JP2002193193A - Radiator structure for unmanned helicopter - Google Patents
Radiator structure for unmanned helicopterInfo
- Publication number
- JP2002193193A JP2002193193A JP2000392478A JP2000392478A JP2002193193A JP 2002193193 A JP2002193193 A JP 2002193193A JP 2000392478 A JP2000392478 A JP 2000392478A JP 2000392478 A JP2000392478 A JP 2000392478A JP 2002193193 A JP2002193193 A JP 2002193193A
- Authority
- JP
- Japan
- Prior art keywords
- radiator
- engine
- unmanned helicopter
- wind
- fuselage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水冷式エンジンを
搭載した無人ヘリコプターの冷却水放熱用のラジエータ
構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiator structure for radiating cooling water of an unmanned helicopter equipped with a water-cooled engine.
【0002】[0002]
【従来の技術】従来の無人ヘリコプターのラジエータ
は、機体の前部上面側のメインロータの下側に装着さ
れ、メインロータからの風を受けて冷却水を放熱させて
いた。2. Description of the Related Art A conventional radiator of an unmanned helicopter is mounted below a main rotor on the front upper surface of an airframe, and receives wind from the main rotor to radiate cooling water.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、無人ヘ
リコプターは、機体の向きを一定にしたままホバリング
状態や前後左右に飛行して飛行方位が変わり、これに応
じて飛行姿勢も変化する。このため、ラジエータが受け
る風向が変化して放熱効果に影響を及ぼす。特にエンジ
ン出力が大きく発熱量が大きくなる高速前進飛行や、前
方配置ラジエータを通過する外気の量が少なくなる後進
飛行の場合にラジエータにより冷却水を十分冷却しきれ
ない場合があった。However, the unmanned helicopter flies in a hovering state or in front-to-back and left-right directions while keeping the direction of the body constant, and the flight direction changes, and the flight attitude changes accordingly. For this reason, the wind direction received by the radiator changes, which affects the heat radiation effect. In particular, in the case of a high-speed forward flight in which the engine output is large and the calorific value is large, or in a reverse flight in which the amount of outside air passing through the radiator arranged forward is small, the radiator may not be able to sufficiently cool the cooling water.
【0004】本発明は上記従来技術を考慮したものであ
って、飛行姿勢を変化させて前後左右に飛行しかつ空中
停止し、飛行速度や搭載重量に応じてエンジン出力を増
減する無人ヘリコプターにおいて、あらゆる飛行状態で
有効なエンジン冷却効果が得られるラジエータ構造の提
供を目的とする。The present invention has been made in consideration of the above-mentioned prior art, and relates to an unmanned helicopter that flies back and forth, right and left by changing a flight attitude, stops in the air, and increases or decreases an engine output according to a flight speed or a mounted weight. It is an object of the present invention to provide a radiator structure that can provide an effective engine cooling effect in all flight conditions.
【0005】[0005]
【課題を解決するための手段】前記目的を達成するた
め、本発明では、ボディカバーで覆われた機体内にエン
ジンを備え、該エンジンの冷却水が循環するラジエータ
を備えた無人ヘリコプターのラジエータ構造において、
機体前部の上部側に設けたボディカバー開口部に第1の
ラジエータを配置し、この機体前部の下部側で該第1の
ラジエータの下方の位置に、機体内外を連通する第1の
通気口を設け、該機体前部の下部側に、風受け面をほぼ
垂直にした第2のラジエータを備え、前記エンジンの後
方のボディカバーに第2の通気口を設けたことを特徴と
する無人ヘリコプターのラジエータ構造を提供する。According to the present invention, there is provided a radiator structure for an unmanned helicopter having an engine in a body covered with a body cover and a radiator through which cooling water for the engine circulates. ,
A first radiator is disposed in a body cover opening provided on an upper side of a front part of the fuselage, and a first ventilation port communicating between the inside and the outside of the body at a position below the first radiator at a lower part of the front part of the fuselage. An unmanned helicopter, wherein a second radiator having a substantially vertical wind receiving surface is provided on a lower side of the front part of the fuselage, and a second ventilation port is provided on a body cover behind the engine. Provide a radiator structure.
【0006】この構成によれば、特にホバリングや低速
飛行時に上からメインロータの風を受けてこれを機体前
部の上部側の第1のラジエータを連通させて機体内に導
き、その下方の第1の通気口から逃がすことにより充分
な放熱効果が得られるとともに、特に冷却能力が必要と
される高速前進飛行時に第2のラジエータがその垂直な
風受け面から前方からの風を受けて充分な放熱効果を得
ることができる。この第2のラジエータが受けた風は、
第2のラジエータが機体外部に設けられた場合には、そ
のままラジエータを通過してラジエータの熱を外部に放
熱させる。第2のラジエータが機体内(機体前端面)に
配置された場合には、この第2のラジエータが受けた風
は機体内を流れてエンジン後方の第2の通気口から逃が
される。この場合、第2の通気口がエンジン後方に備わ
るため、特に高出力運転状態の高速前進飛行時に、機体
前端面から流入する空気により機体内を換気してさらに
エンジン周りを冷却する効果も得られる。According to this configuration, the wind of the main rotor is received from above, particularly during hovering or low-speed flight, and the wind is guided into the airframe by communicating with the first radiator on the upper side of the front of the airframe. A sufficient heat radiation effect can be obtained by escaping from the air vent of the first radiator, and the second radiator receives sufficient wind from the vertical wind receiving surface during a high-speed forward flight particularly requiring cooling capacity. A heat radiation effect can be obtained. The wind received by this second radiator
When the second radiator is provided outside the body, the heat of the radiator is radiated to the outside by passing through the radiator as it is. When the second radiator is disposed inside the body (the front end surface of the body), the wind received by the second radiator flows through the inside of the body and is released from the second ventilation port behind the engine. In this case, since the second vent is provided at the rear of the engine, the air flowing from the front end face of the aircraft can be used to ventilate the interior of the aircraft and to further cool around the engine, particularly during high-speed forward flight in a high-power operation state. .
【0007】後進飛行時には、逆に第2の通気口から機
体内に空気が流入し、この空気が第1のラジエータを通
過して機体外部に逃がされ、これにより第1のラジエー
タから放熱させる。第2のラジエータが機体内(機体前
端面)に配置された場合には、後進飛行時に機体内に流
入した空気は第1のラジエータとともにこの第2のラジ
エータを通過してこれを冷却する。During backward flight, on the contrary, air flows into the airframe through the second vent, and this air passes through the first radiator and escapes to the outside of the airframe, thereby releasing heat from the first radiator. . When the second radiator is arranged in the body (front end surface of the body), the air that has flowed into the body during the reverse flight passes through the second radiator together with the first radiator to cool it.
【0008】好ましい構成例では、前記第2のラジエー
タは、機体の外側に設けられたことを特徴としている。In a preferred configuration example, the second radiator is provided outside the body.
【0009】この構成によれば、第2のラジエータがボ
ディカバーの外側の機体外に設けられるため、前進飛行
および後進飛行ともに充分に外気が流通して大きな放熱
効果が得られる。According to this configuration, since the second radiator is provided outside the body outside the body cover, the outside air is sufficiently circulated in both the forward flight and the reverse flight, and a large heat radiation effect is obtained.
【0010】別の好ましい構成例では、前記第2のラジ
エータは、その背面が機体内部に面するように機体の前
端面に設けられたことを特徴としている。In another preferred configuration example, the second radiator is provided on a front end surface of the fuselage such that a back surface thereof faces the inside of the fuselage.
【0011】この構成によれば、第2のラジエータが機
体内に設けられるため、飛行抵抗が小さくなるととも
に、第1及び第2のラジエータ間の距離が短くなるた
め、これらを連通する冷却水配管が簡素化する。なお、
機体内とはラジエータの背面が機体内部に面するよう
に、ラジエータが機体の前端面に露出してボディカバー
に取付けられることを含む。According to this configuration, since the second radiator is provided in the airframe, the flight resistance is reduced, and the distance between the first and second radiators is shortened. Is simplified. In addition,
The term “inside the body” includes that the radiator is exposed to the front end surface of the body and is attached to the body cover such that the back of the radiator faces the inside of the body.
【0012】[0012]
【発明の実施の形態】以下図面を参照して本発明の実施
の形態について説明する。図1は、本発明の実施の形態
に係る無人ヘリコプターの全体構成図で機体を破断して
表したものあり、図2、図3および図4は、それぞれそ
のホバリング時、高速前進時および後進時の風の流れを
示す説明図である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram of an unmanned helicopter according to an embodiment of the present invention, in which the fuselage is cut away, and FIGS. 2, 3 and 4 show the hovering, high-speed forward and reverse, respectively. It is explanatory drawing which shows the flow of wind.
【0013】図1に示すように、この無人ヘリコプター
1は、ボディカバー(シュラウド)2で覆われた機体3
からなり、この機体3内に水冷式エンジン4およびエン
ジン4に連結されたトランスミッション5が設けられ
る。6は排気管である。機体3の上部に、トランスミッ
ション5からロータ軸7を介して連結されたメインロー
タ8が備わる。機体3の下部には着陸時に接地するスキ
ッド12が備わる。機体3の後端部に、トランスミッシ
ョン5からベルト(またはチェーン)9を介して回転駆
動されるテールロータ10が備わる。As shown in FIG. 1, an unmanned helicopter 1 has an airframe 3 covered with a body cover (shroud) 2.
A water-cooled engine 4 and a transmission 5 connected to the engine 4 are provided in the body 3. 6 is an exhaust pipe. A main rotor 8 connected to the transmission 5 via a rotor shaft 7 is provided above the body 3. A skid 12 that contacts the ground when landing is provided at the lower part of the body 3. At the rear end of the body 3 is provided a tail rotor 10 that is rotationally driven from a transmission 5 via a belt (or chain) 9.
【0014】機体3の前部の上部側(すなわち、機体3
の先端を通る軸線Cより上側で上方を向く部分)のボデ
ィカバー2に開口2Aが設けられ、この開口2A部に第
1のラジエータ11が嵌め込まれて装着される。したが
って、この第1のラジエータ11の風受け面11aは、
機体形状に沿って幾分斜め前下がりの上方に向き、メイ
ンロータ8からの風を受ける。The upper side of the front of the body 3 (ie, the body 3
An opening 2A is provided in the body cover 2 (a portion facing upward above the axis C passing through the tip), and the first radiator 11 is fitted and mounted in the opening 2A. Therefore, the wind receiving surface 11a of the first radiator 11
It faces upward slightly obliquely downward along the body shape, and receives wind from the main rotor 8.
【0015】この場合、ラジエータ11は、ボディカバ
ー2の開口2A周縁部への取付け状態によって、その周
囲のボディカバー2の表面より上側に出る場合もある
し、図1のように、周囲のボディカバーより下側(裏面
側)に装着される場合もある。いずれの場合でも、開口
2Aを通過する空気がラジエータ11も通過するように
開口2A部にラジエータ11が配置される。なお、本実
施形態では機体前部の上部側(軸線Cより上側)の位置
に、機体形状に沿って、すなわち、ボディカバー2の形
状に沿ってラジエータ11が設けられる。In this case, the radiator 11 may come out above the surface of the surrounding body cover 2 depending on the state of attachment to the peripheral edge of the opening 2A of the body cover 2, or as shown in FIG. Side (back side). In any case, the radiator 11 is arranged in the opening 2A so that the air passing through the opening 2A also passes through the radiator 11. In the present embodiment, the radiator 11 is provided along the body shape, that is, along the shape of the body cover 2 at a position on the upper side (above the axis C) of the front part of the body.
【0016】この第1のラジエータ11の下方の位置の
ボディカバー2(すなわち、機体3の下部側(軸線Cよ
り下側))を覆うボディカバー2であって、ラジエータ
11の下方の位置のボディカバーに第1の通気口13が
設けられる。また、エンジン4に連結されたトランスミ
ッション5の後方で機体3の上面側のボディカバー2に
第2の通気口14Aが設けられる。この第2の通気口1
4Aは、機体3の左右両側に設けてもよい。さらに、ト
ランスミッション5の後方はボディカバー2が閉じられ
ず開いたままとされ、第3の通気口14Bが形成され
る。The body cover 2 that covers the body cover 2 located below the first radiator 11 (ie, the lower side of the body 3 (below the axis C)), and the body cover 2 located below the radiator 11 One vent 13 is provided. A second vent 14A is provided in the body cover 2 on the upper surface side of the body 3 behind the transmission 5 connected to the engine 4. This second vent 1
4A may be provided on both left and right sides of the body 3. Further, the rear of the transmission 5 is left open without closing the body cover 2, and a third vent 14B is formed.
【0017】本実施形態では、機体3の前部の下部側
(軸線Cより下側)の機体外部に、第2のラジエータ1
5がその風受け面15aをほぼ垂直にして取付けられ
る。図の例では、第2のラジエータ15の取付け位置
は、第1のラジエータ11の前端部の下側になる。この
第2のラジエータ15は、連通管16を介して前記第1
のラジエータ11と直列に接続される。In the present embodiment, the second radiator 1 is mounted on the outside of the body at the lower side of the front of the body 3 (below the axis C).
5 is attached with its wind receiving surface 15a substantially vertical. In the illustrated example, the mounting position of the second radiator 15 is below the front end of the first radiator 11. The second radiator 15 is connected to the first radiator 15 through a communication pipe 16.
Is connected in series with the radiator 11.
【0018】このような第1および第2のラジエータ1
1,15を通過する空気の流れは、図2〜図4に示され
る。ホバリング時には、図2に示すように、メインロー
タ8からの風が矢印Dのように上から第1のラジエータ
11に吹き当ってこれを通過し、矢印Eのように機体内
を流通し、その下方の第1の通気口13から矢印Fのよ
うに吹き抜ける。この場合には、第2のラジエータ15
にはほとんど風は流通しない。Such first and second radiators 1
The flow of air passing through 1, 15 is shown in FIGS. At the time of hovering, as shown in FIG. 2, the wind from the main rotor 8 blows from above to the first radiator 11 as shown by an arrow D, passes through the first radiator 11, and circulates through the airframe as shown by an arrow E. It blows through the lower first vent 13 as shown by the arrow F. In this case, the second radiator 15
Hardly any winds flow through.
【0019】前進時には、図3に示すように、機体3に
対する前方からの風の一部とメインロータ8からの風の
合わさったものが矢印Gのように、第1のラジエータ1
1に吹き当ってこれを通過し、矢印Iのように機体内を
流通し、エンジン後方の第2の通気口14A及び第3の
通気口14Bから矢印Jのように吹き抜ける。高速前進
時には、矢印Gの風が前傾する(水平に近づく)ととも
に、より多くの機体前方からの風が、矢印Hのように、
第2のラジエータ15にほぼ正面から吹き当ってこれを
通過し矢印Kのように吹き抜ける。As shown in FIG. 3, when the wind from the main rotor 8 is combined with a part of the wind from the front with respect to the fuselage 3, the first radiator 1
1, passes through the airplane, flows through the airframe as indicated by an arrow I, and blows through the second and third vents 14A and 14B behind the engine as indicated by an arrow J. At the time of high-speed forward movement, the wind of the arrow G leans forward (approaches horizontal), and more wind from the front of the aircraft, as indicated by the arrow H,
The air blows onto the second radiator 15 from almost the front, passes through it, and blows through as indicated by the arrow K.
【0020】後進時には、図4に示すように、第2の通
気口14A及び第3の通気口14Bから矢印Lのように
機体内に風が流入し、機体内を矢印Mのように流通して
第1のラジエータ11から矢印Nのように吹き抜ける。
さらにこの場合、後方からの風が矢印Oのように第2の
ラジエータ15に吹き当り、これを通過して矢印Pのよ
うに前方に吹き抜ける。特に、第2の通気口14Aから
はメインロータ8からの風も導入される。At the time of reverse travel, as shown in FIG. 4, wind flows into the body from the second ventilation port 14A and the third ventilation port 14B as shown by the arrow L, and flows through the body as shown by the arrow M. From the first radiator 11 as shown by the arrow N.
Further, in this case, the wind from behind hits the second radiator 15 as shown by the arrow O, passes through it, and blows forward as shown by the arrow P. In particular, wind from the main rotor 8 is also introduced from the second vent 14A.
【0021】図5は、上記第1及び第2のラジエータ1
1,15の斜視図である。連通管16により直列に接続
された第1及び第2のラジエータ11,15は、冷却水
ホース17を介してエンジンの冷却ジャケット(不図
示)に連通し、ウォータポンプ(不図示)により冷却水
が矢印のように循環する。このように第1及び第2のラ
ジエータ11,15を直列接続することにより、配管構
造が簡素化するとともに効率よく各ラジエータ11,1
5を通る冷却水から放熱させてこれを冷却することがで
きる。FIG. 5 shows the first and second radiators 1
It is a perspective view of 1,15. The first and second radiators 11 and 15 connected in series by the communication pipe 16 communicate with a cooling jacket (not shown) of the engine via a cooling water hose 17, and cooling water is supplied by a water pump (not shown). Circulates like an arrow. By connecting the first and second radiators 11 and 15 in series in this manner, the piping structure is simplified and the radiators 11 and 1 are efficiently connected.
Heat can be released from the cooling water passing through the cooling water 5 to cool it.
【0022】なお、連通管16の途中にリニア三方弁3
0を配置し、エンジン出力に対応して高速前進時のよう
にエンジン出力が大なる時、上流側連通管16Aから下
流側連通管16Bへ大部分の冷却水を流し、ホバリング
時や下降飛行時等エンジン出力が小なる時、上流連通管
16Aから分流帰還用の冷却水ホース31への冷却水流
量を増加するように、リニア三方弁30の開度位置制御
を行うようにしてもよい。ラジエータ15の下流側の冷
却水ホース17との冷却水ホース31が合流してエンジ
ンの冷却水ジャケットに戻される。The linear three-way valve 3 is provided in the middle of the communication pipe 16.
0, and when the engine output is high, such as during high-speed forward movement in response to the engine output, most of the cooling water flows from the upstream communication pipe 16A to the downstream communication pipe 16B, and when hovering or descending flight When the engine output is low, the opening position control of the linear three-way valve 30 may be performed so as to increase the flow rate of the cooling water from the upstream communication pipe 16A to the cooling water hose 31 for branch return. The cooling water hose 31 with the cooling water hose 17 on the downstream side of the radiator 15 merges and returns to the cooling water jacket of the engine.
【0023】図6は、本発明に係る無人ヘリコプターの
正面図である。図示したように、前述の図1の例の第2
のラジエータ15は機体下部側のボディカバー2のさら
に下側に設けられる。この位置に代えて図のAで示すよ
うに、機体外側の左右両側に第2のラジエータ18を設
けてもよい。あるいはBで示すように、機体の前端面に
第2のラジエータ19を設けてもよい(後述の図7の実
施形態)。この場合、第1のラジエータ11と第2のラ
ジエータ19を連続した一体構造としてもよい(後述の
図8の実施形態)。いずれの場合にも、第2のラジエー
タ15,18,19は、機体先端の軸線Cより下側であ
る。なお、図6中2点鎖線で示すものはトランスミッシ
ョン5の後方の第3の通気口14Bである。FIG. 6 is a front view of the unmanned helicopter according to the present invention. As shown, the second of the above-described example of FIG.
The radiator 15 is provided further below the body cover 2 on the lower side of the fuselage. Instead of this position, second radiators 18 may be provided on the left and right sides on the outside of the fuselage as shown by A in FIG. Alternatively, as shown by B, a second radiator 19 may be provided on the front end face of the fuselage (an embodiment of FIG. 7 described later). In this case, the first radiator 11 and the second radiator 19 may have a continuous and integral structure (an embodiment of FIG. 8 described later). In each case, the second radiators 15, 18, 19 are below the axis C of the tip of the fuselage. 6 is a third vent 14B behind the transmission 5.
【0024】図7は、本発明の別の実施形態を示す。こ
の実施形態では、機体の前面部のボディカバー2に第2
の開口2Bを設け、この開口2B部に第2のラジエータ
19が、その風受け面19aをほぼ垂直にして、機体内
(機体3の前端面)に取付けられる。第1のラジエータ
11の配置やその他の構成は前述の図1の例と同様であ
る。このように第2のラジエータ19を第2の開口2B
部の機体内側に設けることにより、連通管16や冷却水
ホース等の配管構造が簡素化するとともに、飛行抵抗が
小さくなる。FIG. 7 shows another embodiment of the present invention. In this embodiment, the second body cover 2 is provided on the front cover of the body.
The second radiator 19 is attached to the inside of the machine (the front end surface of the machine 3) with the wind receiving surface 19a substantially vertical to the opening 2B. The arrangement of the first radiator 11 and other configurations are the same as those in the example of FIG. 1 described above. Thus, the second radiator 19 is connected to the second opening 2B.
By arranging it inside the body of the section, the piping structure such as the communication pipe 16 and the cooling water hose is simplified, and the flight resistance is reduced.
【0025】図8は、本発明のさらに別の実施形態を示
す。この実施形態は、開口2Aを機体上面から前面に渡
るものとし、第1のラジエータ11に連続してその前端
部にL字状に屈曲して一体的に第2のラジエータ20を
設けたものである。この構成によれば、第1および第2
のラジエータ11,20同士を連通させる連通管が不要
になって配管構造がさらに簡素化する。その他の構成お
よび作用効果は前記図7の実施形態と同様である。FIG. 8 shows still another embodiment of the present invention. In this embodiment, the opening 2A extends from the upper surface of the fuselage to the front surface, and the second radiator 20 is provided integrally with the first radiator 11 by being bent in an L-shape at the front end thereof. is there. According to this configuration, the first and second
A communication pipe for communicating the radiators 11 and 20 with each other is not required, and the piping structure is further simplified. The other configuration and operation and effect are the same as those of the embodiment of FIG.
【0026】上記図7および図8の実施形態の風の流れ
は、第2のラジエータ19,20が機体内の前端面に取
付けられるため、前進時および後進時に第2のラジエー
タ19,20を通過する気流が機体内を流通する点を除
いて、前述の図2〜図4の気流と同様である。Since the second radiators 19 and 20 are attached to the front end surfaces of the inside of the airframe, the wind flows in the embodiments shown in FIGS. 7 and 8 pass through the second radiators 19 and 20 when the vehicle is moving forward and backward. The flow is the same as the flow shown in FIGS. 2 to 4 except that the flowing air flows through the airframe.
【0027】[0027]
【発明の効果】以上説明したように、本発明では、機体
前部上面の第1のラジエータにより、特にホバリングや
低速飛行時に上からメインロータの風を受けてこれを第
1の通気口から逃がすことにより充分な放熱効果が得ら
れるとともに、特に冷却能力が必要とされる高速前進飛
行時に第2のラジエータがその垂直な風受け面から前方
からの風を受けて充分な放熱効果を得ることができる。
このように第2のラジエータを備えることにより、あら
ゆる飛行状態において放熱効果が高められ、充分にエン
ジンを冷却して安定した飛行を達成することができる。As described above, according to the present invention, the first radiator on the upper surface of the front part of the fuselage receives the wind of the main rotor from above, particularly during hovering and low-speed flight, and allows it to escape from the first ventilation port. As a result, a sufficient heat radiation effect can be obtained, and the second radiator receives a wind from the vertical wind receiving surface from the front in order to obtain a sufficient heat radiation effect, particularly during a high-speed forward flight requiring cooling capacity. it can.
By providing the second radiator in this manner, the heat radiation effect is enhanced in all flight conditions, and the engine can be sufficiently cooled to achieve stable flight.
【図1】 本発明の実施形態に係る無人ヘリコプターの
全体構成図。FIG. 1 is an overall configuration diagram of an unmanned helicopter according to an embodiment of the present invention.
【図2】 図1の実施形態のホバリング時の気流説明
図。FIG. 2 is an explanatory diagram of an air flow at the time of hovering in the embodiment of FIG. 1;
【図3】 図1の実施形態の高速前進時の気流説明図。FIG. 3 is an explanatory view of an air flow at the time of high-speed forward movement in the embodiment of FIG. 1;
【図4】 図1の実施形態の後進時の気流説明図。FIG. 4 is an explanatory diagram of an airflow at the time of reverse travel of the embodiment of FIG. 1;
【図5】 図1のラジエータの斜視図。FIG. 5 is a perspective view of the radiator of FIG. 1;
【図6】 図1の無人ヘリコプターの正面図。FIG. 6 is a front view of the unmanned helicopter of FIG. 1;
【図7】 本発明の別の実施形態の全体構成図。FIG. 7 is an overall configuration diagram of another embodiment of the present invention.
【図8】 本発明のさらに別の実施形態の全体構成図。FIG. 8 is an overall configuration diagram of still another embodiment of the present invention.
1:無人ヘリコプター、2:ボディカバー、2A:開
口、2B:第2の開口、3:機体、4:エンジン、5:
トランスミッション、6:排気管、7:ロータ軸、8:
メインロータ、9:ベルト、10:テールロータ、1
1:第1のラジエータ、11a:風受け面、12:スキ
ッド、13:第1の通気口、14A:第2の通気口、1
4B:第3の通気口、15:第2のラジエータ、15
a:風受け面、16:連通管、16A:上流側連通管、
16B:下流側連通管、17:冷却水ホース、18:第
2のラジエータ、19:第2のラジエータ、19a:風
受け面、20:第2のラジエータ、30:リニア三方
弁、31:冷却水ホース。1: unmanned helicopter, 2: body cover, 2A: opening, 2B: second opening, 3: body, 4: engine, 5:
Transmission, 6: exhaust pipe, 7: rotor shaft, 8:
Main rotor, 9: belt, 10: tail rotor, 1
1: first radiator, 11a: wind receiving surface, 12: skid, 13: first vent, 14A: second vent, 1
4B: third vent, 15: second radiator, 15
a: wind receiving surface, 16: communication pipe, 16A: upstream communication pipe,
16B: downstream communication pipe, 17: cooling water hose, 18: second radiator, 19: second radiator, 19a: wind receiving surface, 20: second radiator, 30: linear three-way valve, 31: cooling water hose.
Claims (3)
を備え、該エンジンの冷却水が循環するラジエータを備
えた無人ヘリコプターのラジエータ構造において、 機体前部の上部側に設けたボディカバー開口部に第1の
ラジエータを配置し、 この機体前部の下部側で該第1のラジエータの下方の位
置に、機体内外を連通する第1の通気口を設け、 該機体前部の下部側に、風受け面をほぼ垂直にした第2
のラジエータを備え、 前記エンジンの後方のボディカバーに第2の通気口を設
けたことを特徴とする無人ヘリコプターのラジエータ構
造。A radiator structure for an unmanned helicopter having an engine inside a body covered with a body cover and a radiator through which cooling water for the engine circulates, wherein a body cover opening provided on an upper side of a front part of the body is provided with a second cover. A first radiator is provided, a first ventilation port is provided below the first radiator at a lower side of the front of the fuselage and below the first radiator, and a wind receiver is provided at a lower side of the front of the fuselage. 2nd surface almost vertical
A radiator structure for an unmanned helicopter, comprising: a radiator according to claim 1;
けられたことを特徴とする請求項1に記載の無人ヘリコ
プターのラジエータ構造。2. The radiator structure of an unmanned helicopter according to claim 1, wherein said second radiator is provided outside a body of the vehicle.
内部に面するように機体の前端面に設けられたことを特
徴とする請求項1に記載の無人ヘリコプターのラジエー
タ構造。3. The radiator structure for an unmanned helicopter according to claim 1, wherein the second radiator is provided on a front end surface of the fuselage such that a back surface faces the inside of the fuselage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000392478A JP4574841B2 (en) | 2000-12-25 | 2000-12-25 | Radiator structure of unmanned helicopter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000392478A JP4574841B2 (en) | 2000-12-25 | 2000-12-25 | Radiator structure of unmanned helicopter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002193193A true JP2002193193A (en) | 2002-07-10 |
JP4574841B2 JP4574841B2 (en) | 2010-11-04 |
Family
ID=18858460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000392478A Expired - Fee Related JP4574841B2 (en) | 2000-12-25 | 2000-12-25 | Radiator structure of unmanned helicopter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4574841B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1616785A1 (en) * | 2004-07-15 | 2006-01-18 | Schiebel Industries AG | Unmanned helicopter with a self-supporting housing |
WO2007015447A1 (en) * | 2005-08-04 | 2007-02-08 | Yamaha Hatsudoki Kabushiki Kaisha | Unmanned helicopter |
KR100852423B1 (en) | 2006-11-09 | 2008-08-14 | (주) 썬에어로시스 | An engine cooling system which utilize engine exhaust gas for cooling air flow |
KR101036624B1 (en) * | 2009-04-01 | 2011-05-24 | 원신 스카이텍 주식회사 | Engine cooling system for unmanned helicopter |
WO2014014072A1 (en) * | 2012-07-20 | 2014-01-23 | ヤマハ発動機株式会社 | Unmanned helicopter |
CN104696095A (en) * | 2014-06-19 | 2015-06-10 | 安阳全丰航空植保科技有限公司 | Water cooling system for engine of unmanned helicopter |
JP2016175489A (en) * | 2015-03-19 | 2016-10-06 | セコム株式会社 | Flight device |
CN108882614A (en) * | 2017-05-09 | 2018-11-23 | 昆山优尼电能运动科技有限公司 | Unmanned vehicle wind path cooling system |
CN111591452A (en) * | 2020-04-03 | 2020-08-28 | 湖北吉利太力飞车有限公司 | Ventilating device of vertical take-off device and control method |
EP3738886A1 (en) | 2019-05-07 | 2020-11-18 | Subaru Corporation | Cooling duct |
CN112158326A (en) * | 2020-09-11 | 2021-01-01 | 中国航空工业集团公司成都飞机设计研究所 | Ventral fin type radiator suitable for aircraft |
KR20230072937A (en) * | 2021-11-18 | 2023-05-25 | 현대모비스 주식회사 | Fuel cell system and contorl method using the same |
DE102022128715A1 (en) | 2022-10-28 | 2024-05-08 | MTU Aero Engines AG | Aircraft with a fuel cell propulsion system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101453329B1 (en) * | 2014-08-06 | 2014-10-22 | (주) 피트게러지 인터그레이션 | Coolant circulation system for kit type helicopter |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB128214A (en) * | 1918-01-18 | 1920-05-26 | Alessandro Tebaldi | Improvements relating to the Radiators of Aeroplanes. |
US2125751A (en) * | 1938-08-02 | R- saulnier |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3410304B2 (en) * | 1996-10-15 | 2003-05-26 | ヤマハ発動機株式会社 | Industrial unmanned helicopter |
-
2000
- 2000-12-25 JP JP2000392478A patent/JP4574841B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2125751A (en) * | 1938-08-02 | R- saulnier | ||
GB128214A (en) * | 1918-01-18 | 1920-05-26 | Alessandro Tebaldi | Improvements relating to the Radiators of Aeroplanes. |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1616785A1 (en) * | 2004-07-15 | 2006-01-18 | Schiebel Industries AG | Unmanned helicopter with a self-supporting housing |
WO2006005087A1 (en) * | 2004-07-15 | 2006-01-19 | Schiebel Industries Ag | Unmanned helicopter comprising a self-supporting housing |
KR101174521B1 (en) * | 2004-07-15 | 2012-08-16 | 시에벨 인두슈트리즈 아게 | unmanned helicopter |
JP2008505800A (en) * | 2004-07-15 | 2008-02-28 | シーベル インダストリーズ アクチエンゲゼルシャフト | Unmanned helicopter |
JP4686542B2 (en) * | 2004-07-15 | 2011-05-25 | シーベル インダストリーズ アクチエンゲゼルシャフト | Unmanned helicopter |
CN100431922C (en) * | 2004-07-15 | 2008-11-12 | 希贝尔工业股份公司 | Unmanned helicopter with a self-supporting housing |
JPWO2007015447A1 (en) * | 2005-08-04 | 2009-02-19 | ヤマハ発動機株式会社 | Unmanned helicopter |
KR100958598B1 (en) | 2005-08-04 | 2010-05-18 | 야마하하쓰도키 가부시키가이샤 | Unmanned helicopter |
US20100181416A1 (en) * | 2005-08-04 | 2010-07-22 | Yamaha Hatsudoki Kabushiki Kaisha | Unmanned helicopter |
JP4589394B2 (en) * | 2005-08-04 | 2010-12-01 | ヤマハ発動機株式会社 | Unmanned helicopter |
WO2007015447A1 (en) * | 2005-08-04 | 2007-02-08 | Yamaha Hatsudoki Kabushiki Kaisha | Unmanned helicopter |
KR100852423B1 (en) | 2006-11-09 | 2008-08-14 | (주) 썬에어로시스 | An engine cooling system which utilize engine exhaust gas for cooling air flow |
KR101036624B1 (en) * | 2009-04-01 | 2011-05-24 | 원신 스카이텍 주식회사 | Engine cooling system for unmanned helicopter |
JP2014019357A (en) * | 2012-07-20 | 2014-02-03 | Yamaha Motor Co Ltd | Unmanned helicopter |
CN104470803A (en) * | 2012-07-20 | 2015-03-25 | 雅马哈发动机株式会社 | Unmanned helicopter |
US9382012B2 (en) | 2012-07-20 | 2016-07-05 | Yamaha Hatsudoki Kabushiki Kaisha | Unmanned helicopter |
WO2014014072A1 (en) * | 2012-07-20 | 2014-01-23 | ヤマハ発動機株式会社 | Unmanned helicopter |
CN104696095A (en) * | 2014-06-19 | 2015-06-10 | 安阳全丰航空植保科技有限公司 | Water cooling system for engine of unmanned helicopter |
JP2016175489A (en) * | 2015-03-19 | 2016-10-06 | セコム株式会社 | Flight device |
CN108882614B (en) * | 2017-05-09 | 2023-11-17 | 昆山合朗航空科技有限公司 | Unmanned vehicles wind path cooling system |
CN108882614A (en) * | 2017-05-09 | 2018-11-23 | 昆山优尼电能运动科技有限公司 | Unmanned vehicle wind path cooling system |
EP3738886A1 (en) | 2019-05-07 | 2020-11-18 | Subaru Corporation | Cooling duct |
US11535391B2 (en) | 2019-05-07 | 2022-12-27 | Subaru Corporation | Cooling duct |
CN111591452A (en) * | 2020-04-03 | 2020-08-28 | 湖北吉利太力飞车有限公司 | Ventilating device of vertical take-off device and control method |
CN112158326A (en) * | 2020-09-11 | 2021-01-01 | 中国航空工业集团公司成都飞机设计研究所 | Ventral fin type radiator suitable for aircraft |
CN112158326B (en) * | 2020-09-11 | 2023-03-14 | 中国航空工业集团公司成都飞机设计研究所 | Ventral fin type radiator suitable for aircraft |
KR20230072937A (en) * | 2021-11-18 | 2023-05-25 | 현대모비스 주식회사 | Fuel cell system and contorl method using the same |
KR102585300B1 (en) * | 2021-11-18 | 2023-10-05 | 현대모비스 주식회사 | Fuel cell system and contorl method using the same |
US11942667B2 (en) | 2021-11-18 | 2024-03-26 | Hyundai Mobis Co., Ltd. | Fuel cell system and control method using same |
DE102022128715A1 (en) | 2022-10-28 | 2024-05-08 | MTU Aero Engines AG | Aircraft with a fuel cell propulsion system |
Also Published As
Publication number | Publication date |
---|---|
JP4574841B2 (en) | 2010-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002193193A (en) | Radiator structure for unmanned helicopter | |
US9382012B2 (en) | Unmanned helicopter | |
JP4589394B2 (en) | Unmanned helicopter | |
EP2711506B1 (en) | Infrared suppressing exhaust system | |
US20030106959A1 (en) | Air vehicle | |
US8310117B2 (en) | Electric propulsion system useful in jet-type model airplanes and UAVs | |
WO2019134399A1 (en) | Unmanned aerial vehicle and casing thereof | |
US10166859B1 (en) | Active underbody arrangement for a vehicle | |
JPS62502814A (en) | engine cooling system | |
JP2020131781A (en) | Flight body | |
CN207978230U (en) | A kind of radiator structure and unmanned plane | |
EP0678448B1 (en) | Helicopter anti-torque and yaw control system | |
US20080190678A1 (en) | Heat exchanger plenums for go-karts | |
US20090189011A1 (en) | Thrust Vectoring Exhaust Nozzle System for Helicopters | |
JPS6325199B2 (en) | ||
JP7514535B2 (en) | Aircraft and power units | |
CN110401001A (en) | Wind-cooling heat dissipating airborne antenna | |
EP2387809A2 (en) | A radome and method of cooling radar components | |
CN206895092U (en) | Unmanned vehicle wind path cooling system | |
JP2012067721A (en) | Engine cooling device | |
WO2022130818A1 (en) | Flying body | |
US11866188B2 (en) | Electric motor nacelle for a vertical take-off and landing aircraft and aircraft comprising such a nacelle | |
WO2022130819A1 (en) | Flight vehicle | |
GB2160924A (en) | Axial flow fan | |
US2918232A (en) | Twin shroud aerodyne |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060419 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060419 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071009 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100817 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100819 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4574841 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |