JP2002181408A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2002181408A
JP2002181408A JP2000376518A JP2000376518A JP2002181408A JP 2002181408 A JP2002181408 A JP 2002181408A JP 2000376518 A JP2000376518 A JP 2000376518A JP 2000376518 A JP2000376518 A JP 2000376518A JP 2002181408 A JP2002181408 A JP 2002181408A
Authority
JP
Japan
Prior art keywords
refrigerant
valve
temperature
dehumidifying
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000376518A
Other languages
Japanese (ja)
Other versions
JP4265868B2 (en
Inventor
Madoka Odajima
円 小田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2000376518A priority Critical patent/JP4265868B2/en
Publication of JP2002181408A publication Critical patent/JP2002181408A/en
Application granted granted Critical
Publication of JP4265868B2 publication Critical patent/JP4265868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an air conditioner, in which deterioration of the lubricity of a compressor is prevented or restricted, when differential temperature between high outside-temperature and low indoor-temperature is greater than a predetermined value, and the reliability is improved in a dehumidification operation. SOLUTION: The air conditioner comprises heat exchangers, dehumidification equipment, sensors and a controller. The refrigeration cycle is constituted of thermally halved heat exchangers on the use side, that is, a heat exchanger on the first use side and a heat exchanger on the second use side operated respectively as a condenser and an evaporator in the dehumidification operation. A dehumidification restrictor comprises a refrigerant flow path connecting the heat changers to each other at a low pressure loss for the refrigerant flow, a dehumidification restrictor, a valve element closing the refrigerant flow path in dehumidification operation, and a refrigerant restricting path, which is provided with a flow path formed to allow the heat exchangers to communicate with each other, when the low- pressure loss refrigerant path is closed by the valve element. Further sensors and a controller is provided. The sensors sense respectively outdoor and indoor temperatures. The controller opens intermittently the valve element of the dehumidification restrictor, when an outdoor temperature detected by the outdoor temperature sensor is higher than an indoor temperature detected by the indoor temperature sensor, and besides, a differential temperature between them is at least a predetermined value in a dehumidification operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷,暖房および除
湿運転可能のヒートポンプ式空気調和機に係り、特に高
外気温(室外温度)と低室温(室内温度)との温度差が
所定値以上である場合に、除湿運転時に閉弁される除湿
絞り装置の弁体を断続的に開弁させることにより、圧縮
機の潤滑特性の低下の防止ないし抑制を図った空気調和
機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner capable of cooling, heating and dehumidifying operations, and more particularly to a heat pump type air conditioner in which a temperature difference between a high outside temperature (outdoor temperature) and a low room temperature (indoor temperature) is more than a predetermined value. The present invention relates to an air conditioner in which the valve element of a dehumidifying expansion device that is closed during a dehumidifying operation is intermittently opened to prevent or suppress a decrease in lubrication characteristics of a compressor.

【0002】[0002]

【従来の技術】従来、この種の除湿運転可能のヒートポ
ンプ式空気調和機の一例としては、等温ドライサイクル
等の除湿制御運転サイクルを実現するために、除湿運転
時、凝縮器と蒸発器としてそれぞれ作用する隣り合う2
つの室内熱交換器同士の間の冷媒通路に、冷媒を絞る除
湿絞り弁として絞り機能を備えたプリートポート二方弁
等の除湿絞り装置を介装したものがある。この除湿絞り
装置は、上記凝縮器と蒸発器とを、冷媒流に対して低損
失で連結する低損失冷媒連通路を開閉する弁体と、弁座
の接合面等に形成されたV溝等の冷媒絞り通路とを有
し、除湿運転時には弁体を閉じて低損失冷媒通路を閉鎖
し、冷媒絞り通路に冷媒を通して絞るようになってい
る。
2. Description of the Related Art Conventionally, as an example of this type of heat pump type air conditioner capable of dehumidifying operation, in order to realize a dehumidifying control operation cycle such as an isothermal dry cycle, during dehumidifying operation, a condenser and an evaporator are used. Two adjacent working
Some refrigerant passages between two indoor heat exchangers are provided with a dehumidifying expansion device such as a two-way valve having a throttling function as a dehumidifying expansion valve for restricting the refrigerant. The dehumidifying expansion device includes a valve body that opens and closes a low-loss refrigerant communication path that connects the condenser and the evaporator with low loss to a refrigerant flow, a V-groove formed in a joint surface of a valve seat, and the like. During the dehumidifying operation, the valve body is closed to close the low-loss refrigerant passage, and the refrigerant is throttled through the refrigerant throttle passage.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の除湿絞り装置では、例えば外気温(室外温
度)が室温(室内温度)よりも高く、その温度差が大き
いために圧縮機の液戻りが増大し易い場合においても、
除湿運転時には、除湿絞り装置の弁体により低圧力損失
冷媒通路を常時閉弁して冷媒流量を冷媒絞り通路により
常時絞っているために圧縮機の潤滑特性が悪化するとい
う課題がある。
However, in such a conventional dehumidifying expansion device, for example, the outside air temperature (outdoor temperature) is higher than room temperature (indoor temperature), and the temperature difference is large. Even when
During the dehumidification operation, the low pressure loss refrigerant passage is always closed by the valve element of the dehumidification expansion device, and the refrigerant flow is constantly restricted by the refrigerant expansion passage, so that there is a problem that the lubrication characteristics of the compressor deteriorate.

【0004】すなわち、一般に外気温が高い場合には、
冷凍サイクルの高圧側圧力が高くなるので、室外設置の
室外機内の圧縮機における吐出冷媒流量が減少し、冷凍
サイクルを循環する冷媒流量は減少する。一方、室温が
低い場合には、室内設置の室内機内の蒸発器における冷
媒の蒸発量が減少して冷媒が液状態で圧縮機に戻る液戻
り(液バック)量が増大する。しかも、液冷媒はガス状
冷媒に比して潤滑油の含有量(希釈度)が少ないので、
液バック量が多い場合には、冷媒と共に圧縮機内に戻る
潤滑油量が不足して潤滑特性が悪化するという不具合が
発生する。
That is, in general, when the outside temperature is high,
Since the high-pressure side pressure of the refrigeration cycle increases, the flow rate of refrigerant discharged from the compressor in the outdoor unit installed outdoors decreases, and the flow rate of refrigerant circulating in the refrigeration cycle decreases. On the other hand, when the room temperature is low, the amount of refrigerant evaporated in the evaporator in the indoor unit installed indoors decreases, and the amount of liquid returning (liquid back) returning to the compressor in a liquid state increases. Moreover, the liquid refrigerant has a lower lubricating oil content (dilution degree) than the gaseous refrigerant,
When the amount of liquid back is large, a problem occurs in that the amount of lubricating oil returning into the compressor together with the refrigerant is insufficient, and the lubrication characteristics deteriorate.

【0005】図7はこのような外気温(室外温度)と室
温(室内温度)との温度差と、圧縮機内の摺動部等所要
の測定箇所の油膜の厚さとの相対関係を示している。こ
の図7に示すように、高外気温と低室温との温度差が例
えば10℃以上の場合には被測定部の油膜の厚さが薄く
なり、例えば図7中三角形で示される領域では圧縮機の
潤滑特性が悪化する領域を示している。
FIG. 7 shows the relative relationship between the temperature difference between the outside air temperature (outdoor temperature) and room temperature (indoor temperature) and the thickness of the oil film at a required measurement point such as a sliding portion in the compressor. . As shown in FIG. 7, when the temperature difference between the high outside air temperature and the low room temperature is, for example, 10 ° C. or more, the thickness of the oil film of the measured portion becomes thin. This shows an area where the lubrication characteristics of the machine deteriorate.

【0006】そして、このように圧縮機の潤滑特性が悪
化する場合には、冷凍サイクルを循環する冷媒流量を減
少させることにより液戻りを減少させて圧縮機の潤滑性
能を改善させることは可能であるが、この方法では同時
に冷媒流量の減少による空調能力の低下等の新たな不具
合が発生するという課題がある。
When the lubrication characteristics of the compressor are deteriorated as described above, it is possible to improve the lubrication performance of the compressor by reducing the liquid return by reducing the flow rate of the refrigerant circulating in the refrigeration cycle. However, this method has a problem that a new problem such as a decrease in air conditioning capacity due to a decrease in the flow rate of the refrigerant occurs at the same time.

【0007】本発明はこのような事情を考慮されてなさ
れたものであり、その目的は、除湿運転時において高外
気温と低室温との温度差が所定値よりも大きいときに圧
縮機の潤滑特性が悪化するのを防止ないし抑制して信頼
性を向上させることができる空気調和機を提供すること
にある。
The present invention has been made in view of such circumstances, and has as its object to lubricate a compressor when a temperature difference between a high outside air temperature and a low room temperature is larger than a predetermined value during a dehumidifying operation. It is an object of the present invention to provide an air conditioner capable of preventing or suppressing deterioration of characteristics and improving reliability.

【0008】[0008]

【課題を解決するための手段】本願請求項1に係る発明
は、冷凍サイクルを構成する利用側熱交換器を熱的に2
分割してなり、除湿運転時には凝縮器と蒸発器としてそ
れぞれ運転される第1の利用側熱交換器および第2の利
用側熱交換器と、これら第1,第2の利用側熱交換器同
士を冷媒流に対して低圧力損失で連結する低圧力損失冷
媒通路およびこの低圧力損失冷媒通路を除湿運転時に閉
鎖する弁体およびこの弁体による低圧力損失冷媒通路の
閉鎖時に上記第1,第2の利用側熱交換器同士を連通さ
せるように形成されて冷媒流を絞る冷媒絞り通路を備え
た除湿絞り装置と、室外温度を検出する室外温度センサ
と、室内温度を検出する室内温度センサと、を具備して
いる空気調和機において、除湿運転時に上記室内温度セ
ンサにより検出された室内温度よりも上記室外温度セン
サにより検出された室外温度の方が高く、かつこれらの
温度差が所定値以上のときに、上記除湿絞り装置の弁体
の閉弁を断続的に開弁させる制御装置を設けたことを特
徴とする空気調和機である。
According to the first aspect of the present invention, a use-side heat exchanger constituting a refrigeration cycle is thermally cooled by two times.
A first use-side heat exchanger and a second use-side heat exchanger which are divided and operated as a condenser and an evaporator during the dehumidifying operation, respectively, and the first and second use-side heat exchangers are connected to each other; A low pressure loss refrigerant passage connecting the low pressure loss refrigerant passage to the refrigerant flow, a valve body for closing the low pressure loss refrigerant passage during the dehumidifying operation, and the first and second valves when the low pressure loss refrigerant passage is closed by the valve body. A dehumidifying expansion device provided with a refrigerant throttle passage formed to communicate the two use-side heat exchangers and narrowing the refrigerant flow; an outdoor temperature sensor for detecting an outdoor temperature; and an indoor temperature sensor for detecting an indoor temperature. In the air conditioner provided with, the outdoor temperature detected by the outdoor temperature sensor is higher than the indoor temperature detected by the indoor temperature sensor during the dehumidifying operation, and the difference between these temperatures is equal to or less than a predetermined value. When is an air conditioner which is characterized in that a control device for intermittently opening the closing of the valve body of the dehumidifying stop apparatus.

【0009】この発明によれば、除湿運転時、室外温度
(外気温)と室内温度(室温)との温度差が所定値(例
えば11℃)以上であると、制御装置により検出される
と、除湿絞り装置の弁体の閉鎖(閉弁)が制御装置によ
り断続的に開放(開弁)される。
According to the present invention, during the dehumidifying operation, when the control device detects that the temperature difference between the outdoor temperature (outside air temperature) and the indoor temperature (room temperature) is a predetermined value (for example, 11 ° C.) or more, The closing (closing) of the valve element of the dehumidifying expansion device is intermittently opened (opened) by the control device.

【0010】このために、第1の利用側熱交換器から除
湿絞り装置に流入した液冷媒は、その弁体の閉弁時に、
冷媒絞り通路のみを通って流量と圧力が共に絞られてか
ら第2の利用側熱交換器内へ流入し、ここで蒸発してか
ら再び圧縮機内へ戻される。この圧縮機内へ戻される冷
媒流量は除湿絞り弁により絞られているので、減少する
うえに、その冷媒中には潤滑油の含有量が少ない液冷媒
が含まれているので、その分、潤滑油の圧縮機内への戻
し量が減少する。
[0010] For this reason, the liquid refrigerant flowing into the dehumidifying expansion device from the first usage-side heat exchanger, when the valve body is closed,
Both the flow rate and the pressure are reduced through only the refrigerant throttle passage, and then flow into the second use side heat exchanger, where it is evaporated and then returned to the compressor again. Since the flow rate of the refrigerant returned into the compressor is restricted by the dehumidifying throttle valve, the refrigerant flow is reduced and, in addition, the refrigerant contains a liquid refrigerant having a low lubricating oil content. Is reduced back into the compressor.

【0011】しかし、除湿絞り装置の弁体は所定時間閉
弁後、所定時間開弁されて低圧力損失冷媒通路が開通さ
れるので、その開弁時、第1,第2の利用側熱交換器同
士がこの低圧力損失冷媒通路を介して連結される。この
ために、第1の利用側熱交換器から除湿絞り弁に流入し
た冷媒流は、低圧力損失冷媒通路を通って流量と圧力が
殆ど絞られずに第2の利用側熱交換器内へ流入し、ここ
で蒸発してから再び圧縮機内へ戻される。この圧縮機内
へ戻される冷媒流量は除湿絞り装置により殆ど絞られな
いので、その冷媒戻し量が増加する。このために、冷媒
中に含まれている潤滑油の圧縮機内への戻し量も増大す
る。したがって、この後の除湿絞り弁の弁体の開閉の繰
返しにより圧縮機内へ戻される潤滑油量の不足を防止で
きるので、圧縮機の潤滑特性の悪化を防止ないし低減で
きる。
However, since the valve element of the dehumidifying expansion device is closed for a predetermined time and then opened for a predetermined time to open the low-pressure-loss refrigerant passage, the first and second use-side heat exchanges are performed when the valve is opened. The units are connected via the low pressure loss refrigerant passage. For this reason, the refrigerant flow flowing into the dehumidifying throttle valve from the first usage-side heat exchanger flows through the low-pressure-loss refrigerant passage into the second usage-side heat exchanger with almost no reduction in flow rate and pressure. Then, it is evaporated and returned to the compressor again. Since the flow rate of the refrigerant returned into the compressor is hardly reduced by the dehumidifying expansion device, the amount of the returned refrigerant increases. For this reason, the amount of lubricating oil contained in the refrigerant that is returned into the compressor also increases. Therefore, it is possible to prevent shortage of the amount of lubricating oil returned into the compressor due to the repeated opening and closing of the valve body of the dehumidifying throttle valve, thereby preventing or reducing the deterioration of the lubrication characteristics of the compressor.

【0012】請求項2に係る発明は、上記制御装置は、
上記室外温度と上記室内温度との差に応じて上記除湿絞
り装置の弁体の閉時間と開時間とをそれぞれ制御する開
閉時間制御手段を具備していることを特徴とする請求項
1記載の空気調和機である。
[0012] According to a second aspect of the present invention, the control device includes:
2. An opening / closing time control means for controlling a closing time and an opening time of a valve element of the dehumidifying expansion device according to a difference between the outdoor temperature and the indoor temperature, respectively. It is an air conditioner.

【0013】この発明によれば、除湿運転時に閉弁され
る除湿絞り装置の弁体の閉弁時間と、断続的に開弁され
る開弁時間とを、室外温度と室内温度との温度差に応じ
て制御装置により制御するので、室外温度と室内温度と
の温度差に応じた適切な量の潤滑油を冷媒を介して圧縮
機内に戻すことができる。このために、圧縮機の潤滑特
性の向上を図ることができる。
According to the present invention, the valve closing time of the valve body of the dehumidifying expansion device that is closed during the dehumidifying operation and the valve opening time that is intermittently opened are determined by the temperature difference between the outdoor temperature and the indoor temperature. Therefore, an appropriate amount of lubricating oil according to the temperature difference between the outdoor temperature and the indoor temperature can be returned into the compressor via the refrigerant. For this reason, the lubrication characteristics of the compressor can be improved.

【0014】請求項3に係る発明は、上記制御装置は、
上記室外温度と上記室内温度との温度差が所定値以下の
ときに上記圧縮機の運転周波数を所定値高くする圧縮機
制御手段を具備していることを特徴とする請求項1また
は2記載の空気調和機である。
According to a third aspect of the present invention, the control device includes:
The compressor according to claim 1 or 2, further comprising a compressor control means for increasing an operating frequency of the compressor by a predetermined value when a temperature difference between the outdoor temperature and the indoor temperature is equal to or less than a predetermined value. It is an air conditioner.

【0015】この発明によれば、上記請求項1に係る発
明のように除湿運転時に閉弁される除湿絞り弁の弁体を
断続的に開弁し、または請求項2に係る発明のように除
湿絞り装置の開弁時間または閉弁時間を制御する一方、
室外温度と室内温度との差が所定値以下のときには、圧
縮機の運転周波数を所定値高くして回転数を増加させる
ので、高外気温時でも圧縮機から吐出される冷媒流量を
増加させることができる。これにより、圧縮機内へ戻る
冷媒流量が増加するので、この冷媒流量に含まれている
潤滑油量も増加させることができ、圧縮機の潤滑特性の
最適化を図ることができる。
According to the present invention, the valve element of the dehumidifying throttle valve which is closed during the dehumidifying operation is intermittently opened as in the above-mentioned invention, or as in the above-mentioned invention. While controlling the valve opening time or valve closing time of the dehumidifying expansion device,
When the difference between the outdoor temperature and the indoor temperature is equal to or less than a predetermined value, the operating frequency of the compressor is increased by a predetermined value to increase the number of revolutions. Therefore, the flow rate of the refrigerant discharged from the compressor even at a high outdoor temperature must be increased. Can be. As a result, the flow rate of the refrigerant returning into the compressor increases, so that the amount of lubricating oil contained in the refrigerant flow rate can also be increased, and the lubrication characteristics of the compressor can be optimized.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態を図1〜
図7に基づいて説明する。なお、これらの図中、同一ま
たは相当部分には同一符号を付している。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
A description will be given based on FIG. In these figures, the same or corresponding parts are denoted by the same reference characters.

【0017】図3は本発明の一実施形態である空気調和
機1の冷凍サイクル図である。
FIG. 3 is a refrigeration cycle diagram of the air conditioner 1 according to one embodiment of the present invention.

【0018】この図3に示すようにこの空気調和機1
は、図示しないインバータにより運転周波数が制御され
て回転数が制御される圧縮機2、流路切換用の四方弁
3、室外熱交換器4、減圧装置の一例である膨張弁5、
第1の利用側となす第1の室内熱交換器6、開閉弁と絞
り機能を備えた電磁弁等の除湿絞り装置7、第2の利用
側となる第2の室内熱交換器8をこの順に順次冷媒配管
9により接続して冷媒を循環させる閉じた冷凍サイクル
を構成している。
As shown in FIG. 3, this air conditioner 1
Is a compressor 2 whose operation frequency is controlled by an inverter (not shown) to control the number of revolutions, a four-way valve 3 for switching a flow path, an outdoor heat exchanger 4, an expansion valve 5, which is an example of a pressure reducing device,
A first indoor heat exchanger 6 serving as a first use side, a dehumidifying expansion device 7 such as a solenoid valve having an opening / closing valve and a throttle function, and a second indoor heat exchanger 8 serving as a second use side are provided in this manner. A closed refrigeration cycle is constructed in which refrigerant is circulated by being sequentially connected by the refrigerant pipe 9 in order.

【0019】また、室外熱交換器4には、これに外気を
送風して熱交換を促進させるプロペラファン等の室外フ
ァン10を設け、これら室外ファン10と室外熱交換器
4等を収容する図示しない室外機ケース内には外気温
(室外温度)を検出する外気温センサ11とを設けてい
る。一方、室内設置の図示しない室内機ケースには、第
1,第2の室内熱交換器6,8等と、これら第1,第2
の室内熱交換器6,8に室内空気を送風して熱交換を促
進させると共に、熱交換された空調空気を室内へ送風す
る横流ファン等の共通の室内ファン12と、室温(室内
温度)を検出する室温センサ13とを設けている。
Further, the outdoor heat exchanger 4 is provided with an outdoor fan 10 such as a propeller fan for blowing outside air to promote heat exchange, and accommodates the outdoor fan 10 and the outdoor heat exchanger 4 and the like. An outside air temperature sensor 11 for detecting an outside air temperature (outdoor temperature) is provided in an outdoor unit case that is not used. On the other hand, an indoor unit case (not shown) installed indoors includes first and second indoor heat exchangers 6, 8 and the like, and the first and second indoor heat exchangers.
The room air is blown to the indoor heat exchangers 6 and 8 to promote heat exchange, and a common indoor fan 12 such as a cross-flow fan that blows the heat-exchanged conditioned air into the room and the room temperature (room temperature). A room temperature sensor 13 for detection is provided.

【0020】さらに、この冷凍サイクルは、四方弁3の
切換操作により冷媒を、図中実線矢印方向に循環させる
ことにより冷房または除湿運転され、図中破線矢印方向
に循環させることにより暖房運転される。この四方弁3
の切換操作は図示しない室内制御器により制御される。
また、圧縮機2、外気温センサ11、除湿絞り装置7、
室温センサ13には、図中一点鎖線で示す信号線により
制御装置14を電気的に接続している。制御装置14は
後述するように冷暖房運転時に除湿絞り装置7の弁体を
開弁させる一方、除湿運転時に、除湿絞り装置7の弁体
を閉弁させると共に、外気温と室温との温度差が所定値
(例えば11℃)以上であるときに、除湿絞り装置7の
閉弁を所定時間毎(断続的)に開弁させるものである。
Further, in this refrigeration cycle, cooling or dehumidifying operation is performed by circulating the refrigerant in the direction of the solid line arrow by switching operation of the four-way valve 3, and heating operation is performed by circulating the refrigerant in the direction of the broken line arrow in the diagram. . This four-way valve 3
Is controlled by an unillustrated indoor controller.
Further, the compressor 2, the outside air temperature sensor 11, the dehumidifying expansion device 7,
The controller 14 is electrically connected to the room temperature sensor 13 by a signal line indicated by a dashed line in the figure. The control device 14 opens the valve element of the dehumidifying expansion device 7 during the cooling / heating operation as described later, and closes the valve element of the dehumidifying expansion device 7 during the dehumidifying operation, and the temperature difference between the outside air temperature and the room temperature is reduced. When the temperature is equal to or higher than a predetermined value (for example, 11 ° C.), the valve of the dehumidifying expansion device 7 is opened every predetermined time (intermittently).

【0021】図4は上記除湿絞り装置7の閉弁時の概略
縦断面図、図5は同開弁時の概略縦断面図である。これ
らの図に示すように、この除湿絞り装置7は、冷,暖房
運転時に弁体を全開して冷媒を低圧力損失の冷媒通路を
通すことにより、冷媒を殆ど絞らずにそのまま通過させ
る一方、除湿運転時には絞り弁として作用する電磁二方
弁よりなる。
FIG. 4 is a schematic longitudinal sectional view when the dehumidifying expansion device 7 is closed, and FIG. 5 is a schematic longitudinal sectional view when the valve is opened. As shown in these figures, the dehumidifying expansion device 7 allows the refrigerant to pass therethrough with little or no restriction by fully opening the valve body and passing the refrigerant through a low-pressure-loss refrigerant passage during cooling and heating operations. It consists of an electromagnetic two-way valve that acts as a throttle valve during the dehumidifying operation.

【0022】すなわち、図4,図5に示すように除湿絞
り装置7は弁箱15内に第1,第2の2つの弁室16,
17を設け、除湿運転時には第1の弁室16が冷媒の高
圧側となり、第2の弁室17が冷媒の低圧側となる。
That is, as shown in FIGS. 4 and 5, the dehumidifying expansion device 7 includes first and second two valve chambers 16,
In the dehumidifying operation, the first valve chamber 16 is on the high pressure side of the refrigerant, and the second valve chamber 17 is on the low pressure side of the refrigerant.

【0023】この第1の弁室16には図3で示す第1の
室内熱交換器6側の第1の冷媒配管9aを連通自在に連
結する一方、第2の弁室17には第2の室内熱交換器8
側の第2の冷媒配管9bを連通自在に連結している。除
湿運転時には図4,図5中白矢印に示すように第1の冷
媒配管9aが冷媒の入口管となって第1の弁室16が高
圧側となる一方、第2の冷媒配管9bが冷媒の出口管と
なって第2の弁室17が低圧側となる。
The first valve chamber 16 is connected to a first refrigerant pipe 9a of the first indoor heat exchanger 6 shown in FIG. Indoor heat exchanger 8
The second refrigerant pipe 9b on the side is communicably connected. In the dehumidifying operation, the first refrigerant pipe 9a serves as a refrigerant inlet pipe and the first valve chamber 16 is on the high pressure side as shown by the white arrow in FIGS. And the second valve chamber 17 is on the low pressure side.

【0024】そして、図4,図5に示すように第1,第
2の弁室16,17の境界では、第1の弁室13側に突
出した円筒状の弁座部18を弁箱12と一体に連成して
いる。この弁座部18は、その図中上端に弁ポート19
を形成し、この弁ポート19の内側に弁座19aを形成
している。したがって、第1,第2の弁室16,17と
これらを連通させる弁ポート19とは冷媒流を殆ど絞ら
ずにそのまま通す低圧力損失冷媒通路に形成される。一
方、図6にも示すように弁座19aの内周面には第1の
弁室16と第2の弁室17とを連通させる冷媒絞り通路
の一例である複数の切込溝19bを冷媒の流れ方向に平
行、かつ弁ポート19の中心に対して互いに対称位置に
なるようにそれぞれ設けている。これら切込溝19bは
図4に示すように弁体21が弁座19aに着座して弁ポ
ート19を閉じたときに、第1の弁室16と第2の弁室
17とを連通させる狭隘な冷媒絞り通路としてそれぞれ
形成される。
As shown in FIGS. 4 and 5, at the boundary between the first and second valve chambers 16 and 17, a cylindrical valve seat 18 protruding toward the first valve chamber 13 is provided. It is coupled with one. The valve seat 18 has a valve port 19 at the upper end in the figure.
And a valve seat 19 a is formed inside the valve port 19. Therefore, the first and second valve chambers 16 and 17 and the valve port 19 for communicating these are formed as a low-pressure-loss refrigerant passage through which the refrigerant flow is passed without being substantially reduced. On the other hand, as shown in FIG. 6, a plurality of cut grooves 19b, which are an example of a refrigerant throttle passage for communicating the first valve chamber 16 and the second valve chamber 17, are formed on the inner peripheral surface of the valve seat 19a. Are provided in such a manner as to be parallel to the flow direction and to be symmetrical with respect to the center of the valve port 19. As shown in FIG. 4, these cut grooves 19 b allow the first valve chamber 16 to communicate with the second valve chamber 17 when the valve body 21 is seated on the valve seat 19 a and the valve port 19 is closed. These are formed as simple refrigerant throttle passages.

【0025】一方、第1の弁室16内には弁棒20を図
4,図5中上下方向に移動可能に設け、この弁棒20の
先端部(図4,図5では下端部)には弁棒20よりも大
径の円筒状の弁体21を一体に連成している。
On the other hand, a valve stem 20 is provided in the first valve chamber 16 so as to be movable in the vertical direction in FIGS. 4 and 5, and is provided at the tip (the lower end in FIGS. 4 and 5) of the valve stem 20. Is integrally connected to a cylindrical valve element 21 having a larger diameter than the valve rod 20.

【0026】図4,図5に示すように弁体21は弁ポー
ト19よりも若干大きい外径を有する円筒形をなし、そ
の開口先端部には先細のテーパ面21aを形成し、この
弁体テーパ面21aが円錐状弁座19aに液密かつ気密
に着座して弁ポート19を閉塞するようになっている。
As shown in FIGS. 4 and 5, the valve body 21 has a cylindrical shape having an outer diameter slightly larger than the valve port 19, and has a tapered tapered surface 21a formed at the leading end of the opening. The tapered surface 21a is liquid-tightly and air-tightly seated on the conical valve seat 19a to close the valve port 19.

【0027】そして、弁棒20は、その弁体21とは軸
方向反対側の端部(図4,図5では上端部)に、有底円
筒状のプランジャ22の底部を同心状に一体に形成し、
このプランジャ22の上部開口端部内に励磁ガイド23
の中央突出端部23aを同心状に嵌入されるように配置
して、プランジャ22が軸方向(図4では上下方向)に
移動する際に、その移動を励磁ガイド23の中央突出端
部23aによりガイドすると共に、上端のストッパとし
て機能するように構成されている。
The bottom of a cylindrical plunger 22 with a bottom is formed concentrically at the end (the upper end in FIGS. 4 and 5) of the valve stem 20 opposite to the valve body 21 in the axial direction. Forming
An excitation guide 23 is provided in the upper open end of the plunger 22.
Are arranged so as to be fitted concentrically, and when the plunger 22 moves in the axial direction (vertical direction in FIG. 4), the movement is controlled by the center projecting end 23a of the excitation guide 23. It is configured to guide and function as a stopper at the upper end.

【0028】また、プランジャ22の底面と、弁箱15
内に固定されたストッパ24との間において、弁棒20
の外周にコイル状のばね25を外嵌し、このばね25の
ばね力により常時プランジャ22および弁体21を図
4,図5中上方に押し上げるように付勢されており、励
磁ガイド23の外側にはこの励磁ガイド23を励磁する
励磁コイル26を設けている。このために、励磁コイル
26の無励磁時にはばね25のばね力によりプランジャ
22を弁座部18の反対側(図4では上方)へ押し上げ
ることより、弁ポート19、すなわち、低圧力損失冷媒
通路を常時全開させるようになっている。
The bottom of the plunger 22 and the valve box 15
Between the valve stem 20 and the stopper 24 fixed therein.
A coil-shaped spring 25 is externally fitted around the outer periphery of the excitation guide 23, and the spring force of the spring 25 constantly urges the plunger 22 and the valve body 21 to be pushed upward in FIGS. 4 and 5. Is provided with an excitation coil 26 for exciting the excitation guide 23. For this reason, when the excitation coil 26 is not excited, the plunger 22 is pushed up to the opposite side (upward in FIG. 4) of the valve seat 18 by the spring force of the spring 25, so that the valve port 19, that is, the low pressure loss refrigerant passage is formed. It is designed to be fully open at all times.

【0029】図1は上記制御装置14の除湿運転時の制
御プログラムのフローチャートであり、図中S1〜S7
はフローチャートの各ステップを示す。制御装置14は
例えばマイクロプロセッサよりなり、その機能を図示し
ない室内制御器に設けてもよい。
FIG. 1 is a flowchart of a control program at the time of the dehumidifying operation of the control device 14, in which S1 to S7 are shown.
Indicates each step of the flowchart. The control device 14 includes, for example, a microprocessor, and its function may be provided in an indoor controller (not shown).

【0030】まず、図1に示すように制御装置14は、
除湿運転時の制御プログラムを起動してスタートさせる
と、S1で、運転モードとして除湿運転モードが選択さ
れているか否かを、例えば図示しないリモートコントロ
ーラまたはこのリモートコントローラから運転モード信
号を読み出した図示しない室内制御器から繰返し読み出
し、除湿運転モードが選択されていると判断したとき
は、YesとしてS2で除湿絞り装置7の励磁コイル2
6を通電励磁する。すると、励磁ガイド23とプランジ
ャ22との間に発生する大きな電磁力により弁体21を
ばね25のばね力に抗して図4中下方へ押し下げて弁座
19aに着座させて弁ポート19を閉じる。
First, as shown in FIG. 1, the control device 14
When the control program at the time of the dehumidifying operation is started and started, in S1, it is determined whether or not the dehumidifying operation mode is selected as the operation mode, for example, a remote controller (not shown) or an operation mode signal read from the remote controller (not shown). When it is determined that the dehumidifying operation mode has been selected by repeatedly reading from the indoor controller and determining that the dehumidifying operation mode has been selected, the exciting coil 2 of the dehumidifying expansion device 7 is determined in S2.
6 is energized and excited. Then, the large electromagnetic force generated between the excitation guide 23 and the plunger 22 pushes the valve body 21 downward in FIG. 4 against the spring force of the spring 25 to seat the valve seat 19a to close the valve port 19. .

【0031】これにより、弁ポート19に連通する低圧
力損失の冷媒通路が閉鎖されるので、第1(上流側)の
利用熱交換器6で放熱凝縮して液化し除湿絞り装置7の
第1の弁室16に流入した液冷媒が低圧力損失の冷媒通
路を通るのを弁体21により阻止される。
As a result, the low pressure loss refrigerant passage communicating with the valve port 19 is closed, so that the first (upstream) utilization heat exchanger 6 radiates and condenses and liquefies, and the first of the dehumidifying expansion device 7 The liquid refrigerant flowing into the valve chamber 16 is prevented from passing through the low-pressure-loss refrigerant passage by the valve element 21.

【0032】しかし、この弁体21の閉弁時には、複数
の切込溝19bが絞り冷媒通路として弁体21の外周面
と弁座19の内周面との間にそれぞれ形成され、これら
切込溝19bを介して第1の弁室16と第2の弁室17
とが連通する。このために、上流側の第1の室内熱交換
器6内で凝縮して周囲空気(室内空気)に放熱して加熱
する一方で液化した液冷媒が除湿絞り弁7の第1の弁室
16内に流入する。すると、この液冷媒は、弁ポート1
9を閉鎖中の弁体21により低圧力損失冷媒通路を通る
ことが阻止されるので、絞り冷媒通路の各切込溝19b
のみを通り、その際に流量と圧力が絞られて第2の弁室
17を経て第2の室内熱交換器8内へ流入し、ここで蒸
発して周囲空気を冷却する一方で気化し、ガス状態で四
方弁3を経て圧縮機2の吸込口へ戻される。
However, when the valve body 21 is closed, a plurality of cut grooves 19b are formed between the outer peripheral surface of the valve body 21 and the inner peripheral surface of the valve seat 19 as throttle refrigerant passages. The first valve chamber 16 and the second valve chamber 17 are formed via the groove 19b.
Communicates with For this purpose, the liquid refrigerant condensed in the first indoor heat exchanger 6 on the upstream side and radiates heat to ambient air (indoor air) to be heated, while the liquefied liquid refrigerant flows into the first valve chamber 16 of the dehumidifying throttle valve 7. Flows into. Then, the liquid refrigerant is supplied to the valve port 1
9 is prevented from passing through the low-pressure-loss refrigerant passage by the valve body 21 while the valve body 9 is closed.
Only at that time, the flow rate and pressure are reduced and flow into the second indoor heat exchanger 8 via the second valve chamber 17, where it evaporates and cools the surrounding air while evaporating, The gas is returned to the suction port of the compressor 2 via the four-way valve 3 in a gas state.

【0033】したがって、第2の室内熱交換器8の冷却
作用により周囲空気を除湿する一方で、その冷却作用に
より冷却した空気を、第1の室内熱交換器6の放熱作用
により加熱するので、室内機から室内へ吹き出される空
気の温度をあまり下げずに湿度を下げることができる。
Therefore, while the surrounding air is dehumidified by the cooling action of the second indoor heat exchanger 8, the air cooled by the cooling action is heated by the heat dissipation action of the first indoor heat exchanger 6. The humidity can be reduced without significantly lowering the temperature of the air blown into the room from the indoor unit.

【0034】次のS3でこの除湿絞り装置7の閉弁状態
が所定時間、例えば3分間経過したか否か繰返し判断
し、3分経過したときには、冷凍サイクルを循環する冷
媒流が安定したと判断して、Yesとして次のS4へ進
む。
In the next S3, it is repeatedly determined whether or not the valve closing state of the dehumidifying expansion device 7 has passed for a predetermined time, for example, three minutes. When three minutes have passed, it is determined that the refrigerant flow circulating in the refrigeration cycle has become stable. Then, the process proceeds to the next S4 as Yes.

【0035】S4では制御装置14が外気温センサ11
から外気温を読み出す一方、室温センサ13から室温を
読み出し、次の(1)式が成立するか否か判断する。
In S4, the control device 14 controls the outside air temperature sensor 11
While reading the outside air temperature from the room temperature sensor 13, it is determined whether the following equation (1) is satisfied.

【0036】[0036]

【外1】 [Outside 1]

【0037】この(1)式が成立するとき、すなわちY
esのときは圧縮機2の摺動部等の油膜が薄くなり、図
7で示す圧縮機2の潤滑特性が悪化する領域に入ると判
断してS5へ進み、NoのときはS6へ進む。
When the equation (1) is satisfied, that is, when Y
In the case of es, it is determined that the oil film of the sliding portion of the compressor 2 and the like becomes thin and the lubrication characteristic of the compressor 2 is deteriorated as shown in FIG. 7, and the process proceeds to S5. In the case of No, the process proceeds to S6.

【0038】S5では、上記S2で閉じた除湿絞り装置
7の弁体21の断続開閉制御を実行する。すなわち、除
湿絞り装置7の弁体21を所定時間閉弁と開弁とを繰り
返す。すなわち、除湿絞り装置7の閉弁状態を続行する
と、上述したように圧縮機2への液バック量が増大し、
圧縮機2内へ冷媒と共に戻る潤滑油量が不足して圧縮機
2の潤滑特性が悪化するので、弁体21を所定時間閉弁
した後は所定時間開弁させる。
In S5, the intermittent opening / closing control of the valve element 21 of the dehumidifying expansion device 7 closed in S2 is executed. That is, the valve 21 of the dehumidifying expansion device 7 is repeatedly closed and opened for a predetermined time. That is, when the valve closing state of the dehumidifying expansion device 7 is continued, the amount of liquid back to the compressor 2 increases as described above,
Since the lubricating characteristic of the compressor 2 deteriorates due to the shortage of the lubricating oil returning to the compressor 2 together with the refrigerant, the valve element 21 is closed for a predetermined time and then opened for a predetermined time.

【0039】この弁体21の開弁時に、除湿絞り装置7
の弁ポート19が開通し、その弁ポート19に連通する
低圧力損失冷媒通路が開通するので、第1の室内熱交換
器6からの液冷媒はこの低圧力損失冷媒通路を通って冷
媒の圧力と流量が殆ど絞られずに第2の室内熱交換器8
内へ流入し、さらに四方弁3を経て圧縮機2の吸込口へ
戻る。したがって、圧縮機2へ戻る冷媒流量が断続的に
増加するので、この冷媒中に含有されている潤滑油量を
増加させることができる。このために、潤滑油不足によ
る圧縮機2の潤滑特性の悪化を防止ないし抑制すること
ができる。このS5の後は再びS4へ戻り、S4以下の
ステップを繰り返す。すなわち、弁体21の閉弁が断続
的に開弁される。
When the valve 21 is opened, the dehumidifying expansion device 7
Is opened, and the low pressure loss refrigerant passage communicating with the valve port 19 is opened, so that the liquid refrigerant from the first indoor heat exchanger 6 passes through the low pressure loss refrigerant passage and the pressure of the refrigerant is reduced. And the second indoor heat exchanger 8 is hardly throttled.
And then returns to the suction port of the compressor 2 via the four-way valve 3. Therefore, since the flow rate of the refrigerant returning to the compressor 2 increases intermittently, the amount of lubricating oil contained in the refrigerant can be increased. For this reason, it is possible to prevent or suppress deterioration of the lubrication characteristics of the compressor 2 due to insufficient lubricating oil. After S5, the process returns to S4 again, and the steps from S4 are repeated. That is, the closing of the valve body 21 is intermittently opened.

【0040】一方、上記S4でNoのときは、S6で次
の(2)式が成立するか否か判断する。
On the other hand, if No in S4, it is determined in S6 whether the following equation (2) holds.

【0041】[0041]

【外2】室外温度−室内温度≦10℃ ……(2)[Outside 2] Outdoor temperature-Indoor temperature ≤ 10 ° C (2)

【0042】この(2)式が成立する場合、すなわち、
Yesの場合には、除湿絞り装置7の弁体21の閉弁状
態を続行しても圧縮機2へ戻る潤滑油量の不足を招く虞
が少ないので、次のS7で除湿絞り装置7の弁体21の
閉弁を維持続行させる。S7の後は再びS4へ戻り、S
4以下のステップを繰り返す。
When the equation (2) is satisfied, that is,
In the case of Yes, even if the valve body 21 of the dehumidifying expansion device 7 is kept closed, there is little risk that the amount of lubricating oil returning to the compressor 2 will be insufficient. The body 21 is kept closed. After S7, the process returns to S4 again, and S
Repeat steps 4 and below.

【0043】図2は本発明の第2実施形態を説明するた
めのグラフであり、図中、ほぼU字状の曲線は外気温
(T0)と室温(Ta)との温度差の軌跡を示し、横軸
は時間を示している。この第2の実施形態は除湿絞り装
置7の弁体21の閉弁を断続的に開弁制御する場合に、
その開弁時間と閉弁時間とを外気温T0と室温Taとの
温度差T0−Taに対応して制御装置14により制御す
る点に特徴がある。
FIG. 2 is a graph for explaining the second embodiment of the present invention. In the drawing, a substantially U-shaped curve shows the locus of the temperature difference between the outside air temperature (T0) and the room temperature (Ta). , The horizontal axis indicates time. In the second embodiment, when the closing of the valve body 21 of the dehumidifying expansion device 7 is intermittently opened,
It is characterized in that the valve opening time and the valve closing time are controlled by the controller 14 in accordance with the temperature difference T0−Ta between the outside air temperature T0 and the room temperature Ta.

【0044】すなわち、図2に示すように除湿絞り装置
7の弁体21の開閉制御を行うゾーンを、外気温と室温
Taとの温度差T0−Taに基づいて3つのゾーンA,
B,Cに分割している。例えば、外気温と室温Taとの
温度差T0−Taが10℃以上である場合は同弁体21
の閉状態を維持し、弁体21を断続的に開弁させないA
ゾーンと、同温度差T0−Taが11℃〜15℃の場合
は、弁体21の閉弁時間を3分間に設定する一方、開弁
時間を5分間に設定するBゾーンと、同温度差T0−T
aが15℃以上の場合は、弁体21の閉弁時間を5分間
に、開弁時間を5分間にそれぞれ設定するCゾーンの3
つのゾーンにそれぞれ分割している。
That is, as shown in FIG. 2, the zones for controlling the opening and closing of the valve element 21 of the dehumidifying expansion device 7 are divided into three zones A, 3 based on the temperature difference T0-Ta between the outside air temperature and the room temperature Ta.
It is divided into B and C. For example, when the temperature difference T0−Ta between the outside air temperature and the room temperature Ta is 10 ° C. or more, the valve body 21
A in which the valve 21 is not intermittently opened
When the temperature difference T0-Ta is 11 ° C. to 15 ° C., the valve closing time of the valve body 21 is set to 3 minutes, and the zone B and the valve opening time are set to 5 minutes. T0-T
When a is equal to or higher than 15 ° C., the C zone 3 in which the valve closing time of the valve element 21 is set to 5 minutes and the valve opening time is set to 5 minutes, respectively.
Divided into two zones.

【0045】そして、これら各ゾーンA〜Cは温度差T
0−Taが縮小して行く方向にある場合には、その逆に
温度差T0−Taが拡大して行く方向にある場合より
も、その温度差設定範囲を、所定温度、例えば1℃ずつ
高くなるように設定している。例えば、Bゾーンは温度
差T0−Taが拡大して行く方向にあるときは、その温
度差設定範囲が11℃〜15℃に設定されるが、温度差
T0−Taが縮小して行く方向にあるときは、その温度
差設定範囲は10℃〜14℃に設定されている。これと
同様に、A,Cゾーンも温度差T0−Taが縮小して行
く方向にあるときには、それらの温度差の設定値は10
℃,14℃以上にそれぞれ設定される。
Each of the zones A to C has a temperature difference T.
When 0-Ta is in a decreasing direction, the temperature difference setting range is set higher by a predetermined temperature, for example, 1 ° C., than when the temperature difference T0-Ta is in a increasing direction. It is set to become. For example, in the B zone, when the temperature difference T0-Ta is in the direction of increasing, the temperature difference setting range is set to 11 ° C. to 15 ° C., but in the direction in which the temperature difference T0-Ta decreases. In some cases, the temperature difference setting range is set to 10 ° C to 14 ° C. Similarly, when the temperature difference T0-Ta is also decreasing in the A and C zones, the set value of the temperature difference is 10
° C and 14 ° C or higher.

【0046】したがって、この制御方法によれば、除湿
絞り弁7の弁体21の各開閉時間を外気温T0と室温T
aとの温度差T0−Taに応じた適切な量の潤滑油を圧
縮機2内に戻すので、圧縮機2の潤滑特性の最適化を図
ることができる。
Therefore, according to this control method, each opening / closing time of the valve element 21 of the dehumidifying throttle valve 7 is set to the outside temperature T0 and the room temperature T0.
Since an appropriate amount of lubricating oil is returned into the compressor 2 in accordance with the temperature difference T0-Ta from the pressure a, the lubrication characteristics of the compressor 2 can be optimized.

【0047】さらに、外気温T0と室温Taとの温度差
T0−Taが10℃以下の場合には、除湿絞り装置7の
弁体21の閉弁維持と共に、圧縮機2の運転周波数を、
図示しないインバータを介して所定周波数高くする制御
手段を制御装置14に設けてもよい。
Further, when the temperature difference T0−Ta between the outside air temperature T0 and the room temperature Ta is 10 ° C. or less, the valve 21 of the dehumidifying expansion device 7 is kept closed and the operating frequency of the compressor 2 is increased.
Control means for increasing the frequency by a predetermined value via an inverter (not shown) may be provided in the control device 14.

【0048】これによれば、圧縮機2から吐出される冷
媒吐出流量自体が増加し、冷凍サイクルを循環する冷媒
流量が増加するので、除湿絞り装置7の冷媒絞り通路で
ある各切込溝19bにより冷媒流量自体が絞られても、
これら切込溝19bを通って圧縮機2へ戻される冷媒流
量が増加するので、この冷媒中に含有されている潤滑油
量も増加する。このために、圧縮機2の潤滑特性がさら
に向上する。
According to this, the flow rate of the refrigerant discharged from the compressor 2 itself increases, and the flow rate of the refrigerant circulating in the refrigeration cycle increases. Even if the refrigerant flow rate itself is reduced by
Since the flow rate of the refrigerant returned to the compressor 2 through the cut grooves 19b increases, the amount of lubricating oil contained in the refrigerant also increases. For this reason, the lubrication characteristics of the compressor 2 are further improved.

【0049】[0049]

【発明の効果】以上説明したように本発明によれば、除
湿運転時に閉弁される除湿絞り装置の弁体を断続的に開
弁させるので、その開弁時に圧縮機へ戻る冷媒流量を増
加させることができる。このために、この圧縮機へ戻る
冷媒中に含有されている潤滑油量を増加させることがで
きるので、圧縮機の潤滑特性を向上させることができ
る。
As described above, according to the present invention, the valve element of the dehumidifying expansion device which is closed during the dehumidifying operation is intermittently opened, so that the flow rate of the refrigerant returning to the compressor when the valve is opened is increased. Can be done. Therefore, the amount of lubricating oil contained in the refrigerant returning to the compressor can be increased, so that the lubrication characteristics of the compressor can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る空気調和機の除
湿運転制御用プログラムのチャート。
FIG. 1 is a chart of a program for controlling a dehumidifying operation of an air conditioner according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態に係る空気調和機の除
湿運転制御方法を示すグラフ。
FIG. 2 is a graph showing a dehumidification operation control method for an air conditioner according to a second embodiment of the present invention.

【図3】図1で示す除湿運転制御用プログラムを備えた
制御装置を有する空気調和機の冷凍サイクル図。
FIG. 3 is a refrigeration cycle diagram of an air conditioner having a control device provided with the dehumidifying operation control program shown in FIG.

【図4】図1で示す除湿絞り装置の閉弁状態を示す要部
縦断面図。
FIG. 4 is a vertical sectional view showing a main part of the dehumidifying expansion device shown in FIG. 1 in a valve closed state.

【図5】図1で示す除湿絞り装置の開弁状態を示す要部
縦断面図。
FIG. 5 is a vertical sectional view of a main part showing a valve opening state of the dehumidifying expansion device shown in FIG. 1;

【図6】図5のVI矢視図。FIG. 6 is a view taken in the direction of arrow VI in FIG. 5;

【図7】従来の圧縮機における室外温度(外気温)と室
内温度(室温)との温度差と、圧縮機の油膜厚との相対
関係を示すグラフ。
FIG. 7 is a graph showing a relative relationship between a temperature difference between an outdoor temperature (outside air temperature) and an indoor temperature (room temperature) in a conventional compressor and an oil film thickness of the compressor.

【符号の説明】[Explanation of symbols]

1 空気調和機 2 圧縮機 3 四方弁 4 室外熱交換器 5 膨張弁 6 第1の室内熱交換器 7 除湿絞り装置 8 第2の室内熱交換器 9,9a,9b 冷媒配管 11 外気温センサ 13 室温センサ 14 制御装置 16 第1の弁室 17 第2の弁室 18 弁座部 19 弁ポート 19a 弁座 19b 切込溝(冷媒絞り通路) 20 弁棒 21 弁体 23 励磁ガイド 26 励磁コイル DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Expansion valve 6 1st indoor heat exchanger 7 Dehumidification expansion device 8 2nd indoor heat exchanger 9, 9a, 9b Refrigerant piping 11 Outside air temperature sensor 13 Room temperature sensor 14 Control device 16 First valve chamber 17 Second valve chamber 18 Valve seat 19 Valve port 19a Valve seat 19b Cut groove (refrigerant throttle passage) 20 Valve rod 21 Valve element 23 Excitation guide 26 Excitation coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷凍サイクルを構成する利用側熱交換器
を熱的に2分割してなり、除湿運転時には凝縮器と蒸発
器としてそれぞれ運転される第1の利用側熱交換器およ
び第2の利用側熱交換器と、 これら第1,第2の利用側熱交換器同士を冷媒流に対し
て低圧力損失で連結する低圧力損失冷媒通路およびこの
低圧力損失冷媒通路を除湿運転時に閉鎖する弁体および
この弁体による低圧力損失冷媒通路の閉鎖時に上記第
1,第2の利用側熱交換器同士を連通させるように形成
されて冷媒流を絞る冷媒絞り通路を備えた除湿絞り装置
と、 室外温度を検出する室外温度センサと、 室内温度を検出する室内温度センサと、 を具備している空気調和機において、 除湿運転時に上記室内温度センサにより検出された室内
温度よりも上記室外温度センサにより検出された室外温
度の方が高く、かつこれらの温度差が所定値以上のとき
に、上記除湿絞り装置の弁体の閉弁を断続的に開弁させ
る制御装置を設けたことを特徴とする空気調和機。
1. A first use-side heat exchanger and a second use-side heat exchanger which are respectively operated as a condenser and an evaporator during a dehumidifying operation, wherein a use-side heat exchanger constituting a refrigeration cycle is thermally divided into two parts. A use-side heat exchanger; a low-pressure-loss refrigerant passage connecting the first and second use-side heat exchangers with a low-pressure loss to the refrigerant flow; and closing the low-pressure-loss refrigerant passage during a dehumidifying operation. A dehumidifying expansion device provided with a valve element and a refrigerant restriction path formed to communicate the first and second use-side heat exchangers when the low pressure loss refrigerant path is closed by the valve element and for restricting the refrigerant flow; An air conditioner comprising: an outdoor temperature sensor that detects an outdoor temperature; and an indoor temperature sensor that detects an indoor temperature, wherein the outdoor temperature sensor is higher than the indoor temperature detected by the indoor temperature sensor during a dehumidifying operation. To And a controller that intermittently opens the valve of the valve body of the dehumidifying expansion device when the detected outdoor temperature is higher and the difference between the temperatures is equal to or greater than a predetermined value. Air conditioner.
【請求項2】 上記制御装置は、上記室外温度と上記室
内温度との差に応じて上記除湿絞り装置の弁体の閉時間
と開時間とをそれぞれ制御する開閉時間制御手段を具備
していることを特徴とする請求項1記載の空気調和機。
2. The control device further comprises an opening / closing time control means for controlling a closing time and an opening time of a valve element of the dehumidifying expansion device in accordance with a difference between the outdoor temperature and the indoor temperature, respectively. The air conditioner according to claim 1, wherein:
【請求項3】 上記制御装置は、上記室外温度と上記室
内温度との温度差が所定値以下のときに上記圧縮機の運
転周波数を所定値高くする圧縮機制御手段を具備してい
ることを特徴とする請求項1または2記載の空気調和
機。
3. The control device according to claim 1, further comprising: a compressor control unit configured to increase an operating frequency of the compressor by a predetermined value when a temperature difference between the outdoor temperature and the indoor temperature is equal to or less than a predetermined value. The air conditioner according to claim 1 or 2, wherein
JP2000376518A 2000-12-11 2000-12-11 Air conditioner Expired - Fee Related JP4265868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376518A JP4265868B2 (en) 2000-12-11 2000-12-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376518A JP4265868B2 (en) 2000-12-11 2000-12-11 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002181408A true JP2002181408A (en) 2002-06-26
JP4265868B2 JP4265868B2 (en) 2009-05-20

Family

ID=18845364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376518A Expired - Fee Related JP4265868B2 (en) 2000-12-11 2000-12-11 Air conditioner

Country Status (1)

Country Link
JP (1) JP4265868B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152999A (en) * 2013-02-08 2014-08-25 Daikin Ind Ltd Air conditioner
CN106839252A (en) * 2015-12-04 2017-06-13 艾默生网络能源有限公司 A kind of dehumidification control method, device, system and air-conditioning
CN113227663A (en) * 2019-01-02 2021-08-06 大金工业株式会社 Air conditioner and flow path switching valve
CN115406134A (en) * 2021-05-27 2022-11-29 上海兴邺材料科技有限公司 Air conditioning system and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152999A (en) * 2013-02-08 2014-08-25 Daikin Ind Ltd Air conditioner
CN106839252A (en) * 2015-12-04 2017-06-13 艾默生网络能源有限公司 A kind of dehumidification control method, device, system and air-conditioning
CN113227663A (en) * 2019-01-02 2021-08-06 大金工业株式会社 Air conditioner and flow path switching valve
CN113227663B (en) * 2019-01-02 2023-05-23 大金工业株式会社 Air conditioner and flow path switching valve
CN115406134A (en) * 2021-05-27 2022-11-29 上海兴邺材料科技有限公司 Air conditioning system and control method thereof

Also Published As

Publication number Publication date
JP4265868B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
US8220280B2 (en) Air conditioning apparatus and method for determining the amount of refrigerant of air-conditioning apparatus
KR100521620B1 (en) Air conditioner
US6612119B2 (en) Refrigeration circuit with reheat coil
JPWO2018167820A1 (en) Refrigeration cycle device
EP2224191A2 (en) Air conditioner and method of controlling the same
EP3483524A1 (en) Control device of multiple-type air conditioning device, multiple-type air conditioning device, method of controlling multiple-type air conditioning device, and computer program of controlling multiple-type air conditioning device
US20210207831A1 (en) Refrigerant leak detection and mitigation
EP1431677B1 (en) Air conditioner
CN110319541B (en) Unloading adjustment control method of large-displacement variable-frequency multi-split system
KR101737365B1 (en) Air conditioner
CN107676921A (en) Air conditioner and its humidity control method, device
CN107709901B (en) Refrigerating circulatory device
EP3106768B1 (en) Heat source-side unit and air conditioning device
WO2018221052A1 (en) Control device, multi-split air conditioning system provided with same, and control method, and control program
JP4599190B2 (en) Flow rate adjusting device and air conditioner
US8205463B2 (en) Air conditioner and method of controlling the same
JP6577264B2 (en) Air conditioner
WO2018229864A1 (en) Air conditioning device
JP3817392B2 (en) Air conditioner
KR100845847B1 (en) Control Metheod for Airconditioner
WO2017164152A1 (en) Air conditioning operation control device, air conditioning system, air conditioning control method, and program
JP2002181408A (en) Air conditioner
KR100710390B1 (en) Multi air conditioner and Controlling methd for the same
WO2022029845A1 (en) Air conditioner
EP3822553A1 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees