JP2002188246A - Roof tile roofing method and corner tile - Google Patents

Roof tile roofing method and corner tile

Info

Publication number
JP2002188246A
JP2002188246A JP2000389890A JP2000389890A JP2002188246A JP 2002188246 A JP2002188246 A JP 2002188246A JP 2000389890 A JP2000389890 A JP 2000389890A JP 2000389890 A JP2000389890 A JP 2000389890A JP 2002188246 A JP2002188246 A JP 2002188246A
Authority
JP
Japan
Prior art keywords
tile
corner
tiles
width
roof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000389890A
Other languages
Japanese (ja)
Other versions
JP4605897B2 (en
JP2002188246A5 (en
Inventor
Kazuhiko Oguri
和彦 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Descente Ltd
Original Assignee
Tsuruya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsuruya Co Ltd filed Critical Tsuruya Co Ltd
Priority to JP2000389890A priority Critical patent/JP4605897B2/en
Publication of JP2002188246A publication Critical patent/JP2002188246A/en
Publication of JP2002188246A5 publication Critical patent/JP2002188246A5/ja
Application granted granted Critical
Publication of JP4605897B2 publication Critical patent/JP4605897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corner tile required to be cut at a site for putting it on a corner ridge since there are various layouts resulting from the size of the tile, the area of a roof and the inclination of the roof in the corner tile. SOLUTION: A plurality of kinds of adjusting corner tiles 3, 3a and, etc., having different working widths are set, at the same time, the adjusting corner tiles 3, 3a and, etc., applied within a range of the remaining eaves length An and the crown adjusting width of a crown tile are selectively roofed to roof the adjusting corner tiles 3, 3a and, etc., necessary for the remaining eaves length An and, at the same time, an overlapping amount of the crown tile with the adjusting corner tiles 3, 3a and, etc., is properly varied to ensure a proper overlapping state of leakage prevention work.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、隅棟を有する屋根
に瓦を敷設する屋根瓦施工方法に関し、詳しくは、所定
寸法の複数種の調整隅瓦を使用して敷設する屋根瓦施工
方法および隅瓦に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a roof tile installation method for laying a tile on a roof having a corner ridge, and more particularly, to a roof tile installation method for laying using a plurality of types of adjustable corner tiles having a predetermined size. Regarding tile tiles.

【0002】[0002]

【従来の技術】従来、様々な屋根に種々の瓦を敷設する
屋根瓦施工において、桟瓦の敷設完了時に、隅棟部分に
おける端部の隅瓦(或いは隅瓦の端部)が一定位置にな
るとは限らないから、かかる端部瓦の形状を、隅棟部分
に合わせて切断した瓦を葺く必要があった。しかしなが
ら、施工現場で瓦を切断すること自体が容易でないし、
ましてや、特定形状に切断することは、職人の技術が必
要であると共に、失敗も多く非常に困難であったり、廃
材が多く発生したり、更に、切断瓦は小さな瓦となるた
め緊結状態が弱かった。
2. Description of the Related Art Conventionally, in the construction of a roof tile in which various tiles are laid on various roofs, when the laying of the cross tile is completed, the corner tile at the end of the corner ridge portion (or the end of the corner tile) becomes a fixed position. Therefore, it was necessary to lay roof tiles that were cut in accordance with the shape of the end tile in accordance with the corner ridge. However, it is not easy to cut the tile at the construction site itself,
Furthermore, cutting into a specific shape requires the skill of a craftsman, is also very difficult and often fails, generates a lot of waste materials, and furthermore, the cutting state of the cut tile becomes a small tile, so that the binding state is weak. Was.

【0003】尚、多種多様な施工で切断瓦が必要となる
理由は次の通りであり、その内、割付に関しては本発明
の第2の主題である。施工に際しては、元々、屋根に対
する各種瓦の割付を必要とするが、瓦の大きさ(縦横長
さ、働き長さ、働き幅)と、屋根の面積と、屋根の勾配
並びに屋根の形状は、一定の大きさ、比率ではないため
に、屋根への瓦葺き時の割付は多種多様で、施工が容易
でなく、且つ、桟瓦の割付に応じて端部瓦を切断せねば
ならなかった。多種多様な施工を必要とする詳細として
は、例えば、瓦の大きさ一つとっても版別に相違し、又
瓦の大きさが一定だとしても、屋根の面積、勾配によっ
て割付は変化する。即ち、屋根の面積は、平面投影面積
で表示される一方、実際の傾斜屋根面の施工面積は屋根
勾配によって決定されるので、両者間で横幅(瓦の働き
幅)は同一であるが、縦方向長さ(瓦の働き長さ)及び
面積は相違する。又、瓦の大きさは実寸と1、2例の働
き寸法が表示されているとしても、屋根の面積及び勾配
によって施工面積は相違するから、施工面積の異なる屋
根に働き面積が一定の瓦を良好に葺くためには、瓦の枚
数の算出及びその割付が複雑となっていた。
[0003] The reason why cut roof tiles are required for various types of construction is as follows, and among them, the allocation is a second subject of the present invention. At the time of construction, it is originally necessary to allocate various tiles to the roof, but the size of the tiles (vertical and horizontal length, working length, working width), the area of the roof, the slope of the roof and the shape of the roof, Since the sizes and ratios are not fixed, the layout at the time of roofing on the roof is various, the construction is not easy, and the end tile has to be cut in accordance with the layout of the cross tile. Details that require various types of construction include, for example, the size of a single tile differs depending on the version, and even if the size of the tile is constant, the layout changes depending on the area and gradient of the roof. That is, while the area of the roof is displayed as a planar projection area, the actual construction area of the sloping roof surface is determined by the roof slope, so the width (working width of the tile) is the same between the two, The length in the direction (working length of the tile) and the area are different. Also, even though the actual size and the working dimensions of one or two cases are displayed for the size of the tile, the construction area differs depending on the roof area and slope, so a roof tile with a constant working area can be used on roofs with different construction areas. For good roofing, the calculation of the number of tiles and the allocation thereof have been complicated.

【0004】[0004]

【発明が解決しようとする課題】本発明は、瓦の大き
さ、屋根の面積、屋根の勾配によって、割付が多種多様
で、隅棟に敷設する隅瓦は現場でカットせねばならない
課題を解決する様にした屋根瓦施工方法および隅瓦を提
供する。
SUMMARY OF THE INVENTION The present invention solves the problem that the layout is varied depending on the size of the tile, the area of the roof, and the slope of the roof, and the tiles to be laid in the corner building must be cut on site. The present invention provides a roof tile construction method and a corner tile.

【0005】[0005]

【課題を解決するための手段】本発明は、上記従来技術
に基づく、瓦の大きさ、屋根の面積、屋根の勾配によっ
て、割付が多種多様で、隅棟に敷設する隅瓦を現場でカ
ットせねばならない課題に鑑み、働き幅が相違する複数
種の調整隅瓦を設定すると共に、残軒長さ及び冠瓦の冠
調節幅の範囲内に適合する調整隅瓦を選択葺設すること
によって、残軒長さに必要な調整隅瓦を葺設すると共
に、冠瓦と調整隅瓦の重合量を適宜変化させて漏水防止
施工の適切重合状態を確保する様にして、上記課題を解
決する。
SUMMARY OF THE INVENTION The present invention is based on the above-mentioned prior art, and has a wide variety of layouts depending on the size of the tile, the area of the roof, and the slope of the roof. In consideration of the issues that must be addressed, by setting multiple types of adjustable tiles with different working widths, and by selectively laying adjustable tiles that fit within the range of the remaining eaves length and the crown adjustment width of the crown tiles In order to solve the above-mentioned problem, the necessary corner tiles required for the length of the remaining eaves are laid, and the amount of overlap between the crown tiles and the adjustable corner tiles is appropriately changed so as to secure an appropriate overlap state of the water leakage prevention construction. .

【0006】働き幅が相違する複数種の調整隅瓦を設定
する方法は、屋根勾配に応じて、正方形の単位面積に必
要な桟瓦の幅流れ両方向の瓦枚数、及び働き長さを夫々
求め、流れ方向各段における桟瓦隣接の割付未了の調整
寸法から、各段の調整隅瓦の働き幅の寸法差を算出し、
基本寸法に寸法差を加算した働き幅の流れ方向段数と同
数の調整隅瓦と成している。又、残軒長さ及び冠瓦の冠
調節幅の範囲内に適合する隅瓦を選択葺設する方法は、
屋根勾配に応じて、正方形の単位面積に必要となる働き
長さで、屋根に桟瓦を葺設し、桟瓦隣接の敷設未了の残
軒長さに適合すると共に、冠瓦の冠調節幅の範囲内に適
合する調整隅瓦を複数種の調整隅瓦から選択して葺設
し、調整隅瓦に冠瓦を重合敷設する様にした屋根瓦施工
方法と成している。
A method of setting a plurality of types of adjustable corner tiles having different working widths is as follows. According to a roof gradient, a width of a cross tile required for a square unit area and the number of working tiles in both directions are determined. Calculate the dimensional difference of the working width of the adjustment corner tiles of each stage from the unadjusted adjustment dimensions of the adjacent tiles at each stage in the flow direction,
The number of adjusting corner tiles is equal to the number of steps in the flow direction of the working width obtained by adding the dimensional difference to the basic dimensions. In addition, the method of selecting roof tiles that fit within the range of the length of the remaining eaves and the crown adjustment width of the roof tiles,
Roof tiles are laid on the roof with the working length required for a square unit area according to the roof slope, and it is compatible with the length of the unfinished remaining eaves adjacent to the tiles, and the crown adjustment width of the crown tiles A roof tile construction method is adopted in which an adjustable corner tile that fits within the range is selected from a plurality of types of adjusted corner tiles and laid, and a roof tile is overlapped with the adjusted corner tile.

【0007】[0007]

【発明の実施の形態】以下、本発明の一実施例を図面に
基づいて説明する。先ず、発明の概略構成を説明し、そ
の後、割付方法、使用する瓦の詳細並びに好ましい応用
例を順次説明する。尚、本発明では、イ )平面投影状態における〔軒に対する棟心Yの角度〕は
45度ロ )桟瓦1等の各種瓦は、働き長さbが調整可能なものを
前提(条件)としている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. First, a schematic configuration of the invention will be described, and then, an allocation method, details of a tile to be used, and a preferable application example will be sequentially described. In the present invention, a) [the angle of the ridge Y with respect to the eaves] in the plane projection state is 45 degrees. B) Various tiles such as the cross tile 1 are assumed to have a working length b that can be adjusted (conditions). .

【0008】本件発明の概略構成としては、割付から求
めた複数種の調整隅瓦3a、3b…を使用し、各段において
冠瓦2の冠調節幅Bの範囲内に収まる(適合する)調整
隅瓦3a、3b…を選択葺設し、冠瓦2と調整隅瓦3a、3b…
の重合量を変化させるものである。上記の複数種の調整
隅瓦3a、3b…の決定に際しては、先ず、屋根形状と屋根
瓦の多種多様な施工を勘案し、図6に示す様に、平面投
影状態における正方形の単位面積(以下、モジュール面
積Z1と称する)を規則的に設定して、調整隅瓦3a、3b
…が葺設される敷設(割付)未了部分Z2の定型化を行
い、図4、5に示す様に、モジュール面積Z1に必要と
する桟瓦1の割付(働き長さb、流れ段数n1、桁列数
n2の設定)を行う。その次に、図7、17に示す様
に、敷設未了部分Z2の割付より複数種の調整隅瓦3a、
3b…を求めるものであって、図28に示す様に、同差の
働き幅cを有した複数種の調整隅瓦3a、3b…と冠瓦2と
の重合量変化を伴って敷設され、基本的に調整隅瓦3a、
3b…の切断を不要としたものである。
As a schematic configuration of the present invention, a plurality of types of adjusting corner tiles 3a, 3b,... Obtained from the layout are used, and adjustments that fall within (fit) the crown adjustment width B of the crown tile 2 at each stage. Select roof tiles 3a, 3b ..., roof tile 2 and adjustable corner tiles 3a, 3b ...
To change the polymerization amount. In determining the plurality of types of adjusted tiles 3a, 3b,..., First, taking into account a wide variety of constructions of roof shapes and roof tiles, as shown in FIG. , Module area Z1) are regularly set to adjust the corner tiles 3a, 3b.
The unfinished portion (layout) Z2 on which the roof is laid is standardized, and as shown in FIGS. 4 and 5, the tiles 1 required for the module area Z1 (work length b, number of flow steps n1, (Setting of the number of columns n2). Next, as shown in FIGS. 7 and 17, a plurality of types of adjusting corner tiles 3a,
.., And are laid with a change in the amount of polymerization between the plurality of types of adjustable corner tiles 3a, 3b... Having the same working width c and the crown tile 2, as shown in FIG. Adjustable corner tile 3a,
The cutting of 3b ... is unnecessary.

【0009】以下、モジュール面積Z1と敷設未了部分
Z2への割付方法及び複数種の調整隅瓦3a、3b…の決定
方法を詳細に説明するが、筋葺きと千鳥葺きでは若干の
相違がある。その手法の第1段階では、瓦のモジュール
及び屋根のモジュール(特定面積のモジュール面積Z
1)、流れ方向における重合長さ(桟瓦1の働き長さ
b)を決定し、第2段階では、モジュール面積Z1の隅
棟側における敷設未了部分Z2の敷設割付並びに必要と
する調整隅瓦3a、3b…の大きさ、種類を決定する。
Hereinafter, a method for allocating the module area Z1 and the unfinished portion Z2 and a method for deciding the plurality of types of adjusted corner tiles 3a, 3b... Will be described in detail. . In the first stage of the method, a tile module and a roof module (a module area Z of a specific area)
1) Determining the overlap length in the flow direction (working length b of the tile 1), and in the second stage, laying out the unlaid part Z2 on the corner ridge side of the module area Z1 and the necessary adjustment tiles Determine the size and type of 3a, 3b ...

【0010】(1)図1に示す様に、割付に先立って、
働き長さbが調整可能な桟瓦1の寸法および屋根勾配を
以下の通り定義する。 a:(桟瓦1の)働き幅(実寸) b:(桟瓦1の)働き長さ(実寸)(変更可能な寸法で
図中±5の表示) K:勾配伸び率(屋根勾配による平面投影図からの施工
寸法(面積)を算出するための定数で、屋根勾配によっ
て決定される定数である) 尚、以下の割付計算では施工面積、瓦の実寸を、平面投
影状態に換算して計算している。
(1) As shown in FIG. 1, prior to allocation,
The dimensions and roof slope of the tile 1 whose working length b is adjustable are defined as follows. a: Working width (actual size) (of tile tile 1) b: Working length (actual size) (of tile tile 1) (changeable dimensions are indicated by ± 5 in the figure) K: Slope elongation rate (plan projection by roof slope) This is a constant for calculating the construction dimensions (area) from the above, and is a constant determined by the roof slope.) In the following allocation calculation, the construction area and the actual size of the tile are converted into a plane projection state and calculated. I have.

【0011】(2)第1段階では、図2〜5に示す様
に、割付をモジュール化する。イ )屋根勾配(勾配伸び率K)に応じて、平面投影面積と
実際の傾斜屋根面の施工面積の差を考慮して(桟瓦1の
働き長さbは実寸(施工時の傾斜寸法と同一)であるこ
とに対して、割付屋根は平面投影の面積(寸法)であ
り、両者の相違を勘案して )ロ )平面投影状態における特定面積のモジュール面積Z1
に必要な(割付・敷設される)桟瓦1の ・幅流れ両方向の瓦枚数(流れ段数n1、桁列数n
2)、及び ・働き長さbを決定する。
(2) In the first stage, the allocation is modularized as shown in FIGS. B) Considering the difference between the projected area of the plane and the actual construction area of the sloping roof surface according to the roof slope (gradient elongation K), the working length b of the tile 1 is the actual size (the same as the slope dimension at the time of construction). )), The layout roof is the area (dimensions) of the plane projection, taking into account the difference between the two.) B) The module area Z1 of the specific area in the plane projection state
・ The number of roof tiles in both directions (width n and number of columns n1)
2) and • Determine the working length b.

【0012】図2、3、4、5に示す様に、特定面積の
モジュール面積Z1と、それに必要とする桟瓦1の枚数
は、 n1:流れ段数(筋葺き:整数、千鳥葺き:整数) n2:桁列数(筋葺き:整数、千鳥葺き:0.5の倍
数) とすると、次の関係となる。 図2、4は和型瓦による筋葺きの場合を示し、図2(a)
、図4はモジュール面積Z1を4段3列(n1=4、
n2=3)の桟瓦1で敷設する割付例を示し、図2(b)
はn1段n2列の割付例を示し、図3、5は平板瓦によ
る千鳥葺きの場合を示し、図3(a) 、図5はモジュール
面積Z1を3段2.5列(n1=3、n2=2.5)の
桟瓦1で敷設する割付例を示し、図3(b) はn1段n2
列の割付例を示している。
As shown in FIGS. 2, 3, 4, and 5, the module area Z1 of a specific area and the number of tiles 1 required for the module area are: n1: Number of flow steps (stritching: integer, zigzag: integer) n2 : The number of columns (stritching: integer, zigzag: multiple of 0.5) gives the following relationship. 2 and 4 show the case of the roofing with the Japanese tile, and FIG. 2 (a)
4 shows that the module area Z1 is divided into four rows and three rows (n1 = 4,
FIG. 2 (b) shows an example of the layout in which the tiles 1 are laid with n2 = 3).
3 and 5 show an example of an arrangement of n1 rows and n2 rows. FIGS. 3 and 5 show the case of zigzag roofing with flat tiles. FIGS. 3 (a) and 5 show that the module area Z1 is 3 rows and 2.5 rows (n1 = 3, 3 (b) shows an example of the layout in which the tiles 1 are laid on the cross tile 1 (n2 = 2.5).
An example of column assignment is shown.

【0013】ここで、実際の割付作業を考慮すると、定
数の勾配伸び率Kが小数点以下無限の数値で、桟瓦1の
働き幅a及び働き長さbが200〜300mm前後にお
ける1mm単位で設定される数値であるために、上記の
モジュール面積Z1と瓦割付の関係式(1) を、小さなモ
ジュール面積Z1と段列数n1、n2で成立させること
は一部を除いて困難であるために、本願発明では働き長
さbを若干変動可能(調整可能)な桟瓦1と成し、小面
積、少段列数で上記関係式(1) を成立させている(図
2、3の(a) と(b) の比較を参照)。
Here, considering the actual allocating operation, the constant gradient elongation K is an infinite number below the decimal point, and the working width a and the working length b of the crosspiece 1 are set in 1 mm units around 200 to 300 mm. Since it is difficult to make the above-described relational expression (1) between the module area Z1 and the tile layout with a small module area Z1 and the number of rows n1 and n2 except for a part, In the present invention, the work length b is slightly fluctuable (adjustable), and the tile 1 is formed, and the relational expression (1) is satisfied with a small area and a small number of rows ((a) of FIGS. 2 and 3). And (b)).

【0014】先ず、筋葺きにおけるモジュール面積Z
1、流れ段数n1、桁列数n2、桟瓦1の働き長さbの
決定例を説明する。桟瓦1の変動可能な働き長さb、小
面積のモジュール面積Z1、少段列数で上記関係式(1)
を成立させる割付例として、図4に示す様に、粘土瓦JI
S A5208J形49A 瓦を勾配6.5/10の屋根に筋葺き
する場合を示す。 a:(桟瓦1の)働き幅 275mm b:(桟瓦1の)働き長さ 245±5mm(±5mm
は調整可能長さ) K:勾配伸び率 1.193
First, the module area Z in the roofing
An example of determining 1, the number of flow steps n1, the number of columns n2, and the working length b of the crosspiece 1 will be described. The above-mentioned relational expression (1) is obtained with the variable working length b of the tile 1 and the small module area Z1 and the small number of rows.
As an example of the assignment to achieve the above, as shown in FIG.
Shown below is a case where roof tiles with SA5208J type 49A tiles are stitched on a 6.5 / 10 slope roof. a: Working width (of tile 1) 275 mm b: Working length (of tile 1) 245 ± 5 mm (± 5 mm)
Is adjustable length) K: Slope elongation 1.193

【0015】上記の和型瓦の桟瓦1でモジュール面積Z
1に必要な ・幅流れ両方向の瓦枚数(流れ段数n1、桁列数n
2)、及び ・桟瓦1の働き長さbを求めるために、上記関係式(1)
に桟瓦1の上記寸法を代入すると、次の通りである。
[0015] The above-mentioned Japanese tile 1 has a module area Z
Necessary for 1 ・ Number of roof tiles in both directions of width flow (number of flow stages n1, number of columns n
2), and in order to determine the working length b of the tile 1, the above relational expression (1)
Substituting the above dimensions of the tile 1 into

【0016】この計算結果(2) から、屋根勾配6.5/
10、流れ段数n1=4、桁列数n2=3の時、モジュ
ール面積Z1が略正方形となるので、桟瓦1の働き長さ
b(245±5mm)は基準のb=245mmで割り付
ける。
From this calculation result (2), the roof slope 6.5 /
10, when the number of flow stages n1 = 4 and the number of columns n2 = 3, the module area Z1 is substantially square. Therefore, the working length b (245 ± 5 mm) of the tile 1 is assigned by the reference b = 245 mm.

【0017】一方、上記桟瓦1を勾配6.0/10の屋
根に筋葺きする場合には、働き長さbを変動させるの
で、以下説明する。 a:(桟瓦1の)働き幅 275mm b:(桟瓦1の)働き長さ 245±5mm(±5mm
は調整可能長さ) K:勾配伸び率 1.166
On the other hand, when the roof tile 1 is stitched on a roof having a gradient of 6.0 / 10, the working length b is changed. a: Working width (of tile 1) 275 mm b: Working length (of tile 1) 245 ± 5 mm (± 5 mm)
Is adjustable length) K: Slope elongation 1.166

【0018】勾配6.0/10の屋根におけるモジュー
ル面積Z1に必要な ・幅流れ両方向の瓦枚数(流れ段数n1、桁列数n
2)、及び ・桟瓦1の働き長さbを求めるために、割付施工時の桟
瓦1の働き長さbが基準の245mmで良いと仮定し
て、モジュール面積Z1の流れ段数n1、桁列数n2の
概数を先ず求める。上記関係式(1) に桟瓦1の上記寸法
を代入し、段列数の概数を求めると、次の通りである。
Necessary for the module area Z1 on the roof with a gradient of 6.0 / 10. ・ Number of roof tiles in both directions of width flow (number of flow steps n1, number of girder rows n)
2), and ・ To determine the working length b of the tile 1, assuming that the working length b of the tile 1 at the time of the layout work is the standard 245 mm, the number of flow steps n1 and the number of columns in the module area Z1 First, an approximate number of n2 is obtained. Substituting the dimensions of the tile 1 into the relational expression (1) and calculating the approximate number of rows is as follows.

【0019】この計算結果(2) から、流れ段数n1=
4、桁列数n2=3の時、モジュール面積Z1が略正方
形となるので、この段列数で正方形となる時の桟瓦1の
働き長さb(245±5mm)を、上記関係式(1) に代
入して求めると、次の通りである。
From this calculation result (2), the number of flow stages n1 =
4. When the number of columns n2 = 3, the module area Z1 is substantially square. Therefore, the working length b (245 ± 5 mm) of the crosspiece 1 when the number of columns is square is calculated by the above-mentioned relational expression (1). ) Is obtained as follows.

【0020】従って、桟瓦1の働き幅a=275mm、
働き長さb=245±5mmの平板瓦を、基準の働き長
さb=245mmで勾配6.5/10の屋根に、調整し
た働き長さb=240mmで勾配6.0/10の屋根
に、筋葺き施工すると、流れ段数n1=4、桁列数n2
=3の施工面積の水平投影面が正方形となり、桁行き方
向3列に対して、流れ方向4段で特定小面積のモジュー
ル面積Z1が設定される。上記の様に、第1段階ではモ
ジュール面積Z1に必要な幅流れ両方向の瓦枚数流れ段
数n1、桁列数n2)及び桟瓦1の働き長さb(基準又
は調整したもの)を決定する。
Accordingly, the working width a of the cross tile 1 is 275 mm,
A roof tile with a working length b = 245 ± 5 mm and a slope of 6.5 / 10 with a standard working length b = 245 mm, and a roof with a slope of 6.0 / 10 with an adjusted working length b = 240 mm When roofing is applied, the number of flow steps n1 = 4 and the number of columns n2
= 3, the horizontal projection plane of the construction area is a square, and a module area Z1 of a specific small area is set in four steps in the flow direction for three rows in the girder direction. As described above, in the first stage, the width of the roof tiles in both directions necessary for the module area Z1 and the number of flow stages n1 and the number of girder rows n2) and the working length b of the cross tile 1 (standard or adjusted) are determined.

【0021】次に、千鳥葺きにおけるモジュール面積Z
1、流れ段数n1、桁列数n2、桟瓦1の働き長さbの
決定例を説明する。桟瓦1の変動可能な働き長さb、小
面積、少段列数で上記関係式(1) を成立させる割付例と
して、図5に示す様に、粘土瓦JIS A5208F形40瓦(平
板瓦)を勾配4.5/10の屋根に千鳥葺きする場合を
示す。 a:(桟瓦1の)働き幅 306mm b:(桟瓦1の)働き長さ 280±5mm(±5mm
は調整可能長さ) K:勾配伸び率 1.097
Next, the module area Z in zigzag thatched roof
An example of determining 1, the number of flow steps n1, the number of columns n2, and the working length b of the crosspiece 1 will be described. As an example of an arrangement for satisfying the above-mentioned relational expression (1) with the variable working length b, small area and small number of rows of the cross tile 1, as shown in FIG. 5, a clay tile JIS A5208F type 40 tile (flat tile) Is staggered on a 4.5 / 10 roof. a: Working width (of tile 1) 306 mm b: Working length (of tile 1) 280 ± 5 mm (± 5 mm)
Is adjustable length) K: Slope elongation 1.097

【0022】上記の平板瓦の桟瓦1でモジュール面積Z
1に必要な ・幅流れ両方向の瓦枚数(流れ段数n1、桁列数n
2)、及び ・桟瓦1の働き長さbを求めるために、上記関係式(1)
に桟瓦1の上記寸法を代入すると、次の通りである。
The module area Z of the flat tile 1
Necessary for 1 ・ Number of roof tiles in both directions of width flow (number of flow stages n1, number of columns n
2), and in order to determine the working length b of the tile 1, the above relational expression (1)
Substituting the above dimensions of the tile 1 into

【0023】この計算結果(2) から、屋根勾配4.5/
10、流れ段数n1=3、桁列数n2=2.5の時、モ
ジュール面積Z1が略正方形となるので、桟瓦1の働き
長さb(280±5mm)は基準のb=280mmで割
り付ける。
From this calculation result (2), the roof slope 4.5 /
10, when the number of flow stages n1 = 3 and the number of columns n2 = 2.5, the module area Z1 is substantially square. Therefore, the working length b (280 ± 5 mm) of the cross tile 1 is assigned by the reference b = 280 mm.

【0024】一方、上記桟瓦1を勾配5.0/10の屋
根に千鳥葺きする場合には、働き長さbを変動させるの
で、以下説明する。 a:(桟瓦1の)働き幅 306mm b:(桟瓦1の)働き長さ 280±5mm(±5mm
は調整可能長さ) K:勾配伸び率 1.118
On the other hand, when the cross tile 1 is staggered on a roof having a gradient of 5.0 / 10, the working length b is changed. a: Working width (of tile 1) 306 mm b: Working length (of tile 1) 280 ± 5 mm (± 5 mm)
Is adjustable length) K: Slope elongation 1.118

【0025】勾配5.0/10の屋根におけるモジュー
ル面積Z1に必要な ・幅流れ両方向の瓦枚数(流れ段数n1、桁列数n
2)、及び ・桟瓦1の働き長さbを求めるために、割付施工時の桟
瓦1の働き長さbが基準の280mmで良いと仮定し
て、モジュール面積Z1の流れ段数n1、桁列数n2の
概数を先ず求める。上記関係式(1) に桟瓦1の上記寸法
を代入し、段列数の概数を求めると、次の通りである。
Necessary for the module area Z1 on the roof having a gradient of 5.0 / 10. The number of roof tiles in both directions of width flow (number of flow steps n1, number of girder rows n)
2), and ・ To obtain the working length b of the cross tile 1, assuming that the working length b of the cross tile 1 at the time of the layout work may be the standard 280 mm, the number n 1 of flow steps and the number of girder columns of the module area Z 1 First, an approximate number of n2 is obtained. Substituting the dimensions of the tile 1 into the relational expression (1) and calculating the approximate number of rows is as follows.

【0026】この計算結果(2) から、流れ段数n1=
3、桁列数n2=2.5の時、モジュール面積Z1が略
正方形となるので、この段列数で正方形となる時の桟瓦
1の働き長さb(280±5mm)を、上記関係式(1)
に代入して求めると、次の通りである。
From the calculation result (2), the number of flow stages n1 =
3. When the number of columns is n2 = 2.5, the module area Z1 is substantially square. Therefore, the working length b (280 ± 5 mm) of the cross tile 1 when the number of columns is square is calculated by the above-mentioned relational expression. (1)
Is obtained by substituting into

【0027】従って、桟瓦1の働き幅a=306mm、
働き長さb=280±5mmの平板瓦を、基準の働き長
さb=280mmで勾配4.5/10の屋根に、調整し
た働き長さb=285mmで勾配5.0/10の屋根
に、千鳥葺き施工すると、流れ段数n1=3、桁列数n
2=2.5の施工面積の水平投影面が正方形となり、桁
行き方向2.5列に対して、流れ方向3段でモジュール
面積Z1が設定される。上記の様に、第1段階ではモジ
ュール面積Z1に必要な幅流れ両方向の瓦枚数(流れ段
数n1、桁列数n2)及び桟瓦1の働き長さb(基準又
は調整したもの)を決定する。
Therefore, the working width a of the tile 1 is 306 mm,
A roof tile with a working length b = 280 ± 5 mm and a standard working length b = 280 mm with a slope of 4.5 / 10 and a roof with an adjusted working length b = 285 mm with a slope of 5.0 / 10 , When staggered construction, the number of flow steps n1 = 3, the number of girder rows n
The horizontal projection plane having a construction area of 2 = 2.5 is a square, and the module area Z1 is set in three steps in the flow direction for 2.5 columns in the girder direction. As described above, in the first stage, the number of tiles (the number of flow steps n1 and the number of girder columns n2) required in the width direction and the direction necessary for the module area Z1 and the working length b (reference or adjusted) of the crosspiece 1 are determined.

【0028】(3)第2段階では、モジュール化におけ
る端部瓦である隅瓦3を定型化する。この定型化(モジ
ュール面積Z1より外側の隅棟側の敷設未了部分Z2へ
の割付)の決定理由等は次の通りである。イ )図5に示す様に、モジュール面積Z1は屋根全体に適
用され、軒側・大棟側の流れ方向における直角二等辺三
角形状の複数の敷設未了部分Z2全ての形状、大きさは
同様の関係となる。(棟芯角度が45度で、幅流れ両方
向が同一寸法のため)ロ )敷設未了部分Z2の各段における幅方向での最大調整
量(残軒長さに相当する調整寸法An、割付される桟瓦
1の外縁又はモジュール面積Z1の外縁と端部敷設中心
Yの距離)は桟瓦1の働き幅aを基準にした所定量未満
となる(図7及び図8〜12参照)。(調整寸法A1、
A2…が所定量を超過した時には、即ち、調整寸法An
の測定位置を図示の頭側に代えて尻側とした時に桟瓦1
の働き幅aを超過した時には、桟瓦1を1枚追加割付す
るためであり、端部敷設中心Yは後述する冠瓦2の冠調
節幅Bの範囲内に相当する。)ハ )モジュール面積Z1で決定された流れ方向の瓦枚数
(流れ段数n1)と同数の調整隅瓦3a、3b…で、敷設未
了部分Z2の各段端部が調整敷設され、全ての敷設未了
部分Z2でこれが繰り返される。ニ )各段の調整隅瓦3a、3b…一枚当たりの調整寸法差An
- 1−Anが決定する。ホ )数種類(流れ段数n1と同数)の個別の調整隅瓦3a、
3b…毎の働き幅cが決定する。ヘ )調整隅瓦3a、3b…の働き幅c(基本的な基本寸法αに
調整寸法差An- 1−Anを加算したもの)は隣接の桟瓦
1の形状を配慮して決定する。(隣接の桟瓦1をカット
しない大きさが好ましい。)
(3) In the second stage, corner tiles 3 which are end tiles in modularization are standardized. The reason for determining this standardization (assignment to the unfinished part Z2 on the corner ridge side outside the module area Z1) is as follows. B) As shown in FIG. 5, the module area Z1 is applied to the entire roof, and the shape and size of all the unfinished portions Z2 of a right-angled isosceles triangle in the flow direction on the eaves side and the main building side are the same. It becomes the relationship. (Because the ridge core angle is 45 degrees and the width direction is the same in both directions) b) The maximum adjustment amount in the width direction at each stage of the unfinished part Z2 (adjustment dimension An corresponding to the remaining eave length) The distance between the outer edge of the roof tile 1 or the outer edge of the module area Z1 and the end laying center Y) is less than a predetermined amount based on the working width a of the roof tile 1 (see FIGS. 7 and 8 to 12). (Adjustment dimensions A1,
A2... Exceeds a predetermined amount, that is, the adjustment dimension An
When the measurement position is set to the tail side instead of the head side shown in the figure,
When the working width a is exceeded, one additional tile 1 is allocated, and the center Y of the end laying corresponds to a range of a crown adjustment width B of the crown tile 2 described later. ) C) With the same number of tiles 3a, 3b,... As the number of tiles in the flow direction (number of flow steps n1) determined by the module area Z1, each step end of the unfinished portion Z2 is adjusted and laid, and This is repeated in the unfinished part Z2. D) Adjustable corner tiles 3a, 3b of each step: Adjustment dimension difference An per sheet
- 1 -An is determined. E) Several types (same number as the number of flow stages n1) of individual adjustment corner tiles 3a,
3b... Each working width c is determined. F) The working width c of the adjustment corner tiles 3a, 3b,... (The sum of the basic dimension α and the adjustment dimension difference An - 1− An) is determined in consideration of the shape of the adjacent tile 1. (A size that does not cut the adjacent tile 1 is preferable.)

【0029】〔端部瓦の定型化の結果〕図7に示す様
に、モジュール面積Z1及び敷設未了部分Z2へ敷設済
(割付済)の桟瓦1の左側である隅瓦未了部分Z3に、
隅瓦3を敷設する各段の調整寸法(桟瓦1の左端から端
部敷設中心Yまでの距離)をA1、A2、…An(nは
段数)とすると、筋葺きの場合、上下隣接段(例えば、
第1段目と第2段目)における調整寸法差A1−A2、
A2−A3、…An- 1−Anの全ては次の通りとなる
(詳細は後述する)。 An- 1−An=|b−a| この調整寸法A1、A2、…Anが調整隅瓦3a、3b…に
おける基本寸法αに加算されて働き幅cが求められ、モ
ジュール面積Z1の流れ段数n1と同数の複数種(n1
=n種)の調整隅瓦3a、3b…が決定されるのであって、
複数種の調整隅瓦3a、3b…の関係は|b−a|(b−a
の絶対値)の相当幅分の同差となる。尚、図7と図8の
対比の様に、流れ方向におけるモジュール面積Z1の設
定位置によって、調整隅瓦3a、3b…(図中、小間隔平行
線入りの部分)の大きさ・配置は規則的(詳細は後述す
る)になると共に、複数の敷設未了部分Z2相互間では
同一の関係となる(図6参照)。
[Results of standardization of end tiles] As shown in FIG. 7, a corner tile unfinished portion Z3 on the left side of the cross tile 1 already laid (assigned) to the module area Z1 and the unfinished portion Z2. ,
Assuming that the adjustment dimensions (distance from the left end of the cross tile 1 to the center Y of the end laying) of each step for laying the corner tile 3 are A1, A2,... For example,
Adjustment dimension difference A1-A2 in the first and second stages),
All of A2-A3,... An - 1- An are as follows (details will be described later). An - 1− An = | ba− The adjustment dimensions A1, A2,... An are added to the basic dimension α in the adjustment corner tiles 3a, 3b, and the working width c is obtained, and the number n1 of flow steps in the module area Z1 is obtained. As many as (n1
= N types) of adjustment corner tiles 3a, 3b ...
The relationship between the plurality of types of adjusting corner tiles 3a, 3b... Is | ba | (ba
(Absolute value). As shown in the comparison between FIG. 7 and FIG. 8, the size and arrangement of the adjusting corner tiles 3a, 3b... In addition to the target (the details will be described later), the same relationship is established between the plurality of unfinished portions Z2 (see FIG. 6).

【0030】以下、各段の調整隅瓦3a、3b…の定型化の
詳細を説明するが、先ず、図8に示す様に、モジュール
面積Z1の左上角が端部敷設中心Yに一致する場合を説
明し、図7に示す様に、両者が一致しない場合には、複
数種の調整隅瓦3a、3b…の順番を変えたり、施工段階で
冠瓦2との重合量で調整することを後に説明する。図7
と図8の相違は、モジュール面積Z1の設定位置によっ
ては、必要とする調整隅瓦3a、3b…は同一であるが、そ
の配列(順番)が相違することを示しており、図8は割
付および調整隅瓦3a、3b…の決定計算(大きさの算出)
を容易化するために、端部敷設中心Yとモジュール面積
Z1の左上角を一致させた図であって、この図8は図7
の最下段が第4段目に配置されたものに相当する。他
方、図7は同差で複数種の調整隅瓦3a、3b…が下段側か
ら上段側に順次大きくなることを示しており、図7と図
8はモジュール面積Z1の位置が相違する以外は、実質
的に同一の図面であり、以下の計算では図8を基にして
説明する。
In the following, the details of the standardization of the adjusting corner tiles 3a, 3b... Of each step will be described. First, as shown in FIG. 8, the case where the upper left corner of the module area Z1 coincides with the center Y of the laying of the end portion. As shown in FIG. 7, when the two do not coincide with each other, it is necessary to change the order of the plurality of types of adjusting corner tiles 3a, 3b. It will be described later. FIG.
The difference between FIG. 8 and FIG. 8 shows that the required adjustment tiles 3a, 3b... Are the same depending on the setting position of the module area Z1, but the arrangement (order) is different, and FIG. And calculation of adjustment corner tiles 3a, 3b ... (calculation of size)
FIG. 8 is a diagram in which the center Y of the end laying and the upper left corner of the module area Z1 are made coincident in order to facilitate
At the bottom corresponds to the one arranged at the fourth stage. On the other hand, FIG. 7 shows that the plurality of types of adjusting corner tiles 3a, 3b... Increase sequentially from the lower side to the upper side with the same difference, and FIGS. 7 and 8 differ from each other except that the position of the module area Z1 is different. Are substantially the same, and the following calculation will be described with reference to FIG.

【0031】図8に示す様に、モジュール面積Z1(図
中、大間隔斜線入りの部分)の左端を基準にして、第1
段目(最下段)〜第n段目(最上段)の直角二等辺三角
形状の敷設未了部分Z2(図6の中間隔斜線入りの部
分、参照)全体の長さをC1、幅をB1とし、第2段目
〜第n段目の敷設未了部分Z2全体の長さをC2、幅を
B2とし、第n段目(図では第4段目)の敷設未了部分
Z2の長さをCn(C4)、幅をBn(B4)とする
と、平面投影状態で棟心と平行同角度の端部敷設中心Y
は45度であるため、直角二等辺三角形の敷設未了部分
Z2全体の長さCと幅Bは同一で、C1=B1、C2=
B2、… …、Cn=Bn(式(4))である。
As shown in FIG. 8, the first area is defined based on the left end of the module area Z1 (the area marked with large diagonal lines in the figure).
The entire length C2 and the width B1 of the unfinished portion Z2 of the right-angled isosceles triangle from the stage (bottom stage) to the n-th stage (top stage) (see the portion with the middle-diagonal hatching in FIG. 6) The entire length of the unfinished part Z2 of the second to n-th stages is C2, the width is B2, and the length of the unfinished part Z2 of the n-th stage (fourth stage in the figure) is Is Cn (C4) and the width is Bn (B4), the center Y of the end laying at the same angle parallel to the ridge in the plane projection state.
Is 45 degrees, the length C and the width B of the entire non-laying portion Z2 of the right-angled isosceles triangle are the same, and C1 = B1, C2 =
B2,..., Cn = Bn (Equation (4)).

【0032】そして、図9に示す様に、第1段目の台形
状の敷設未了部分Z2において、モジュール面積Z1の
左隣に桟瓦1(働き幅a)をm枚(図では2枚)施工出
来るので、第1段目の隅瓦未了部分Z3における調整寸
法A1(調整隅瓦3bの働き幅cに相当)は、A1=B1
−a×m(式(5))となる。又、図10に示す様に、第2
段目の敷設未了部分Z2において、モジュール面積Z1
の左隣に、第1段目より1枚少ない(m−1)枚数(図
では1枚)の桟瓦1を施工するから、第2段目の調整寸
法A2は、A2=B2−a×(m−1)(式(6))とな
る。
Then, as shown in FIG. 9, in the trapezoidal unfinished portion Z2 of the first stage, m tiles 1 (working width a) are located on the left of the module area Z1 (two in the figure). Since the construction can be performed, the adjustment dimension A1 (corresponding to the working width c of the adjustment corner tile 3b) in the unfinished portion Z3 of the first stage tile is A1 = B1
−a × m (formula (5)). Also, as shown in FIG.
In the unfinished portion Z2 of the tier, the module area Z1
Is installed on the left side of (1) (m-1) (one in the figure) one less than the first stage, so that the adjustment dimension A2 of the second stage is A2 = B2-a × ( m-1) (Equation (6)).

【0033】尚、敷設未了部分Z2への桟瓦1の敷設枚
数mとモジュール面積Z1の段数nの関係は、同一差の
関係であり、図7ではm=n−1、図8ではm=n−2
の関係となっている。この関係はモジュール面積Z1に
おける流れ段数n1と桁列数n2の差が1の時である
が、流れ段数n1と桁列数n2の差が2以上の時にも同
様の関係式が成立し、最終結果において、n1−n2=
1の時には、調整隅瓦3a、3b…は1パターンの複数種と
なり、n1−n2=2の時には2パターンとなり、順
次、この関係が成立する。
Note that the relationship between the number m of laying tiles 1 in the unfinished portion Z2 and the number n of stages of the module area Z1 is the same, ie, m = n-1 in FIG. 7, and m = n in FIG. n-2
It has a relationship. This relationship is when the difference between the number of flow stages n1 and the number of column columns n2 in the module area Z1 is 1, but when the difference between the number of flow stages n1 and the number of column columns n2 is 2 or more, the same relational expression holds. In the results, n1-n2 =
When it is 1, the adjustment corner tiles 3a, 3b,... Are plural types of one pattern, and when n1−n2 = 2, there are two patterns, and this relationship is established sequentially.

【0034】後述の第1、2段目の調整寸法差(A1−
A2)、即ち、第1、2段目に敷設される中間幅の調整
隅瓦3bとやや大の調整隅瓦3cの大きさを求めるために、
式(5) 、(6) の変数等を整理する。図10に示す様に、
第2段目〜第n段目の敷設未了部分Z2の長さC2は、
第1段目に桟瓦1及び調整隅瓦3b(共に働き長さb)が
敷設されるので、第1段目と第2〜n段目の長さ関係は
C2=C1−b(式(7))となる一方、敷設未了部分Z2
の長さ幅関係はC1=B1、C2=B2(式(4))である
から、式(7) に代入すると、B2=B1−b(式(8))と
なり、これを式(6) に代入すると、第2段目の調整寸法
A2は、A2=B1−b−a×(m−1)(式(9))とな
る。
The first and second adjustment dimensional differences (A1-
A2) In other words, in order to determine the size of the middle-width adjustment corner tile 3b and the slightly larger adjustment corner tile 3c laid in the first and second stages,
Arrange the variables in equations (5) and (6). As shown in FIG.
The length C2 of the unfinished portion Z2 of the second to n-th stages is
Since the cross tile 1 and the adjusting corner tile 3b (both working length b) are laid on the first stage, the length relationship between the first stage and the second to n-th stages is C2 = C1-b (Equation (7) )), But the unfinished part Z2
Since the relationship of length and width is C1 = B1 and C2 = B2 (Equation (4)), when it is substituted into Equation (7), B2 = B1-b (Equation (8)). , The adjustment dimension A2 of the second stage is A2 = B1-ba- (m-1) (Equation (9)).

【0035】第1段目と第2段目の上下隣接段における
調整寸法差(A1−A2)は、 となる。即ち、第1段目と第2段目における中間幅の調
整隅瓦3bとやや大の調整隅瓦3cの働き幅cの寸法差は、
桟瓦1の働き幅aと働き長さbの差(|b−a|)とな
る。
The adjustment dimension difference (A1-A2) between the upper and lower adjacent stages of the first stage and the second stage is: Becomes That is, the dimensional difference between the working width c of the intermediate corner adjusting tile 3b and the slightly larger adjusting corner tile 3c in the first stage and the second stage is as follows.
The difference (| ba- |) between the working width a and the working length b of the cross tile 1 is obtained.

【0036】ここで、複数種の調整隅瓦3a、3b…の働き
幅cの寸法差が計算設定される桟瓦1の働き幅aと働き
長さbを比較すると、働き幅a>働き長さb(働き幅a
の数値が大きい)ので、A1−A2=b−a(式(10))
は負の値となり、第1段目の調整寸法A1より第2段目
の調整寸法A2が大であること、即ち、第2段目(上段
側)の調整隅瓦3cの方が第1段目の調整隅瓦3bより大き
いことを示し、寸法差自体はb−aの絶対値である|b
−a|である。
Here, comparing the working width a and the working length b of the cross tile 1 in which the dimensional difference of the working width c of the plurality of types of adjusting corner tiles 3a, 3b... Is calculated, the working width a> the working length b (Working width a
A1-A2 = ba (Equation (10))
Is a negative value, and the adjustment dimension A2 of the second step is larger than the adjustment dimension A1 of the first step, that is, the adjustment corner tile 3c of the second step (upper side) is in the first step. It is larger than the eye-adjusting corner tile 3b, and the dimensional difference itself is the absolute value of ba.
−a |.

【0037】上記説明では、上下隣接段として第1段目
と第2段目の関係を説明したので、全段における上下隣
接段の調整寸法差(An- 1−An)を説明する。即ち、
上述の関係式、計算式(4) 〜(10)を敷設未了部分Z2の
全段に適用すると、次の通りとなる。
In the above description, since the relationship between the first stage and the second stage has been described as the upper and lower adjacent stages, the adjustment dimension difference (An - 1 -An) of the upper and lower adjacent stages in all stages will be described. That is,
When the above-mentioned relational expressions and calculation formulas (4) to (10) are applied to all stages of the unfinished portion Z2, the following is obtained.

【0038】図10、11に示す様に、第2段目と第3
段目の隅瓦未了部分Z3の調整寸法差(A2−A3)は
次の通りである。 C1=B1、C2=B2、… …、Cn=Bn(式(4)) A2=B2−a×(m−1)(式(5)) A3=B3−a×(m−2)(式(6)) C3=C2−b(式(7)) B3=B2−b(式(8)) A3=B2−b−a×(m−2)(式(9)) 従って、第2、3段目の関係は、第1、2段目と同一関
係となる。
As shown in FIGS. 10 and 11, the second stage and the third stage
The adjustment dimension difference (A2-A3) of the unfinished portion Z3 of the corner tile at the step is as follows. C1 = B1, C2 = B2,..., Cn = Bn (Equation (4)) A2 = B2-a × (m-1) (Equation (5)) A3 = B3-a × (m-2) (Equation 5) (6)) C3 = C2-b (formula (7)) B3 = B2-b (formula (8)) A3 = B2-ba × (m-2) (formula (9)) Therefore, the relationship between the second and third stages is the same as the relationship between the first and second stages.

【0039】図11、12に示す様に、第3段目と第4
段目の調整寸法差(A3−A4)は次の通りである。 C1=B1、C2=B2、… …、Cn=Bn(式(4)) A3=B3−a×(m−2)(式(5)) A4=B4−a×(m−3)(式(6)) C4=C3−b(式(7)) B4=B3−b(式(8)) A4=B3−b−a×(m−3)(式(9)) 従って、第3、4段目の関係も、第1、2段目と同一関
係となる。
As shown in FIGS. 11 and 12, the third stage and the fourth stage
The adjustment dimension difference (A3-A4) at the level is as follows. C1 = B1, C2 = B2,..., Cn = Bn (Equation (4)) A3 = B3-a × (m-2) (Equation (5)) A4 = B4-a × (m-3) (Equation 5) (6)) C4 = C3-b (formula (7)) B4 = B3-b (formula (8)) A4 = B3-ba- (m-3) (formula (9)) Accordingly, the third and fourth stages have the same relationship as the first and second stages.

【0040】尚、図12に基づく第4段目の計算に際し
て、三角形状の敷設未了部分Z2への桟瓦1の敷設枚数
をm−3(−1)枚とし、実質的にA4=B4+aとし
ているが、図示のものではm−2(0)枚であるので、
調整隅瓦3aの働き幅cの決定時には、桟瓦1の働き幅a
の調整が必要である。この様な場合には、最終的な計算
結果による調整隅瓦3a、3b…の決定に際して、調整寸法
A1、A2、…An(図示のものではA4)が働き幅a
(前述したが、尻側を基準とした時)を超過させない様
にし、即ち、超過した時には、働き幅aを差し引いたも
のとする。他方、図7を基にして上記各種計算を行え
ば、敷設未了部分Z2への桟瓦1の敷設枚数は−1の関
係が単純に設定可能であり、図7を基準にする場合には
C1〜Cn、B1〜Bn等の計算に際して、モジュール
面積Z1の左上欄外分(長さ幅ともにb)を加減算して
計算を行う必要がある。
In the calculation of the fourth stage based on FIG. 12, the number of the tiles 1 to be laid on the triangular unfinished portion Z2 is m-3 (-1), and A4 = B4 + a. However, in the illustrated example, the number is m-2 (0),
When determining the working width c of the adjusting corner tile 3a, the working width a of the cross tile 1 is determined.
Needs to be adjusted. In such a case, when determining the adjustment corner tiles 3a, 3b... Based on the final calculation result, the adjustment dimensions A1, A2,.
(As described above, based on the butt side) is not allowed to exceed, that is, when exceeding, the working width a is subtracted. On the other hand, if the above various calculations are performed based on FIG. 7, it is possible to simply set a relation of −1 for the number of laying tiles 1 on the unfinished portion Z2. In the calculation of .about.Cn, B1.about.Bn, etc., it is necessary to add and subtract the upper left margin of the module area Z1 (both length and width).

【0041】第n−1段目と第n段目の調整寸法差(A
- 1−An)は次の通りであり、その計算式中、桟瓦1
の枚数mは上述(式(6) の後段説明参照)の通り、m=
n−2としている。 C1=B1、… …、Cn- 1=Bn- 1、Cn=Bn(式(4)) An- 1=Bn- 1−a×(n−2)(式(5)) An=Bn−a×(n−2−1)(式(6)) Cn=Cn- 1−b(式(7)) Bn=Bn- 1−b(式(8)) An=Bn- 1−b−a×(n−2−1)(式(9)) 従って、上段側2段の第n−1段目と第n段目の調整寸
法差(An- 1−An)は、第1、2段目、第2、3段目
等と同一関係となる。
The adjustment dimension difference between the (n-1) th stage and the nth stage (A
n - 1 -An) is as follows, and in the calculation formula,
As described above (see the description of the expression (6) below), m =
n-2. C1 = B1,..., Cn 1 = Bn 1 , Cn = Bn (Equation (4)) An 1 = Bn 1− a × (n−2) (Equation (5)) An = Bn−a × (n-2-1) (Equation (6)) Cn = Cn 1− b (Equation (7)) Bn = Bn 1− b (Equation (8)) An = Bn 1− b−a × (N-2-1) (Formula (9)) Therefore, the adjustment dimension difference (An - 1 -An) between the (n-1) -th stage and the n-th stage in the upper two stages has the same relationship as the first, second, second, third, etc. stages. .

【0042】図13に示す様に、10段9列(n=1
0)についても、上記式等が適用出来ることを説明す
る。第9段目と第10段目の調整寸法差(A9−A1
0)は次の通りである。 C1=B1、C2=B2、… …、Cn=Bn(式(4)) A9=B9−a×(m−2)(式(5)) A10=B10−a×(m−2−1)(式(6)) C10=C9−b(式(7)) B10=B9−b(式(8)) A10=B9−b−a×(m−2−1)(式(9)) 従って、第9、10段目の関係も、第1、2段目、第n
−1、n段目等と同一関係となる。
As shown in FIG. 13, 10 rows and 9 rows (n = 1
It will be described that the above equation and the like can be applied to 0). The dimensional difference between the ninth and tenth stages (A9-A1
0) is as follows. C1 = B1, C2 = B2,..., Cn = Bn (Equation (4)) A9 = B9−a × (m−2) (Equation (5)) A10 = B10−a × (m−2-1) (Equation (6)) C10 = C9-b (Equation (7)) B10 = B9-b (Equation (8)) A10 = B9-ba × (m-2-1) (Equation (9)) Therefore, the relations of the ninth and tenth stages also correspond to the first, second, and nth stages.
-1, the same relationship as the n-th stage, etc.

【0043】従って、第1段目と第2段目、第2段目と
第3段目、第n−1段目と第n段目の関係などで求めら
れる様に、上下隣接段における調整寸法差An- 1−An
=b−aの関係が全段の調整隅瓦3a、3b…で成立し、且
つ、働き幅a>働き長さbであるために、b−aは負の
値で上段側の調整隅瓦3a、3b…が大きくなる。
Therefore, the adjustments in the upper and lower adjacent stages are determined by the relationship between the first stage and the second stage, the second stage and the third stage, and the (n-1) th stage and the nth stage. Dimensional difference An - 1- An
Since the relationship of = ba is established in all the adjustment corner tiles 3a, 3b,... And the working width a> the working length b, ba is a negative value and the upper adjustment corner tile is 3a, 3b ... increase.

【0044】尚、図8に示す様に、第1、2、3段目で
は調整寸法A1、A2、A3(調整隅瓦3a、3b…の働き
幅)の差が|b−a|であると共に、上段の方が大きく
なることを説明したが、第3段目と第4段目では、大き
さの差が|b−a|であるが、上段の方が小さくなって
いる。その理由としては、当該欄において説明した様
に、第1、2、3、4段目では各段の台形状の敷設未了
部分Z2に1枚差の桟瓦1を敷設しており、即ち、第3
段目では桟瓦1を敷設せず、第4段目では−1枚を敷設
していることにより、調整隅瓦3a、3b…の最終結果とし
ては働き幅aを差し引き、図示のものではA4=B4+
aの一部を桟瓦1で置換したことに相当する。他方、図
7に示すものでは、図8の第4段目を最下段に配置した
ものに相当し、下段から上段へ行く程、調整隅瓦3a、3b
…は|b−a|だけ大きくなり、調整寸法Anが働き幅
aを超過する時には、桟瓦1の働き幅aを差し引き、そ
れが繰り返されるものであり、両者の相違はモジュール
面積Z1の設定位置に起因する。
As shown in FIG. 8, in the first, second, and third stages, the difference between the adjustment dimensions A1, A2, and A3 (the working width of the adjustment corner tiles 3a, 3b...) Is | ba- | At the same time, it has been described that the size of the upper stage is larger. In the third stage and the fourth stage, the size difference is | ba |, but the upper stage is smaller. The reason for this is that, as described in the section, in the first, second, third, and fourth stages, the cross tile 1 is laid in the trapezoidal unfinished portion Z2 of each stage, ie, Third
Since the cross tile 1 is not laid at the level and the -1 piece is laid at the fourth level, the working width a is subtracted as the final result of the adjustment corner tiles 3a, 3b. B4 +
This is equivalent to replacing part of a with the roof tile 1. On the other hand, the one shown in FIG. 7 corresponds to the one in which the fourth stage in FIG. 8 is arranged at the lowermost stage, and the lower the upper stage, the lower the adjustment corner tiles 3a, 3b.
... are increased by | b-a |, and when the adjustment dimension An exceeds the working width a, the working width a of the cross tile 1 is subtracted, and this is repeated. The difference between the two is the set position of the module area Z1. caused by.

【0045】上記の結果から明らかな様に、調整隅瓦3
a、3b…はモジュール面積Z1の流れ段数n1と同数の
種類があり、筋葺きの場合には個々の調整隅瓦3a、3b…
の寸法差は|b−a|であり、且つ、複数種の調整隅瓦
3a、3b…を敷設する複数の敷設未了部分Z2で同一関係
が成立する。
As is apparent from the above results, the adjustment corner tile 3
a, 3b... have the same number of types as the number n1 of flow steps of the module area Z1, and in the case of the roofing, individual adjustment corner tiles 3a, 3b.
Is | ba |, and a plurality of types of adjusting corner tiles
The same relationship is established in a plurality of unlaid portions Z2 where 3a, 3b,... Are laid.

【0046】次に、個別の調整隅瓦3a、3b…の働き幅c
について説明する。図14に示す様に、各段個別の隅瓦
未了部分Z3に敷設する調整隅瓦3a、3b…の大きさ(働
き幅c)にあっては、最小幅の調整隅瓦3aの働き幅をc
(基本寸法をα)とすると、中間幅等の調整隅瓦3b、3c
…は、基本寸法α(働き幅c)に調整寸法差|b−a|
が順次、加算されて大きくなる。
Next, the working width c of the individual adjusting corner tiles 3a, 3b...
Will be described. As shown in FIG. 14, the size (working width c) of the adjusting corner tiles 3a, 3b,... Laid on the unfinished corner tiles Z3 of each stage is the working width of the minimum width adjusting corner tile 3a. To c
(Basic dimension is α) Adjusting corner tiles 3b, 3c for middle width etc.
... is the difference between the basic dimension α (working width c) and the adjustment dimension | ba−
Are sequentially added and become larger.

【0047】ところで、最小幅の調整隅瓦3aの働き幅c
の決定基準としては、隣接の桟瓦1をカットしない大き
さが好ましく、図15(a) に示す様に、調整隅瓦3aの働
き幅cの寸法として桟瓦1の働き長さbを採用すれば桟
瓦1のカットが不要となり、図15(b) に示す様に、働
き幅c’を働き長さbより大きくすることでも同様に可
能であり、最小幅の調整隅瓦3aの基本寸法αとしては桟
瓦1の働き長さb以上が好ましい。一方、最小幅の調整
隅瓦3aの基本寸法αとして大きめの寸法を採用すると、
最大幅の調整隅瓦3nの大きさは、α+n×|b−a|と
なり、調整隅瓦3nが大きくなり過ぎて製造困難となるこ
とが予想される。他方、図15(c) に示す様に、最小幅
の調整隅瓦3aの働き幅c”の寸法として、桟瓦1の働き
長さbより小さい寸法を採用すると、隣接の桟瓦1をカ
ットする必要が発生する。
Incidentally, the working width c of the minimum width adjustment corner tile 3a
As a criterion for the determination, the size that does not cut the adjacent roof tile 1 is preferable. If the working length b of the roof tile 1 is employed as the dimension of the working width c of the adjusting corner tile 3a as shown in FIG. The tile 1 does not need to be cut, and as shown in FIG. 15 (b), it is possible to make the working width c ′ larger than the working length b. Is preferably equal to or more than the working length b of the tile 1. On the other hand, if a larger dimension is adopted as the basic dimension α of the minimum width adjustment corner tile 3a,
The size of the adjustment corner tile 3n having the maximum width is α + n × | ba−, and it is expected that the adjustment corner tile 3n will be too large and difficult to manufacture. On the other hand, as shown in FIG. 15 (c), if the dimension of the working width c ″ of the minimum width adjusting corner tile 3a is smaller than the working length b of the roof tile 1, the adjacent roof tile 1 needs to be cut. Occurs.

【0048】調整隅瓦3a、3b…の働き幅cの決定を整理
すると、最小幅の調整隅瓦3aの働き幅cは基本寸法α
で、その他の幅の調整隅瓦3b、3c…は、基本寸法αに調
整寸法差An- 1−Anを加算したものが調整隅瓦3a、3b
…の働き幅cとなり、合計個数の調整隅瓦3a、3b…が流
れ段数n1と同数となる。図14に示す場合には、基本
寸法αのものが第1種の調整隅瓦3a、基本寸法αに寸法
差An- 1−Anを加算したものが第2種の調整隅瓦3b、
第3種の調整隅瓦3cは第2種の調整隅瓦3bに寸法差An
- 1−Anを加算したもの、言い換えると第3種の調整隅
瓦3cは基本寸法αに2個の寸法差An- 1−Anを積算し
たものを意味し、以下同様に、第n種の調整隅瓦3nは基
本寸法αにn−1個の寸法差An- 1−Anを積算したも
のである。
The working width c of the adjusting corner tiles 3a, 3b,... Is summarized as follows.
The adjustment tiles 3b, 3c,... Of the other widths are obtained by adding the adjustment dimension difference An - 1− An to the basic dimension α.
, And the total number of the corner tiles 3a, 3b,... Is equal to the number n1 of flow steps. In the case shown in FIG. 14, the one having the basic dimension α is the first kind of adjusting corner tile 3a, the one having the basic dimension α plus the dimensional difference An - 1− An is the second kind of adjusting corner tile 3b,
The third kind of adjusting corner tile 3c is different from the second kind of adjusting corner tile 3b by a dimensional difference An.
- 1 -An obtained by adding the, in other words the three adjustment Sumikawara 3c are two dimensional difference An in basic dimensions alpha - means that by integrating 1 -An, similarly, of the n or fewer The adjustment corner tile 3n is obtained by integrating n-1 dimensional differences An - 1 -An with the basic dimension α.

【0049】上記の様に、個別の調整隅瓦3a、3b…の算
出方法、好ましい寸法を説明したので、次に、モジュー
ル面積Z1の設定に際して図4を参照した和型瓦(桟瓦
1)の場合に施工される調整隅瓦3a、3b…の好ましい寸
法例を図16に示す。働き幅a=275mm、働き長さ
b=245±5mmの桟瓦1に対して、図16(a) は屋
根勾配6.5/10の敷設例、(b) は屋根勾配6.0/
10の敷設例で、屋根勾配6.5/10の時、最小幅の
調整隅瓦3aの働き幅aが245mm、順次30mmの差
で、最大幅の調整隅瓦3dが335mmであり、屋根勾配
6.0/10の場合には調整隅瓦3a〜3dは35mmの差
で240〜315mmの働き幅である。
As described above, the method of calculating the individual adjustment corner tiles 3a, 3b,... And the preferred dimensions have been described. Next, when the module area Z1 is set, the Japanese tile (cross tile 1) shown in FIG. FIG. 16 shows an example of preferable dimensions of the adjusting corner tiles 3a, 3b,. FIG. 16 (a) shows an example of laying with a roof slope of 6.5 / 10, and FIG. 16 (b) shows a roof slope of 6.0 / with respect to the tile 1 having a working width a = 275 mm and a working length b = 245 ± 5 mm.
In the ten laying examples, when the roof gradient is 6.5 / 10, the working width a of the minimum width adjusting tile 3a is 245 mm, the difference is 30 mm in order, and the maximum width adjusting corner tile 3d is 335 mm. In the case of 6.0 / 10, the adjustment corner tiles 3a to 3d have a working width of 240 to 315 mm with a difference of 35 mm.

【0050】以上の結果を総合的に纏めると、働き幅a
=275mm、働き長さb=245±5mmの和型桟瓦
1による施工時には、屋根勾配6.5/10への敷設用
に働き幅aが245mm、275mm、305mm、3
35mmの4種類の調整隅瓦3a、3b…を製造すれば、桟
瓦1及び調整隅瓦3a、3b…のカットが不要となり、同一
の和型桟瓦1で屋根勾配6.0/10用に240〜31
5mmの4種類の調整隅瓦3a、3b…を製造すれば同様に
カットが不要となり、1種類の桟瓦1に対して、屋根勾
配に応じて複数種で1セットの調整隅瓦3a、3b…が準備
されていれば、調整隅瓦3a、3b…のカットが不要とな
る。
When the above results are summarized, the working width a
= 275 mm, working length b = 245 ± 5 mm, when working with the Japanese type tile 1, the working width a is 245 mm, 275 mm, 305 mm, 3 for laying on the roof gradient 6.5 / 10.
If the four kinds of adjustable corner tiles 3a, 3b... Of 35 mm are manufactured, it is not necessary to cut the cross tile 1 and the adjustable corner tiles 3a, 3b. ~ 31
If the four types of 5 mm adjusted corner tiles 3 a, 3 b, etc. are manufactured, cutting is also unnecessary, and for one type of cross tile 1, one set of adjusted corner tiles 3 a, 3 b. Is prepared, the adjustment corner tiles 3a, 3b ... need not be cut.

【0051】次に、千鳥葺きの場合について説明する
が、筋葺きと共通する部分の一部は省略する。図17、
18に示す様に、モジュール面積Z1(図中、大間隔斜
線入りの部分)の左端を基準にして敷設未了部分Z2を
設定する時に、敷設未了部分Z2の一部にはモジュール
面積Z1に割付けた桟瓦1の一部(図3、5の第2段目
の破線部分)が存在するが、モジュール面積Z1を優先
して計算する。筋葺きの場合と同様に、第1段目(最下
段)〜第n段目(最上段)の直角二等辺三角形状の敷設
未了部分Z2全体の長さをC1、幅をB1とし、第2段
目〜第n段目の敷設未了部分Z2全体の長さをC2、幅
をB2とし、第n段目(図では第3段目)の敷設未了部
分Z2の長さをCn(C3)、幅をBn(B3)とする
と、平面投影状態で端部敷設中心Yは45度であるた
め、直角二等辺三角形の敷設未了部分Z2全体の長さC
と幅Bは同一で、C1=B1、C2=B2、… …、C
n=Bn(式(4))である。
Next, a description will be given of the case of the staggered roofing, but a part of the portion common to the staggered roofing is omitted. FIG.
As shown in FIG. 18, when the unfinished part Z2 is set with reference to the left end of the module area Z1 (the part with a large diagonal line in the figure), a part of the unlaid part Z2 has the module area Z1. Although there is a part of the allocated tile 1 (the second broken line in FIGS. 3 and 5), the calculation is performed with priority given to the module area Z1. Similarly to the case of the roofing, the entire length of the unfinished portion Z2 of the right-angled isosceles triangle from the first stage (lowest stage) to the n-th stage (top stage) is C1, the width is B1, The entire length of the unfinished portion Z2 of the second to nth stages is C2, the width is B2, and the length of the unfinished portion Z2 of the nth stage (third stage in the figure) is Cn ( C3), assuming that the width is Bn (B3), the laying center Y of the end portion is 45 degrees in a plane projection state, and thus the entire length C2 of the unfinished portion Z2 of the right-angled isosceles triangle.
, C1 = B1, C2 = B2,..., C
n = Bn (Equation (4)).

【0052】そして、図19に示す様に、第1段目の台
形状の敷設未了部分Z2において、モジュール面積Z1
の左隣に桟瓦1(働き幅a)をm枚(図では1枚)施工
出来るので、調整隅瓦3a、3b…による調整寸法A1は、
A1=B1−a×m(式(5))となる。又、図20に示す
様に、第2段目の敷設未了部分Z2においては、モジュ
ール面積Z1と敷設未了部分Z2の両者に跨がる位置に
桟瓦1が施工されるから、第1段目の桟瓦1の 1枚に代
わって半分の施工に相当し、モジュール面積Z1の左隣
に、第1段目より1/2枚少ない(m−1/2)枚数
(図では跨設桟瓦1の左半分である1/2枚)の桟瓦1
を施工するから、調整寸法A2は、A2=B2−a×
(m−1/2)(式(6))となる。尚、敷設未了部分への
桟瓦1の敷設枚数mとモジュール面積Z1の段数nの関
係は、同一差の関係であり、図19ではm=n−2、図
20ではm=n−2−1/2(この1/2は1/2×
(n−1)(nは第n段目)である)の関係となってい
る。
Then, as shown in FIG. 19, in the unfinished portion Z2 of the first trapezoidal shape, the module area Z1
M tiles (working width a) can be constructed m sheets (one sheet in the figure) on the left side of the above, so the adjustment dimension A1 by the adjustment corner tiles 3a, 3b ...
A1 = B1−a × m (Equation (5)). In addition, as shown in FIG. 20, in the second-stage unfinished portion Z2, the cross tile 1 is constructed at a position that straddles both the module area Z1 and the unfinished portion Z2. It is equivalent to half the construction in place of one of the tiles 1 and the number (m-1 / 2) less than the first stage (m-1 / 2) on the left of the module area Z1 ( 1/2 of the left half of the tile)
Therefore, the adjustment dimension A2 is A2 = B2-a ×
(M-1 / 2) (Equation (6)). Note that the relationship between the number m of laying tiles 1 and the number n of steps of the module area Z1 in the unfinished portion is the same difference, and m = n−2 in FIG. 19 and m = n−2 in FIG. 1/2 (this 1/2 is 1/2 x
(N-1) (n is the n-th stage).

【0053】後述の第1、2段目の調整寸法差(A1−
A2)、即ち、第1、2段目に敷設される調整隅瓦3aと
調整隅瓦3bの大きさを求めるために、式(5) 、(6) の変
数等を整理する。図20に示す様に、第2段目〜第n段
目の敷設未了部分Z2の長さC2は、第1段目に桟瓦1
及び隅瓦3(共に働き長さb)が敷設されるので、第1
段目と第2〜n段目の長さ関係はC2=C1−b(式
(7))となる一方、敷設未了部分Z2の長さ幅関係はC1
=B1、C2=B2(式(4))であるから、式(7) に代入
すると、B2=B1−b(式(8))となり、これを式(6)
に代入すると、第2段目の調整寸法A2は、A2=B1
−b−a×(m−1/2)(式(9))となる。
The adjustment dimension difference (A1-
A2) In other words, in order to obtain the sizes of the adjustment corner tiles 3a and 3b laid in the first and second stages, the variables of the equations (5) and (6) are arranged. As shown in FIG. 20, the length C2 of the unfinished portion Z2 of the second to n-th stages is determined by
And the roof tile 3 (both working length b) is laid,
The length relationship between the stage and the second to n-th stages is C2 = C1-b (formula
(7)), while the length-width relationship of the unfinished portion Z2 is C1.
= B1 and C2 = B2 (Equation (4)). Therefore, substituting into Equation (7) gives B2 = B1-b (Equation (8)).
, The adjustment dimension A2 of the second stage is A2 = B1
−b−a × (m− /) (Equation (9)).

【0054】第1段目と第2段目の上下隣接段における
調整寸法差(A1−A2)は、 となる。即ち、第1段目と第2段目における調整隅瓦3
a、3b…の寸法差は、働き幅aと働き長さbから求めら
れる(|b−a/2|)となる。
The adjustment dimension difference (A1-A2) between the upper and lower adjacent stages of the first stage and the second stage is: Becomes That is, the adjustment corner tile 3 in the first stage and the second stage
The dimensional difference between a, 3b,... is (| ba−2 |) obtained from the working width a and the working length b.

【0055】ここで、複数種の調整隅瓦3a、3b…の寸法
差が計算設定される桟瓦1の働き幅aと働き長さbを比
較すると、働き幅a>働き長さb(働き幅aの数値が大
きい)ので、A1−A2=b−a/2(式(10)) は通
常、正の値となり、第1段目の調整寸法A1より第2段
目の調整寸法A2が小であること、即ち、第2段目(上
段側)の調整隅瓦3bの方が小さいことを示している。し
かしながら、図22に示す様に、モジュール面積Z1の
位置によっては上段のものが大きい場合があり、筋葺き
の場合と同様に、寸法差自体はb−a/2の絶対値であ
る|b−a/2|である。この原因はモジュール面積Z
1の位置相違によって、敷設未了部分Z2に敷設する桟
瓦1の枚数が異なるためであり、これを解消するために
は、第1段目に敷設される桟瓦1を1枚と仮定して全段
を計算し、第1段目の計算結果では、桟瓦1を1枚追加
設定することを考慮して計算すれば良い。
Here, comparing the working width a and the working length b of the cross tile 1 in which the dimensional difference between the plurality of types of adjusting corner tiles 3a, 3b... Is calculated, the working width a> the working length b (the working width) (the value of a is large), A1-A2 = ba-2 (Equation (10)) is usually a positive value, and the adjustment dimension A2 of the second stage is smaller than the adjustment dimension A1 of the first stage. This means that the second corner (upper side) of the adjustment corner tile 3b is smaller. However, as shown in FIG. 22, the upper part may be large depending on the position of the module area Z1, and the dimensional difference itself is the absolute value of ba−2 as in the case of the roofing. a / 2 |. This is caused by the module area Z
This is because the number of the tiles 1 to be laid in the unfinished portion Z2 is different due to the difference in position 1 in order to solve this. The steps may be calculated, and the calculation result of the first step may be calculated in consideration of the additional setting of one tile 1.

【0056】上記説明では、上下隣接段として第1段目
と第2段目の関係を説明したので、全段における上下隣
接段の調整寸法差(An- 1−An)を説明する。即ち、
上述の関係式、計算式(4) 〜(10)を敷設未了部分Z2の
全段に適用すると、次の通りとなる。
In the above description, the relationship between the first stage and the second stage has been described as the upper and lower adjacent stages, so the adjustment dimension difference (An - 1 -An) of the upper and lower adjacent stages in all stages will be described. That is,
When the above-mentioned relational expressions and calculation formulas (4) to (10) are applied to all stages of the unfinished portion Z2, the following is obtained.

【0057】図20、21に示す様に、第2段目と第3
段目の調整寸法差(A2−A3)は次の通りである。 C1=B1、C2=B2、… …、Cn=Bn(式(4)) A2=B2−a×(m−1/2)(式(5)) A3=B3−a×(m−1/2×2)(式(6)) C3=C2−b(式(7)) B3=B2−b(式(8)) A3=B2−b−a×(m−1)(式(9)) 従って、第2、3段目の関係は、第1、2段目と同一関
係となる。
As shown in FIGS. 20 and 21, the second stage and the third stage
The adjustment dimension difference (A2-A3) at the level is as follows. C1 = B1, C2 = B2,..., Cn = Bn (Equation (4)) A2 = B2-a × (m−1 / 2) (Equation (5)) A3 = B3-a × (m−1 / 2 × 2) (Formula (6)) C3 = C2-b (Formula (7)) B3 = B2-b (Formula (8)) A3 = B2-ba × (m-1) (Formula (9) ) Therefore, the relationship between the second and third stages is the same as the relationship between the first and second stages.

【0058】第n−1段目と第n段目の調整寸法差(A
- 1−An)は次の通りであり、その計算式中、桟瓦1
の枚数mは上述(式(6) の後段説明参照)の通り、m=
n−2−1/2(n−1)としている。 C1=B1、… …、Cn- 1=Bn- 1、Cn=Bn(式(4)) An- 1=Bn-1−a×(n−2−1/2(n−1))(式(5)) An=Bn−a×(n−2−1/2(n−1))(式(6)) Cn=Cn- 1−b(式(7)) Bn=Bn- 1−b(式(8)) An=Bn- 1−b−a×(n−2−1/2(n−1))(式(9)) An- 1−An= (Bn- 1−a×(n−2−1/2(n−1))) −(Bn-1−b−a×(n−2−1/2(n−1))) (式(5))−(式(9)) =b−a/2(式(10)) 従って、上段側2段の第n−1段目と第n段目の調整寸
法差(An- 1−An)は、第1、2段目、第2、3段目
等と同一関係となる。
The adjustment dimension difference between the (n−1) th stage and the nth stage (A
n - 1 -An) is as follows, and in the calculation formula,
As described above (see the description of the expression (6) below), m =
n-2-1 / 2 (n-1). C1 = B1,..., Cn - 1 = Bn - 1 , Cn = Bn (Equation (4)) An - 1 = Bn- 1- a * (n-2-1 / 2 (n-1)) (Equation 4) (5)) An = Bn−a × (n−2-1 / 2 (n−1)) (formula (6)) Cn = Cn 1− b (formula (7)) Bn = Bn 1− b (Equation (8)) An = Bn 1 −ba− (n−2-1 / 2 (n−1)) (Equation (9)) An 1− An = (Bn 1− a × ( (n-2-1 / 2 (n-1)))-(Bn- 1 -ba- (n-2-1 / 2 (n-1))) (Equation (5))-(Equation (9) )) = B−a / 2 (Equation (10)) Accordingly, the adjustment dimension difference (An 1− An) of the (n−1) th stage and the nth stage of the upper two stages is the first and second stages. It has the same relationship as the eye, the second and third stages, etc.

【0059】従って、第1段目と第2段目、第2段目と
第3段目、第n−1段目と第n段目の関係などで求めら
れる様に、上下隣接段における調整寸法差An-1−An
=b−a/2の関係が調整隅瓦3a、3b…の全段で成立す
る。
Therefore, the adjustment in the upper and lower adjacent stages is determined as determined by the relationship between the first stage and the second stage, the second stage and the third stage, and the (n−1) th stage and the nth stage. Dimensional difference An- 1- An
= Ba / 2 holds for all the stages of the adjusting corner tiles 3a, 3b.

【0060】上記の結果から明らかな様に、調整隅瓦3
a、3b…はモジュール面積Z1の流れ段数n1と同数の
種類があり、千鳥葺きの場合には個々の調整隅瓦3a、3b
…の寸法差は|b−a/2|の同差であり、且つ、複数
種の調整隅瓦3a、3b…を敷設する複数の敷設未了部分Z
2で同一関係が成立する。
As is clear from the above results, the adjustment corner tile 3
a, 3b... have the same number of types as the number of flow stages n1 of the module area Z1, and in the case of a staggered roof, individual adjustment corner tiles 3a, 3b
Are the same as | b−a / 2 |, and a plurality of unfinished portions Z for laying a plurality of types of adjusting corner tiles 3a, 3b.
2 establishes the same relationship.

【0061】次に、個別の調整隅瓦3a、3b…の働き幅c
について説明する。筋葺きの場合と同様であって、図2
3に示す様に、各段個別の隅瓦未了部分Z3に敷設する
調整隅瓦3a、3b…の大きさ(働き幅c)にあっては、最
小幅の調整隅瓦3cの働き幅である働き幅をc(基本寸法
をα)とすると、中間幅等の調整隅瓦3a、3b…は、基本
寸法α(働き幅c)に調整寸法差|b−a/2|が順
次、加算されて大きくなる。そして、最小幅の調整隅瓦
3cの働き幅cは、筋葺きの場合と同様に、隣接の桟瓦1
をカットしない大きさが好ましく、桟瓦1の働き長さb
以上が好ましい(図15及びその説明を参照)。
Next, the working width c of the individual adjusting corner tiles 3a, 3b.
Will be described. FIG.
As shown in FIG. 3, the size (working width c) of the adjusting corner tiles 3a, 3b,... Laid in the unfinished corner tiles Z3 of each stage is determined by the working width of the minimum width adjusting corner tile 3c. Assuming that a certain working width is c (the basic dimension is α), the adjusted corner tiles 3a, 3b... Of the intermediate width and the like sequentially add the adjusted dimension difference | ba−2 | to the basic dimension α (working width c). Being bigger. And the minimum width adjustment corner tile
The working width c of 3c is the same as in the case of the roofing,
Is preferable, and the working length b of the tile 1 is
The above is preferable (see FIG. 15 and its description).

【0062】調整隅瓦3a、3b…の働き幅cの決定を整理
すると、最小幅の調整隅瓦3cの働き幅cは基本寸法α
で、その他の幅の調整隅瓦3a、3b…は、基本寸法αに調
整寸法差An- 1−Anを加算したものが調整隅瓦3a、3b
…の働き幅cとなり、合計個数の調整隅瓦3a、3b…が流
れ段数n1と同数となる。図23に示す場合には、基本
寸法αのものが第1種の調整隅瓦3c、基本寸法αに寸法
差An- 1−Anを加算したものが第2種の調整隅瓦3b、
第3種の調整隅瓦3aは第2種の調整隅瓦3bに寸法差An
- 1−Anを加算したもの、言い換えると第3種の調整隅
瓦3aは基本寸法αに2個の寸法差An- 1−Anを積算し
たものを意味し、以下同様に、第n種の調整隅瓦3nは基
本寸法αにn−1個の寸法差An- 1−Anを積算したも
のである。
The working width c of the adjusting corner tiles 3a, 3b,... Is summarized as follows.
The adjustment corner tiles 3a, 3b of the other widths are obtained by adding the adjustment dimension difference An - 1− An to the basic dimension α.
, And the total number of the corner tiles 3a, 3b,... Is equal to the number n1 of flow steps. In the case shown in FIG. 23, the one having the basic dimension α is the first kind of adjustment corner tile 3c, the one having the dimension difference An - 1− An added to the basic dimension α is the second kind of adjustment corner tile 3b,
The third type adjustment corner tile 3a is different from the second type adjustment corner tile 3b by the dimensional difference An.
- 1 -An obtained by adding the, in other words the three adjustment Sumikawara 3a is two dimensional difference An in basic dimensions alpha - means that by integrating 1 -An, similarly, of the n or fewer The adjustment corner tile 3n is obtained by integrating n-1 dimensional differences An - 1 -An with the basic dimension α.

【0063】上記の様に、個別の調整隅瓦3a、3b…の算
出方法、好ましい寸法を説明したので、次に、モジュー
ル面積Z1の設定に際して図5を参照した平板瓦(桟瓦
1)の場合に施工される調整隅瓦3a、3b…の好ましい寸
法例を図24に示す。働き幅a=306mm、働き長さ
b=280±5mmの桟瓦1に対して、図24(a) は屋
根勾配4.5/10の敷設例、(b) は屋根勾配5.0/
10の敷設例で、屋根勾配4.5/10の時、最小幅の
調整隅瓦3cの働き幅aが280mm、順次127mmの
差で、最大幅の調整隅瓦3aが534mmであり、屋根勾
配5.0/10の場合には調整隅瓦3a〜3cは132mm
の差で285〜549mmの働き幅である。
As described above, the method of calculating the individual adjustment corner tiles 3a, 3b,... And the preferred dimensions have been described. Next, when setting the module area Z1, the case of the flat roof tile (cross tile 1) with reference to FIG. FIG. 24 shows a preferred dimension example of the adjustment corner tiles 3a, 3b,. FIG. 24 (a) shows an example of laying with a roof slope of 4.5 / 10, and FIG. 24 (b) shows a roof slope of 5.0 / with respect to the tile 1 having a working width a = 306 mm and a working length b = 280 ± 5 mm.
In the ten laying examples, when the roof slope is 4.5 / 10, the working width a of the minimum width adjusting corner tile 3c is 280 mm, and the difference is 127 mm in order, and the maximum width adjusting corner tile 3a is 534 mm. In the case of 5.0 / 10, the adjustment corner tiles 3a to 3c are 132 mm.
Is a working width of 285 to 549 mm.

【0064】以上の結果を総合的に纏めると、働き幅a
=306mm、働き長さb=280±5mmの平板桟瓦
1による施工時には、屋根勾配4.5/10への敷設用
に働き幅aが280mm、407mm、534mmの3
種類の調整隅瓦3a、3b…を製造すればカットが不要とな
り、同一の平板桟瓦1で屋根勾配5.0/10用に28
5〜549mmの3種類の調整隅瓦3a、3b…を製造すれ
ばカットが不要となり、1種類の桟瓦1に対して、屋根
勾配に応じて複数種で1セットの調整隅瓦3a、3b…が準
備されていれば、調整隅瓦3a、3b…のカットが不要とな
る。
When the above results are summarized, the working width a
= 306 mm, working length b = 280 ± 5 mm When working with flat tile 1, the working width a is 280 mm, 407 mm, and 534 mm for laying on a roof gradient of 4.5 / 10.
If the kinds of adjusting corner tiles 3a, 3b... Are manufactured, cutting becomes unnecessary, and the same flat plate tile 1 is used for roof gradient 5.0 / 10 for 28/10.
If three types of adjustable corner tiles 3a, 3b... Of 5 to 549 mm are manufactured, no cutting is required, and one type of tile tiles 1 is provided with a plurality of types of adjusted corner tiles 3a, 3b. Is prepared, the adjustment corner tiles 3a, 3b ... need not be cut.

【0065】個別の隅瓦未了部分Z3を基準にした調整
隅瓦3a、3b…の決定方法は上述の通りであるが、筋葺き
の図8、千鳥葺きの図7は両者共にモジュール面積Z1
の左上角が棟心Yに一致する場合であるので、次に、筋
葺きの図7、千鳥葺きの図22の様に、一致しない場合
について施工状態と共に説明する。結果としては、施工
時に一致しない場合を想定して、調整隅瓦3a、3b…の大
きさを決定する必要は無く、配置順番を変えたり、施工
時の冠瓦2と調整隅瓦3a、3b…の重合量変化で対応して
いる。
The method of determining the adjusted corner tiles 3a, 3b... Based on the individual unfinished corner tiles Z3 is as described above, but FIG. 8 of stitched roof and FIG. 7 of staggered roof both show the module area Z1.
Is the case where the upper left corner coincides with the ridgeline Y. Next, the case where they do not coincide with each other as shown in FIG. As a result, it is not necessary to determine the size of the adjustment tiles 3a, 3b, etc., assuming that they do not match at the time of construction. .. Correspond to each other.

【0066】(4)第2段階までの割付で決定されたモ
ジュール等で施工し、即ち、桟瓦1の決定した働き長さ
b及び定形化した端部瓦(調整隅瓦3a、3b…)で屋根に
葺設施工する。イ )図示しない右側の端部瓦(隅瓦又は谷瓦)を施工す
る。ロ )右側から左側へ桟瓦1を順次、施工する。ハ )左端敷設の桟瓦1と端部敷設中心Y(冠調節幅B)の
距離に応じた調整隅瓦3a、3b…を選択敷設する(図2
5、26参照)。ニ )モジュール面積Z1の流れ段数n1と同段数の施工段
階では、桟瓦1の端部に複数種の調整隅瓦3a、3b…が順
次、施工される(図27参照)。ホ )調整隅瓦3a、3b…の端部は隅棟における冠瓦2に重合
される(詳細は後述する、図27参照)。ヘ )桟瓦1と端部敷設中心Y(冠調節幅B)の距離に応じ
た調整隅瓦3a、3b…が選択され、カットが不要となる。ト )複数種の調整隅瓦3a、3b…が1セットで隅瓦未了部分
Z3に敷設される(図27参照)。
(4) Construction is performed with the module and the like determined by the allocation up to the second stage, that is, with the determined working length b of the cross tile 1 and the shaped end tiles (adjustable corner tiles 3a, 3b...). Laying on the roof. B) A right-side edge tile (corner tile or valley tile) (not shown) is constructed. B) The roof tiles 1 are constructed sequentially from the right side to the left side. C) Select and lay the adjustment corner tiles 3a, 3b,... According to the distance between the left-end laying tile 1 and the end laying center Y (crown adjustment width B) (FIG. 2).
5, 26). D) In the construction stage having the same number of steps n1 as the number of flow steps in the module area Z1, a plurality of types of adjusting corner tiles 3a, 3b,... E) The ends of the adjustment corner tiles 3a, 3b,... Are overlapped with the crown tile 2 in the corner building (for details, see FIG. 27 described later). F) Adjustment corner tiles 3a, 3b,... Corresponding to the distance between the roof tile 1 and the center Y of the end laying (crown adjustment width B) are selected, and cutting is unnecessary. G) A plurality of types of adjusting corner tiles 3a, 3b,... Are laid as a set in the corner tile unfinished portion Z3 (see FIG. 27).

【0067】以下、本発明に係る施工の要部について詳
細に説明する。図25、26(a) 〜(c) に示す様に、右
側から順次施工されると、モジュール面積Z1及び左端
の桟瓦1は、端部敷設中心Y又は冠調節幅B(詳細は後
述)に対して、不特定の距離(残軒長さAn)となる。
そして、左端の桟瓦1から冠調節幅Bまで不特定距離の
隅瓦未了部分Z3に対して、図25に示す様に、働き幅
cが相違する複数種の調整隅瓦3a、3b…から冠瓦2の冠
調節幅Bの重合範囲内に治まる中間幅の調整隅瓦3bを選
択し施工する。尚、図25の状態(残軒長さAn)で
は、最小幅の調整隅瓦3aを施工すると冠調節幅Bの手前
位置になり、やや大の中間幅の調整隅瓦3cや最大幅の調
整隅瓦3dは冠調節幅Bの左側に超過する。上記の中間幅
の調整隅瓦3bを選択し施工する場合の施工状態は図26
に示し、(a) の様に、調整隅瓦3bの左端が冠調節幅B
(重合範囲)の右端側になって、冠調節幅Bの最小幅に
一致したり、(b) の様に中間に位置したり、(c) の様に
左端側で冠調節幅Bの最大幅に一致する。
Hereinafter, the main part of the construction according to the present invention will be described in detail. As shown in FIGS. 25 and 26 (a) to (c), when constructed sequentially from the right side, the module area Z1 and the left-side cross tile 1 are set to the center of the end laying Y or the crown adjustment width B (details will be described later). On the other hand, the distance becomes an unspecified distance (remaining house length An).
Then, as shown in FIG. 25, a plurality of types of adjusting corner tiles 3a, 3b,... Having different working widths c with respect to the unfinished part Z3 of an unspecified distance from the left-hand side tile 1 to the crown adjustment width B. An adjustable width tile 3b having an intermediate width that falls within the overlapping range of the crown adjustment width B of the crown tile 2 is selected and installed. In the state shown in FIG. 25 (remaining eaves length An), when the minimum width adjustment tile 3a is installed, it becomes a position just before the crown adjustment width B, and the middle width adjustment corner tile 3c and the maximum width are adjusted slightly larger. The corner tile 3d exceeds the crown adjustment width B to the left. FIG. 26 shows the construction state in the case of selecting and constructing the above-described intermediate width adjustment corner tile 3b.
As shown in (a), the left end of the adjustment corner tile 3b is the crown adjustment width B
(Polymerization range), on the right end side, coincides with the minimum width of the crown adjustment width B, or is located at the middle as shown in (b), or is located on the left end side, as shown in (c). Great match.

【0068】そして、最下段が施工完了すると、順次、
上段側へ葺き、第2段目〜最上段の隅瓦未了部分Z3で
は、図26の一点鎖線で示す様に、第1段目とは相違す
る調整隅瓦3a、3b…が敷設され、図示の状態では、第1
段目は中間幅の調整隅瓦3bが敷設され、第2段目はやや
大の調整隅瓦3cが敷設されている。図27に示す様に、
第3段目以降の上段側(第3〜n段目)への敷設にあっ
ては、第1、2段目とは相違する調整隅瓦3a、3b…が敷
設され、図示の様に流れ段数n1=4の時には、第3段
目は最大幅の調整隅瓦3dが敷設され、第4(n)段目は
最小幅の調整隅瓦3aが敷設され、全体的には図8の敷設
状態となる。これらの図では、調整隅瓦3a、3b…の左端
が冠調節幅Bの右端に一致すると共に、モジュール面積
Z1と同段数の調整隅瓦3a、3b…が1セットで敷設未了
部分Z2に敷設され、図6に示す様に、この状態が上段
側に繰り返され、調整隅瓦3a、3b…の端部に冠瓦2が重
合される(図28参照)。
When the construction at the bottom is completed,
On the upper-tier side, at the second-to-topmost corner tile unfinished portion Z3, adjustment corner tiles 3a, 3b... In the state shown, the first
At the level, an intermediate corner tile 3b having an intermediate width is laid, and at the second level, a slightly large adjustable corner tile 3c is laid. As shown in FIG.
In the laying on the upper stage side (third to n-th stages) after the third stage, adjustment corner tiles 3a, 3b, which are different from those of the first and second stages, are laid and flow as shown in the drawing. When the number of steps is n1 = 4, the third level is laid with the maximum width adjustable corner tile 3d, and the fourth (n) level is laid with the minimum width adjustable corner tile 3a. State. In these figures, the left ends of the adjustment corner tiles 3a, 3b... Coincide with the right end of the crown adjustment width B, and the adjustment corner tiles 3a, 3b. This state is repeated on the upper side as shown in FIG. 6, and the roof tile 2 is superimposed on the ends of the adjustment corner roof tiles 3a, 3b... (See FIG. 28).

【0069】次に、左端が所定位置となった調整隅瓦
3、3a…と冠瓦2の重合状態について説明する。図2
9、30に示す様に、冠瓦2は山形状で隅棟Sに沿うと
共に調整隅瓦3、3a…の端部側と重合状態で葺設される
瓦であり、調整隅瓦3、3a…と冠瓦2の重合幅も適宜変
更調整される。上記作用で葺設される冠瓦2は、図30
に示す様に、瓦緊結用、固定用の金具、木材、台土等
(固定台M)を介して棟木、屋根等に固定されるため
に、冠瓦2の頂点中央を含む所定幅が屋根への冠瓦取付
幅2Dとなり、その両側が調整隅瓦3、3a…との重合部
(重合調節部を含む)である。即ち、冠瓦取付幅2Dは
冠瓦2の下に調整隅瓦3、3a…が重なり合わない幅を示
す一方、冠瓦取付幅2D以外が冠瓦2と調整隅瓦3、3a
…の最大重なり幅を示している。
Next, the overlapping state of the adjustable corner tiles 3, 3a... With the left end at a predetermined position and the crown tile 2 will be described. FIG.
As shown in FIGS. 9 and 30, the crown tile 2 is a mountain-shaped tile that extends along the corner ridge S and is overlapped with the end sides of the adjustment corner tiles 3, 3a. .. And the overlapping width of the roof tile 2 are appropriately changed and adjusted. The roof tile 2 laid by the above operation is shown in FIG.
As shown in (1), the fixed width including the center of the top of the roof tile 2 is fixed to the purlin, the roof, etc. via the metal fittings for fixing and fixing the tile, wood, pedestal, etc. (fixing base M). The width of the roof tile attachment is 2D, and both sides of the roof tile overlap with the adjustment corner tiles 3, 3a. In other words, the crown tile installation width 2D indicates a width in which the adjustment corner tiles 3, 3a... Do not overlap under the crown tile 2, whereas the crown tile installation width 2D other than the crown tile installation width 2D and the adjustment corner tile 3, 3a.
.. Indicates the maximum overlap width.

【0070】以下、本発明を達成する1要素である冠瓦
2と調整隅瓦3、3a…との調整重合について、図29〜
31に基づいて詳細を説明する。冠瓦2における調整隅
瓦3、3a…との重合部は、冠瓦2と調整隅瓦3、3a…の
重合が最低限設定される最小重合幅Eを有すると共に、
葺設された調整隅瓦3、3a…の端部(斜め方向切断端部
(第1調節部7端部)、第2調節部7a端部、瓦本体11端
部)の左右位置に応じた冠調節幅Bを有しており、冠瓦
2と調整隅瓦3、3a…の重合幅は、 (1) 最小重合幅E(図30(b) 、図31(b) 又は図26
(b) 、図28の状態) (2) 最小重合幅Eと冠調節幅Bの一部の合計 (3) 最小重合幅Eと冠調節幅Bの合計(図30(a) 、図
31(a) 又は図26(c)、図28の状態) のいずれかである。又、図29に示す様に、上記幅等を
云い換えると、図示した冠瓦2は傾斜2面から成り、中
心振り分けで両側に一対の冠主体6、6aを有し、該冠主
体6、6aの一方側の幅は、冠瓦取付幅2Dの半分の冠瓦
取付一方幅である冠瓦無効重合幅D、冠調節幅B、最小
重合幅Eとの合計である。尚、冠瓦2は、図示のもので
は、傾斜2面から成るものを示したが、半円状、その他
のものでも良い。
Hereinafter, the adjustment polymerization of the crown tile 2 and the adjustment corner tiles 3, 3a, which is one element for achieving the present invention, will be described with reference to FIGS.
31 will be described in detail. The overlapping portion of the crown tiles 2 with the adjustment corner tiles 3, 3a,... Has a minimum overlap width E at which the overlap between the crown tile 2 and the adjustment corner tiles 3, 3a.
According to the left and right positions of the ends of the laid roof tiles 3, 3a,... (Diagonally cut ends (ends of the first adjusting portion 7), ends of the second adjusting portion 7a, ends of the tile main body 11). Has a crown adjustment width B, and the overlap width of the crown tile 2 and the adjustment corner tiles 3, 3a,... Is as follows: (1) Minimum overlap width E (FIG. 30 (b), FIG. 31 (b) or FIG.
(b), the state of FIG. 28) (2) The sum of a part of the minimum overlap width E and the crown adjustment width B (3) The sum of the minimum overlap width E and the crown adjustment width B (FIG. 30 (a), FIG. a) or FIG. 26 (c), FIG. 28). In other words, as shown in FIG. 29, in other words the width and the like, the illustrated roof tile 2 is composed of two inclined surfaces, and has a pair of crown bodies 6, 6a on both sides with center distribution. The width on one side of 6a is the sum of the crown tile ineffective overlap width D, the crown adjustment width B, and the minimum overlap width E, which are half of the crown tile installation width 2D, which is one half of the crown tile installation width. Although the roof tile 2 has two inclined surfaces in the drawing, the roof tile 2 may have a semicircular shape or another shape.

【0071】上記説明の冠瓦2の働き幅、重合幅を調整
隅瓦3、3a…から見た重合幅等で説明すると、筋葺きの
場合の寸法差|b−a|、千鳥葺きの場合の寸法差|b
−a/2|を有した全種の調整隅瓦3、3a…の敷設端部
は冠調節幅Bの範囲内に納まる。即ち、図25で説明し
た様に、冠調節幅Bの範囲内に納まる働き幅の調整隅瓦
3、3a…が選択されるために、モジュール面積Z1、桟
瓦1の位置に応じて、調整隅瓦3、3a…は図30、31
(b) の重合量少の状態、又は(b) と(a) の中間状態で冠
調節幅Bの一部少量に入り込んだ重合量中の状態、最大
幅の調整隅瓦3、3a…は図30、31(a) の重合量大の
状態、又は(a) と(b) の中間状態で冠調節幅Bの一部少
量に入り込んだ重合量中の状態である。
When the working width and the overlapping width of the crown tile 2 described above are described in terms of the overlapping width and the like viewed from the corner tiles 3, 3 a... Dimensional difference | b
The laying ends of all kinds of adjusting corner tiles 3, 3a... Having -a / 2 | fall within the range of the crown adjustment width B. That is, as described with reference to FIG. 25, since the adjustment corner tiles 3, 3a... Of the working width that fall within the range of the crown adjustment width B are selected, the adjustment corner tiles are adjusted according to the module area Z1 and the position of the cross tile 1. The roof tiles 3 and 3a are shown in FIGS.
The state in which the amount of polymerization in (b) is small, or the state in which the amount of polymerization has entered a small amount of the crown adjustment width B in the intermediate state between (b) and (a), and the maximum width of the adjustable corner tiles 3, 3a ... FIGS. 30 and 31 (a) show a large polymerization amount, or a middle state between (a) and (b) and a polymerization amount in which a part of the crown adjustment width B enters a small amount.

【0072】次に、調整隅瓦3、3a…の働き幅の応用例
について説明する。各種瓦は製造、取扱面等から大きさ
は好ましい範囲、制限等が存在し、冠瓦2も同様に望ま
しい寸法がある。上述の説明から明らかな様に、冠瓦2
の冠調節幅Bの範囲内に納まる調整隅瓦3、3a…を選択
することにより、調整隅瓦3、3a…のカットが不要とな
る施工が可能であるが、本願発明では、冠瓦2の大きさ
の制限等から調整隅瓦3、3a…に細工を施し、全ての施
工方法に対応出来る様にしている。
Next, an application example of the working width of the adjusting corner tiles 3, 3a,... Will be described. Various sizes of tiles have preferable ranges and restrictions in terms of manufacturing, handling and the like, and the roof tiles 2 also have desirable dimensions. As is apparent from the above description, the crown tile 2
Can be cut off by selecting the adjustable corner tiles 3, 3a... That fall within the range of the crown adjustment width B of the crown tile width B. Due to the size restrictions, etc., the adjustment corner tiles 3, 3a ... have been worked so that they can be used in all construction methods.

【0073】冠瓦2の冠瓦無効重合幅Dは固定台Mの大
きさから数10mmが望ましく、冠瓦2の最小重合幅E
も雨水漏水防止から数10mmが望ましく、冠瓦2全体
の製造上では数100mm(冠瓦無効重合幅D、冠調節
幅Bと最小重合幅Eの合計では、その半分)が望まし
い。一方、複数種の調整隅瓦3、3a…の大きさは、図1
6、24に示す様に、最小幅のものが200mm前後で
あることが桟瓦1の製造面から望ましく、且つ、寸法差
が100mm強である。
The overlap width D of the crown tile is preferably several tens of mm in view of the size of the fixing stand M, and the minimum overlap width E of the crown tile 2 is
In order to prevent rainwater leakage, the thickness is preferably several tens of mm, and in the manufacture of the entire roof tile 2, it is preferably several hundred mm (half of the total width D of the roof tile invalid overlap width, crown adjustment width B and minimum overlap width E). On the other hand, the sizes of the plurality of types of adjusting corner tiles 3, 3a.
As shown in FIGS. 6 and 24, the minimum width is preferably about 200 mm from the viewpoint of the production of the tile 1 and the dimensional difference is slightly more than 100 mm.

【0074】そこで、本願発明では、図32に示す様
に、尻側の左上角部が斜め方向に切断状に形成されてい
る調整隅瓦3、3a…において、斜め端部に平行して、そ
の内側に隅瓦調節幅C1、C2の二条の割り線4、4aが裏面
に形成されている。かかる構成により、桟瓦1に隣接敷
設される調整隅瓦3、3a…にあっては、右端部(本体
部)から1本目の割り線4までを隅瓦最小働き幅と成
し、1、2本目の割り線4、4a間を隅瓦調節幅C1の第2
調節部5aと成し、更に、1本目の割り線4と斜め切断端
部の間を隅瓦調節幅C2の第1調節部5と成している。
尚、調整隅瓦3、3a…は、2本の割り線4、4aを設けて
2個の第1、第2調節部5、5aを延設したものを説明し
たが、割り線4、4a及び第1、第2調節部5、5aは単数
又は3本、3個以上であっても良く、その選択は冠瓦2
の冠調節幅Bとの関連を考慮して選択される。
Therefore, according to the present invention, as shown in FIG. 32, in the adjustment corner tiles 3, 3a,... Inside, two split lines 4 and 4a of corner tile adjustment widths C1 and C2 are formed on the back surface. With this configuration, in the case of the adjustment corner tiles 3, 3a ... laid adjacent to the cross tile 1, the distance from the right end (main body) to the first split line 4 is the minimum corner tile working width. The second between the split lines 4 and 4a of the corner tile adjustment width C1
An adjusting portion 5a is formed, and a portion between the first dividing line 4 and the diagonally cut end portion is formed as a first adjusting portion 5 having a corner tile adjusting width C2.
It is to be noted that the adjusting corner tiles 3, 3a... Have been described in which two split lines 4, 4a are provided and two first and second adjusting portions 5, 5a are extended. The number of the first and second adjustment units 5 and 5a may be singular or three or three or more.
Is selected in consideration of the relationship with the crown adjustment width B.

【0075】割り線4、4aを有した調整隅瓦3、3a…の
作用としては、図33に示す様に、例えば、冠調節幅B
1、B2、B3が50mmの冠瓦2を使用すると、調整隅瓦
3、3a…の隅瓦調節幅C1、C2も夫々50mmであるとす
ると、調整隅瓦3、3a…の端部が冠調節幅B1の範囲内で
ある時は、全段で非調節の調整隅瓦3、3a…を使用し、
調整隅瓦3、3a…の端部が冠調節幅B2又はB3の範囲内で
ある時は、全段で同一調節の調整隅瓦3、3a…を使用す
る。
The function of the adjusting corner tiles 3, 3a... Having the dividing lines 4, 4a is, for example, as shown in FIG.
If the roof tiles 2, 1 and 2, B3, are 50 mm, and if the adjustment tiles C1, C2 of the adjustment tiles 3, 3a... Are also 50 mm respectively, the ends of the adjustment tiles 3, 3a. When the adjustment width is within the range of the adjustment width B1, use the non-adjustable adjustment corner tiles 3, 3a,.
When the ends of the adjustment corner tiles 3, 3a... Are within the range of the crown adjustment width B2 or B3, the adjustment corner tiles 3, 3a.

【0076】[0076]

【発明の効果】要するに本発明は、屋根勾配(勾配伸び
率K)に応じて、正方形の単位面積(モジュール面積Z
1)に必要な桟瓦1の幅流れ両方向の瓦枚数(流れ段数
n1、桁列数n2)、及び働き長さbを夫々求める様に
したので、屋根のモジュール面積Z1に整然と多数の桟
瓦1を葺設することが出来、又モジュール面積Z1に隣
接した敷設未了部分Z2の流れ方向各段における桟瓦1
隣接の割付未了の調整寸法Anから、各段の調整隅瓦3
a、3b…の働き幅cの寸法差を算出し、調整隅瓦3a、3b
…は働き幅cが基本寸法αのものと、基本寸法αに寸法
差An- 1−Anを加算した働き幅cのものと成したの
で、複数種の調整隅瓦3a、3b…は規格化されて製造を容
易にすることが出来、又流れ段数n1と同数の調整隅瓦
3a、3b…と成したので、規格化し、製造する調整隅瓦3
a、3b…を流れ段数n1と同数の比較的少数と成して製
造を容易にすることが出来る。
In summary, the present invention provides a square unit area (module area Z) according to the roof slope (gradient elongation K).
1) The width of the roof tile 1 required in the width direction in both directions (the number of flow steps n1, the number of columns n2) and the working length b are determined, so that a large number of roof tiles 1 can be arranged in a modular area Z1 of the roof. The roof tiles 1 that can be laid, and that are not laid, and that are adjacent to the module area Z1, and that are in the flow direction
From the adjacent unallocated adjustment dimension An, the adjustment corner tile 3
Calculate the dimensional difference between the working widths c of the a, 3b.
… Have a working width c of the basic dimension α and a working width c obtained by adding the dimensional difference An 1− An to the basic dimension α, so that a plurality of types of adjusted corner tiles 3a, 3b are standardized. Can be manufactured easily, and the same number of adjusting tiles as the number of flow stages n1
Adjusted corner tiles 3 to be standardized and manufactured as 3a, 3b ...
are made relatively small as many as the number n1 of flow stages, thereby facilitating the production.

【0077】桟瓦1隣接の敷設未了の残軒長さAnに適
合すると共に、冠瓦2の冠調節幅Bの範囲内に適合する
調整隅瓦3a、3b…を複数種の調整隅瓦3a、3b…から選択
して葺設する様にしたので、カット不要で最適幅の調整
隅瓦3a、3b…を容易に葺設することが出来、又調整隅瓦
3a、3b…に冠瓦2を重合敷設する様にしたので、調整隅
瓦3a、3b…と冠瓦2の最低重合量を確保して漏水防止施
工することが出来る。
The adjustment corner tiles 3a, 3b,... Which are compatible with the length An of the unfinished eaves adjacent to the cross tile 1 and which fall within the range of the crown adjustment width B of the crown tile 2 are a plurality of types of adjustment corner tiles 3a. , 3b ..., so that the roof tiles can be installed easily, so that the cut corner tiles 3a, 3b ... can be easily roofed without the need for cutting.
Since the roof tiles 2 are superimposed on the roof tiles 3a, 3b, etc., it is possible to secure the minimum polymerization amount of the adjusting corner roof tiles 3a, 3b, and the roof tiles 2 to prevent water leakage.

【0078】従って、働き幅a、働き長さbの特定の大
きさの桟瓦1に対して、屋根勾配によって調整隅瓦3a、
3b…の働き幅cを変動させて、モジュール面積Z1を設
定する流れ段数n1と同数の複数種の調整隅瓦3a、3b…
を製造し、施工することにより、調整隅瓦3a、3b…の端
部は冠調節幅Bに収まり、調整隅瓦3a、3b…の切断を不
要とすることが出来る。
Accordingly, the corner tiles 3a, 3a, 3a, 3b, 3c, 3d, 3c, 3d with the roof slope with respect to the specific size of the tile 1 having the working width a and the working length b.
.. Of the same number as the number of flow steps n1 for setting the module area Z1.
Are manufactured and installed, the ends of the adjustment corner tiles 3a, 3b,... Fall within the crown adjustment width B, and the cutting of the adjustment corner tiles 3a, 3b,.

【0079】調整隅瓦3a、3b…は、割り線を設けて働き
幅cを変更自在としたものと成し、調整隅瓦3a、3b…の
端縁部が冠調節幅Bの範囲内に納まる様にしたので、冠
瓦2の冠調節幅Bが小さくても施工が可能となったり、
大きな冠瓦2の製造を不要にして、製造簡易化を図るこ
とが出来る。
Each of the adjustable corner tiles 3a, 3b... Is provided with a dividing line so that the working width c can be changed. The edges of the adjustable corner tiles 3a, 3b. Because it fits, even if the crown adjustment width B of the crown tile 2 is small, construction is possible,
The production of the large roof tile 2 is not required, and the production can be simplified.

【0080】働き幅をa、働き長さをbとすると、隅瓦
は働き長さが同一で働き幅cが相違する複数種の調整隅
瓦3a、3b…と成し、複数種の調整隅瓦3a、3b…の働き幅
cの寸法差を、筋葺き用の隅瓦は|b−a|とし、千鳥
葺き用の隅瓦は|b−a/2|としたので、製造する複
数種の調整隅瓦3a、3b…の働き幅cの寸法を簡易に決定
することができる。
Assuming that the working width is a and the working length is b, the corner tile is composed of a plurality of types of adjustable corner tiles 3a, 3b,... The difference in the working width c of the tiles 3a, 3b... Is | ba | for the roof tiles and | ba−2 | for the zigzag corner tiles. , The dimensions of the working width c of the adjusting corner tiles 3a, 3b,.

【0081】基本寸法αは働き長さbと同一と成したの
で、桟瓦1のカットが不要で容易に施工することが出来
る等その実用的効果甚だ大である。
Since the basic dimension α is the same as the working length b, the practical effect is extremely large, for example, it is not necessary to cut the crosspiece 1 and it can be easily constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】桟瓦の働き幅と働き長さを示す図で、(a) は和
型瓦の図、(b) は平板瓦の図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing the working width and working length of a roof tile; (a) is a view of a Japanese tile, and (b) is a view of a flat tile.

【図2】筋葺きにおけるモジュール面積を示す図で、
(a) は4段3列の敷設(割付)例を示す図、(b) はn1
段n2列の敷設例を示す図である。
FIG. 2 is a diagram showing a module area in thatch roofing;
(a) is a diagram showing an example of laying (assignment) of four rows and three rows, and (b) is n1
It is a figure showing the example of laying of row n2 rows.

【図3】千鳥葺きにおけるモジュール面積を示す図で、
(a) は3段2.5列の敷設(割付)例を示す図、(b) は
n1段n2列の敷設例を示す図である。
FIG. 3 is a diagram showing a module area in a staggered roof;
(a) is a figure which shows the example of laying (allocation) of 3 steps | paragraphs and 2.5 rows, and (b) is a figure which shows the example of laying out of n1 steps and n2 rows.

【図4】2種類の屋根勾配に対応させ、且つ、実寸に基
づいた和型瓦による筋葺き時のモジュール面積への敷設
例を示す図である。
FIG. 4 is a diagram showing an example of laying in a module area when roofing with Japanese tiles based on the actual size and corresponding to two types of roof slopes.

【図5】2種類の屋根勾配に対応させ、且つ、実寸に基
づいた平板瓦による千鳥葺き時のモジュール面積への敷
設例を示す図である。
FIG. 5 is a diagram illustrating an example of laying on a module area when a staggered roofing is performed with flat tiles based on actual dimensions, corresponding to two types of roof slopes.

【図6】屋根への複数のモジュール面積及び敷設未了部
分の設定例を示すと共に、敷設未了部分への1個の調整
隅瓦の配置例を示す図である。
FIG. 6 is a diagram illustrating an example of setting a plurality of module areas and an unfinished portion on a roof, and an example of disposition of one adjustment corner tile on an unfinished portion.

【図7】筋葺きにおける屋根へのモジュール面積、桟
瓦、複数種の調整隅瓦の敷設例を示すと共に、調整隅瓦
の働き幅を示す図である。
FIG. 7 is a diagram illustrating an example of laying a module area, a cross tile, a plurality of types of adjustable corner tiles on a roof in the case of the roofing, and a working width of the adjustable corner tiles.

【図8】図7と同様にモジュール面積、桟瓦、複数種の
調整隅瓦の敷設例を示すと共に、筋葺きにおけるモジュ
ール面積が4段3列時の敷設未了部分の各部の大きさ
(寸法)を示す図である。
FIG. 8 shows an example of laying a module area, a cross tile, and a plurality of types of adjustable corner tiles in the same manner as FIG. 7; FIG.

【図9】モジュール面積が4段3列時の第1段目の敷設
未了部分および隅瓦未了部分の大きさを示す図である。
FIG. 9 is a diagram showing the sizes of the first-stage unfinished portion and the corner tile not-completed portion when the module area is four rows and three rows.

【図10】モジュール面積が4段3列時の第2段目の敷
設未了部分および隅瓦未了部分の大きさを示す図であ
る。
FIG. 10 is a diagram showing the size of a second-stage unfinished part and a corner tile-finished part of the second stage when the module area is four rows and three rows.

【図11】モジュール面積が4段3列時の第3段目の敷
設未了部分および隅瓦未了部分の大きさを示す図であ
る。
FIG. 11 is a diagram showing the size of a third-stage unfinished part and a corner tile not-finished part when the module area is four rows and three rows.

【図12】モジュール面積が4段3列時の第4段目の敷
設未了部分および隅瓦未了部分の大きさを示す図であ
る。
FIG. 12 is a diagram showing the sizes of the unfinished portion and the unfinished corner tile portion of the fourth stage when the module area is four rows and three rows.

【図13】モジュール面積が10段9列時の敷設未了部
分および隅瓦未了部分の大きさを示す図である。
FIG. 13 is a diagram showing the sizes of the unfinished portion and the unfinished corner tile portion when the module area is 10 rows and 9 rows.

【図14】複数種の調整隅瓦の大きさ関係を示す図であ
る。
FIG. 14 is a diagram illustrating a size relationship between a plurality of types of adjustment corner tiles.

【図15】最小幅の調整隅瓦の働き幅の設定例を示す図
である。
FIG. 15 is a diagram showing a setting example of a working width of an adjustment corner tile having a minimum width.

【図16】和型瓦における複数種の調整隅瓦の寸法例を
示す図である。
FIG. 16 is a diagram showing an example of dimensions of a plurality of types of adjustment corner tiles in a Japanese tile.

【図17】千鳥葺きにおける屋根へのモジュール面積、
桟瓦、複数種の調整隅瓦の敷設例を示すと共に、調整隅
瓦の働き幅を示す図である。
FIG. 17: Module area for roof in staggered roofing,
It is a figure which shows the example of installation of a cross tile, a plurality of types of adjustment corner tiles, and the working width of an adjustment corner tile.

【図18】図17と同様にモジュール面積、桟瓦、複数
種の調整隅瓦の敷設例を示すと共に、千鳥葺きにおける
モジュール面積が3段2.5列時の敷設未了部分の各部
の大きさ(寸法)を示す図である。
18 shows an example of laying out a module area, a cross tile, and a plurality of types of adjustable corner tiles in the same manner as in FIG. 17; It is a figure which shows a (dimension).

【図19】モジュール面積が3段2.5列時の第1段目
の敷設未了部分および隅瓦未了部分の大きさを示す図で
ある。
FIG. 19 is a diagram showing the size of the first stage laying unfinished part and the corner tile unfinished part when the module area is three rows and 2.5 rows.

【図20】モジュール面積が3段2.5列時の第2段目
の敷設未了部分および隅瓦未了部分の大きさを示す図で
ある。
FIG. 20 is a diagram showing the size of a second-stage unfinished part and a corner tile-finished part of the second stage when the module area is three rows and 2.5 rows.

【図21】モジュール面積が3段2.5列時の第3段目
の敷設未了部分および隅瓦未了部分の大きさを示す図で
ある。
FIG. 21 is a diagram showing the size of a third-stage unfinished portion and a corner tile-unfinished portion in a case where the module area is three rows and 2.5 rows.

【図22】図17に比してモジュール面積の位置を相違
させた場合であって、千鳥葺きにおける屋根へのモジュ
ール面積、桟瓦、複数種の調整隅瓦の敷設例を示すと共
に、調整隅瓦の働き幅を示す図である。
FIG. 22 shows a case where the positions of module areas are different from those of FIG. 17, showing an example of laying a module area, a cross tile, and a plurality of types of adjustment corner tiles on a roof in a zigzag roofing; It is a figure which shows the working width of.

【図23】複数種の調整隅瓦の大きさ関係を示す図であ
る。
FIG. 23 is a diagram illustrating a size relationship between a plurality of types of adjustment corner tiles.

【図24】平板瓦における複数種の調整隅瓦の寸法例を
示す図である。
FIG. 24 is a diagram showing an example of dimensions of a plurality of types of adjustment corner tiles in a flat tile.

【図25】敷設未了部分に複数種から選択される調整隅
瓦を敷設する例を示す図である。
FIG. 25 is a diagram illustrating an example in which an adjustment corner tile selected from a plurality of types is laid in an unfinished portion.

【図26】調整隅瓦と冠瓦の重合状態を示す図で、(a)
は重合量が最小、(b) は中間量、(c) は最大の時を示す
図である。
FIG. 26 is a diagram showing a superimposed state of an adjustment corner tile and a crown tile, and FIG.
FIG. 3 is a diagram showing a case where the polymerization amount is the minimum, (b) is an intermediate amount, and (c) is a maximum amount.

【図27】複数種で1セットの調整隅瓦が隅瓦未了部分
に敷設される状態を示す図である。
FIG. 27 is a diagram showing a state in which a plurality of types of one set of adjustment corner tiles are laid in a corner tile unfinished portion.

【図28】調整隅瓦が敷設完了された後に、冠瓦が重合
敷設される状態を示す図である。
FIG. 28 is a view showing a state in which a crown tile is overlapped after the adjustment corner tile is laid.

【図29】冠瓦の平面図である。FIG. 29 is a plan view of a crown tile.

【図30】棟部における敷設完了状態での断面端面説明
図である。
FIG. 30 is an explanatory cross-sectional end view of the ridge section in a state where the installation is completed.

【図31】調整隅瓦と冠瓦の重合状態を説明する平面図
である。
FIG. 31 is a plan view illustrating a superposed state of an adjustment corner tile and a crown tile.

【図32】割り線を有した調整隅瓦の平面図である。FIG. 32 is a plan view of an adjustment corner tile having a dividing line.

【図33】割り線を有した調整隅瓦と冠瓦の冠調節幅と
の関係を示す図である。
FIG. 33 is a view showing a relationship between an adjustment corner tile having a dividing line and a crown adjustment width of the crown tile.

【符号の説明】[Explanation of symbols]

1 桟瓦 2 冠瓦 3a、3b… 調整隅瓦 4、4a 割り線 a 働き幅 b 働き長さ c 働き幅 n1 流れ段数 n2 桁列数 An 調整寸法、残軒長さ An- 1−An 寸法差 B 冠調節幅 K 勾配伸び率 Z1 モジュール面積 α 基本寸法1 Cross tile 2 Crown tile 3a, 3b ... Adjustable corner tile 4, 4a Split line a Working width b Working length c Working width n1 Number of flow stages n2 Number of columns An Adjustment dimension, length of remaining house An - 1- An Dimension difference B Crown adjustment width K Gradient elongation Z1 Module area α Basic dimensions

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 屋根勾配に応じて、正方形の単位面積に
必要な桟瓦の幅流れ両方向の瓦枚数、及び働き長さを夫
々求め、 流れ方向各段における桟瓦隣接の割付未了の調整寸法か
ら、各段の調整隅瓦の働き幅の寸法差を算出し、働き幅
が基本寸法の調整隅瓦と、基本寸法に寸法差を加算した
働き幅の調整隅瓦とで、流れ段数と同数の調整隅瓦と成
したことを特徴とする隅瓦。
According to the roof slope, the width of the tile required for the unit area of the square and the number of tiles in both directions and the working length required for the unit area of the square are respectively determined. Calculate the dimensional difference between the working widths of the adjusting tiles of each stage, and adjust the working width of the adjusting corner tiles of the basic dimensions and the adjusting width of the working width that adds the dimensional difference to the basic dimensions. Corner tiles characterized as adjustable corner tiles.
【請求項2】 桟瓦の働き幅をa、働き長さをbとする
と、隅瓦は働き長さが同一で働き幅が相違する複数種の
調整隅瓦と成し、複数種の調整隅瓦の働き幅の寸法差を
|b−a|としたことを特徴とする請求項1記載の筋葺
き用の隅瓦。
2. Assuming that the working width of the cross tile is a and the working length is b, the corner tile is composed of a plurality of types of adjusting corner tiles having the same working length but different working widths, and a plurality of types of adjusting corner tiles. 2. The roof tile according to claim 1, wherein the dimensional difference between the working widths of the roof tiles is | ba |.
【請求項3】 桟瓦の働き幅をa、働き長さをbとする
と、隅瓦は働き長さが同一で働き幅が相違する複数種の
調整隅瓦と成し、複数種の調整隅瓦の働き幅の寸法差を
|b−a/2|としたことを特徴とする請求項1記載の
千鳥葺き用の隅瓦。
3. When the working width of the cross tile is a and the working length is b, the corner tile is composed of a plurality of types of adjusting corner tiles having the same working length but different working widths, and a plurality of types of adjusting corner tiles. 2. The staggered corner tile according to claim 1, wherein a dimensional difference in the working width of the tiles is | b-a / 2 |.
【請求項4】 屋根勾配に応じて、正方形の単位面積に
必要となる桟瓦の働き幅をa、働き長さをbとすると、
隅瓦は働き長さが同一で働き幅が相違する複数種の調整
隅瓦と成し、複数種の調整隅瓦の働き幅の寸法差を|b
−a|としたことを特徴とする筋葺き用の隅瓦。
4. The working width of a tile required for a unit area of a square is a and the working length is b according to a roof slope,
The corner tile is composed of a plurality of types of adjusted corner tiles having the same working length but different working widths.
−a | is a corner tile for roofing.
【請求項5】 屋根勾配に応じて、正方形の単位面積に
必要となる桟瓦の働き幅をa、働き長さをbとすると、
隅瓦は働き長さが同一で働き幅が相違する複数種の調整
隅瓦と成し、複数種の調整隅瓦の働き幅の寸法差を|b
−a/2|としたことを特徴とする千鳥葺き用の隅瓦。
5. When the working width of the cross tile required for a unit area of a square is a and the working length is b according to the roof gradient,
The corner tile is composed of a plurality of types of adjusted corner tiles having the same working length but different working widths.
−a / 2 | is a corner tile for staggered roofing.
【請求項6】 基本寸法は働き長さと同一と成したこと
を特徴とする請求項2又は4記載の筋葺き用の隅瓦。
6. The corner tile according to claim 2, wherein the basic dimensions are equal to the working length.
【請求項7】 基本寸法は働き長さと同一と成したこと
を特徴とする請求項3又は5記載の千鳥葺き用の隅瓦。
7. The corner tile for staggered roofing according to claim 3, wherein the basic dimensions are equal to the working length.
【請求項8】 割り線を設けて調整隅瓦の働き幅を変更
自在としたことを特徴とする請求項1、2、3、4、
5、6又は7記載の隅瓦。
8. The method according to claim 1, wherein a dividing line is provided so that the working width of the adjusting corner tile can be changed freely.
5. The corner tile according to 5, 6, or 7.
【請求項9】 屋根勾配に応じて、正方形の単位面積に
必要となる働き長さで、屋根に桟瓦を葺設し、 桟瓦隣接の敷設未了の残軒長さに適合すると共に、冠瓦
の冠調節幅の範囲内に適合する調整隅瓦を、請求項1、
2、3、4、5、6又は7記載の調整隅瓦から選択して
葺設し、 調整隅瓦に冠瓦を重合敷設する様にしたことを特徴とす
る屋根瓦施工方法。
9. A roof tile is laid with a working length required for a square unit area according to the roof gradient, and the roof tile is adapted to the length of the unfinished remaining eaves adjacent to the roof tile. An adjustable corner tile that fits within the range of the crown adjustment width of claim 1,
A roof tile construction method, wherein the roof tile is selected from the adjusted corner tiles described in 2, 3, 4, 5, 6, or 7, and a crown tile is laid on the adjusted corner tile.
【請求項10】 調整隅瓦は、割り線を設けて働き幅を
変更自在としたものと成し、調整隅瓦の端縁部が冠調節
幅の範囲内に納まる様に、割り線で切断加工した調整隅
瓦を葺設する様にしたことを特徴とする請求項9記載の
屋根瓦施工方法。
10. The adjusting corner tile is provided with a dividing line so that the working width can be changed freely, and cut at the dividing line so that the edge of the adjusting corner tile falls within the range of the crown adjusting width. 10. The roof tile construction method according to claim 9, wherein the processed corner tile is laid.
JP2000389890A 2000-12-22 2000-12-22 Roof tile construction method and corner tile Expired - Fee Related JP4605897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000389890A JP4605897B2 (en) 2000-12-22 2000-12-22 Roof tile construction method and corner tile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000389890A JP4605897B2 (en) 2000-12-22 2000-12-22 Roof tile construction method and corner tile

Publications (3)

Publication Number Publication Date
JP2002188246A true JP2002188246A (en) 2002-07-05
JP2002188246A5 JP2002188246A5 (en) 2009-07-02
JP4605897B2 JP4605897B2 (en) 2011-01-05

Family

ID=18856348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000389890A Expired - Fee Related JP4605897B2 (en) 2000-12-22 2000-12-22 Roof tile construction method and corner tile

Country Status (1)

Country Link
JP (1) JP4605897B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194070A (en) * 2004-12-17 2006-07-27 Shinsei:Kk Method of laying roof tiles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7038426B2 (en) * 2020-04-12 2022-03-18 甍エンジニアリング株式会社 Roofing material allocation integration system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55168611U (en) * 1979-05-24 1980-12-04
JPH0886050A (en) * 1994-09-19 1996-04-02 Sekisui Chem Co Ltd Roof covering structure
JPH111996A (en) * 1997-06-10 1999-01-06 Kaminaka:Kk Structure of roof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55168611U (en) * 1979-05-24 1980-12-04
JPH0886050A (en) * 1994-09-19 1996-04-02 Sekisui Chem Co Ltd Roof covering structure
JPH111996A (en) * 1997-06-10 1999-01-06 Kaminaka:Kk Structure of roof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194070A (en) * 2004-12-17 2006-07-27 Shinsei:Kk Method of laying roof tiles
JP4641913B2 (en) * 2004-12-17 2011-03-02 株式会社神清 How to lay tiles

Also Published As

Publication number Publication date
JP4605897B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
US7813902B2 (en) Dormer calculator
JP5959128B1 (en) Tiled roof structure
JP6701473B1 (en) Tiles allocation system for pre-cut roof tiles
US4984408A (en) Method for arranging lines in a floor level to be divided up into smaller rooms and elements suitable for this method
JP2002188246A (en) Roof tile roofing method and corner tile
US9342634B2 (en) Dormer calculator
JP7144015B1 (en) Roof material placement method for long horizontal roofing module roof materials
JP2006194070A (en) Method of laying roof tiles
CN111898181B (en) Automatic assembling method for ancient building model
CN111881494B (en) Automatic assembling system for ancient building model
JP4071900B2 (en) Flat roof tile group and tile tile allocation method
JP3614453B2 (en) Reference line creation device for roof allocation
JP5057889B2 (en) Tiling method including valley
JP2005256514A (en) Flat plate tile and roofing method thereof
JP3212776B2 (en) Water gradient material allocation device
JP7382148B2 (en) Roofing construction methods, pre-cut materials, cut materials and roofing material sets
JPH0886050A (en) Roof covering structure
JP3164991B2 (en) Construction method of building roof
JP3614452B2 (en) Reference line creation device for roof allocation
JP2023061396A (en) Roof material layout apparatus
JP3236427B2 (en) Shed beam allocation device
GB2186303A (en) Roof-surface boundary tile
JP3280817B2 (en) Roof panel and roof of building using this roof panel
JP3614454B2 (en) Reference line creation device for roof allocation
JP2024034967A (en) Architectural structure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees