JP2002180597A - Wide-flange beam - Google Patents

Wide-flange beam

Info

Publication number
JP2002180597A
JP2002180597A JP2000377348A JP2000377348A JP2002180597A JP 2002180597 A JP2002180597 A JP 2002180597A JP 2000377348 A JP2000377348 A JP 2000377348A JP 2000377348 A JP2000377348 A JP 2000377348A JP 2002180597 A JP2002180597 A JP 2002180597A
Authority
JP
Japan
Prior art keywords
section
shaped steel
steel material
cross
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000377348A
Other languages
Japanese (ja)
Inventor
Mitsunori Kuriyama
実則 栗山
Nobuyoshi Uno
暢芳 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000377348A priority Critical patent/JP2002180597A/en
Publication of JP2002180597A publication Critical patent/JP2002180597A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wide-flange beam which can maintain the bending stress and bending rigidity of a strong axis without decreasing the same, and can increase the bending stress and bending rigidity of a weak axis. SOLUTION: The wide-flange beam is formed such that the thickness of both external ends of each flange 2 in a width direction is thicker than the thickness of a central portion 4 of the flange, so that the plate thickness ratio of the external ends to the central portion is set to 1.4 to 2.6. Further, the wide-flange beam is strengthened with respect to the bending strength and bending rigidity of the weak axis (y-y axis) relative to a wide-flange beam having an ordinary cross section, i.e., having a similar cross section with flanges of the uniform thickness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼構造建築物の柱
材などに使用されるH形鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an H-shaped steel used for a column member of a steel structure building.

【0002】[0002]

【従来の技術】従来のH形鋼材には、例えば図9に示す
ような通常の断面形状を有するものがあるが、その曲げ
耐力および曲げ剛性は強軸(図9の中立軸x−x)回りと
弱軸(同図の中立軸y−y)回りとの間で極端に異な
る。すなわち、図9に示す寸法(単位はmm)のH形鋼
材の場合、x−x軸回りとy−y軸回りのそれぞれの断
面係数がZx=3330cm3,Zy=1120cm3で
あり、その比はZy/Zx=0.34となり、y−y軸
回りの断面係数Zyが大幅に小さい(Zxの34%にと
どまる)ことから大幅な強度差があることが裏付けられ
る。
2. Description of the Related Art A conventional H-shaped steel material has a normal sectional shape as shown in FIG. 9, for example, and its bending strength and bending rigidity are strong axes (neutral axis xx in FIG. 9). There is an extreme difference between around and around the weak axis (neutral axis y-y in the figure). That is, in the case of an H-shaped steel material having the dimensions shown in FIG. 9 (unit: mm), the respective section coefficients around the xx axis and the yy axis are Zx = 3330 cm3, Zy = 1120 cm3, and the ratio is Zy. /Zx=0.34, and the section modulus Zy around the y-y axis is significantly small (only 34% of Zx), which confirms that there is a large difference in strength.

【0003】したがって、建築物の柱材として用いる場
合には、強軸方向をラーメン構造とし、弱軸方向をブレ
ース構造とするのが一般的である。
[0003] Therefore, when used as a pillar in a building, it is common to use a rigid frame structure in the strong axis direction and a brace structure in the weak axis direction.

【0004】[0004]

【発明が解決しようとする課題】しかし、ブレース構造
は、例えば窓等の開口部を設置する場合に、ブレースが
邪魔になって制約を受けるなど、空間利用の点で不利で
あるため、事務所ビルの柱材にはH形鋼でなく、角形鋼
管や円形鋼管が主として用いられている。そこで、本発
明は、強軸まわりの曲げ耐力、曲げ剛性を減少させずに
維持しつつ、弱軸まわりの曲げ耐力、曲げ剛性を増大可
能なH形鋼の提供を目的とする。
However, the brace structure is disadvantageous in terms of space utilization, for example, when an opening such as a window is installed, the brace is obstructed and restricts the space. Square steel pipes and circular steel pipes are mainly used for building pillars instead of H-section steel. Therefore, an object of the present invention is to provide an H-section steel capable of increasing the bending strength and the bending rigidity around the weak axis while maintaining the bending strength and the bending rigidity around the strong axis without decreasing.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1のH形鋼においては、フランジの幅方向
両外縁部の肉厚が中央部の肉厚よりも厚く形成され、一
様肉厚のフランジを備え同等断面積を有する通常断面の
H形鋼材よりも弱軸回りの曲げ耐力および曲げ剛性が強
化されていることを特徴とする。
In order to solve the above-mentioned problems, in the H-section steel according to the present invention, the thickness of both outer edges in the width direction of the flange is formed to be thicker than the thickness of the central portion, It is characterized in that the bending strength and the bending rigidity around the weak axis are enhanced as compared with the H-section steel material having a uniform thickness and a flange having a uniform thickness and a normal cross section.

【0006】請求項2の発明は、請求項1の発明におい
て、前記フランジの外縁部の肉厚が中央部の肉厚の1.
4〜2.6倍に形成されてなることを特徴とする。請求
項3の発明は、請求項1または2の発明において、H形
鋼が熱間圧延により形成されていることを特徴とする。
According to a second aspect of the present invention, in the first aspect of the invention, the thickness of the outer edge of the flange is 1.
It is characterized by being formed four to 2.6 times. The invention of claim 3 is characterized in that, in the invention of claim 1 or 2, the H-section steel is formed by hot rolling.

【0007】請求項4の発明は、請求項1または2の発
明において、H形鋼が溶接接合により形成されることを
特徴とする。
According to a fourth aspect of the present invention, in the first or second aspect, the H-shaped steel is formed by welding.

【0008】本発明によると、フランジ外縁部を厚肉化
し、中央部を薄肉化することにより質量増加(断面積の
増加)をほとんど伴わずに、強軸回りの曲げ耐力、曲げ
剛性の減少を小さく抑えると共に、弱軸回りの曲げ耐力
および曲げ剛性を著しく増大化することが可能となり、
H形鋼材の適用性が向上する。
According to the present invention, by reducing the thickness of the outer peripheral portion of the flange and the thickness of the central portion, the bending strength and bending rigidity around the strong axis can be reduced with almost no increase in mass (increase in cross-sectional area). While keeping it small, it is possible to significantly increase the bending strength and bending rigidity around the weak axis,
The applicability of the H-section steel material is improved.

【0009】[0009]

【発明の実施の形態】[第1実施形態]本発明の第1実
施形態について図1〜図4を参照して説明する。図1
(a)、図2(a)、図3(a)は本実施形態における
3つのサイズ(断面寸法)のH形鋼材の断面図である。
一方、図1(b)、図2(b)、図3(b)は各図
(a)と断面積(質量)がほぼ同等である従来の通常断
面(フランジの肉厚が一様)のH形鋼材の断面図であ
る。そして、図4は上記3サイズのH形鋼材の断面性能
を通常断面のH形鋼材のそれと比較して示す説明図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] A first embodiment of the present invention will be described with reference to FIGS. FIG.
(A), FIG. 2 (a), and FIG. 3 (a) are cross-sectional views of H-shaped steel materials of three sizes (cross-sectional dimensions) in the present embodiment.
On the other hand, FIGS. 1 (b), 2 (b), and 3 (b) show a conventional normal cross section (flange thickness is uniform) in which the cross-sectional area (mass) is almost the same as each drawing (a). It is sectional drawing of an H-shaped steel material. FIG. 4 is an explanatory view showing the cross-sectional performance of the H-shaped steel material having the three sizes in comparison with that of the H-shaped steel material having the normal cross-section.

【0010】図1(a)に示すように、上記3サイズの
うちの一つであるH形鋼材A1は、上下フランジ2,2
共、その両外縁部3の肉厚が中央部4(ウエブ5近傍
部)の肉厚よりも厚く、かつフランジ長手方向に連続し
て形成されている。肉厚の差は、一様肉厚を備える従来
の通常断面のH形鋼材A(図1(b))と比較すると解
るように、中央部4の肉厚を若干減少させ、両外縁部3
の肉厚を肉厚方向外側へ膨出させて形成されている。中
央部4の肉厚に対する外縁部3の肉厚の比(以下板厚比
という)は1.53(=26/17)である。
As shown in FIG. 1 (a), an H-shaped steel material A1, which is one of the above three sizes, has upper and lower flanges 2,2.
In both cases, the thickness of both outer edge portions 3 is greater than the thickness of the central portion 4 (the portion near the web 5) and is formed continuously in the longitudinal direction of the flange. As can be seen from the difference in wall thickness, as compared with the conventional H-section steel material A having a uniform wall thickness (FIG. 1 (b)), the thickness of the central portion 4 is slightly reduced, and both outer edge portions 3 are formed.
Is formed by bulging the thickness outward in the thickness direction. The ratio of the thickness of the outer edge portion 3 to the thickness of the central portion 4 (hereinafter referred to as the plate thickness ratio) is 1.53 (= 26/17).

【0011】このH形鋼材A1のフランジ2とウエブ5
は、熱間圧延により一体形成されているが、フランジ2
とウエブ5とを溶接接合して形成してもよい。なお、熱
間圧延による形成方法としては、例えば図示しないウエ
ブ用ロールをウエブ5の両側から差し込んで押し付ける
と共に、フランジ2の外側面を形成するフランジ用ロー
ルを各フランジ2の両外側から押し付けて圧延材料を通
過させ、ついで、フランジ2の外縁端を圧延して幅寸法
などを規定寸法に形成する方法が採られる。こうして、
フランジ2の内側面は一平面に形成され、フランジ2の
外側面に凹凸を形成して肉厚を変化させている。前記の
ようにフランジ2の外面側を、中央部外面4aに接続す
る傾斜面6と共に厚肉外縁部3とすると、鍔付ロールな
どの特殊な形状の圧延ロールを、フランジの外側に配置
することができるので、容易に製造することができる。
反対にフランジ2とウエブ5とにより形成された溝内7
側(内面側)のフランジ内面に突出するように厚肉外延
部3を形成する場合は、比較的狭隘な溝7となる場合に
は、鍔付ロールなどの特殊な形状の圧延ロールの配置に
および圧延成形が困難となる場合が考えられる。(な
お、図2以下の実施形態においては、厚肉部がフランジ
長手方向に連続する点等、図1に示す実施形態と同様で
ある部分は、説明の重複をさけるため、簡単に説明す
る。)
The flange 2 and the web 5 of the H-shaped steel A1
Are integrally formed by hot rolling, but the flange 2
And the web 5 may be formed by welding. In addition, as a forming method by hot rolling, for example, a web roll (not shown) is inserted from both sides of the web 5 and pressed, and a roll for forming the outer surface of the flange 2 is pressed from both outer sides of each flange 2 to perform rolling. A method is adopted in which the material is passed through, and then the outer edge of the flange 2 is rolled to form a width dimension or the like to a prescribed dimension. Thus,
The inner surface of the flange 2 is formed in one plane, and irregularities are formed on the outer surface of the flange 2 to change the thickness. When the outer surface side of the flange 2 is the thick outer edge 3 together with the inclined surface 6 connected to the central outer surface 4a as described above, a specially shaped rolling roll such as a flanged roll is disposed outside the flange. Can be easily manufactured.
Conversely, a groove 7 formed by the flange 2 and the web 5
When the thick outer extension 3 is formed so as to protrude from the inner surface of the flange on the side (inner side), when a relatively narrow groove 7 is formed, a specially shaped rolling roll such as a flanged roll is arranged. In some cases, roll forming becomes difficult. (Note that in the embodiments shown in FIG. 2 and subsequent figures, portions that are the same as the embodiment shown in FIG. 1 such as the point that the thick portion is continuous in the longitudinal direction of the flange will be briefly described in order to avoid redundant description. )

【0012】つぎに、H形鋼材A1の寸法および断面性
能について、図4を参照して、従来の(一様肉厚の)通
常断面のH形鋼材A(図4では比較材Aとして示す)の
それと比較して説明する。
Next, the dimensions and cross-sectional performance of the H-shaped steel material A1 will be described with reference to FIG. 4 with reference to a conventional (uniform thickness) H-shaped steel material A having a normal cross section (shown as a comparative material A in FIG. 4). A description will be given in comparison with that of.

【0013】H形鋼材A1,Aの断面積を比較すると、
それぞれ218.2cm2,218.7cm2であって同
等であり、したがって、単位長さ当たりの質量W(以下
単位長さ質量Wという)も、それぞれ171kg/m,
172kg/mであって同等である。つまり、H形鋼材
A1はフランジ2の板厚比をほぼ1.5にするように形
状・寸法を変更しているものの、断面積および単位長さ
質量Wは上記のようにH形鋼材Aと同等に維持されてい
る。
When comparing the cross-sectional areas of the H-shaped steel materials A1 and A,
Each 218.2Cm 2, is equivalent to a 218.7Cm 2, therefore, the mass W (hereinafter referred to as unit length weight W) per unit length also, each 171kg / m,
172 kg / m, which is equivalent. That is, although the shape and dimensions of the H-shaped steel material A1 are changed so that the thickness ratio of the flange 2 is approximately 1.5, the cross-sectional area and the unit length mass W are different from those of the H-shaped steel material A as described above. Equally maintained.

【0014】これにより、H形鋼材A1の強軸(x−x
軸)回りの断面係数Zxは3250cm3であり、通常
断面のH形鋼材AのZx=3330cm3に対して僅か
2%程度の減少であり、ほとんど減少していない。一
方、弱軸(y−y軸)回りの断面係数Zyは1300c
3であり、通常断面のH形鋼材AのZy=1120c
m3よりも約16%増加している。
Thus, the strong axis (xx) of the H-shaped steel material A1 is obtained.
The section modulus Zx around (axis) is 3250 cm 3, which is only a decrease of about 2% from Zx = 3330 cm 3 of the H-shaped steel material A having a normal section, and hardly decreases. On the other hand, the section modulus Zy around the weak axis (yy axis) is 1300c.
m is 3, the H-shaped steel A normal cross-section Zy = 1120c
It is about 16% higher than m3.

【0015】その結果、強軸回りの断面係数Zxに対す
る弱軸回りの断面係数Zyの比は、H形鋼材A1の場合
はZy/Zx=0.40であり、通常断面のH形鋼材A
におけるZy/Zx=0.34に対して19%増加して
いる。
As a result, the ratio of the section modulus Zy around the weak axis to the section modulus Zx around the strong axis is Zy / Zx = 0.40 in the case of the H-section steel A1, and the H-section steel A having the normal section
At 19% with respect to Zy / Zx = 0.34.

【0016】こうして、あるサイズの通常断面のH形鋼
材Aの単位長さ質量(断面積)を変えずに、フランジ2
に板厚比を導入することにより、強軸回りの曲げ耐力、
曲げ剛性をほぼ維持しつつ、弱軸回りの曲げ耐力、曲げ
剛性を大幅に増加させることができる。
In this way, without changing the unit length mass (cross-sectional area) of the H-section steel material A having a normal cross section of a certain size, the flange 2
The bending strength around the strong axis,
The bending strength and bending rigidity around the weak axis can be greatly increased while maintaining the bending rigidity substantially.

【0017】図2(a)は本実施形態の上記3サイズの
うちの別のサイズ(各部の寸法単位はmm)のH形鋼材
B1を示し、図2(b)はH形鋼材B1に対応する通常
断面のH形鋼材Bを示す。H形鋼材B1は断面積、単位
長さ質量を通常断面のH形鋼材Bとほぼ同等に維持しつ
つ、フランジ形状の変更により、板厚比をH形鋼材A1
(図1(a))とほぼ同等の1.45(=32/22)
に設定されている。
FIG. 2A shows an H-shaped steel material B1 of another size (the unit of dimension of each part is mm) of the three sizes of the present embodiment, and FIG. 2B corresponds to the H-shaped steel material B1. 1 shows an H-section steel material B having a normal cross section. The H-shaped steel material B1 maintains the cross-sectional area and the unit length mass substantially equal to those of the H-shaped steel material B of the normal cross-section, and the thickness ratio of the H-shaped steel material A1 by changing the flange shape.
1.45 (= 32/22) almost equivalent to (FIG. 1A)
Is set to

【0018】図4を参照して、H形鋼材B1の断面性能
を通常断面のH形鋼材B(図4では比較材Bとして示
す)のそれと比較すると、H形鋼材B1の強軸回りの断
面係数Zxは3%の減少に抑えられると同時に、弱軸回
りの断面係数Zyは12%の大幅な増加が得られる。そ
して、Zy/Zxについては、H形鋼材BのZy/Zx
=0.16に対してH形鋼材B1ではZy/Zx=0.
18であり、強軸回りの断面係数Zxに対する弱軸回り
の断面係数Zyの比が大幅に15%増加している。
Referring to FIG. 4, comparing the cross-sectional performance of H-shaped steel material B1 with that of H-shaped steel material B having a normal cross section (shown as comparative material B in FIG. 4), the cross-section around the strong axis of H-shaped steel material B1 is shown. The coefficient Zx can be suppressed to a decrease of 3%, and the sectional coefficient Zy around the weak axis can be greatly increased by 12%. And about Zy / Zx, Zy / Zx of H-shaped steel material B
= 0.16, while Zy / Zx = 0.
The ratio of the section modulus Zy around the weak axis to the section modulus Zx around the strong axis is greatly increased by 15%.

【0019】こうして、フランジ2の板厚比をほぼ同等
に設定してある、別のサイズのH形鋼材B1について
も、断面性能はH形鋼材A1(図1(a))と同様に向
上する結果が得られる。
As described above, the cross-sectional performance of the H-shaped steel material B1 of another size, in which the thickness ratio of the flange 2 is set to be substantially equal, is improved similarly to the H-shaped steel material A1 (FIG. 1A). The result is obtained.

【0020】図3(a)は本実施形態の上記3サイズの
うちのさらに別のサイズ(各部の寸法単位はmm)のH
形鋼材C1を示し、図3(b)はH形鋼材C1に対応す
る通常断面のH形鋼材Cを示す。H形鋼材C1は断面
積、単位長さ質量を通常断面のH形鋼材Cとほぼ同等に
維持しつつ、フランジ形状の変更により、板厚比をH形
鋼材A1(図1(a))とほぼ同等の1.54(=37
/24)に設定されている。
FIG. 3A shows an H of still another size (the size unit of each part is mm) of the above three sizes of the present embodiment.
FIG. 3B shows an H-shaped steel material C having a normal cross section corresponding to the H-shaped steel material C1. The H-shaped steel material C1 maintains the cross-sectional area and the unit length mass substantially equal to those of the H-shaped steel material C having the normal cross-section, and the flange thickness is changed to change the plate thickness ratio to that of the H-shaped steel material A1 (FIG. 1 (a)). 1.54 (= 37)
/ 24).

【0021】図4を参照して、H形鋼材C1の断面性能
を通常断面のH形鋼材C(図4では比較材Cとして示
す)のそれと比較すると、H形鋼材C1の強軸回りの断
面係数Zxは3%の減少に抑えられると同時に、弱軸回
りの断面係数Zyは13%の大幅な増加が得られる。そ
して、Zy/Zxについては、H形鋼材CのZy/Zx
=0.11に対してH形鋼材C1ではZy/Zx=0.
13であり、強軸回りの断面係数Zxに対する弱軸回り
の断面係数Zyの比が17%増加している。
Referring to FIG. 4, comparing the cross-sectional performance of the H-shaped steel material C1 with that of the H-shaped steel material C having a normal cross-section (shown as a comparative material C in FIG. 4), the cross-section around the strong axis of the H-shaped steel material C1 is shown. The coefficient Zx can be suppressed to a decrease of 3%, and at the same time, the sectional coefficient Zy around the weak axis can be greatly increased by 13%. And about Zy / Zx, Zy / Zx of H-section steel material C
= 0.11 and Hy steel C1 with Zy / Zx = 0.
13, which is a 17% increase in the ratio of the section modulus Zy around the weak axis to the section modulus Zx around the strong axis.

【0022】こうして、フランジ2の板厚比をほぼ同等
に設定してある、さらに別のサイズのH形鋼材C1につ
いても、断面性能はH形鋼材A1(図1(a))と同様
に向上する結果が得られる。
As described above, the sectional performance of the H-shaped steel material C1 of another size in which the thickness ratio of the flange 2 is set to be substantially equal to that of the H-shaped steel material A1 (FIG. 1A) is improved. Is obtained.

【0023】なお、上記H形鋼材A1,B1,C1のい
ずれの場合も、その板厚比を約1.4〜1.5(26/
17=1.53,32/22=1.45,37/24=
1.54)に設定しているが、この板厚比を1.4未満
に設定すると、従来の通常断面のH形鋼材Aに対する弱
軸回りの曲げ耐力および曲げ剛性(つまりIy,Zy)
の増大率が小さくなり、実構造物に適用するメリットが
少ない。
The thickness ratio of each of the H-shaped steel materials A1, B1, and C1 is about 1.4 to 1.5 (26/26).
17 = 1.53, 32/22 = 1.45, 37/24 =
However, if the thickness ratio is set to less than 1.4, the bending strength and bending stiffness (ie, Iy, Zy) around the weak axis with respect to the conventional H-section steel material A having a normal cross section are set.
The rate of increase is small, and there is little merit to be applied to an actual structure.

【0024】[第2実施形態]本発明の第2実施形態に
ついて図5〜図7および図4を参照して説明する。図5
(a)、図6(a)、図7(a)は本実施形態における
3つのサイズ(断面寸法)のH形鋼材の断面図であり、
各サイズは上記第1実施形態の各対応サイズとほぼ同等
である。一方、図5(b)、図6(b)、図7(b)は
各図(a)に断面積(質量)が同等の従来の通常断面の
H形鋼材の断面図である。そして、図4は上記3つのサ
イズのH形鋼材の断面性能を通常断面のH形鋼材のそれ
と比較して示す説明図である。
[Second Embodiment] A second embodiment of the present invention will be described with reference to FIGS. FIG.
(A), FIG. 6 (a), and FIG. 7 (a) are cross-sectional views of H-shaped steel materials of three sizes (cross-sectional dimensions) in the present embodiment,
Each size is substantially the same as each corresponding size in the first embodiment. On the other hand, FIGS. 5B, 6B, and 7B are cross-sectional views of a conventional normal cross-section H-shaped steel material having the same cross-sectional area (mass) as each of FIGS. FIG. 4 is an explanatory diagram showing the cross-sectional performance of the H-shaped steel materials of the above three sizes in comparison with that of the H-shaped steel material of the normal cross-section.

【0025】図5(a)、図6(a)、図7(a)の各
H形鋼材A2,B2,C2はそれぞれ断面寸法が異なる
が、それぞれの板厚比は約2.3〜2.5(31/13
=2.38,38/15=2.53,42/17=2.
47)に設定されている。この板厚比が上記第1実施形
態の約1.4〜1.5の板厚比と異なるだけであり、そ
の他の寸法は第1実施形態の各対応材とほぼ同じであ
る。
The H-shaped steel members A2, B2 and C2 shown in FIGS. 5 (a), 6 (a) and 7 (a) have different cross-sectional dimensions, respectively, but have a thickness ratio of about 2.3-2. .5 (31/13
= 2.38,38 / 15 = 2.53,42 / 17 = 2.
47). This plate thickness ratio is different from the plate thickness ratio of about 1.4 to 1.5 of the first embodiment, and other dimensions are almost the same as those of the corresponding members of the first embodiment.

【0026】図5(a)は本実施形態のある一つのサイ
ズ(各部の寸法単位はmmである)のH形鋼材A2を示
し、図5(b)はH形鋼材A2に対応する通常断面のH
形鋼材Bを示す。H形鋼材A2は断面積、単位長さ質量
を通常断面のH形鋼材Aとほぼ同等に維持しつつ、フラ
ンジ形状の変更により、板厚比を上記の2.38(=3
1/13)に設定されている。
FIG. 5 (a) shows an H-shaped steel A2 of one size (each unit is mm) of the present embodiment, and FIG. 5 (b) shows a normal cross section corresponding to the H-shaped steel A2. H
The section steel material B is shown. The H-shaped steel material A2 maintains the cross-sectional area and the unit length mass substantially equal to those of the H-shaped steel material A having the normal cross-section, and the flange thickness is changed so that the plate thickness ratio is 2.38 (= 3).
1/13).

【0027】図4を参照して、H形鋼材A2の断面性能
を通常断面のH形鋼材A(図4では比較材Aとして示
す)のそれと比較すると、H形鋼材A2の強軸回りの断
面係数Zxは4%の減少に抑えられると同時に、弱軸回
りの断面係数Zyは32%の大幅な増加が得られる。そ
して、Zy/Zxについては、H形鋼材AのZy/Zx
=0.34に対してH形鋼材A2ではZy/Zx=0.
46であり、強軸回りの断面係数Zxに対する弱軸回り
の断面係数Zyの比が大幅に37%増加している。
Referring to FIG. 4, comparing the cross-sectional performance of H-shaped steel material A2 with that of H-shaped steel material A having a normal cross section (shown as comparative material A in FIG. 4), the cross section around the strong axis of H-shaped steel material A2 is shown. The coefficient Zx is suppressed to a decrease of 4%, and at the same time, the sectional coefficient Zy around the weak axis is greatly increased by 32%. And about Zy / Zx, Zy / Zx of H-shaped steel material A
= 0.34, whereas in the H-shaped steel material A2, Zy / Zx = 0.
46, and the ratio of the section modulus Zy around the weak axis to the section modulus Zx around the strong axis is greatly increased by 37%.

【0028】図6(a)は本実施形態の別のサイズ(各
部の寸法単位はmm)のH形鋼材B2を示し、図6
(b)はH形鋼材B2に対応する通常断面のH形鋼材B
を示す。H形鋼材B2の断面積、単位長さ質量を通常断
面のH形鋼材Bとほぼ同等に維持しつつ、フランジ形状
の変更により、板厚比を上記の2.53(=38/1
5)に設定されている。
FIG. 6A shows an H-shaped steel member B2 of another size (the size unit of each part is mm) of the present embodiment.
(B) is an H-shaped steel material B having a normal cross section corresponding to the H-shaped steel material B2.
Is shown. While maintaining the cross-sectional area and the unit length mass of the H-shaped steel material B2 almost equal to those of the H-shaped steel material B of the normal cross-section, by changing the flange shape, the plate thickness ratio was set to the above 2.53 (= 38/1).
5) is set.

【0029】図4を参照して、H形鋼材B2の断面性能
を通常断面のH形鋼材B(図4では比較材Bとして示
す)のそれと比較すると、H形鋼材B2の強軸回りの断
面係数Zxは4%の減少に抑えられると同時に、弱軸回
りの断面係数Zyは31%の大幅な増加が得られる。そ
して、Zy/Zxについては、H形鋼材BのZy/Zx
=0.16に対してH形鋼材B2ではZy/Zx=0.
21であり、強軸回りの断面係数Zxに対する弱軸回り
の断面係数Zyの比が大幅に36%増加している。
Referring to FIG. 4, when the sectional performance of H-shaped steel material B2 is compared with that of H-shaped steel material B having a normal cross section (shown as comparative material B in FIG. 4), the cross section around the strong axis of H-shaped steel material B2 is shown. The coefficient Zx can be suppressed to a decrease of 4%, and the sectional coefficient Zy around the weak axis can be greatly increased by 31%. And about Zy / Zx, Zy / Zx of H-shaped steel material B
= 0.16, whereas in the H-section steel material B2, Zy / Zx = 0.
The ratio of the section modulus Zy around the weak axis to the section modulus Zx around the strong axis is greatly increased by 36%.

【0030】図7(a)は本実施形態のさらに別のサイ
ズ(各部の寸法単位はmm)のH形鋼材C2を示し、図
7(b)はH形鋼材C2に対応する通常断面のH形鋼材
Cを示す。H形鋼材C2の断面積、単位長さ質量を通常
断面のH形鋼材Cとほぼ同等に維持しつつ、フランジ形
状の変更により、板厚比を上記の2.47(=42/1
7)に設定されている。
FIG. 7A shows an H-shaped steel member C2 of still another size (the size unit of each portion is mm) of the present embodiment, and FIG. 7B shows an H-shaped steel member C2 of a normal cross section corresponding to the H-shaped steel member C2. The section steel material C is shown. While maintaining the cross-sectional area and the unit length mass of the H-shaped steel material C2 substantially equal to those of the H-shaped steel material C of the normal cross-section, by changing the flange shape, the plate thickness ratio can be set to the above 2.47 (= 42/1).
7) is set.

【0031】図4を参照して、H形鋼材C2の断面性能
を通常断面のH形鋼材C(図4では比較材Cとして示
す)のそれと比較すると、H形鋼材C2の強軸回りの断
面係数Zxは5%の減少に抑えられると同時に、弱軸回
りの断面係数Zyは26%の大幅な増加が得られる。そ
して、Zy/Zxについては、H形鋼材CのZy/Zx
=0.11に対してH形鋼材C2ではZy/Zx=0.
15であり、強軸回りの断面係数Zxに対する弱軸回り
の断面係数Zyの比が大幅に32%増加している。
Referring to FIG. 4, comparing the cross-sectional performance of the H-shaped steel material C2 with that of the H-shaped steel material C having a normal cross section (shown as a comparative material C in FIG. 4), the cross section around the strong axis of the H-shaped steel material C2 is shown. The coefficient Zx is suppressed to a decrease of 5%, and at the same time, the sectional coefficient Zy around the weak axis is greatly increased by 26%. And about Zy / Zx, Zy / Zx of H-section steel material C
= 0.11 and Hy steel C2 with Zy / Zx = 0.
The ratio of the section modulus Zy around the weak axis to the section modulus Zx around the strong axis is greatly increased by 32%.

【0032】[第3実施形態]本発明を実施する場合、
図8に示すように、帯状鋼板の両側部上面が帯状鋼板長
手方向に連続した厚肉の厚肉部付帯状鋼板2aからなる
一対のフランジ2の幅方向中央部に、帯状鋼板5aから
なるウエブ5を当接して、上下部の両側で連続した溶接
8により固着した溶接H形鋼Dとしてもよい。
[Third Embodiment] In practicing the present invention,
As shown in FIG. 8, a web made of a strip-shaped steel plate 5 a is provided at the center in the width direction of a pair of flanges 2 made of a thick-walled strip-shaped steel plate 2 a having a thick wall portion whose upper surfaces on both sides of the strip-shaped steel plate are continuous in the longitudinal direction of the strip steel plate. 5 may be brought into contact with each other to form a welded H-section steel D fixed by continuous welding 8 on both sides of the upper and lower portions.

【0033】こうして、本実施形態によれば、フランジ
2の形状を変更して、板厚比を大きく設定することによ
り、通常断面の場合と比較して、強軸回りの断面係数Z
xの減少を小さく抑えられると共に、弱軸回りの断面係
数Zyを大幅に増大できるので、Zy/Zxが従来の通
常断面の場合よりも大幅に増大し、弱軸回りの曲げ耐力
および曲げ剛性が大幅に向上される。
Thus, according to the present embodiment, by changing the shape of the flange 2 and setting the plate thickness ratio to be large, the section modulus Z around the strong axis can be reduced as compared with the case of the normal section.
Since the reduction of x can be suppressed to a small value and the section modulus Zy around the weak axis can be greatly increased, Zy / Zx is greatly increased as compared with the conventional normal section, and the bending strength and bending rigidity around the weak axis are increased. It is greatly improved.

【0034】本発明を実施する場合、H形鋼材の断面
積、単位長さ質量を通常断面のH形鋼材とほぼ同等に維
持しつつ、フランジの幅方向両外縁部の肉厚が中央部の
肉厚よりも厚く形成するフランジ形状の変更により、前
記実施形態と同様な作用効果を奏することができる。
In practicing the present invention, the thickness of the outer edges of the flange in the width direction is increased at the center while maintaining the cross-sectional area and the unit length and mass of the H-shaped steel substantially equal to those of the H-shaped steel having the normal cross-section. By changing the shape of the flange formed so as to be thicker than the wall thickness, the same operation and effect as in the above embodiment can be obtained.

【0035】なお、板厚比が大きすぎると製造上の問題
が生じるので、板厚比を2.6以下とすることが望まし
い。
If the sheet thickness ratio is too large, there is a problem in production. Therefore, the sheet thickness ratio is desirably 2.6 or less.

【0036】[0036]

【発明の効果】以上の説明から明らかなように、本発明
によると、H形鋼材のフランジ外縁部3の肉厚を厚くす
ると共に中央部4の肉厚を薄くすることにより通常断面
のH形鋼材と同等質量で、強軸回りの曲げ耐力、剛性の
減少を小さく抑え、かつ弱軸回りの曲げ耐力、剛性を増
大化することが可能となる。
As is apparent from the above description, according to the present invention, the thickness of the flange outer rim 3 and the thickness of the central portion 4 of the H-shaped steel material are reduced to reduce the thickness of the H-shaped steel. With the same mass as the steel material, it is possible to suppress the reduction of the bending strength and rigidity around the strong axis and increase the bending strength and rigidity around the weak axis.

【0037】これにより、例えば、建築物の柱部材とし
て用いる場合に、弱軸方向にブレースを入れることな
く、ラーメン構造とすることが可能となり、適用性が向
上する。また、閉鎖断面形の鋼管柱と違って、開断面形
であるのでボルト接合なども容易である。
Thus, for example, when used as a pillar member of a building, a ramen structure can be obtained without a brace in the weak axis direction, and the applicability is improved. Further, unlike a steel pipe column having a closed cross section, it has an open cross section, so that bolt connection and the like are easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)図は本発明の第1実施形態における、あ
る一つのサイズのH形鋼材の斜視断面図であり、(b)
図は同等サイズの通常断面のH形鋼材の断面図である。
FIG. 1A is a perspective cross-sectional view of an H-shaped steel material having a certain size according to the first embodiment of the present invention, and FIG.
The figure is a cross-sectional view of an H-shaped steel material having a normal cross section of the same size.

【図2】(a)図は第1実施形態における他のサイズの
H形鋼材の斜視断面図であり、(b)図は同等サイズの
通常断面のH形鋼材の断面図である。
FIG. 2A is a perspective cross-sectional view of an H-shaped steel material of another size according to the first embodiment, and FIG. 2B is a cross-sectional view of an H-shaped steel material of a normal cross-section of the same size.

【図3】(a)図は第1実施形態におけるさらに他のサ
イズのH形鋼材の斜視断面図であり、(b)図は同等サ
イズの通常断面のH形鋼材の断面図である。
FIG. 3A is a perspective cross-sectional view of an H-shaped steel material of still another size in the first embodiment, and FIG. 3B is a cross-sectional view of an H-shaped steel material of a normal cross-section of the same size.

【図4】第1、第2実施形態のH形鋼材の断面性能を通
常断面のH形鋼材のそれと比較して示す説明図である。
FIG. 4 is an explanatory diagram showing the cross-sectional performance of the H-shaped steel material of the first and second embodiments in comparison with that of an H-shaped steel material having a normal cross-section.

【図5】(a)図は本発明の第2実施形態における、あ
る一つのサイズのH形鋼材の斜視断面図であり、(b)
図は同等サイズの通常断面のH形鋼材の断面図である。
FIG. 5A is a perspective sectional view of an H-shaped steel material having a certain size according to the second embodiment of the present invention, and FIG.
The figure is a cross-sectional view of an H-shaped steel material having a normal cross section of the same size.

【図6】(a)図は第2実施形態における他のサイズの
H形鋼材の斜視断面図であり、(b)図は同等サイズの
通常断面のH形鋼材の断面図である。
FIG. 6A is a perspective cross-sectional view of an H-shaped steel material of another size according to the second embodiment, and FIG. 6B is a cross-sectional view of an H-shaped steel material of a normal cross-section of the same size.

【図7】(a)図は第2実施形態におけるさらに他のサ
イズのH形鋼材の斜視断面図であり、(b)図は同等サ
イズの通常断面のH形鋼材の断面図である。
FIG. 7A is a perspective cross-sectional view of an H-shaped steel material of still another size according to the second embodiment, and FIG. 7B is a cross-sectional view of an H-shaped steel material of a normal cross-section of the same size.

【図8】本発明の第3実施形態のH形鋼を示す断面図で
ある。
FIG. 8 is a sectional view showing an H-section steel according to a third embodiment of the present invention.

【図9】従来例のH形鋼材の断面図である。FIG. 9 is a cross-sectional view of a conventional H-shaped steel material.

【符号の説明】 A〜C 従来の通常断面のH形鋼 A1〜D1 本発明の実施形態のH形鋼 2 フランジ 2a 厚板付帯状鋼板 3 外縁部 4 中央部 5 ウエブ 5a 帯状鋼板 6 傾斜面 7 溝 8 溶接DESCRIPTION OF SYMBOLS A to C Conventional H-section steel with normal cross section A1 to D1 H-section steel according to embodiment of the present invention 2 Flange 2a Strip-shaped strip-shaped steel sheet 3 Outer edge 4 Central part 5 Web 5a Strip-shaped steel sheet 6 Inclined surface 7 Groove 8 Welding

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 フランジの幅方向両外縁部の肉厚が中央
部の肉厚よりも厚く形成され、一様肉厚のフランジを備
え同等断面積を有する通常断面のH形鋼材よりも弱軸回
りの曲げ耐力および曲げ剛性が強化されていることを特
徴とするH形鋼。
The thickness of both outer edges in the width direction of the flange is formed to be thicker than the thickness of the central portion, and the axis is weaker than the H-section steel material having a uniform cross-section and a uniform cross-section with a flange having a uniform thickness. An H-shaped steel having enhanced bending strength and bending rigidity around the steel.
【請求項2】 前記フランジの外縁部の肉厚が中央部の
肉厚の1.4〜2.6倍に形成されてなることを特徴と
する請求項1に記載のH形鋼。
2. The H-section steel according to claim 1, wherein a thickness of an outer edge portion of the flange is formed to be 1.4 to 2.6 times a thickness of a central portion.
【請求項3】 熱間圧延により形成されていることを特
徴とする請求項1または2に記載のH形鋼。
3. The H-section steel according to claim 1, which is formed by hot rolling.
【請求項4】 溶接接合により形成されていることを特
徴とする請求項1または2に記載のH形鋼。
4. The H-section steel according to claim 1, wherein the H-section steel is formed by welding.
JP2000377348A 2000-12-12 2000-12-12 Wide-flange beam Withdrawn JP2002180597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000377348A JP2002180597A (en) 2000-12-12 2000-12-12 Wide-flange beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000377348A JP2002180597A (en) 2000-12-12 2000-12-12 Wide-flange beam

Publications (1)

Publication Number Publication Date
JP2002180597A true JP2002180597A (en) 2002-06-26

Family

ID=18846080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000377348A Withdrawn JP2002180597A (en) 2000-12-12 2000-12-12 Wide-flange beam

Country Status (1)

Country Link
JP (1) JP2002180597A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105780968A (en) * 2016-03-15 2016-07-20 兰州理工大学 Steel plate shear wall structure suitable for high-rise/super high-rise buildings in high-seismic-intensity regions
CN109352218A (en) * 2018-10-31 2019-02-19 太原科技大学 A kind of H profile steel material forming method
CN111745296A (en) * 2019-03-28 2020-10-09 南京航空航天大学 Skin pre-arrangement double-boss method for skin-stringer T-shaped joint and welding process thereof
CN112638743A (en) * 2018-07-16 2021-04-09 阿母斯替德铁路公司 Railway truck assembly with i-beam member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105780968A (en) * 2016-03-15 2016-07-20 兰州理工大学 Steel plate shear wall structure suitable for high-rise/super high-rise buildings in high-seismic-intensity regions
CN105780968B (en) * 2016-03-15 2018-09-14 兰州理工大学 Steel plate shear wall structure suitable for highlight lines area high-rise/super high-rise building
CN112638743A (en) * 2018-07-16 2021-04-09 阿母斯替德铁路公司 Railway truck assembly with i-beam member
CN112638743B (en) * 2018-07-16 2024-03-29 阿母斯替德铁路公司 Railway truck assembly with I-beam member
CN109352218A (en) * 2018-10-31 2019-02-19 太原科技大学 A kind of H profile steel material forming method
CN111745296A (en) * 2019-03-28 2020-10-09 南京航空航天大学 Skin pre-arrangement double-boss method for skin-stringer T-shaped joint and welding process thereof

Similar Documents

Publication Publication Date Title
CA2077429C (en) Roll formed metal member
JPS6028980B2 (en) I-beam
JP2005046909A (en) Sheet-metal element made of flexibly rolled material strip
CZ66098A3 (en) Rod-like supporting element and process for producing thereof
JP2011127293A (en) Multilayer light-gauge steel
JP2002180597A (en) Wide-flange beam
JP2011106149A (en) Double-flange light-gauge steel
CN108487539B (en) Perforated oblique seam type steel plate shear wall and application thereof
WO2002032599A1 (en) Metal plate having mesh-type bead for duct and apparatus of producing the same
JPH0231305Y2 (en)
JP4469722B2 (en) Beam
JP2001132112A (en) Brace and method for manufacturing it
WO2013129181A1 (en) Belt line reinforcement
JP7198969B2 (en) Cold roll-formed lightweight section steel with differential thickness cross-section
JP2000170247A (en) Buckling stiffening member
JPH11210158A (en) Steel frame beam structure
KR100385430B1 (en) Metal sheet structural member enhanced heat and noise shield effect
JP2001329656A (en) Buckling stiffening structure of box-shaped cross-section thin plate member
JPH0411073Y2 (en)
JPS61204454A (en) H-shaped steel
JPH10299171A (en) Support member for architectural structure
JPH05195598A (en) Wide flange shape steel with deformed section and manufacturing method
WO1999067478A1 (en) Elongate structural member
JPH10227100A (en) Structural section steel for building
JPH11324220A (en) Structural shape material for construction

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304