosphere.

【0036】なお、マイクロ波の照射による成形体の加
熱に際して昇温速度、保持温度、保持時間は材料により
ことなるが、焼成温度はより欠陥を少なくするために単
結晶粒子の粒成長速度は気孔が残留しない粒成長速度と
なるよう決定する。また、本発明によれば得ようとする
粒径の多結晶体をある温度にて焼結させたのちに欠陥を
少なくするために焼結温度よりも5〜20%低い温度で
の粒成長が小さい温度域におけるアニール処理を同じマ
イクロ波の照射にて行うことが好ましい。このアニール
は焼結中に実施しても焼結後に再度行っても良い。
The heating rate, holding temperature, and holding time when heating the compact by microwave irradiation vary depending on the material. However, the firing temperature is set to be smaller than the pore growth rate in order to reduce defects. Is determined so that the grain growth rate does not remain. Further, according to the present invention, after sintering a polycrystal having a grain size to be obtained at a certain temperature, grain growth at a temperature 5 to 20% lower than the sintering temperature is performed in order to reduce defects. It is preferable that the annealing treatment in a small temperature range is performed by the same microwave irradiation. This annealing may be performed during or after sintering.

【0037】本発明によれば、上記方法で得られた多結
晶体の相対密度は98%以上であり、望ましくは99%
以上、より望ましくは99.5%以上である。98%よ
り小さいと透光性、圧電性その他必要とする特性が充分
発現できず、またそれに含まれる単結晶の欠陥も多いた
めである。さらに、多結晶体内部の最大粒子径は表面の
最大粒子径と比べて5以上であることが上述した透光
性、圧電性その他の特性、さらには機械的特性を高める
上で重要である。これは通常の多結晶体は、粒径が大き
いため機械的強度が低いためである。
According to the present invention, the relative density of the polycrystal obtained by the above method is 98% or more, preferably 99%.
As described above, it is more desirably 99.5% or more. If it is less than 98%, light-transmitting properties, piezoelectricity, and other necessary properties cannot be sufficiently exhibited, and there are many single crystal defects contained therein. Further, it is important that the maximum particle diameter inside the polycrystal is 5 or more as compared with the maximum particle diameter on the surface in order to enhance the above-mentioned light-transmitting properties, piezoelectric properties, and other mechanical properties. This is because ordinary polycrystals have low mechanical strength due to large grain size.

【0038】本発明によれば、上記製造方法で得られた
多結晶体から粒子径の大きい粒子を切り出すことで優れ
た透光性あるいは圧電特性等を有する単結晶粒子を得る
ことができる。このときに切り出す単結晶部分は粒界を
含まない1つの粒子から構成されることが結晶格子をそ
ろえる上で望ましい。
According to the present invention, single crystal particles having excellent translucency or piezoelectric characteristics can be obtained by cutting out particles having a large particle diameter from the polycrystal obtained by the above-mentioned production method. At this time, it is desirable that the single crystal portion to be cut out is formed of one particle not including a grain boundary in order to make the crystal lattice uniform.

【0039】上記の製造方法についてさらに具体的に述
べると、TiO2系多結晶体の場合、アナターゼ型また
はルチル型のTiO2単結晶粒子と、アナターゼ型また
はルチル型のTiO2粉末と組み合わせることが望まし
く、1400〜1800℃の酸素分圧が調整された炭酸
ガス、窒素雰囲気で焼成する。また、酸化チタンの場
合、酸素欠損により結晶が濃青色になることがあるた
め、その場合、焼成後に酸化処理を行うことが望まし
い。
More specifically, in the case of the TiO 2 -based polycrystal, the anatase or rutile type TiO 2 single crystal particles and the anatase or rutile type TiO 2 powder are combined. Desirably, firing is performed in a carbon dioxide gas and nitrogen atmosphere in which the oxygen partial pressure is adjusted to 1400 to 1800 ° C. In the case of titanium oxide, the crystal may become dark blue due to oxygen deficiency. In such a case, it is preferable to perform an oxidation treatment after firing.

【0040】また、焼成条件について、各セラミック化
合物の単結晶粒子を含有する多結晶体(以下、セラミッ
ク系多結晶体という。)について説明すると、Al23
系多結晶体の場合は、1400〜1800℃の酸化性雰
囲気中で焼成することができる。Y3Al512(YA
G)、Y3Fe512(YIG)系の多結晶体の場合に
は、1300〜1800℃の酸化性雰囲気、Y23系多
結晶体の場合には、1600〜2000℃の酸化性雰囲
気で、Pb(Zr,Ti)O3(PZT)、(Pb,L
a)(Zr,Ti)O3(PLZT)、BaTiO3系の
多結晶体では800〜1200℃の酸化性雰囲気で、Y
VO4系多結晶体では1200〜1700℃の酸化性雰
囲気で、LiNbO3系多結晶体では800〜1100
℃の酸化性雰囲気で、LiTaO3系多結晶体では12
00〜1500℃の酸化性雰囲気で、KNbO3系多結
晶体では700〜1000℃の酸化性雰囲気で、Si3
4系多結晶体では1500〜1800℃の非酸化性雰
囲気で、AlN、GaN系多結晶体では1500〜20
00℃の非酸化性雰囲気で、REBa2Cu37-x(R
E:希土類元素)系多結晶体では800〜1200℃の
酸化性雰囲気でそれぞれ焼成することによって作製する
ことができる。
Further, the firing conditions, the polycrystalline body containing a single crystal grain of each ceramic compounds (hereinafter, referred to as ceramic polycrystalline body.) To describe, Al 2 O 3
In the case of a system polycrystal, it can be fired in an oxidizing atmosphere at 1400 to 1800 ° C. Y 3 Al 5 O 12 (YA
G) In the case of a Y 3 Fe 5 O 12 (YIG) -based polycrystal, an oxidizing atmosphere at 1300 to 1800 ° C., and in the case of a Y 2 O 3 -based polycrystal, an oxidation atmosphere of 1600 to 2000 ° C. Pb (Zr, Ti) O 3 (PZT), (Pb, L
a) In the case of (Zr, Ti) O 3 (PLZT) or BaTiO 3 based polycrystal, in an oxidizing atmosphere at 800 to 1200 ° C., Y
The VO 4 -based polycrystal is in an oxidizing atmosphere at 1200 to 1700 ° C., and the LiNbO 3 -based polycrystal is 800 to 1100 ° C.
In an oxidizing atmosphere at ° C., the LiTaO 3 based polycrystal 12
In an oxidizing atmosphere of 00 to 1500 ° C., and in an oxidizing atmosphere of 700 to 1000 ° C. for a KNbO 3 -based polycrystal, Si 3
For N 4 -based polycrystals, a non-oxidizing atmosphere at 1500 to 1800 ° C., and for AlN and GaN-based polycrystals,
In a non-oxidizing atmosphere at 00 ° C., REBa 2 Cu 3 O 7-x (R
E: a rare earth element-based polycrystal can be produced by firing in an oxidizing atmosphere at 800 to 1200 ° C., respectively.

【0041】上述したように本発明では、通常のFZ法
やEFG法のように粉末を溶融させたり、種結晶を回転
させる等の工程を必要とせずに、良質の単結晶、あるい
は多結晶体を低コストで量産性に富む方法で製造するこ
とができ、得られた多結晶体、あるいは単結晶は光特
性、表面平滑性を必要とする様々な用途に応用が可能で
ある。
As described above, the present invention does not require a step of melting powder or rotating a seed crystal as in the case of the ordinary FZ method or EFG method. Can be produced at low cost by a method which is highly productive, and the obtained polycrystal or single crystal can be applied to various uses requiring optical characteristics and surface smoothness.

【0042】[0042]

【実施例】実施例1 本例は酸化チタン(TiO2)の単結晶育成の場合であ
る。原料には純度99.99%の酸化チタン粉末を用い
た。粒径が細かいセラミックス粉末として平均結晶粒径
が1μmの粉末、単結晶粒子として結晶粒径が500μ
mのルチル型でc軸配向しているチタニア粉末を用い
た。粒径1μmの粉末に粒径500μmの単結晶粒子を
5vol%混合し混合粉末とした。
EXAMPLE 1 This example relates to the case of growing a single crystal of titanium oxide (TiO 2 ). Titanium oxide powder having a purity of 99.99% was used as a raw material. Fine ceramic powder having a mean crystal grain size of 1 μm as a fine ceramic powder, and a single crystal grain having a crystal grain size of 500 μm
A m-rutile type c-axis oriented titania powder was used. 5 vol% of single crystal particles having a particle diameter of 500 μm were mixed with powder having a particle diameter of 1 μm to obtain a mixed powder.

【0043】その後一軸プレスにて100MPaの成形
圧で、□10×10mmの成形体を作製した。さらに生
密度を上げるために2000kg/cm2でCIPを行
った。
Thereafter, a molded body of □ 10 × 10 mm was produced by a uniaxial press at a molding pressure of 100 MPa. CIP was performed at 2000 kg / cm 2 to further increase the green density.

【0044】次に、マイクロ波加熱炉により上記の成形
体を焼成した。ここで、マイクロ波加熱炉のマイクロ波
源として、周波数28GHz、出力10kWのジャイロ
トロンを用いた。そして、空洞共振器内のアルミナ断熱
材中に成形体を設置し、成形体にマイクロ波を照射し
た。加熱は15℃/分の速度で昇温し、1700℃で5
時間保持し、その後マイクロ波の発振をやめ炉冷し焼結
体を得た。
Next, the above-mentioned molded body was fired in a microwave heating furnace. Here, a gyrotron having a frequency of 28 GHz and an output of 10 kW was used as a microwave source of the microwave heating furnace. Then, the compact was placed in the alumina heat insulating material in the cavity resonator, and the compact was irradiated with microwaves. The heating is performed at a rate of 15 ° C./min,
After holding for a time, the oscillation of the microwave was stopped and the furnace was cooled to obtain a sintered body.

【0045】得られた焼結体は、最表面部の最大粒子径
が0.5mm、試料中心部の最大粒子径が2mmの単結
晶粒子から構成される擬単結晶質の多結晶体であった。
また、相対密度をアルキメデス法により測定したところ
99%であった。試料の中心部を用いて厚さ2mmまで
研磨しても良好な透光性を示しており、中心部から一つ
の粒子を用いて2mm角、厚さ0.5mmの単結晶を得
ることができた。X線トポグラフで作製した結晶の様子
を観察した結果、試料内で屈折率も一定であり、サブグ
レインもみられず、均一な結晶であることが確認でき
た。さらに、光アイソレーター用の偏向子、検光子部品
を単結晶から切り出し、特性評価した結果、市販引き上
げ品と同等の特性を示した。
The obtained sintered body was a quasi-monocrystalline polycrystalline body composed of single crystal particles having a maximum particle size of 0.5 mm at the outermost surface and a maximum particle size of 2 mm at the center of the sample. Was.
The relative density measured by the Archimedes method was 99%. It shows good translucency even when polished to a thickness of 2 mm using the center of the sample, and a single crystal of 2 mm square and 0.5 mm thick can be obtained using one particle from the center. Was. As a result of observing the state of the crystal produced by an X-ray topograph, it was confirmed that the crystal was a uniform crystal having a constant refractive index and no subgrain in the sample. Further, the deflector and analyzer parts for the optical isolator were cut out of a single crystal, and the characteristics were evaluated. As a result, the characteristics were equivalent to those of a commercially available pulled product.

【0046】比較例1 実施例1で用いたものと同じ成形体を抵抗加熱炉にて1
700℃で100時間加熱した。焼結体の表面、及び中
心部の平均結晶はいずれも2mmであったが、透光性が
悪いものであった。中心部の粒子から一つの結晶を取り
出しX線トポグラフで観察した結果、内部気泡による影
響と思われる屈折率不均一な部分が数多く見られた。
Comparative Example 1 The same compact as that used in Example 1 was subjected
Heated at 700 ° C. for 100 hours. The average crystal of both the surface and the center of the sintered body was 2 mm, but the translucency was poor. As a result of taking out one crystal from the particles at the center and observing it with an X-ray topograph, a number of portions having a non-uniform refractive index possibly due to the influence of internal bubbles were found.

【0047】比較例2 チョコラルスキー法によりチタニア単結晶を製造した。
高周波電源が発振周波数約65kHz、最大出力50K
Wの高周波誘導加熱法による回転引き上げ装置を用い、
坩堝には、直径50mm、高さ50mm、厚さ1.5m
mのイリジウム坩堝を用いた。イリジウム坩堝の周囲に
は、酸化ジルコニウム製のバブル及び耐火坩堝を設置
し、断熱保温した。イリジウム坩堝の底には、イリジウ
ム−イリジウム/ロジウム熱電対を設置し、温度をモニ
ターした。
Comparative Example 2 A titania single crystal was produced by the Czochralski method.
High frequency power supply has oscillation frequency of about 65kHz, maximum output 50K
Using a high-frequency induction heating method for rotating W,
The crucible has a diameter of 50mm, a height of 50mm, and a thickness of 1.5m
m iridium crucible was used. Around the iridium crucible, a bubble made of zirconium oxide and a refractory crucible were installed, and the heat insulation was maintained. An iridium-iridium / rhodium thermocouple was installed at the bottom of the iridium crucible to monitor the temperature.

【0048】原料には、実施例と同様の純度99.99
%の酸化チタン粉末を用いた。約400gの出発粉末
を、4000kg/cm2の圧力でCIP成型し、大気
中、1500℃で15時間焼成したものを結晶育成用の
原料に供した。焼成した育成用原料をイリジウム坩堝に
充填し、雰囲気ガスを流した後、高周波誘導法による加
熱を開始した。雰囲気ガスには、N2に0.5体積%の
2を混合したガスを用いた。約5KWの高周波電力に
より育成用原料は完全に溶融した。この時、イリジウム
坩堝底の熱電対の温度は、1875℃であった。
The raw material had a purity of 99.99 similar to that of the example.
% Titanium oxide powder was used. About 400 g of the starting powder was subjected to CIP molding at a pressure of 4000 kg / cm 2 and fired at 1500 ° C. in the atmosphere for 15 hours to be used as a raw material for growing a crystal. The baked raw material for growth was filled in an iridium crucible, and after flowing an atmosphere gas, heating by a high-frequency induction method was started. As the atmosphere gas, a gas obtained by mixing 0.5% by volume of O 2 with N 2 was used. The raw material for growth was completely melted by the high frequency power of about 5 KW. At this time, the temperature of the thermocouple at the bottom of the iridium crucible was 1875 ° C.

【0049】融液を5時間保持した後、結晶成長を開始
した。種結晶にはc軸方向に切り出した縦5mm、横5
mm、長さ40mmの結晶を用いた。育成条件は、結晶
回転数20rpm、引き上げ速度3.0mm/hとし
た。15時間、直胴部を育成した後、引き上げ速度を2
0mm/hに高め、かつ、高周波電力を徐々に増加させ
て結晶を切り離した。育成した結晶は、融液の上方、約
10mmの位置に保持し、約20時間で室温まで冷却し
た。
After holding the melt for 5 hours, crystal growth was started. The seed crystal was 5 mm long and 5 mm wide cut out in the c-axis direction.
A crystal having a length of 40 mm and a length of 40 mm was used. The growth conditions were a crystal rotation speed of 20 rpm and a pulling speed of 3.0 mm / h. After growing the straight body for 15 hours, raise the
The crystal was cut off by increasing the pressure to 0 mm / h and gradually increasing the high frequency power. The grown crystal was held at a position of about 10 mm above the melt and cooled to room temperature in about 20 hours.

【0050】得られた結晶は直径25mm前後ではあっ
たが、揺らぎがみられた。このことは結晶成長が安定的
に行われていないことを示している。また単結晶作製の
ためには高価な坩堝を必要とし、溶融・成長・冷却それ
ぞれに多くの時間を必要とし、工程が複雑であり、安定
的に結晶成長を行うのが困難であった。
Although the obtained crystal had a diameter of about 25 mm, fluctuation was observed. This indicates that crystal growth has not been performed stably. In addition, an expensive crucible was required for producing a single crystal, and a lot of time was required for each of melting, growing, and cooling, the process was complicated, and it was difficult to perform stable crystal growth.

【0051】また実施例1と同様にX線トポグラフによ
り結晶の様子を観察した結果、サブグレインは確認でき
なかったが結晶中央部と周囲部で屈折率が異なり、不均
一な結晶であった。
As a result of observing the state of the crystal by X-ray topography in the same manner as in Example 1, no subgrain was confirmed, but the crystal had a non-uniform crystal with different refractive indices at the center and the periphery of the crystal.

【0052】実施例2 以下はY3Fe512(YIG)の実施例である。原料と
して純度99.9%以上で粒径1μmのFe23、Y2
3を準備し、単結晶粒子として純度99.99%以
上、粒径500μmの市販のYIG単結晶を準備した。
Fe23とY23はY3Fe512組成になるように混合
し、その粉末に対して20vol%のYIG単結晶を添
加した。成形、焼成は実施例1と同様の手法で行い、焼
成条件は1400℃で6時間とした。得られた焼結体の
相対密度は99%であり、表面部の最大粒子径は500
μm、中心部の最大粒子径は3000μmであった。実
施例1と同様の手法で評価した結果、得られた多結晶体
は優れた透光性を有し、屈折率の変化を引き起こす巨大
な欠陥は無かった。中心部の粒子から光アイソレータ用
回転子部品を切り出し評価した結果、市販引き上げ法に
より作製された単結晶と同等の性能を示した。
Example 2 The following is an example of Y 3 Fe 5 O 12 (YIG). As raw materials, Fe 2 O 3 and Y 2 having a purity of 99.9% or more and a particle size of 1 μm
O 3 was prepared, and a commercially available YIG single crystal having a purity of 99.99% or more and a particle diameter of 500 μm was prepared as single crystal particles.
Fe 2 O 3 and Y 2 O 3 were mixed so as to have a Y 3 Fe 5 O 12 composition, and a 20 vol% YIG single crystal was added to the powder. Molding and firing were performed in the same manner as in Example 1, and the firing conditions were 1400 ° C. for 6 hours. The relative density of the obtained sintered body was 99%, and the maximum particle size of the surface portion was 500%.
μm, and the maximum particle size at the center was 3000 μm. As a result of evaluation by the same method as in Example 1, the obtained polycrystal had excellent translucency, and there was no huge defect causing a change in the refractive index. As a result of cutting out the rotor part for the optical isolator from the particles at the center and evaluating it, it showed the same performance as a single crystal produced by a commercial pulling method.

【0053】[0053]

【発明の効果】本発明では、粉末を溶融させる、種結晶
を回転させる等の工程を必要とせずに、良質の単結晶、
あるいは多結晶体を低コストで量産性に富む方法で製造
することができ、得られた多結晶体、あるいは単結晶は
光特性、圧電特性、表面平滑性を必要とする様々な用途
に応用が可能である。
According to the present invention, a high-quality single crystal can be obtained without the need for a step of melting a powder, rotating a seed crystal, or the like.
Alternatively, polycrystals can be produced at low cost by a method that is highly productive, and the resulting polycrystals or single crystals can be applied to various applications that require optical properties, piezoelectric properties, and surface smoothness. It is possible.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G030 AA02 AA10 AA12 AA13 AA16 AA17 AA19 AA20 AA21 AA36 AA40 AA50 AA51 AA52 CA01 CA03 CA04 GA23 4G077 AA01 BB01 BB04 BB10 BC24 BC31 BC32 BC37 BC38 BC42 BC43 BC53 BE13 BE15 CA03 CA09 EJ03 JA02 JA05 JA08 JB06 JB12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G030 AA02 AA10 AA12 AA13 AA16 AA17 AA19 AA20 AA21 AA36 AA40 AA50 AA51 AA52 CA01 CA03 CA04 GA23 4G077 AA01 BB01 BB04 BB10 BC24 BC31 BC32 BC37 BC38 BE42 BC03 JA05 JA08 JB06 JB12

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】最表面部の最大粒子径の5倍以上の最大粒
子径からなる単結晶粒子を内部に含有することを特徴と
する多結晶体。
1. A polycrystalline body containing therein single crystal particles having a maximum particle diameter of at least five times the maximum particle diameter of the outermost surface portion.
【請求項2】内部に含まれる前記単結晶粒子の最大粒子
径が100μm以上であることを特徴とする請求項1記
載の多結晶体。
2. The polycrystal according to claim 1, wherein the maximum particle diameter of the single crystal particles contained therein is 100 μm or more.
【請求項3】相対密度が98%以上であることを特徴と
する請求項1又は2記載の多結晶体。
3. The polycrystal according to claim 1, wherein the relative density is 98% or more.
【請求項4】Al23、Y3Al512(YAG)、Ti
2、Y23、Pb(Zr,Ti)O3(PZT)、(P
b,La)(Zr,Ti)O3(PLZT)、BaTi
3、Y3Fe512(YIG)、YVO4、LiNb
3、LiTaO3、KNbO3、Si34、AlN、G
aN、REBa2Cu37-x(RE:希土類元素)の少
なくとも1種の単結晶粒子を含むことを特徴とする請求
項1乃至2記載の多結晶体。
4. Al 2 O 3 , Y 3 Al 5 O 12 (YAG), Ti
O 2 , Y 2 O 3 , Pb (Zr, Ti) O 3 (PZT), (P
b, La) (Zr, Ti) O 3 (PLZT), BaTi
O 3 , Y 3 Fe 5 O 12 (YIG), YVO 4 , LiNb
O 3 , LiTaO 3 , KNbO 3 , Si 3 N 4 , AlN, G
3. The polycrystal according to claim 1, comprising at least one kind of single crystal particles of aN, REBa 2 Cu 3 O 7-x (RE: rare earth element).
【請求項5】セラミック粉末と単結晶粒子とを含む成形
体を空洞共振器内に設置し、前記成形体にマイクロ波を
照射して加熱することを特徴とする多結晶体の製造方
法。
5. A method for producing a polycrystalline body, comprising: placing a compact containing ceramic powder and single crystal particles in a cavity resonator; and irradiating the compact with microwaves and heating.
【請求項6】前記セラミック粉末が、少なくとも単結晶
粒子の構成元素を含むことを特徴とする請求項5記載の
多結晶体の製造方法。
6. The method for producing a polycrystalline body according to claim 5, wherein said ceramic powder contains at least a constituent element of a single crystal particle.
【請求項7】前記加熱時における単結晶粒子の誘電損率
(誘電率と誘電損失の積)が、セラミック粉末よりも大
きいことを特徴とする請求項5又は6記載の多結晶体の
製造方法。
7. The method for producing a polycrystalline body according to claim 5, wherein the dielectric loss factor (the product of the dielectric constant and the dielectric loss) of the single crystal particles during the heating is larger than that of the ceramic powder. .
【請求項8】表面部を除去して、最大粒子径が100μ
m以上の単結晶粒子を含む多結晶体を得ることを特徴と
する請求項5乃至7のうちいずれかに記載の多結晶体の
製造方法。
8. The method according to claim 1, wherein the maximum particle diameter is 100 μm by removing the surface portion.
The method for producing a polycrystal according to any one of claims 5 to 7, wherein a polycrystal containing m or more single crystal particles is obtained.
【請求項9】請求項5乃至8のうちいずれかに記載の方
法により作製した多結晶体を切断し、単結晶粒子を取り
出すことを特徴とする単結晶の製造方法。
9. A method for producing a single crystal, comprising cutting a polycrystal produced by the method according to claim 5 and extracting single crystal particles.
JP2000390949A 2000-12-22 2000-12-22 Polycrystal and its manufacturing method, and method for manufacturing single crystal Pending JP2002193657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000390949A JP2002193657A (en) 2000-12-22 2000-12-22 Polycrystal and its manufacturing method, and method for manufacturing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000390949A JP2002193657A (en) 2000-12-22 2000-12-22 Polycrystal and its manufacturing method, and method for manufacturing single crystal

Publications (1)

Publication Number Publication Date
JP2002193657A true JP2002193657A (en) 2002-07-10

Family

ID=18857206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000390949A Pending JP2002193657A (en) 2000-12-22 2000-12-22 Polycrystal and its manufacturing method, and method for manufacturing single crystal

Country Status (1)

Country Link
JP (1) JP2002193657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536711A (en) * 2007-08-31 2010-12-02 ジェイピーエス マイクロテック カンパニー リミテッド Method for producing flaky aluminum oxide using microwaves

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536711A (en) * 2007-08-31 2010-12-02 ジェイピーエス マイクロテック カンパニー リミテッド Method for producing flaky aluminum oxide using microwaves

Similar Documents

Publication Publication Date Title
JP5393271B2 (en) Oxides and magneto-optical devices
JP5762715B2 (en) Magneto-optic material, Faraday rotator, and optical isolator
Jiang et al. Ultrahigh piezoelectric coefficient of a lead-free K 0.5 Na 0.5 NbO 3-based single crystal fabricated by a simple seed-free solid-state growth method
Chang et al. Microstructure development and piezoelectric properties of highly textured CuO-doped KNN by templated grain growth
WO2009134484A2 (en) Method of making ternary piezoelectric crystals
US20030177975A1 (en) Rare earth-iron garnet single crystal material and method for preparation thereof and device using rare earth-iron garnet single crystal material
Ikesue et al. Origin and future of polycrystalline ceramic lasers
JPWO2002022920A6 (en) Rare earth-iron garnet single crystal, method for producing the same, and device using rare earth-iron garnet single crystal
JP3985144B2 (en) Method for producing oxide ion conductive crystal
JP2003267796A (en) Oxide having perovskite structure and method for producing the same
Yamamoto et al. Microwave dielectric properties of layered perovskite A2B2O7 single-crystal fibers
JP2022533397A (en) Piezoelectric single crystal M3RE(PO4)3 and its growth method and application
US20030164137A1 (en) Hybrid stockbarger zone-leveling melting method for directed crystallization and growth of single crystals of lead magnesium niobate-lead titanate (PMN-PT) solid solutions and related piezocrystals
Jang et al. Dielectric and piezoelectric properties of the thermally annealed Pb (Zn, Mg) 1/3Nb2/3O3–PbTiO3 system across the rhombohedral/tetragonal morphotropic phase boundary
JP2002193657A (en) Polycrystal and its manufacturing method, and method for manufacturing single crystal
Yin et al. Effects of (Li0. 5Nb0. 5) 3+ co-substitution on microwave dielectric characteristics of MgAl2O4 ceramics
Brixner Single crystal growth of the Ln2 (MoO4) 3-type rare earth molybdates
Jiang et al. Single crystal growth and ferroelectric properties of α (Ba 1− x Sr x) Nb 2 O 6: β (Na 1− y K y) NbO 3 solid solutions
Chen et al. Top-cooling-solution-growth and characterization of piezoelectric 0.955 Pb (Zn1/3Nb2/3) O3-0.045 PbTiO3 [PZNT] single crystals
JPS5926992A (en) Preparation of single crystal ferrite
KimM et al. Microstructural model on the evolution of domain structure during processing of PbTiO3 thin films on MgO (100) substrates
JP2000247793A (en) Preparation of langacite type crystal
TWI481562B (en) Oxide and magnetic optics
Oral et al. Properties of sol-gel derived strontium barium niobate ceramics and the effect of V2O5 additive
Chen et al. THE SINTERING BEHAVIOUR, MICROSTRUCTURE AND MICROWAVE DIELECTRIC PROPERTIES OF Li2Zn3Ti4O12 CERAMICS DOPED BY LiF