JP2002181478A - Heat transfer tube having grooved inner surface - Google Patents

Heat transfer tube having grooved inner surface

Info

Publication number
JP2002181478A
JP2002181478A JP2000376867A JP2000376867A JP2002181478A JP 2002181478 A JP2002181478 A JP 2002181478A JP 2000376867 A JP2000376867 A JP 2000376867A JP 2000376867 A JP2000376867 A JP 2000376867A JP 2002181478 A JP2002181478 A JP 2002181478A
Authority
JP
Japan
Prior art keywords
groove
heat transfer
transfer tube
drain
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000376867A
Other languages
Japanese (ja)
Other versions
JP2002181478A5 (en
JP4214677B2 (en
Inventor
Taijo Murakami
泰城 村上
Shinichi Wakamoto
慎一 若本
Akira Ishibashi
晃 石橋
Masahiro Nakayama
雅弘 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000376867A priority Critical patent/JP4214677B2/en
Publication of JP2002181478A publication Critical patent/JP2002181478A/en
Publication of JP2002181478A5 publication Critical patent/JP2002181478A5/ja
Application granted granted Critical
Publication of JP4214677B2 publication Critical patent/JP4214677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat transfer tube having grooved inner surface improved in the rate of heat transfer with condensation. SOLUTION: A heat transfer tube 1 having grooved inner surface comprises a plurality of tilt grooves 4 having a predetermined tilt angle with respect to the axis 2 thereof and further a drainage groove 6, which crosses the tilt grooves 4 and communicates therewith and the bottom of which is positioned lower than those of the tilt grooves.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空調装置や冷却装
置の熱交換器等に用いられる内面溝付伝熱管に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner grooved heat transfer tube used for a heat exchanger of an air conditioner or a cooling device.

【0002】[0002]

【従来の技術】この種の内面溝付伝熱管は、空調装置や
冷却装置の熱交換器において蒸発管または凝縮管として
主に使用されるものであり、伝熱性能を向上させるため
に内面の溝形状に種々の工夫を凝らしたものが数多くみ
られる。
2. Description of the Related Art An inner grooved heat transfer tube of this type is mainly used as an evaporator tube or a condenser tube in a heat exchanger of an air conditioner or a cooling device. There are many groove shapes that have been devised in various ways.

【0003】例えば特開平11−63877号公報に
は、図14に管本体内周面の構造を部分的な展開図で示
すように、管本体101aの内周面に、管軸方向に所定
のピッチで先鋭な形状のV字形の溝(V字溝)103が
連続する複数列の条溝群a,cを周方向に平行に配列し
て設けると共に、該複数列の条溝群a,c相互の間でか
つ冷媒が矢印の方向に流れる凝縮時には液膜が合流する
位置に、条溝がないフラット面b,dを形成したものが
提案されている。フラット面b,dは内面溝付伝熱管の
管軸に対して平行に、V字溝103の底面と同じ高さで
形成されており、これにより、凝縮時には、より多くの
冷媒の液膜流量をフラット面b,dに集約することがで
き、V字溝103を流れる液膜の厚さが薄くなるため、
凝縮熱伝達効率を向上することができる。
For example, in Japanese Patent Application Laid-Open No. 11-63877, as shown in a partially developed view of a structure of an inner peripheral surface of a pipe main body, a predetermined inner peripheral surface of a pipe main body 101a is provided in a pipe axial direction. A plurality of rows of groove groups a and c in which a V-shaped groove (V-shaped groove) 103 having a sharp shape at a pitch is continuous are provided in parallel in the circumferential direction, and the plurality of rows of groove groups a and c are provided. There has been proposed a configuration in which flat surfaces b and d having no grooves are formed at positions where liquid films join at the time of condensation between refrigerant flows in the direction of the arrow. The flat surfaces b and d are formed at the same height as the bottom surface of the V-shaped groove 103 in parallel with the tube axis of the heat transfer tube with the inner surface groove, so that a larger liquid film flow rate of the refrigerant is obtained at the time of condensation. Can be concentrated on the flat surfaces b and d, and the thickness of the liquid film flowing through the V-shaped groove 103 is reduced.
Condensation heat transfer efficiency can be improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の内面溝付伝熱管では、V字溝103を流れる液膜の
合流部に設けられたフラット面b,dが、V字溝の底面
と同じ高さであるため、フラット面b,dに大量の液膜
を流すことができず、フラット面b,d近傍のV字溝1
03内の液膜厚さが増加する。したがって、フラット面
b,d近傍のV字溝103の凝縮熱伝達率が向上しない
という問題があった。
However, in the above-mentioned conventional heat transfer tube with an inner groove, the flat surfaces b and d provided at the junction of the liquid films flowing through the V-shaped groove 103 are the same as the bottom surface of the V-shaped groove. Due to the height, a large amount of liquid film cannot flow on the flat surfaces b and d, and the V-shaped groove 1 near the flat surfaces b and d
The liquid film thickness in 03 increases. Therefore, there is a problem that the condensation heat transfer coefficient of the V-shaped groove 103 near the flat surfaces b and d is not improved.

【0005】本発明は、上記のような従来のものの問題
点を解決するためになされたものであり、凝縮熱伝達率
がさらに向上した内面溝付伝熱管を提供することを目的
とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a heat transfer tube with an inner surface groove having a further improved heat transfer coefficient of condensation. is there.

【0006】[0006]

【課題を解決するための手段】本発明に係る内面溝付伝
熱管は、管軸に対して所定の傾斜角をもつ複数の傾斜溝
を管内面に有する内面溝付伝熱管において、上記傾斜溝
と交差してこれと連通し、かつその底面が上記傾斜溝の
底面より深い位置にある排液溝を備えたものである。
According to the present invention, there is provided a heat transfer tube having an internal groove, which has a plurality of inclined grooves having a predetermined inclination angle with respect to a tube axis on the inner surface of the tube. And a drain groove whose bottom surface is deeper than the bottom surface of the inclined groove.

【0007】また、排液溝の管軸に対する傾斜角は、傾
斜溝の管軸に対する傾斜角よりも小さいものである。
[0007] The inclination angle of the drain groove with respect to the tube axis is smaller than the inclination angle of the inclined groove with respect to the tube axis.

【0008】また、排液溝を設ける部分の伝熱管の肉厚
を、傾斜溝を設ける部分の伝熱管の肉厚に比べて大きく
したものである。
The thickness of the heat transfer tube at the portion where the drain groove is provided is made larger than the thickness of the heat transfer tube at the portion where the inclined groove is provided.

【0009】また、排液溝を設けた部分の伝熱管の外面
が突出しているものである。
Further, the outer surface of the heat transfer tube at the portion provided with the drainage groove protrudes.

【0010】[0010]

【発明の実施の形態】実施の形態1.図1〜図3は本発
明の実施の形態1による内面溝付伝熱管を説明するため
の図であり、図1は横断面図、図2は一部破断して内部
を示す断面図、図3は管内周面の一部の構造を展開して
示す斜視図である。図において、1は伝熱管、2は伝熱
管1の管軸、3は管軸2に対して所定の傾斜角をもつ傾
斜フィンである。4は傾斜フィン3間の傾斜溝であり、
管軸2に対して傾斜フィン3と同じ傾斜角をもつ。6は
傾斜溝4と交差してこれと連通する排液溝、7は冷媒の
液膜、70は液膜7の流れを示す矢印である。また、w
0は傾斜溝4の幅、w1は排液溝6の幅、zは傾斜溝4
の底面を基準とした排液溝6の底面までの深さ、hは傾
斜フィン3の高さである。なお、図2では分かりやすい
ように傾斜溝4および排液溝6にハッチングを施して示
している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 1 to 3 are diagrams for explaining a heat transfer tube with an inner surface groove according to a first embodiment of the present invention. FIG. 1 is a cross-sectional view, and FIG. 3 is an exploded perspective view showing a part of the structure of the inner peripheral surface of the pipe. In the figure, 1 is a heat transfer tube, 2 is a tube axis of the heat transfer tube 1, and 3 is an inclined fin having a predetermined inclination angle with respect to the tube axis 2. 4 is an inclined groove between the inclined fins 3,
It has the same inclination angle as the inclination fin 3 with respect to the tube axis 2. Reference numeral 6 denotes a drainage groove intersecting with and communicating with the inclined groove 4, 7 denotes a liquid film of the refrigerant, and 70 denotes an arrow indicating the flow of the liquid film 7. Also, w
0 is the width of the inclined groove 4, w1 is the width of the drain groove 6, and z is the inclined groove 4.
And h is the height of the inclined fin 3 with respect to the bottom surface of the drain groove 6 with reference to the bottom surface of FIG. In FIG. 2, the inclined grooves 4 and the drain grooves 6 are hatched for easy understanding.

【0011】傾斜溝4の底面を基準とした排液溝6の底
面までの深さzが、z>0となるように、すなわち排液
溝6の底面が傾斜溝4の底面より深い位置にあるように
構成されている。これにより、多くの液膜流量を排液溝
6に沿って流すことができる。さらに、排液溝6の幅w
1が傾斜溝4の幅w0より大きくなるように構成するこ
とにより、より多くの液膜流量を排液溝6に沿って流す
ことができる。
The depth z from the bottom of the inclined groove 4 to the bottom of the drain groove 6 is set so that z> 0, that is, the bottom of the drain groove 6 is positioned deeper than the bottom of the inclined groove 4. It is configured to be. Thus, a large flow rate of the liquid film can flow along the drain groove 6. Further, the width w of the drain groove 6
By configuring 1 to be larger than the width w0 of the inclined groove 4, a larger liquid film flow rate can flow along the drain groove 6.

【0012】また、排液溝6の管軸2に対する傾斜角
は、傾斜溝4(傾斜フィン3)の管軸2に対する傾斜角
よりも小さくなるように形成されている。これにより、
液膜7が排液溝6から受ける抵抗を、傾斜フィン3から
受ける抵抗よりも小さくすることができ、液膜7を排液
溝6に沿って流れやすくすることができる。
Further, the inclination angle of the drain groove 6 with respect to the tube axis 2 is formed to be smaller than the inclination angle of the inclined groove 4 (inclined fin 3) with respect to the tube axis 2. This allows
The resistance that the liquid film 7 receives from the drain groove 6 can be smaller than the resistance that the liquid film 7 receives from the inclined fins 3, and the liquid film 7 can easily flow along the drain groove 6.

【0013】また、排液溝6は螺旋状に設けており、こ
れによって、排液溝6に沿って液膜7を連続的に流し続
けることができ、しかも、螺旋状であるので伝熱管の取
り付けに際して上下を意識しなくてもよい。
Further, the drain groove 6 is provided in a spiral shape, whereby the liquid film 7 can be continuously flowed along the drain groove 6, and since the drain film 6 is formed in a spiral shape, the heat transfer tube is formed. It is not necessary to be conscious of the upper and lower sides when mounting.

【0014】上記のような内面溝付伝熱管は、例えば以
下のようにして製造することができる。まず、例えば銅
または銅合金よりなる帯状金属板を、上記傾斜フィン
3、傾斜溝4および排液溝6に対応する凹凸を有する圧
延ロールと、この圧延ロールに押し付けられる受けロー
ルとの間に通し、帯状金属板に一面へ圧延ロールの凹凸
を転写する。次いで、帯状金属板を、その凹凸転写面が
内側になる状態で電縫装置にセットし、この電縫装置へ
多段状に設置された各対の成形ロール群の間に通して幅
方向に丸め、幅方向の突き合わされた端部相互を溶接し
て管状に成形する。さらに、管状成形品の溶接ビード部
を削除し、これを所定の引き抜き装置で空引きすること
によって所定の径に縮径すると共に成形する。
The above-mentioned heat transfer tube with an inner groove can be manufactured, for example, as follows. First, a strip-shaped metal plate made of, for example, copper or a copper alloy is passed between a roll having irregularities corresponding to the inclined fins 3, the inclined grooves 4, and the drain grooves 6, and a receiving roll pressed against the roll. Then, the unevenness of the rolling roll is transferred to one surface of the strip-shaped metal plate. Next, the band-shaped metal plate is set on the ERW device with the uneven transfer surface facing inward, and is passed through the ERW device between each pair of forming rolls installed in a multi-stage manner and rounded in the width direction. Then, the butted ends in the width direction are welded to each other to form a tubular shape. Further, the weld bead portion of the tubular molded product is deleted, and this is reduced to a predetermined diameter by emptying it with a predetermined drawing device, and is formed.

【0015】次に、動作について説明する。傾斜溝4を
流れる液膜7は、排液溝6に沿って流れる液膜7と合流
し、その後、液膜7の多くが、排液溝6に沿って流れ
る。
Next, the operation will be described. The liquid film 7 flowing along the inclined groove 4 merges with the liquid film 7 flowing along the drain groove 6, and thereafter, most of the liquid film 7 flows along the drain groove 6.

【0016】これにより、排液溝6を挟んで下流側にあ
る傾斜溝4の液膜7の厚さが顕著に薄くなるため、凝縮
熱伝達率を大幅に向上することができる。
As a result, the thickness of the liquid film 7 in the inclined groove 4 on the downstream side of the drain groove 6 is significantly reduced, so that the condensation heat transfer coefficient can be greatly improved.

【0017】図4は、外径が7.5mm、傾斜溝4の数
が50条、傾斜フィン3(台形)の高さが0.24m
m、傾斜溝4の底面の肉厚が0.5mm、傾斜フィン3
のリード角すなわち管軸に対する傾斜角が13度、傾斜
フィン3の頂角(台形の平行でない2辺のなす角度)が
30度の内面螺旋溝付伝熱管に、深さZがそれぞれ0m
m(底面が傾斜溝4の底面と同じ深さ)、0.20m
m、0.24mmである排液溝6を設け、排液溝6の溝
幅w1を変化させた場合について、数値解析を用いて平
均凝縮熱伝達率を計算した結果を示す特性図である。図
中の横軸は、半径Rの円周に対する排液溝の溝幅w1の
割合(排液溝割合)を示し、縦軸は、平均凝縮熱伝達率
を示す。
FIG. 4 shows that the outer diameter is 7.5 mm, the number of the inclined grooves 4 is 50, and the height of the inclined fins 3 (trapezoid) is 0.24 m.
m, the thickness of the bottom surface of the inclined groove 4 is 0.5 mm, and the inclined fin 3
The angle Z is 13 degrees with respect to the tube axis, that is, the vertical angle of the inclined fins 3 (the angle between the two non-parallel sides of the trapezoid) is 30 degrees.
m (the bottom is the same depth as the bottom of the inclined groove 4), 0.20m
FIG. 9 is a characteristic diagram showing a result of calculating an average condensation heat transfer coefficient using numerical analysis in a case where a drain groove 6 having a diameter of m and 0.24 mm is provided and a groove width w1 of the drain groove 6 is changed. The horizontal axis in the figure indicates the ratio of the groove width w1 of the drain groove to the circumference of the radius R (drain groove ratio), and the vertical axis indicates the average condensation heat transfer coefficient.

【0018】図4より、排液溝6の底面が傾斜溝4の底
面と同じ位置にある場合に比べて、傾斜溝4の底面より
深い位置にある場合に平均凝縮熱伝達率が増加している
ことがわかる。ただし、排液溝6の底面が傾斜溝4の底
面より深い位置にある場合にも、排液溝割合が60%程
度以上では排液溝割合が零である(排液溝6を設けなか
った)場合よりも平均凝縮熱伝達率は低下しており、こ
れは、排液溝割合が大きすぎると傾斜溝4の割合が小さ
くなり、管中央を流れる蒸気と傾斜フィン3との接触面
積が減少するためである。図4では、排液溝割合がおよ
そ30%前後で、平均凝縮熱伝達率が最大値となり、明
かに排液溝6の幅を適正値とすることで、平均凝縮熱伝
達率が向上することがわかる。
FIG. 4 shows that the average condensation heat transfer coefficient increases when the bottom surface of the drain groove 6 is deeper than the bottom surface of the inclined groove 4 as compared with the case where the bottom surface of the drain groove 6 is at the same position as the bottom surface of the inclined groove 4. You can see that there is. However, even when the bottom surface of the drain groove 6 is at a position deeper than the bottom surface of the inclined groove 4, the drain groove ratio is zero when the drain groove ratio is about 60% or more (the drain groove 6 was not provided. ) The average condensation heat transfer coefficient is lower than in the case. If the drainage groove ratio is too large, the ratio of the inclined groove 4 becomes small, and the contact area between the steam flowing in the center of the pipe and the inclined fin 3 decreases. To do that. In FIG. 4, when the drainage groove ratio is about 30%, the average condensed heat transfer coefficient reaches the maximum value. Clearly, by setting the width of the drainage groove 6 to an appropriate value, the average condensed heat transfer coefficient is improved. I understand.

【0019】なお、図1では伝熱管の横断面内に排液溝
6を1つ設けた場合について示したが、複数設けてもよ
く、2つ設けた場合を図5に示す。図5において上下の
排液溝6で仕切られた左右の傾斜溝4の管軸2に対する
傾斜角を互いに異なる角度とすることも可能である。
Although FIG. 1 shows a case where one drain groove 6 is provided in the cross section of the heat transfer tube, a plurality of drain grooves 6 may be provided, and FIG. 5 shows a case where two drain grooves 6 are provided. In FIG. 5, the inclination angles of the left and right inclined grooves 4 separated by the upper and lower drainage grooves 6 with respect to the tube axis 2 can be different from each other.

【0020】なお、上記実施の形態では、傾斜溝4(傾
斜フィン3)と排液溝6との管軸2に対する傾斜方向
(螺旋の捩じれる方向)が同じである場合について示し
た。この場合には、傾斜溝4に沿って流れる液膜7が排
液溝6に沿って流れる液膜7と合流するときの抵抗が、
傾斜溝4と排液溝6との管軸2に対する傾斜方向が異な
る場合に比べて小さくなるため、合流時の圧力損失が減
少する。また、排液溝6へ液膜7がスムースに流れ込む
ことにより、より多くの液膜流量が排液溝6に沿って流
れ、傾斜溝4に沿って流れる液膜7の厚さがさらに薄く
なるため、凝縮熱伝達率をより一層向上することができ
る。しかし、傾斜溝4と排液溝6との管軸2に対する傾
斜方向が異なっていてもよいのは勿論である。
In the above-described embodiment, the case where the inclined grooves 4 (inclined fins 3) and the drain grooves 6 have the same inclination direction (helical twisting direction) with respect to the tube axis 2 has been described. In this case, the resistance when the liquid film 7 flowing along the inclined groove 4 merges with the liquid film 7 flowing along the drain groove 6 is:
Since the inclination direction of the inclined groove 4 and the drain groove 6 with respect to the pipe shaft 2 is different from each other, the pressure loss at the time of merging is reduced. Further, since the liquid film 7 flows into the drain groove 6 smoothly, a larger flow rate of the liquid film flows along the drain groove 6 and the thickness of the liquid film 7 flowing along the inclined groove 4 is further reduced. Therefore, the condensation heat transfer coefficient can be further improved. However, it goes without saying that the inclined directions of the inclined groove 4 and the drain groove 6 with respect to the tube axis 2 may be different.

【0021】実施の形態2.図6および図7は本発明の
実施の形態2による内面溝付伝熱管を説明するための図
であり、図6は横断面図、図7は一部破断して内部を示
す断面図である。図において、t0は傾斜溝4が設けら
れている部分の伝熱管1の肉厚、t1は排液溝6が設け
られている部分の伝熱管1の肉厚である。実施の形態1
では排液溝6を管軸2に対して所定の傾斜角をもつ螺旋
状に設けた場合について示したが、本実施の形態では管
軸2と平行に直線状に設けている。これにより、伝熱管
1を流れる冷媒の蒸気のせん断力を強く受けて液膜7の
流速が増加するため、排液溝6を流れる液膜7の流量が
増加し、凝縮熱伝達率がさらに向上する。また、排液溝
6を設ける部分の伝熱管の肉厚を、傾斜溝4を設ける部
分の伝熱管の肉厚に比べて大きくすることが容易に行え
るようになる。そこで、実施の形態1では伝熱管1の肉
厚を横断面内で等しくしたが、本実施の形態では、伝熱
管1の内周および外周を互いに偏芯させ、排液溝6を設
ける部分の伝熱管1の肉厚t1が、傾斜溝4を設ける部
分の伝熱管1の肉厚t0よりも大きくなるように構成し
ている。これにより、伝熱管1の全部の肉圧を厚くする
ことなく必要なところだけ厚くすることによって、余分
な伝熱管材料の節減と軽量化を図りながら、伝熱管内の
高い圧力にも耐えることができる。
Embodiment 2 FIG. 6 and 7 are views for explaining a heat transfer tube with an inner surface groove according to the second embodiment of the present invention. FIG. 6 is a cross-sectional view, and FIG. . In the figure, t0 is the thickness of the heat transfer tube 1 at the portion where the inclined groove 4 is provided, and t1 is the thickness of the heat transfer tube 1 at the portion where the drain groove 6 is provided. Embodiment 1
Although the case where the drainage groove 6 is provided in a spiral shape having a predetermined inclination angle with respect to the tube axis 2 has been described, in this embodiment, the drainage groove 6 is provided linearly in parallel with the tube axis 2. As a result, the flow rate of the liquid film 7 flowing through the drain groove 6 increases because the flow velocity of the liquid film 7 increases due to the strong shearing force of the vapor of the refrigerant flowing through the heat transfer tube 1, and the condensation heat transfer rate further improves. I do. Further, the thickness of the heat transfer tube at the portion where the drain groove 6 is provided can be easily made larger than the thickness of the heat transfer tube at the portion where the inclined groove 4 is provided. Therefore, in the first embodiment, the thickness of the heat transfer tube 1 is made equal in the transverse cross section. However, in the present embodiment, the inner and outer circumferences of the heat transfer tube 1 are eccentric to each other, and the portion where the drain groove 6 is provided is provided. The thickness t1 of the heat transfer tube 1 is configured to be larger than the thickness t0 of the heat transfer tube 1 in a portion where the inclined groove 4 is provided. Thus, by increasing the thickness of the heat transfer tube 1 only where necessary without increasing the wall pressure, it is possible to withstand high pressure in the heat transfer tube while saving unnecessary heat transfer tube material and reducing the weight. it can.

【0022】なお、図7では傾斜溝4が螺旋状である場
合について示したが、従来と同様にV字溝であってもよ
く、この場合にも、凝縮時に液膜が合流する位置に、底
面が傾斜溝4の底面より深い位置にある排液溝6を設け
ることにより、管内の凝縮熱伝達率を向上することがで
き、さらに、余分な伝熱管材料の節減と軽量化を図りな
がら、耐圧性も得られる。
Although FIG. 7 shows a case where the inclined groove 4 is spiral, it may be a V-shaped groove as in the conventional case. By providing the drainage groove 6 whose bottom surface is deeper than the bottom surface of the inclined groove 4, the condensation heat transfer coefficient in the pipe can be improved, and further, while saving unnecessary heat transfer tube material and reducing the weight, Pressure resistance is also obtained.

【0023】実施の形態3.図8は本発明の実施の形態
3による内面溝付伝熱管を説明するための図であり、横
断面図である。図において、60は排液溝部材であり、
この排液溝部材60の内周側が排液溝6となっている。
実施の形態1では、傾斜フィン3、傾斜溝4および排液
溝6に対応する凹凸が転写された帯状金属板を幅方向に
丸め、幅方向の突き合わされた端部相互を溶接して管状
に成形したが、本実施の形態では、傾斜フィン3および
傾斜溝4に対応する凹凸が転写された帯状金属板を、排
液溝6の幅だけ隙間を残して幅方向に途中まで丸め、幅
方向の隙間を有して突き合わされた両端部の外周側に排
液溝部材60を配置し、帯状金属板の端部と排液溝部材
60とを溶接して管状に成形した。
Embodiment 3 FIG. FIG. 8 is a cross-sectional view for explaining a heat transfer tube with an inner surface groove according to Embodiment 3 of the present invention. In the figure, 60 is a drainage groove member,
The inner peripheral side of the drainage groove member 60 is the drainage groove 6.
In the first embodiment, the strip-shaped metal plate on which the irregularities corresponding to the inclined fins 3, the inclined grooves 4, and the drain grooves 6 are transferred is rolled in the width direction, and the butted ends in the width direction are welded to each other to form a tube. However, in the present embodiment, the strip-shaped metal plate on which the irregularities corresponding to the inclined fins 3 and the inclined grooves 4 have been transferred is rounded halfway in the width direction, leaving a gap by the width of the drainage groove 6. The drain groove member 60 was disposed on the outer peripheral side of both butted ends having a gap, and the end of the strip-shaped metal plate and the drain groove member 60 were welded into a tubular shape.

【0024】上記のように構成されたものにおいては、
伝熱管1の肉厚分だけ排液溝6の溝深さが深くなるた
め、排液溝6を流れる液膜7の流量が増加し、凝縮熱伝
達率が向上する。また、排液溝6部の肉厚が確保できる
ため、伝熱管1内の高い圧力にも絶えることができる。
さらに、伝熱管1に排液溝部材60を溶接することで、
伝熱管の外周部に凸部が形成される、すなわち排液溝6
を設けた部分の伝熱管の外面が突出しているため、伝熱
管1の外側から排液溝6を設けた部分を認識でき、伝熱
管1を用いて熱交換器等を組立てる際に、排液溝6を円
周方向に対して位置決めすることが可能となる。
In the above configuration,
Since the depth of the drain groove 6 is increased by the thickness of the heat transfer tube 1, the flow rate of the liquid film 7 flowing through the drain groove 6 is increased, and the heat transfer coefficient of condensation is improved. Further, since the thickness of the drain groove 6 can be ensured, the high pressure inside the heat transfer tube 1 can be cut off.
Further, by welding the drain groove member 60 to the heat transfer tube 1,
A convex portion is formed on the outer peripheral portion of the heat transfer tube, that is, the drainage groove 6
Since the outer surface of the heat transfer tube at the portion where the heat transfer tube is provided protrudes, the portion where the drainage groove 6 is provided can be recognized from the outside of the heat transfer tube 1. The groove 6 can be positioned in the circumferential direction.

【0025】実施の形態4.図9は本発明の実施の形態
4による内面溝付伝熱管を説明するための図であり、横
断面図である。本実施の形態は、排液溝6を設ける個所
の伝熱管1の管壁を外周部へ突出させたものであり、こ
のように構成されたものにおいても実施の形態3と同様
の効果が得られる。
Embodiment 4 FIG. 9 is a view for explaining a heat transfer tube with an inner surface groove according to Embodiment 4 of the present invention, and is a cross-sectional view. In the present embodiment, the tube wall of the heat transfer tube 1 at the position where the drainage groove 6 is provided is projected to the outer peripheral portion, and even with such a configuration, the same effect as that of the third embodiment can be obtained. Can be

【0026】実施の形態5.図10および図11は本発
明の実施の形態5による内面溝付伝熱管を説明するため
の図であり、図10は横断面図、図11は一部破断して
内部を示す断面図である。本実施の形態は、図6および
図7で示した実施の形態2において、直線状の排液溝6
の中央部に、伝熱管1の内周方向に帯状に突出した直線
状の堰部材を設けたものである。図において、3a、3
bは管軸2に対して所定の傾斜角をもつ傾斜フィンであ
る。4a、4bは傾斜フィン3a、3b間の螺旋状の傾
斜溝であり、管軸2に対して傾斜フィン3a、3bと同
じ傾斜角をもって連続して形成されている。6a、6b
は傾斜溝4a、4bと交差してこれと連通し、かつその
底面が傾斜溝4a、4bの底面より深い位置にある排液
溝であり、本実施の形態では管軸2と平行に直線状に設
けている。5は排液溝6a、6bに設けた堰部材であ
り、管軸2と平行に直線状に設けられ、螺旋状の傾斜溝
4を流れる冷媒の流れを堰き止めるべく螺旋状の傾斜溝
4a、4bと交差し、伝熱管1の内周方向に帯状に突出
して形成されている。7a、7b、7d、7eは冷媒の
液膜、9は冷媒の流れる方向を示す矢印である。なお、
図11では分かりやすいように傾斜溝4a、4bおよび
排液溝6a、6bにハッチングを施して示している。
Embodiment 5 10 and 11 are views for explaining a heat transfer tube with an inner surface groove according to a fifth embodiment of the present invention. FIG. 10 is a cross-sectional view, and FIG. . This embodiment is different from the second embodiment shown in FIGS. 6 and 7 in that a linear drain groove 6 is formed.
Is provided with a linear weir member that protrudes in a band shape in the inner circumferential direction of the heat transfer tube 1 in the center of the heat transfer tube 1. In the figure, 3a, 3
b is an inclined fin having a predetermined inclination angle with respect to the tube axis 2. Reference numerals 4a and 4b denote spiral inclined grooves between the inclined fins 3a and 3b, which are formed continuously with respect to the tube axis 2 at the same inclination angle as the inclined fins 3a and 3b. 6a, 6b
Is a drainage groove which crosses and communicates with the inclined grooves 4a and 4b and whose bottom surface is deeper than the bottom surfaces of the inclined grooves 4a and 4b. Is provided. Reference numeral 5 denotes a weir member provided in the drain grooves 6a and 6b. The weir member is provided in a straight line parallel to the pipe shaft 2 and has a spiral inclined groove 4a to stop the flow of the refrigerant flowing through the spiral inclined groove 4. 4b, and is formed to protrude in a belt shape in the inner circumferential direction of the heat transfer tube 1. 7a, 7b, 7d and 7e are liquid films of the refrigerant, and 9 is an arrow indicating the direction in which the refrigerant flows. In addition,
In FIG. 11, the inclined grooves 4a and 4b and the drain grooves 6a and 6b are hatched for easy understanding.

【0027】次に、動作について説明する。冷媒が矢印
9で示す方向に流れた場合、上流側の傾斜溝4aを流れ
る液膜7aは、堰部材5によって堰き止められて上流側
の排液溝6aに沿って流れる液膜7bと合流し、その
後、液膜7bの多くが、排液溝6aに沿って流れる。ま
た、排液溝6aに沿って流れる液膜7bの一部は堰部材
5を越え、下流側の排液溝6bに沿って流れる液膜7d
と合流し、排液溝6bに沿って流れる。さらに、排液溝
6bに沿って流れる液膜7dから液膜7eが分流し、液
膜7eが上流側の傾斜溝4bを流れる。
Next, the operation will be described. When the refrigerant flows in the direction shown by the arrow 9, the liquid film 7a flowing in the upstream inclined groove 4a joins with the liquid film 7b which is stopped by the weir member 5 and flows along the upstream drain groove 6a. Thereafter, most of the liquid film 7b flows along the drain groove 6a. A part of the liquid film 7b flowing along the drain groove 6a passes over the weir member 5 and the liquid film 7d flows along the drain groove 6b on the downstream side.
And flows along the drain groove 6b. Further, the liquid film 7e branches off from the liquid film 7d flowing along the drain groove 6b, and the liquid film 7e flows through the upstream inclined groove 4b.

【0028】このように、堰部材5を設けたことによっ
て、傾斜溝4a沿って流れる液膜7aの多くが液膜7b
となって排液溝6aに沿って流れ、傾斜溝4b沿って流
れる液膜7eの厚さが、堰部材5を設けない場合に比べ
てより薄くなるため、凝縮熱伝達率を大幅に向上するこ
とができる。
As described above, by providing the weir member 5, most of the liquid film 7a flowing along the inclined groove 4a becomes the liquid film 7b.
As the thickness of the liquid film 7e flowing along the drain groove 6a and flowing along the inclined groove 4b becomes thinner as compared with the case where the dam member 5 is not provided, the heat transfer coefficient of condensation is greatly improved. be able to.

【0029】なお、図11では傾斜溝4が螺旋状である
場合について示したが、図12に一部を破断して内部を
示すように、従来と同様のV字溝であってもよく、この
場合にも、凝縮時に液膜が合流する位置に、底面が傾斜
溝4の底面より深い位置にある排液溝6および堰部材5
を設けることにより、管内の凝縮熱伝達率を大幅に向上
することができる。
Although FIG. 11 shows a case where the inclined groove 4 is spiral, a V-shaped groove similar to the conventional one may be used as shown in FIG. Also in this case, the drain groove 6 and the weir member 5 whose bottom surface is deeper than the bottom surface of the inclined groove 4 are located at the position where the liquid films merge at the time of condensation.
Is provided, it is possible to greatly improve the condensation heat transfer coefficient in the tube.

【0030】実施の形態6.図13は本発明の実施の形
態6による内面溝付伝熱管を説明するための図であり、
横断面図である。本実施の形態は、図8で示した実施の
形態3において、排液溝部材60を断面L字状とし、断
面L字の一端部を伝熱管1の内周方向に帯状に突出した
直線状の堰部材5としたものである。本実施の形態で
は、底面が傾斜溝4a、4bの底面より深い位置にある
排液溝6aは、上流側の傾斜溝4aと連通するように堰
部材5の上流側に設けられている。
Embodiment 6 FIG. FIG. 13 is a view for explaining an inner grooved heat transfer tube according to Embodiment 6 of the present invention.
FIG. This embodiment is different from the third embodiment shown in FIG. 8 in that the drainage groove member 60 has an L-shaped cross section, and one end of the L-shaped cross section has a linear shape protruding in the inner circumferential direction of the heat transfer tube 1. Of the weir member 5. In the present embodiment, the drain groove 6a whose bottom surface is deeper than the bottom surfaces of the inclined grooves 4a and 4b is provided on the upstream side of the weir member 5 so as to communicate with the upstream inclined groove 4a.

【0031】このように構成されたものにおいても、上
流側の傾斜溝4aを流れる液膜7aは、堰部材5によっ
て堰き止められて上流側の排液溝6aに沿って流れる液
膜7bと合流し、その後、液膜7bの多くが、排液溝6
aに沿って流れるので、上記実施の形態5と同様に、管
内の凝縮熱伝達率を大幅に向上することができる。
Also in this structure, the liquid film 7a flowing in the upstream inclined groove 4a joins with the liquid film 7b which is stopped by the weir member 5 and flows along the upstream drain groove 6a. After that, most of the liquid film 7b is
Since the gas flows along the line a, the heat transfer coefficient of condensation in the pipe can be significantly improved as in the fifth embodiment.

【0032】[0032]

【発明の効果】以上のように、本発明によれば、管軸に
対して所定の傾斜角をもつ複数の傾斜溝を管内面に有す
る内面溝付伝熱管において、上記傾斜溝と交差してこれ
と連通し、かつその底面が上記傾斜溝の底面より深い位
置にある排液溝を備えたので、管内の凝縮熱伝達率が向
上した内面溝付伝熱管を得ることができる。
As described above, according to the present invention, in a heat transfer tube having an inner surface groove having a plurality of inclined grooves having a predetermined inclination angle with respect to the tube axis on the inner surface of the tube, the heat transfer tube intersects with the inclined grooves. Since a drain groove is provided in communication with this and the bottom surface of which is located at a position deeper than the bottom surface of the inclined groove, it is possible to obtain a heat transfer tube with an inner surface groove having an improved condensation heat transfer coefficient in the tube.

【0033】また、排液溝の管軸に対する傾斜角は、傾
斜溝の管軸に対する傾斜角よりも小さいので、液膜が排
液溝に沿ってより流れやすくなり、管内の凝縮熱伝達率
をより向上した内面溝付伝熱管を得ることができる。
Further, since the inclination angle of the drain groove with respect to the pipe axis is smaller than the inclination angle of the inclined groove with respect to the pipe axis, the liquid film is more likely to flow along the drain groove, and the condensation heat transfer coefficient in the pipe is reduced. A more improved heat transfer tube with an inner groove can be obtained.

【0034】また、排液溝を設ける部分の伝熱管の肉厚
を、傾斜溝を設ける部分の伝熱管の肉厚に比べて大きく
したので、全体の肉圧を厚くすることなく必要なところ
だけ厚くすることによって、余分な伝熱管材料の節減と
軽量化を図りながら、耐圧性も得ることができる。
Further, since the thickness of the heat transfer tube at the portion where the drain groove is provided is made larger than the thickness of the heat transfer tube at the portion where the inclined groove is provided, only the necessary portion is required without increasing the overall wall pressure. By increasing the thickness, it is possible to obtain pressure resistance while saving unnecessary heat transfer tube material and reducing the weight.

【0035】また、排液溝を設けた部分の伝熱管の外面
が突出しているので、伝熱管の外側から排液溝を設けた
部分を認識でき、伝熱管を用いて熱交換器等を組立てる
際に、排液溝を円周方向に対して位置決めすることが可
能となる。
Further, since the outer surface of the heat transfer tube in the portion provided with the drain groove protrudes, the portion provided with the drain groove can be recognized from the outside of the heat transfer tube, and a heat exchanger or the like is assembled using the heat transfer tube. At this time, it becomes possible to position the drain groove in the circumferential direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1による内面溝付伝熱管
を説明するための図である。
FIG. 1 is a diagram for explaining a heat transfer tube with an inner surface groove according to a first embodiment of the present invention.

【図2】 本発明の実施の形態1による内面溝付伝熱管
を説明するための図である。
FIG. 2 is a diagram for explaining a heat transfer tube with an inner surface groove according to the first embodiment of the present invention.

【図3】 本発明の実施の形態1による内面溝付伝熱管
を説明するための図である。
FIG. 3 is a view for explaining a heat transfer tube with an inner surface groove according to the first embodiment of the present invention.

【図4】 本発明の実施の形態1による内面溝付伝熱管
の効果を説明するための特性図である。
FIG. 4 is a characteristic diagram for explaining an effect of the heat transfer tube with an inner surface groove according to the first embodiment of the present invention.

【図5】 本発明の実施の形態1による内面溝付伝熱管
を説明するための図である。
FIG. 5 is a diagram for explaining a heat transfer tube with an inner surface groove according to the first embodiment of the present invention.

【図6】 本発明の実施の形態2による内面溝付伝熱管
を説明するための図である。
FIG. 6 is a diagram for explaining a heat transfer tube with an inner surface groove according to a second embodiment of the present invention.

【図7】 本発明の実施の形態2による内面溝付伝熱管
を説明するための図である。
FIG. 7 is a view for explaining an inner grooved heat transfer tube according to a second embodiment of the present invention.

【図8】 本発明の実施の形態3による内面溝付伝熱管
を説明するための図である。
FIG. 8 is a diagram for explaining a heat transfer tube with an inner surface groove according to a third embodiment of the present invention.

【図9】 本発明の実施の形態4による内面溝付伝熱管
を説明するための図である。
FIG. 9 is a view for explaining a heat transfer tube with an inner surface groove according to a fourth embodiment of the present invention.

【図10】 本発明の実施の形態5による内面溝付伝熱
管を説明するための図である。
FIG. 10 is a view for explaining a heat transfer tube with an inner surface groove according to a fifth embodiment of the present invention.

【図11】 本発明の実施の形態5による内面溝付伝熱
管を説明するための図である。
FIG. 11 is a view for explaining a heat transfer tube with an inner surface groove according to a fifth embodiment of the present invention.

【図12】 本発明の実施の形態5による内面溝付伝熱
管を説明するための図である。
FIG. 12 is a view for explaining a heat transfer tube with an inner surface groove according to a fifth embodiment of the present invention.

【図13】 本発明の実施の形態6による内面溝付伝熱
管を説明するための図である。
FIG. 13 is a view for explaining a heat transfer tube with an inner surface groove according to a sixth embodiment of the present invention.

【図14】 従来の内面溝付伝熱管を説明するための図
である。
FIG. 14 is a view for explaining a conventional heat transfer tube with an inner surface groove.

【符号の説明】[Explanation of symbols]

1 伝熱管、 2 管軸、 3、3a、3b 傾斜フィ
ン、 4、4a、4b傾斜溝、 5 堰部材、6、6
a、6b 排液溝、60 排液溝部材、7、7a、7
b、7d、7e 液膜、 9 冷媒の流れる方向を示す
矢印。
DESCRIPTION OF SYMBOLS 1 Heat transfer tube, 2 Tube axis, 3, 3a, 3b Inclined fin, 4, 4a, 4b Inclined groove, 5 Weir member, 6, 6
a, 6b Drainage groove, 60 Drainage groove member, 7, 7a, 7
b, 7d, 7e Liquid film, 9 Arrow indicating the direction in which the refrigerant flows.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石橋 晃 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 中山 雅弘 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akira Ishibashi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Masahiro Nakayama 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Ryo Denki Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 管軸に対して所定の傾斜角をもつ複数の
傾斜溝を管内面に有する内面溝付伝熱管において、上記
傾斜溝と交差してこれと連通し、かつその底面が上記傾
斜溝の底面より深い位置にある排液溝を備えたことを特
徴とする内面溝付伝熱管。
1. A heat transfer tube having an inner surface groove having a plurality of inclined grooves having a predetermined inclination angle with respect to a tube axis on an inner surface of the tube. An inner grooved heat transfer tube having a drain groove located at a position deeper than a bottom surface of the groove.
【請求項2】 排液溝の管軸に対する傾斜角は、傾斜溝
の管軸に対する傾斜角よりも小さいことを特徴とする請
求項1記載の内面溝付伝熱管。
2. The heat transfer tube with an inner surface groove according to claim 1, wherein the inclination angle of the drain groove with respect to the tube axis is smaller than the inclination angle of the inclination groove with respect to the tube axis.
【請求項3】 排液溝を設ける部分の伝熱管の肉厚を、
傾斜溝を設ける部分の伝熱管の肉厚に比べて大きくした
ことを特徴とする請求項1または2記載の内面溝付伝熱
管。
3. The thickness of the heat transfer tube where the drain groove is provided,
The heat transfer tube with an inner groove according to claim 1 or 2, wherein the heat transfer tube has a larger thickness than a portion of the heat transfer tube where the inclined groove is provided.
【請求項4】 排液溝を設けた部分の伝熱管の外面が突
出していることを特徴とする請求項1または2記載の内
面溝付伝熱管。
4. The heat transfer tube with an inner surface groove according to claim 1, wherein an outer surface of the heat transfer tube at a portion where the liquid drain groove is provided protrudes.
JP2000376867A 2000-12-12 2000-12-12 Internal grooved heat transfer tube Expired - Fee Related JP4214677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376867A JP4214677B2 (en) 2000-12-12 2000-12-12 Internal grooved heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376867A JP4214677B2 (en) 2000-12-12 2000-12-12 Internal grooved heat transfer tube

Publications (3)

Publication Number Publication Date
JP2002181478A true JP2002181478A (en) 2002-06-26
JP2002181478A5 JP2002181478A5 (en) 2007-10-11
JP4214677B2 JP4214677B2 (en) 2009-01-28

Family

ID=18845671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376867A Expired - Fee Related JP4214677B2 (en) 2000-12-12 2000-12-12 Internal grooved heat transfer tube

Country Status (1)

Country Link
JP (1) JP4214677B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160375A (en) * 2018-02-13 2019-08-23 丰田自动车株式会社 Heat-exchange device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160375A (en) * 2018-02-13 2019-08-23 丰田自动车株式会社 Heat-exchange device

Also Published As

Publication number Publication date
JP4214677B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
US6026892A (en) Heat transfer tube with cross-grooved inner surface and manufacturing method thereof
JP2534450B2 (en) Heat exchanger tubes
US20110036550A1 (en) Fin and heat exchanger having the same
US6298909B1 (en) Heat exchange tube having a grooved inner surface
WO2019218429A1 (en) Heat exchanger and heat exchange device
US10267573B2 (en) Polyhedral array heat transfer tube
JP3870865B2 (en) Heat exchanger
EP2085733A1 (en) Heat exchanger tube and method of producing the same
JP2002181478A (en) Heat transfer tube having grooved inner surface
JP2580353B2 (en) ERW heat transfer tube and its manufacturing method
JP4126871B2 (en) Internal grooved heat transfer tube
JPH11294986A (en) Heat transfer tube having grooved inner surface
JPH11325754A (en) Heat-exchanger and u-shaped pipe for heat-exchanger
JPH0796995B2 (en) Heat transfer tube for condensation in tube and method of manufacturing the same
JP3286171B2 (en) Heat transfer tube with internal groove
JPH11108579A (en) Pipe with grooved inner face
JP2868163B2 (en) Method of manufacturing heat exchanger tube for heat exchanger
CN212692658U (en) Multi-diversion-groove heat transfer pipe for condensation
CN116154361B (en) Cold plate and battery pack
JPH03170797A (en) Heat transfer tube
JP2922824B2 (en) Heat transfer tube with internal groove
JPH10300379A (en) Heat exchanger tube having groove in internal surface
JP3752046B2 (en) Heat transfer tube and manufacturing method thereof
JP2001050679A (en) Heat conductive pipe for heat exchanger
JPH06101986A (en) Heat exchanger tube with grooved internal wall

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees