JP2002177960A - Ammonia treatment method for brine incidental to natural gas after iodine collection work - Google Patents

Ammonia treatment method for brine incidental to natural gas after iodine collection work

Info

Publication number
JP2002177960A
JP2002177960A JP2000381242A JP2000381242A JP2002177960A JP 2002177960 A JP2002177960 A JP 2002177960A JP 2000381242 A JP2000381242 A JP 2000381242A JP 2000381242 A JP2000381242 A JP 2000381242A JP 2002177960 A JP2002177960 A JP 2002177960A
Authority
JP
Japan
Prior art keywords
brine
natural gas
ammonia
iodine
electrodialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000381242A
Other languages
Japanese (ja)
Inventor
Kazuo Igari
和雄 猪狩
Koji Takayama
孝司 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ise Chemicals Corp
Original Assignee
Ise Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ise Chemicals Corp filed Critical Ise Chemicals Corp
Priority to JP2000381242A priority Critical patent/JP2002177960A/en
Publication of JP2002177960A publication Critical patent/JP2002177960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which is capable of efficiently treating the ammonia in brine incidental to natural gas by using a method of electrodialysis. SOLUTION: The ammonia in the brine incidental to the natural gas after iodine collection work is treated by a process step of removing undissolved matter from the brine incidental to the natural gas after the iodine collection work, a process step of concentrating the dissolved matter containing the ammonia in the brine incidental to the natural gas removed of the undissolved matter by the electrodialysis using an ion exchange membrane and a process step of underground reducing the condensate of the dissolved matter containing the ammonia.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明はヨウ素採取作業後の天
然ガス付随かん水のアンモニア処理方法、詳しくはヨウ
素採取作業後の天然ガス付随かん水から規制物質の一つ
であるアンモニアを効率的かつ低コストで処理する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating ammonia with natural gas accompanying irrigation after iodine sampling, and more particularly, to efficiently and inexpensively removing ammonia, one of the regulated substances, from natural gas accompanying brine after iodine sampling. On how to handle.

【0002】[0002]

【従来の技術】ヨウ素は地中に埋蔵されている天然ガス
付随かん水中に多く含まれており、工業的には主に追い
出し法によって採取製造されている。これは地下から汲
み上げられた天然ガス付随かん水に塩素ガスを混合し、
ヨウ素を酸化させて遊離させ、かん水を収容した塔の下
部から空気を送り、ヨウ素を液中から追い出し、空気に
より塔内を吸収液側に移動させ、亜硫酸水素ナトリウム
をこれに添加し、還元して、ヨウ素を吸収液中に溶解さ
せ、ヨウ素イオン濃度が上昇した吸収液を次工程に送っ
てヨウ素を製造する方法であるが、この方法は莫大な量
の天然ガス付随かん水からヨウ素を採取するには最適な
方法である。
2. Description of the Related Art Iodine is contained abundantly in natural gas accompanying brine buried in the ground, and is industrially mainly produced and extracted by an expulsion method. This mixes chlorine gas with natural gas accompanying brine pumped from underground,
The iodine is oxidized and liberated, and air is sent from the bottom of the tower containing the brine, the iodine is expelled from the liquid, the inside of the tower is moved to the absorption liquid side by air, and sodium hydrogen sulfite is added to this, and reduced. Then, iodine is dissolved in the absorbing solution, and the absorbing solution with the increased iodine ion concentration is sent to the next step to produce iodine.This method extracts iodine from a huge amount of natural gas accompanying brine. This is the best method.

【0003】一方、ヨウ素を採取した後の天然ガス付随
かん水は何ら特別な処理をせず、そのまま海洋へ放流す
るのが普通であったが、ヨウ素採取後のかん水には微量
ながらアンモニアが含有されており、海洋の富栄養化防
止の観点から、このアンモニアを含んだかん水の海洋放
流は好ましくないとして規制される方向にある。なお、
この規制の動きは、海中において、海中微生物の作用な
どにより、アンモニアがちっ素に分解され、ちっ素酸化
物によって海洋が富栄養化されるという仮説あるいは懸
念に基づくものである。
[0003] On the other hand, natural water accompanying natural gas after iodine has been collected is usually discharged directly to the ocean without any special treatment. However, the irrigation water after iodine collection contains a small amount of ammonia. From the viewpoint of preventing eutrophication of the ocean, the release of this ammonia-containing brine into the ocean is being regulated as undesirable. In addition,
This regulatory movement is based on the hypothesis or concern that ammonia is decomposed into nitrogen in the sea by the action of marine microorganisms and the ocean is eutrophic by nitrogen oxides.

【0004】[0004]

【発明が解決しようとする課題】水中に溶存しているア
ンモニアの処理方法としては、ゼオライト吸着法、逆浸
透法、ストリッピング法等があるが、ヨウ素を採取した
後の天然ガス付随かん水からのアンモニアの処理に適用
しようとする場合、かん水中に共存する塩が高濃度であ
る為、逆浸透法、ゼオライト吸着法では処理能力が低下
してしまうという問題があった。一方、ストリッピング
法では、PH調整の為のアルカリ調整剤や中和剤等の薬
品を多量に用いなければならず、経済性において著しく
劣っていた。
As a method for treating ammonia dissolved in water, there are a zeolite adsorption method, a reverse osmosis method, a stripping method, and the like. When applying to the treatment of ammonia, there is a problem that the treatment capacity is reduced in the reverse osmosis method and the zeolite adsorption method because the salt coexisting in the brine has a high concentration. On the other hand, in the stripping method, a large amount of chemicals such as an alkali adjuster and a neutralizing agent for adjusting the pH must be used, which is extremely inferior in economical efficiency.

【0005】更に、アンモニアを分解する方法として活
性汚泥法もあるが、この方法では処理に長い時間を要す
る上に、温度を定常に保たなければならず、その為の熱
量が莫大なものとなり、設置の為に広大な面積を必要と
していた。叉、莫大な量の汚泥が発生し、その処理にも
莫大な費用が必要であった。
Further, there is an activated sludge method as a method for decomposing ammonia. However, this method requires a long time for treatment, requires a constant temperature, and requires an enormous amount of heat. Required a large area for installation. In addition, an enormous amount of sludge is generated, and its disposal requires enormous costs.

【0006】もし、これら方法によってアンモニアの処
理を行い、処理費用をヨウ素製造コストに転嫁したとす
るなら、製品としてのヨウ素の価格は数倍にはね上がっ
てしまうのは必定であり、現実にはこれら方法の採用は
到底不可能であった。従って、これらいずれの方法も、
莫大な量を扱うことになるヨウ素製造工程における天然
ガス付随かん水のアンモニアの処理には不適であった。
[0006] If the treatment of ammonia is carried out by these methods and the treatment cost is passed on to the production cost of iodine, it is inevitable that the price of iodine as a product will jump several times. It was impossible to adopt these methods at all. Therefore, either of these methods
It was unsuitable for treating ammonia with natural gas-associated brine in the iodine production process, which would handle huge quantities.

【0007】本発明者はヨウ素製造工程において発生す
る莫大な量の天然ガス付随かん水中のアンモニアを低コ
ストかつ効率的に処理する方法を鋭意研究した結果、こ
の種の処理作業には今まで全く用いられていなかった電
気透析の方法を用いてこの天然ガス付随かん水中のアン
モニアを効率的に処理できる方法を確立し、本発明とし
てここに提案するものである。
[0007] The present inventor has conducted intensive studies on a method for efficiently and inexpensively treating the enormous amount of ammonia generated in the iodine-producing process with ammonia in the brine accompanying natural gas. A method for efficiently treating ammonia in the natural gas-associated brine using an electrodialysis method that has not been used has been established, and is proposed herein as the present invention.

【0008】[0008]

【課題を解決するための手段】ヨウ素採取作業後の天然
ガス付随かん水から不溶解物を除く工程と、不溶解物を
除去した天然ガス付随かん水中のアンモニアを含む溶解
物をイオン交換膜を用いた電気透析によって濃縮する工
程と、アンモニアを含む溶解物濃縮液を地下還元する工
程、とにより天然ガス付随かん水中のアンモニアを処理
せんとするものである。
[Means for Solving the Problems] A step of removing insolubles from the natural gas accompanying brine after the iodine sampling operation, and using an ion exchange membrane for the dissolved matter containing ammonia in the natural gas accompanying brine with the insolubles removed. The step of concentrating by electrodialysis and the step of underground reduction of a solution concentrate containing ammonia are used to treat ammonia in the brine supplied with natural gas.

【0009】図1はこの発明に係るヨウ素採取作業後の
天然ガス付随かん水のアンモニア処理方法に用いる処理
プラントのブロック図である。
FIG. 1 is a block diagram of a treatment plant used in the method for treating ammonia with natural gas accompanying brine after an iodine sampling operation according to the present invention.

【0010】図中1は不溶解物除去槽、2は脱不溶解物
液槽、3は溶解物濃縮室、4は脱溶解物室、5は溶解物
濃縮液槽、9は処理水貯槽であり、溶解物濃縮室3と脱
溶解物室4は電気透析槽10の中に形成されている。
In the figure, 1 is an insoluble material removal tank, 2 is a de-insoluble material liquid tank, 3 is a dissolved substance concentration chamber, 4 is a de-dissolved substance chamber, 5 is a dissolved substance concentrated liquid tank, and 9 is a treated water storage tank. In addition, the lysate concentration chamber 3 and the delysate chamber 4 are formed in an electrodialysis tank 10.

【0011】追い出し法などによってヨウ素が採取され
た後の天然ガス付随かん水は不溶解物除去槽1に送られ
る。
After the iodine has been collected by the flushing method or the like, the brine attached to the natural gas is sent to the insoluble matter removal tank 1.

【0012】天然ガス付随かん水中には有機性分解物な
どの不溶解物が含まれており、不溶解物除去槽1におい
て、サンドフィルターなどによりこの不溶解物が除去さ
れる。その後、この脱不溶解物液は脱不溶解物液槽2に
一旦貯蔵された後、電気透析槽10に送られる。
[0012] Natural water accompanying brine contains insolubles such as organic decomposed products. In the insolubles removal tank 1, the insolubles are removed by a sand filter or the like. Thereafter, the de-insoluble material liquid is once stored in the de-insoluble material liquid tank 2 and then sent to the electrodialysis tank 10.

【0013】電気透析槽10は、図2に示す様に、強酸
性カチオン交換膜11と強塩基性アニオン交換膜12を
交互に多数配列し、複数の溶解物濃縮室3と脱溶解物室
4を交互に形成したものであり、その両端には一対のプ
ラス電極13、マイナス電極14が配置され、両電極間
13,14に直流電圧を加えて、電離したカチオンとア
ニオンとを一室おきに形成された溶解物濃縮室3に蓄積
し、天然ガス付随かん水中の溶解物の濃縮を行う様にな
っている。溶解物はヨウ素、アンモニア、ナトリウム、
カルシウム、マグネシウム等である。
As shown in FIG. 2, the electrodialysis tank 10 includes a plurality of strong acid cation exchange membranes 11 and strong basic anion exchange membranes 12 arranged alternately, and a plurality of lysate concentrating chambers 3 and desolubilizing chambers 4. Are alternately formed, and a pair of plus electrodes 13 and minus electrodes 14 are disposed at both ends thereof. A DC voltage is applied between the two electrodes 13 and 14 to ionize the ionized cations and anions every other room. The formed product accumulates in the dissolved material concentrating chamber 3 and concentrates the dissolved material in the brine with natural gas. The lysate is iodine, ammonia, sodium,
Calcium, magnesium and the like.

【0014】つまり、この電気透析槽10内において、
プラス電極13側に強塩基性アニオン交換膜12が、マ
イナス電極14側に強酸性カチオン交換膜11が存在す
る脱溶解物室4では、電離したカチオンはマイナス電極
14側に向って移動し、強酸性カチオン交換膜11を透
過して隣接した溶解物濃縮室3に至り、次の強塩基性ア
ニオン交換膜12で通過が阻止されるが、アニオンは反
対にプラス電極13に向って移動し、強塩基性アニオン
交換膜12を透過して隣接した溶解物濃縮室3に至り、
次の強酸性カチオン交換膜11で通過が阻止される。従
って、アンモニアなど電離した溶解物は一室おきに形成
された溶解物濃縮室3に蓄積され、結果として天然ガス
付随かん水中の溶解物の濃縮が行われる。
That is, in the electrodialysis tank 10,
In the dissolving chamber 4 in which the strongly basic anion exchange membrane 12 is present on the plus electrode 13 side and the strongly acidic cation exchange membrane 11 is present on the minus electrode 14 side, the ionized cations move toward the minus electrode 14 side, and the strong acid After passing through the neutral cation exchange membrane 11 and reaching the adjacent lysate concentration chamber 3, the passage through the next strongly basic anion exchange membrane 12 is prevented, but the anions move toward the plus electrode 13 in the opposite direction, The permeate through the basic anion exchange membrane 12 to the adjacent lysate concentration chamber 3,
The next strong acid cation exchange membrane 11 blocks the passage. Therefore, ionized dissolved substances such as ammonia are accumulated in the alternately formed dissolved substance concentrating chamber 3, and as a result, the dissolved substances in the natural gas accompanying brine are concentrated.

【0015】電気透析槽10の交換膜の材料はアミン基
を有する為、ヨウ素イオンとの結合が懸念されたが、こ
の電気透析槽10に送られる天然ガス付随かん水は追い
出し法などによりヨウ素を採取した後のものであり、ヨ
ウ素濃度は10ppm程度に過ぎぬ為、交換膜への影響
はなく、100ppm程度までIO の状態で溶解物
濃縮液中に濃縮される。
Since the material of the exchange membrane of the electrodialysis tank 10 has an amine group, there is a concern that it may be bonded to iodine ions. However, the irrigation with the natural gas accompanying the natural gas sent to the electrodialysis tank 10 is carried out by a purge method or the like. It is intended the after, the iodine concentration for a not only about 10 ppm, no effect on the exchange membrane, IO 3 to about 100 ppm - is concentrated in the lysate concentrate in our state.

【0016】この電気透析槽10の溶解物濃縮室3は溶
解物濃縮液槽5に接続されており、溶解物濃縮室3で濃
縮された溶解物濃縮液はこの溶解物濃縮液槽5に一旦貯
蔵される。なお、この電気透析槽10においてヨウ素含
有かん水中のアンモニア濃度は10〜15倍程度に濃縮
され、液量は1/20程度に減ぜられる。
The lysate concentrate chamber 3 of the electrodialysis tank 10 is connected to a lysate concentrate tank 5, and the lysate concentrate concentrated in the lysate concentrate chamber 3 is temporarily stored in the lysate concentrate tank 5. Is stored. In this electrodialysis tank 10, the ammonia concentration in the iodine-containing brine is concentrated about 10 to 15 times, and the liquid volume is reduced to about 1/20.

【0017】そして、この溶解物濃縮液槽5に一旦蓄積
されたアンモニアを含んだ溶解物濃縮液は最初に天然ガ
ス付随かん水を汲み上げた地中に送り込まれ、地下還元
される。
The dissolved liquid concentrate containing ammonia once accumulated in the liquid concentrated liquid tank 5 is first sent into the ground where natural water accompanying brine is pumped, and is reduced underground.

【0018】なお、電気透析槽10によって濃縮された
溶解物濃縮液はもともと地下から汲み上げた天然ガス付
随かん水中に含まれていたものなので、そのまま地下へ
の還元をしても何ら問題はない。
Since the concentrated solution of the lysate concentrated by the electrodialysis tank 10 was originally contained in the brine accompanying natural gas pumped from underground, there is no problem if it is directly reduced to underground.

【0019】一方、電気透析装置10の脱溶解物室4に
蓄積された脱溶解物液は処理水貯槽9に一旦貯蔵された
後に海洋に放流される。
On the other hand, the de-dissolved liquid accumulated in the de-dissolved substance chamber 4 of the electrodialysis apparatus 10 is temporarily stored in the treated water storage tank 9 and then discharged to the ocean.

【0020】なお、この脱溶解物液にはアンモニアはほ
とんど含有されていないので、海洋に放流しても何ら問
題ない。叉、この脱溶解物液の一部を地下に還元しても
良い。
[0020] Since this de-dissolved liquid contains almost no ammonia, there is no problem even if it is discharged into the ocean. Alternatively, a part of the de-dissolved liquid may be reduced to the underground.

【0021】[0021]

【実施例】放散塔によるヨウ素採取作業後のアンモニア
濃度240ppm、その他の溶解物成分としてNaCl
31900ppm , Ca イオン 0.24ppm, M
gイオン 0.50ppm, SO 2− イオン 0.2
5ppm, I イオン10ppmが含まれている天然
ガス付随かん水をフィルターに通し、不溶解物を除去し
た。除去の程度はFI(ファウリングインデックス)≦
4とした。不溶解物を除去したヨウ素採取作業後の天然
ガス付随かん水は順次、電気透析装置内を通過させ、電
気透析処理を行った。電気透析は強塩基性アニオン交換
膜と強酸性カチオン交換膜を交互に組み合わせ、Ptを
電極として用い、液温約30℃で行った。電気透析によ
って得られた脱溶解物液のアンモニア濃度は100pp
mで、排水基準と考えられている数値を大幅に下回っ
た。また、他の溶解物成分はNaCl 19400pp
m, Ca イオン 20ppm, Mg イオン 150pp
m,SO 2− イオン 230ppm となった。一
方、溶解物濃縮液のアンモニア濃度は2580ppm
で、溶解物成分はNaCl 240000ppm, Ca
イオン 3900ppm, Mg イオン 6300ppm,
SO 2− イオン 500ppm, I イオン 60
ppmとなった。この溶解物濃縮液は天然ガス付随かん
水中の溶解成分を単に濃縮したものであり、その他の混
入物はない。脱溶解物液の一部をこの溶解物濃縮液に混
合して希釈した溶解物濃縮液を地下に還元するのは全く
問題ないことが確認できた。
EXAMPLE An ammonia concentration of 240 ppm after iodine sampling by a stripping tower, and NaCl as another dissolved substance component
31900 ppm, Ca ion 0.24 ppm, M
g ion 0.50 ppm, SO 4 2- Ion 0.2
Brine with natural gas containing 5 ppm and 10 ppm of I - ion was passed through a filter to remove insolubles. The degree of removal is FI (fouling index) ≤
And 4. After the iodine collection work from which the insoluble matter was removed, the brine attached with natural gas was sequentially passed through an electrodialysis apparatus to perform electrodialysis treatment. Electrodialysis was carried out at a liquid temperature of about 30 ° C. using Pt as an electrode by alternately combining a strongly basic anion exchange membrane and a strongly acidic cation exchange membrane. The ammonia concentration of the de-lysate obtained by electrodialysis is 100 pp
m, which is much lower than what is considered a drainage standard. Further, other dissolved components were NaCl 19400 pp.
m, Ca ion 20ppm, Mg ion 150pp
m, SO 4 2- The ion became 230 ppm. On the other hand, the ammonia concentration of the concentrate was 2580 ppm.
The dissolved component is NaCl 240,000 ppm, Ca
Ion 3900ppm, Mg ion 6300ppm,
SO 4 2- Ion 500ppm, I - ion 60
ppm. This lysate concentrate is a mere concentration of the lysed components in the brine with natural gas, and has no other contaminants. It was confirmed that there was no problem in mixing a part of the de-lysate solution with this concentrate and diluting the diluted concentrate to the underground.

【0022】[0022]

【発明の効果】この発明に係る天然ガス付随かん水のア
ンモニア処理方法は上述の通りの構成を有し、既存の方
法によってヨウ素を採取した後の天然ガス付随かん水を
電気透析によって濃縮し、アンモニアを含む溶解物濃縮
液を地下還元する様にしたものであり、アンモニアを含
む排水の海洋放流規制に対応した処理が経済的に実施可
能であり、地球環境保全、地下資源の有効利用の面から
も極めて実用的なものである。
The ammonia treatment method for natural gas accompanying brine according to the present invention has the configuration as described above. After the iodine is collected by an existing method, the natural gas accompanying brine is concentrated by electrodialysis to remove ammonia. It is designed to reduce the concentration of dissolved solution containing water underground, and it is economically possible to process wastewater containing ammonia in accordance with the regulations for ocean discharge, and from the viewpoints of global environmental protection and effective use of underground resources. Extremely practical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係るヨウ素採取後の天然ガス付随か
ん水のアンモニア処理方法に用いるプラントのブロック
図。
FIG. 1 is a block diagram of a plant used for an ammonia treatment method for watering accompanying natural gas after iodine collection according to the present invention.

【図2】このヨウ素採取後の天然ガス付随かん水のアン
モニア処理方法に用いる電気透析槽の説明図。
FIG. 2 is an explanatory view of an electrodialysis tank used in the ammonia treatment method for brine with natural gas after iodine collection.

【記号の説明】[Explanation of symbols]

1 不溶解物除去槽 2 脱不溶解物液槽 3 溶解物濃縮室 4 脱溶解物室 5 溶解物濃縮液槽 9 処理水貯槽 10 電気透析装置 11 強酸性カチオン交換膜 12 強塩基性アニオン交換膜 13 プラス電極 14 マイナス電極 DESCRIPTION OF SYMBOLS 1 Insoluble matter removal tank 2 De-insoluble substance liquid tank 3 Dissolved substance concentration chamber 4 De-dissolved substance chamber 5 Dissolved substance concentrated liquid tank 9 Treatment water storage tank 10 Electrodialyzer 11 Strongly acidic cation exchange membrane 12 Strongly basic anion exchange membrane 13 plus electrode 14 minus electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA18 HA47 JA41A JA42A JA42C JA43A JA44A KA01 KA31 KA64 KB15 MA03 MA13 MA14 MB07 PA01 PB08 PB28 PC80 4D061 DA08 DB18 EA09 EB01 EB04 EB13 EB19 EB30 FA13 FA17 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA18 HA47 JA41A JA42A JA42C JA43A JA44A KA01 KA31 KA64 KB15 MA03 MA13 MA14 MB07 PA01 PB08 PB28 PC80 4D061 DA08 DB18 EA09 EB01 EB04 EB13 EB19 EB30 FA13 FA17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ヨウ素採取作業後の天然ガス付随かん水
から不溶解物を除く工程と、不溶解物を除去した天然ガ
ス付随かん水中のアンモニアを含む溶解物をイオン交換
膜を用いた電気透析によって濃縮する工程と、アンモニ
アを含む溶解物濃縮液を地下還元する工程、とからなる
ことを特徴とするヨウ素採取作業後の天然ガス付随かん
水のアンモニア処理方法。
Claims: 1. A step of removing insolubles from natural gas accompanying brine after an iodine sampling operation, and a step of subjecting a dissolved substance containing ammonia in the natural gas accompanying brine from which insolubles have been removed to electrodialysis using an ion exchange membrane. A method for treating ammonia with natural gas accompanying brine after an iodine collection operation, comprising: a step of concentrating; and a step of underground reducing a dissolved concentrate containing ammonia.
【請求項2】 イオン交換膜によって電気透析される天
然ガス付随かん水中のヨウ素濃度が10ppm程度であ
ることを特徴とする請求項1記載のヨウ素採取作業後の
天然ガス付随かん水のアンモニア処理方法。
2. The method of claim 1, wherein the concentration of iodine in the natural gas-associated brine that is electrodialyzed by the ion exchange membrane is about 10 ppm.
【請求項3】 電気透析によって天然ガス付随かん水中
のアンモニア濃度を10〜15倍に濃縮し、液量を1/
20程度に減ずることを特徴とする請求項1記載の天然
ガス付随かん水のアンモニア処理方法。
3. The concentration of ammonia in natural water accompanying brine is concentrated 10 to 15 times by electrodialysis, and the liquid volume is reduced to 1/15.
2. The method of claim 1, wherein the water is reduced to about 20.
【請求項4】 電気透析によって分離された脱溶解物液
をそのまま海流に放流することを特徴とする請求項1記
載の天然ガス付随かん水のアンモニア処理方法。
4. The method of claim 1, wherein the de-lysate separated by electrodialysis is discharged directly into the ocean current.
JP2000381242A 2000-12-15 2000-12-15 Ammonia treatment method for brine incidental to natural gas after iodine collection work Pending JP2002177960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000381242A JP2002177960A (en) 2000-12-15 2000-12-15 Ammonia treatment method for brine incidental to natural gas after iodine collection work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000381242A JP2002177960A (en) 2000-12-15 2000-12-15 Ammonia treatment method for brine incidental to natural gas after iodine collection work

Publications (1)

Publication Number Publication Date
JP2002177960A true JP2002177960A (en) 2002-06-25

Family

ID=18849277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000381242A Pending JP2002177960A (en) 2000-12-15 2000-12-15 Ammonia treatment method for brine incidental to natural gas after iodine collection work

Country Status (1)

Country Link
JP (1) JP2002177960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000804A (en) * 2005-06-24 2007-01-11 Kanto Natural Gas Development Co Ltd Separation of ammonium from underground salt water, and method for producing compost

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000804A (en) * 2005-06-24 2007-01-11 Kanto Natural Gas Development Co Ltd Separation of ammonium from underground salt water, and method for producing compost

Similar Documents

Publication Publication Date Title
Hansima et al. Fouling of ion exchange membranes used in the electrodialysis reversal advanced water treatment: A review
US6372143B1 (en) Purification of produced water from coal seam natural gas wells using ion exchange and reverse osmosis
Kabay et al. Removal of boron from water by electrodialysis: effect of feed characteristics and interfering ions
Elmidaoui et al. Pollution of nitrate in Moroccan ground water: removal by electrodialysis
US7875186B2 (en) Process for regenerating and protonating a weak-base anion exchange resin
CA2264619A1 (en) Method and apparatus for high efficiency reverse osmosis operation
US20040050793A1 (en) Method of multi-stage reverse osmosis treatment
Kabsch-Korbutowicz et al. Application of UF, NF and ED in natural organic matter removal from ion-exchange spent regenerant brine
Turek et al. Energy consumption and gypsum scaling assessment in a hybrid nanofiltration‐reverse osmosis‐electrodialysis system
Birnhack et al. A membrane-based recycling process for minimizing environmental effects inflicted by ion-exchange softening applications
Wiśniewski et al. Removal of bromate ions from water in the processes with ion-exchange membranes
JPH1085743A (en) Method and apparatus for treating water containing boron
RU2383498C1 (en) Method of obtaining desalinated water and high-purity water for nuclear power plants for research centres
JPH06339A (en) Production of domestic water
JPH0240220A (en) Pure water producing device
KR20100014915A (en) Method for the treatment of tetraalkylammonium ion-containing development waste liquor
JP2002187707A (en) Method of collecting dissolved matter from iodine- containing brine
RU2442756C1 (en) Way to get desalted water and highly pure water for nuclear power plants in research centres
JP2002177960A (en) Ammonia treatment method for brine incidental to natural gas after iodine collection work
JP2002346561A (en) Treating method for wastewater containing salt of high concentration
JP2000197812A (en) Waste gas treatment method and treatment apparatus
Gomelya et al. Efficiency of reverse osmosis and ion exchange in water purification from nitrates
Nativ et al. A new pretreatment approach for applying high-recovery reverse osmosis desalination to highly scaling brackish groundwater
KR200211618Y1 (en) Unit capable of adsorbing, desorbing and recovering toxic ions using ion exchangers
JPH07155563A (en) Nacl recovery device by electrodialysis