JP2002180167A - Titanium band plate and its production method - Google Patents

Titanium band plate and its production method

Info

Publication number
JP2002180167A
JP2002180167A JP2000373881A JP2000373881A JP2002180167A JP 2002180167 A JP2002180167 A JP 2002180167A JP 2000373881 A JP2000373881 A JP 2000373881A JP 2000373881 A JP2000373881 A JP 2000373881A JP 2002180167 A JP2002180167 A JP 2002180167A
Authority
JP
Japan
Prior art keywords
thermal expansion
titanium
rolling
mass
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000373881A
Other languages
Japanese (ja)
Inventor
Atsuhiko Kuroda
篤彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000373881A priority Critical patent/JP2002180167A/en
Publication of JP2002180167A publication Critical patent/JP2002180167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a titanium band plate which has small anisotropy in the coefficient of thermal expansion, and its production method. SOLUTION: The titanium band plate having small plane anisotropy in the coefficient of thermal expansion has a composition containing, by mass, <=0.05% Fe and Ni and Cr in the ranges satisfying the following inequality, and the balance substantially Ti, and has the average crystal grain size of >=30 μm. In its production method, a hot rolled steel plate is cold-rolled at a draft of >=50%: Fe+Ni+Cr<=0.1%; wherein, the elemental symbols denote the content (mass%) of each element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱膨張が発生し、
熱膨張係数の面内異方性(圧延方向とそれと直角方向と
で熱膨張係数に差異が生じる特性)による応力、歪の発
生が問題とな環境で用いるチタン帯板に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing heat
The present invention relates to a titanium strip used in an environment where occurrence of stress and strain due to in-plane anisotropy of a thermal expansion coefficient (a characteristic in which a thermal expansion coefficient differs between a rolling direction and a direction perpendicular thereto) is a problem.

【0002】[0002]

【従来の技術】チタンは軽量で、かつ耐食性に極めて優
れているため時計、メガネおよびレジャー用品等の民生
品、あるいは熱交換器等の化学工業設備の素材等として
様々な用途に活用されている。
2. Description of the Related Art Titanium is used for various purposes as a consumer product such as watches, glasses and leisure goods, or as a material for chemical industrial equipment such as heat exchangers because of its light weight and extremely excellent corrosion resistance. .

【0003】これらの用途には、成形性が要求されるの
で、主として工業用純チタンが用いられている。工業用
チタンには、JISH6400に規定されている1種か
ら3種があり、FeとO(酸素)の含有量で区分されて
いる。
[0003] Since these applications require formability, pure titanium for industrial use is mainly used. There are one to three types of industrial titanium specified in JIS H6400, and they are classified by the content of Fe and O (oxygen).

【0004】前記用途のうち常温以上の温度、特に30
0〜500℃程度の高温環境でチタン板を使用した場合
に、チタン板の方向により膨張度が異なることにより応
力、歪みが発生して変形するという問題がある。
[0004] Among the above-mentioned applications, temperatures higher than normal temperature, especially 30
When a titanium plate is used in a high temperature environment of about 0 to 500 ° C., there is a problem that stress and strain are generated and deformed due to a difference in expansion degree depending on a direction of the titanium plate.

【0005】この問題は、後記する冷延集合組織に起因
しており、チタン帯板の製造過程における圧延方向とそ
の直角方向(板幅方向)において熱膨張係数に差異が生
じることにある。この熱膨張係数の面内異方性(以下、
単に異方性と記す)により、チタン板が高温環境におか
れた場合、圧延方向と直角方向で熱膨張量が異なるため
に、平坦な素材であっても高温において素材が歪むなど
の問題を招いている。
[0005] This problem is caused by the cold-rolled texture described later, and there is a difference in the thermal expansion coefficient between the rolling direction and the direction perpendicular to the rolling direction (the sheet width direction) in the production process of the titanium strip. The in-plane anisotropy of this coefficient of thermal expansion (hereinafter, referred to as
When the titanium plate is placed in a high-temperature environment, the amount of thermal expansion differs in the direction perpendicular to the rolling direction, which causes problems such as distortion of the flat material even at high temperatures. Inviting.

【0006】チタンは結晶構造が稠密六方構造(HC
P)であり、熱膨張係数はHCP構造のC軸方向におい
て、C軸と直角方向に比べて約20%高いことが知られ
ている(Materials Properties Handbook:Titanium All
oys,ASM International 1994)。 チタン帯板は通常の
冷間圧延、再結晶焼鈍により製造すると、前記C軸が圧
延板面垂直方向から幅方向に約35度傾いた方向(以
下、圧延安定方位という)を中心としてC軸が集積する
冷延集合組織を形成する。
[0006] Titanium has a dense hexagonal crystal structure (HC
P), and the thermal expansion coefficient is known to be about 20% higher in the C-axis direction of the HCP structure than in the direction perpendicular to the C-axis (Materials Properties Handbook: Titanium All
oys, ASM International 1994). When a titanium strip is manufactured by ordinary cold rolling and recrystallization annealing, the C axis is oriented around a direction inclined about 35 degrees in the width direction from a direction perpendicular to the surface of the rolled sheet (hereinafter referred to as a rolling stable orientation). Form a cold rolled texture to accumulate.

【0007】前記の通りC軸の方向により熱膨張係数が
変化するとすれば、C軸が板面に垂直な方向に揃った、
いわゆるべーサル(basal)タイプの冷延集合組織を持
つチタンを製造すれば、前記熱膨張係数の異方性を無く
することができると考えられる。しかし、べーサルタイ
プの集合組織を持つチタン帯板を製造するためには、一
般におこなわれている1方向圧延ではなくクロス圧延を
施す方法が知られている[例えば長嶋晋一、鉄と鋼(1
986)、314]。しかし、帯板の製造工程にクロス
圧延を取り込むことは現状の量産型製造ラインではでき
ないので、チタン帯板の熱膨張係数の異方性の問題は解
消されていなく、面内異方性の小さい熱膨張係数を備え
たチタン板の開発が望まれている。
As described above, if the coefficient of thermal expansion changes depending on the direction of the C axis, the C axis is aligned in a direction perpendicular to the plate surface.
It is considered that the production of titanium having a so-called basal-type cold-rolled texture can eliminate the anisotropy of the coefficient of thermal expansion. However, in order to produce a titanium strip having a basal-type texture, a method of performing cross-rolling instead of the generally performed one-way rolling is known [for example, Shinichi Nagashima, Iron and Steel (1
986), 314]. However, it is not possible to incorporate cross-rolling into the manufacturing process of the strip in the current mass production type production line, so the problem of the anisotropy of the thermal expansion coefficient of the titanium strip has not been solved, and the in-plane anisotropy is small. Development of a titanium plate having a thermal expansion coefficient is desired.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、熱膨
張係数の面内異方性の小さいチタン(以下、単にチタン
と記す)帯板とその製造方法を提供することにある。
An object of the present invention is to provide a titanium (hereinafter simply referred to as titanium) strip having a small in-plane anisotropy of thermal expansion coefficient and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明者は、熱膨張係数
の面内異方性の小さいチタン帯板を得るため種々実験、
検討した結果、下記のような知見を得るに至った。
The present inventors conducted various experiments to obtain a titanium strip having a small in-plane anisotropy of the coefficient of thermal expansion.
As a result of the study, the following findings were obtained.

【0010】a)従来の方法でチタンを冷間圧延して、
再結晶焼鈍を施せば圧延安定方向を中心に稠密六方晶の
C軸が集積する集合組織となり面内異性が大きくなる
が、圧延安定方向へのC軸の集積度を高めることにより
熱膨張係数の異方性を小さくすることができる。
A) cold rolling titanium by a conventional method,
If recrystallization annealing is performed, a dense hexagonal C-axis is concentrated around the stable rolling direction and the in-plane isomerism increases, but the degree of thermal expansion coefficient increases by increasing the degree of integration of the C-axis in the stable rolling direction. Anisotropy can be reduced.

【0011】b)冷間圧延後に再結晶焼鈍を施すと結晶
粒の成長が起こるが、このとき再結晶集合組織の発達状
態が熱膨張係数の異方性に影響を及ぼし、平均再結晶粒
径が30μm 未満であるとC軸の圧延安定方向への集積
度を高めることができず、熱膨張係数の異方性が大きく
なるので、平均再結晶粒径は30μm以上とする必要が
ある。
B) When recrystallization annealing is performed after cold rolling, crystal grains grow. At this time, the state of development of the recrystallization texture affects the anisotropy of the coefficient of thermal expansion, and the average recrystallized grain size. If it is less than 30 μm, the degree of integration of the C axis in the rolling stable direction cannot be increased, and the anisotropy of the thermal expansion coefficient becomes large. Therefore, the average recrystallized grain size needs to be 30 μm or more.

【0012】c)冷間圧延における加工率が、熱膨張係
数の異方性に大きく影響しており、総圧下率が50%未
満であると、再結晶焼鈍により結晶粒を成長させた場
合、再結晶粒が30μm以上とならず、C軸の集積方位
のバラツキが大きくなり圧延安定方位を中心としたC軸
の集積度が高くならない。
C) The working ratio in the cold rolling greatly affects the anisotropy of the coefficient of thermal expansion. If the total rolling reduction is less than 50%, when the crystal grains are grown by recrystallization annealing, The recrystallized grains do not become 30 μm or more, the variation of the accumulation direction of the C axis becomes large, and the degree of accumulation of the C axis centering on the stable rolling direction does not increase.

【0013】d)また、化学組成も結晶粒の成長に大き
な影響を与え、Fe含有量が0.05%を超えると一部
の領域でTiFe金属間化合物の析出「あるいは結晶粒
界にβ相の生成が」起こり結晶粒の成長を阻害するた
め、冷間圧延での圧下率を50%以上としても平均結晶
粒径を30μm以上とすることが困難となる。
D) The chemical composition also has a great effect on the growth of crystal grains. When the Fe content exceeds 0.05%, precipitation of TiFe intermetallic compounds occurs in some regions. Is generated, and the growth of crystal grains is hindered, so that it is difficult to make the average crystal grain size 30 μm or more even when the rolling reduction in cold rolling is 50% or more.

【0014】e)また、Ni、Crもβ相の生成を促す
ため結晶粒の成長を阻害する。Fe、NiおよびCr含
有量の合計が0.1%を超えると工業的に30μm以上の
平均再結晶粒径を持つチタン材の製造が困難となる。
E) Ni and Cr also inhibit the growth of crystal grains because they promote the formation of the β phase. If the total content of Fe, Ni and Cr exceeds 0.1%, it becomes industrially difficult to produce a titanium material having an average recrystallized grain size of 30 μm or more.

【0015】本発明はこのような知見に基づきなされた
もので、その要旨は以下の通りである。
The present invention has been made based on such findings, and the gist is as follows.

【0016】(1)質量%で、0.05%以下のFeを
含み、さらにNiおよびCrを下記式を満たす範囲で含
有し、残部が実質的にTiからなり、平均再結晶粒径が
30μm以上である熱膨張係数の異方性にの小さいチタ
ン帯板。
(1) Fe in an amount of 0.05% by mass or less, Ni and Cr in a range satisfying the following formula, the balance being substantially Ti, and an average recrystallized grain size of 30 μm. A titanium strip having a small thermal expansion coefficient anisotropy as described above.

【0017】Fe+Ni+Cr≦0.1% ここで、元素記号は各元素の含有量(質量%)を示す (2)質量%で、0.05%以下のFeを含み、Niお
よびCrを上記式を満たす範囲で含有し、残部が実質的
にTiからなるチタン熱延板を総圧下率50%以上で冷
間圧延し、次いで再結晶焼鈍する熱膨張係数の異方性の
小さいチタン帯板の製造方法。
Fe + Ni + Cr ≦ 0.1% Here, the element symbol indicates the content (% by mass) of each element. (2) In% by mass, containing 0.05% or less of Fe, Ni and Cr are represented by the above formulas. Production of a titanium strip having low anisotropy in thermal expansion coefficient by cold rolling a hot rolled titanium sheet containing Ti to the extent that the content is satisfied and the balance substantially consisting of Ti at a total reduction of 50% or more, and then recrystallization annealing. Method.

【0018】ここで、平均結晶粒径は、JIS G05
52に規定されている切断法により求めた粒径とする。
Here, the average crystal grain size is determined according to JIS G05.
The particle size is determined by the cutting method specified in 52.

【0019】[0019]

【発明の実施の形態】以下、本発明のチタン帯板の化学
組成、結晶粒径および製造条件を規定した理由について
説明する。なお、以下の%表示は全て質量%である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for defining the chemical composition, crystal grain size and manufacturing conditions of the titanium strip of the present invention will be described below. In addition, all the following% indications are mass%.

【0020】化学組成: Fe、NiおよびCr Feは、チタンの強度を向上させるのに必要な元素であ
るが、含有量が0.05%を超えると一部の領域でTi
Fe金属間化合物の析出を起こし、結晶の成長を阻害す
るため、冷間圧延における圧下率を50%以上としても
平均結晶粒径を30μm 以上とすることが困難となる。
したがって、Feの含有量は0.05%以下とした。望
ましくは0.03%以下である。下限は必要な強度と度
を高めることによる経済性の低下に応じて決めればよ
く、特に限定しないが0.002%以上とするのが好ま
しい。
Chemical composition: Fe, Ni and Cr Fe is an element necessary for improving the strength of titanium, but when the content exceeds 0.05%, Ti is
Since precipitation of the Fe intermetallic compound is caused to hinder crystal growth, it is difficult to make the average crystal grain size 30 μm or more even when the rolling reduction in the cold rolling is 50% or more.
Therefore, the content of Fe is set to 0.05% or less. Desirably, it is 0.03% or less. The lower limit may be determined according to the reduction in economics due to the required strength and degree, and is not particularly limited, but is preferably 0.002% or more.

【0021】NiとCrは原料の不物から混入する元素
であるが、基本的に鉄と同じ挙動を示す。しかし、F
e、NiおよびCr含有量の合計が0.1%を超えると
焼鈍時の結晶の成長を阻害するため、冷間圧延における
圧下率を50%以上としても平均結晶粒径を30μm 以
上とすることが困難となる。したがって、Fe+Ni+
Cr≦0.1%とした。
Ni and Cr are elements that are mixed in from the raw material, but basically exhibit the same behavior as iron. But F
If the total content of e, Ni and Cr exceeds 0.1%, crystal growth during annealing is hindered. Therefore, even if the rolling reduction in cold rolling is 50% or more, the average crystal grain size must be 30 μm or more. Becomes difficult. Therefore, Fe + Ni +
Cr ≦ 0.1%.

【0022】なお、NiおよびCrは出来るだけ量の少
ないことが望ましいが、経済的効果、すなわち原料費の
増大を押さえる観点からそれぞれ0.002%以上は含
有する結果となる。
It is desirable that the amounts of Ni and Cr are as small as possible. However, from the viewpoint of economic effects, that is, from the viewpoint of suppressing an increase in raw material costs, the content of each is 0.002% or more.

【0023】本発明のチタン帯板は、上記元素以外は不
物物とチタンである。
The titanium strip of the present invention is an immiscible substance and titanium other than the above elements.

【0024】平均再結晶粒径:平均再結晶粒径を30μ
m以上としたのは、30μm未満であれば稠密六方晶の
C軸の圧延安定方向への集積度を高めることができな
く、熱膨張率の異方性を小さくすることができないため
である。平均結晶粒径の上限は特に限定しなないが、あ
まり大きくなると表面の平滑性が低下するので、100
μm以下とするのが好ましい。
Average recrystallized particle size: Average recrystallized particle size is 30 μm
The reason for setting m or more is that if it is less than 30 μm, the degree of integration of the dense hexagonal C-axis in the rolling stable direction cannot be increased, and the anisotropy of the coefficient of thermal expansion cannot be reduced. The upper limit of the average crystal grain size is not particularly limited, but if it is too large, the smoothness of the surface is reduced.
It is preferably set to be not more than μm.

【0025】次に、製造方法について説明する。Next, the manufacturing method will be described.

【0026】本発明のチタン帯板はチタン熱延板を冷間
圧延することにより得られる。なお、チタンの熱延板
は、通常の製造方法により製造したものでよい。
The titanium strip of the present invention is obtained by cold rolling a hot rolled titanium sheet. In addition, the hot rolled sheet of titanium may be manufactured by a normal manufacturing method.

【0027】すなわち、スポンジチタンと粉砕したスク
ラップとを混合し、プレスでブリケットとし、それらを
電極として溶解して鋳塊にし、プレスによりブルームに
して分塊圧延した後熱間圧延することにより熱延板が得
られる。熱延板は硝ふつ酸水溶液等により酸洗してから
冷間圧延を施す。
That is, sponge titanium and crushed scrap are mixed, pressed into briquettes, melted as electrodes, cast into ingots, bloomed by press, subjected to bulk rolling, and then hot-rolled by hot rolling. A plate is obtained. The hot rolled sheet is pickled with a nitric acid aqueous solution or the like and then subjected to cold rolling.

【0028】冷間圧延における総圧下率を50%以上に
したのは、総圧下率が50%未満であると、焼鈍により
結晶粒を成長させた場合に圧延安定方位にC軸の集積度
が高くならならない結果、熱膨張係数にバラツキが生じ
るからである。望ましくは9%以下である。
The reason why the total rolling reduction in the cold rolling is set to 50% or more is that if the total rolling reduction is less than 50%, the degree of C-axis integration in the stable rolling direction when crystal grains are grown by annealing. This is because the thermal expansion coefficient varies as a result of not becoming high. Desirably, it is 9% or less.

【0029】冷間圧延後の焼鈍は通常の焼鈍条件でよ
く、例えば500〜800℃の温度範囲で数十分間〜2
0数時間保持すればよい。
The annealing after the cold rolling may be performed under ordinary annealing conditions, for example, in a temperature range of 500 to 800.degree.
It may be held for several hours.

【0030】[0030]

【実施例】(実施例1)アルゴンアーク中のプラズマ溶
解により、表1に示す11種類の化学組成を有する厚み
15mm、幅50mm、長さ100mmの小型鋳塊を製
造した。
EXAMPLES (Example 1) Small ingots having a thickness of 15 mm, a width of 50 mm, and a length of 100 mm having the 11 chemical compositions shown in Table 1 were produced by plasma melting in an argon arc.

【0031】[0031]

【表1】 各鋳塊を850℃に加熱し、厚さ5mmまで熱間で圧延
した。さらに700℃で焼鈍後、表面の酸化スケールを
機械加工にて除去して厚さ4mmの冷間圧延用熱延板を
採取した。この熱延板を冷間圧延により厚さ1mmまで
加工した。冷間圧延後のチタン帯板を650℃で24時
間、アルゴン雰囲気中で加熱する再結晶焼鈍を施した。
[Table 1] Each ingot was heated to 850 ° C. and hot rolled to a thickness of 5 mm. After annealing at 700 ° C., the oxide scale on the surface was removed by machining to obtain a hot-rolled sheet having a thickness of 4 mm for cold rolling. This hot rolled sheet was processed to a thickness of 1 mm by cold rolling. The titanium strip after cold rolling was subjected to recrystallization annealing in which the titanium strip was heated at 650 ° C. for 24 hours in an argon atmosphere.

【0032】再結晶焼鈍後のチタン帯板から、圧延方向
と平行および直角方向に熱膨張測定試験片(幅2mm、
長さ5mm)を採取した。併せて縦断面中心部の結晶粒
径を切断法により測定した。
From the titanium strip after recrystallization annealing, a test piece for measuring thermal expansion (width 2 mm, parallel to and perpendicular to the rolling direction)
5 mm in length) were collected. In addition, the crystal grain size at the center of the longitudinal section was measured by a cutting method.

【0033】熱膨張の測定は20℃から500℃の間で
測定した。試験片は毎分12℃の昇温速度で加熱し、試
験片の一端の差動トランスにて変位を測定して熱膨張係
数を測定した。測定の繰り返し数は2回とし平均値を求
めた。結果を表1に併せて示す。
The thermal expansion was measured between 20 ° C. and 500 ° C. The test piece was heated at a rate of 12 ° C./min, and the displacement was measured with a differential transformer at one end of the test piece to measure the coefficient of thermal expansion. The number of repetitions of the measurement was set to two times, and the average value was obtained. The results are shown in Table 1.

【0034】圧延方向と圧延長手方向における熱膨張率
の比が下式の範囲を外れる条件のものは異方性が大きい
と判断して評価×とし、0.95〜1.05の範囲内の
場合を異方性が小さいとして○としたた。 0.95≦長手方向熱膨張係数/幅方向熱膨張係数≦1.
05 表1から明らかなように、本発明で規定する条件を満た
せば熱膨張の異方性が小さいチタン板が得られる。
When the ratio of the coefficient of thermal expansion in the rolling direction and the rolling direction in the longitudinal direction is out of the range of the following expression, it is judged that the anisotropy is large. In the case of No., it was judged that the anisotropy was small, and was evaluated as ○. 0.95 ≦ coefficient of thermal expansion in the longitudinal direction / coefficient of thermal expansion in the width direction ≦ 1.
05 As is clear from Table 1, if the conditions specified in the present invention are satisfied, a titanium plate having small anisotropy in thermal expansion can be obtained.

【0035】(実施例2)実施例1のNo.3で用いた
焼鈍後の熱延板から、実施例1と同様にして厚み4mm
の冷間圧延用のチタン板を採取した。
(Embodiment 2) From the hot-rolled sheet after annealing used in Example 3, the thickness was 4 mm in the same manner as in Example 1.
Of cold rolled titanium plate was collected.

【0036】このチタン板を厚さ1mmまで冷間圧延し
た。このとき、圧延途中で表2に示す各板厚になった時
点で試験用の板を採取した。冷間圧延の途中で採取した
板は試験時に厚み差の影響を避けるためにいずれも板厚
1mmまで機械加工した。
This titanium plate was cold-rolled to a thickness of 1 mm. At this time, a test plate was sampled at the time when each of the plate thicknesses shown in Table 2 was reached during rolling. Each of the sheets sampled during the cold rolling was machined to a sheet thickness of 1 mm in order to avoid the influence of the thickness difference during the test.

【0037】各採取した板を650℃で24時間、アル
ゴン雰囲気中で焼鈍した。なお冷間圧下率は下式にて計
算される。
Each sample was annealed at 650 ° C. for 24 hours in an argon atmosphere. The cold reduction is calculated by the following equation.

【0038】冷間圧下率(%)=[(冷間圧延前板厚−冷間
圧延後板厚)/冷間圧延前板厚]X100 焼鈍したチタン帯板から実施例1と同じ方法により熱膨
張測定と、結晶粒径測定をおこなった。表2に結果を併
せて示す。
Cold rolling reduction (%) = [(thickness before cold rolling−thickness after cold rolling) / thickness before cold rolling] × 100 Heat is applied from the annealed titanium strip in the same manner as in Example 1. Expansion measurement and crystal grain size measurement were performed. Table 2 also shows the results.

【0039】[0039]

【表2】 結果の評価方法は実施例1と同じとした。表2から明ら
かなように、冷間圧下率が50%未満の条件では望まし
い結果が得られないことが分かる。これは冷間圧下率が
低いと、冷間圧延後の素材に蓄積される歪が少ないため
に、焼鈍中の結晶粒の成長が遅れる結果と考えられる。
[Table 2] The method of evaluating the results was the same as in Example 1. As is clear from Table 2, it is understood that a desired result cannot be obtained under the condition that the cold rolling reduction is less than 50%. This is considered to be because, when the cold rolling reduction is low, the strain accumulated in the material after cold rolling is small, so that the growth of crystal grains during annealing is delayed.

【0040】[0040]

【発明の効果】本発明によれば、従来の製造工程を利用
して熱膨張係数の異方性の小さいチタン帯板が得られ、
それを温間または高温環境で使用される装置用部材とし
て用いて優れた効果が発揮される。
According to the present invention, a titanium strip having a small anisotropy in thermal expansion coefficient can be obtained by utilizing a conventional manufacturing process.
An excellent effect is exhibited by using it as a member for a device used in a warm or high temperature environment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 685 C22F 1/00 685Z 691 691B 694 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 685 C22F 1/00 685Z 691 691B 694 694A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】質量%で、0.05%以下のFeを含み、
さらにNiおよびCrを下記式を満たす範囲で含有し、
残部が実質的にTiからなり、平均再結晶粒径が30μ
m以上であることを特徴とする熱膨張発生環境で用いる
チタン帯板。 Fe+Ni+Cr≦0.1% ここで、元素記号は各元素の含有量(質量%)を示す
(1) Fe content of not more than 0.05% by mass,
Further, Ni and Cr are contained within a range satisfying the following formula,
The balance is substantially composed of Ti, and the average recrystallized grain size is 30 μm.
m or more, and a titanium strip used in a thermal expansion environment. Fe + Ni + Cr ≦ 0.1% Here, the element symbol indicates the content (% by mass) of each element.
【請求項2】質量%で、0.05%以下のFeを含み、
NiおよびCrを下記式を満たす範囲で含有し、残部が
実質的にTiからなるチタン熱延帯板を総圧下率50%
以上で冷間圧延し、次いで再結晶焼鈍することを特徴と
する熱膨張発生環境で用いるチタン帯板の製造方法。 Fe+Ni+Cr≦0.1% ここで、元素記号は各元素の含有量(質量%)を示す
2. The composition according to claim 1, comprising 0.05% by mass or less of Fe.
A hot-rolled titanium strip containing Ni and Cr in a range satisfying the following formula, and the balance substantially consisting of Ti, is subjected to a total rolling reduction of 50%.
A method for producing a titanium strip for use in a thermal expansion environment, comprising cold rolling and recrystallization annealing as described above. Fe + Ni + Cr ≦ 0.1% Here, the element symbol indicates the content (% by mass) of each element.
JP2000373881A 2000-12-08 2000-12-08 Titanium band plate and its production method Pending JP2002180167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000373881A JP2002180167A (en) 2000-12-08 2000-12-08 Titanium band plate and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000373881A JP2002180167A (en) 2000-12-08 2000-12-08 Titanium band plate and its production method

Publications (1)

Publication Number Publication Date
JP2002180167A true JP2002180167A (en) 2002-06-26

Family

ID=18843174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000373881A Pending JP2002180167A (en) 2000-12-08 2000-12-08 Titanium band plate and its production method

Country Status (1)

Country Link
JP (1) JP2002180167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025269A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Press forming method for titanium sheet
CN114589213A (en) * 2022-03-09 2022-06-07 新疆湘润新材料科技有限公司 Preparation method of ultrathin titanium strip for hydrogen fuel cell bipolar plate
CN115874129A (en) * 2023-01-09 2023-03-31 湖南湘投金天钛金属股份有限公司 Preparation method of titanium strip coil for plate heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025269A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Press forming method for titanium sheet
CN114589213A (en) * 2022-03-09 2022-06-07 新疆湘润新材料科技有限公司 Preparation method of ultrathin titanium strip for hydrogen fuel cell bipolar plate
CN114589213B (en) * 2022-03-09 2023-11-24 新疆湘润新材料科技有限公司 Preparation method of ultrathin titanium strip for bipolar plate of hydrogen fuel cell
CN115874129A (en) * 2023-01-09 2023-03-31 湖南湘投金天钛金属股份有限公司 Preparation method of titanium strip coil for plate heat exchanger
CN115874129B (en) * 2023-01-09 2023-06-09 湖南湘投金天钛金属股份有限公司 Preparation method of titanium strip coil for plate heat exchanger

Similar Documents

Publication Publication Date Title
CA2272730C (en) .alpha. + .beta. type titanium alloy, a titanium alloy strip, coil-rolling process of titanium alloy, and process for producing a cold-rolled titanium alloy strip
KR101765729B1 (en) Method for the production of a metal foil
JPH06102814B2 (en) Oxidation resistant titanium alloy
JP5625646B2 (en) Titanium plate excellent in rigidity in the rolling width direction and method for producing the same
EP3292227B1 (en) Beta titanium alloy sheet for elevated temperature applications
WO2005118898A1 (en) Titanium alloy and method of manufacturing titanium alloy material
JP2019218617A (en) Aluminum alloy fin material for heat exchanger excellent in buckling resistance and manufacturing method therefor
JPH0321623B2 (en)
JP5610789B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JPH0321622B2 (en)
JP2002180167A (en) Titanium band plate and its production method
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
JP4304425B2 (en) Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet
CN111902550B (en) Titanium alloy and method for producing same
CN113403506A (en) Method for preparing explosion-proof sheet and turnover sheet for battery cover plate by 8-series aluminum alloy strip
JP2936899B2 (en) Titanium alloy with excellent corrosion resistance and workability to non-oxidizing acids
JPS6223951A (en) Co-base alloy excellent in wear resistance
JPH01149934A (en) Heat-resistant continuous casting mold and its production
TWI796118B (en) Titanium alloy plate and titanium alloy coil and manufacturing method of titanium alloy plate and titanium alloy coil
JPS60145348A (en) High-strength thin al alloy plate having superior formability and corrosion resistance and its manufacture
JP3303534B2 (en) Industrial pure titanium and its production method
JPH0798975B2 (en) Method for producing Fe-Ni alloy
JP3480698B2 (en) Cr based alloy with excellent strength-ductility balance at high temperature
JP3297012B2 (en) High strength titanium alloy with excellent cold rollability
TWI817626B (en) Titanium alloy plate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070723

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090911

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302