JP2002176704A - Driving gear for hybrid vehicle having two power supplying sources - Google Patents

Driving gear for hybrid vehicle having two power supplying sources

Info

Publication number
JP2002176704A
JP2002176704A JP2000385340A JP2000385340A JP2002176704A JP 2002176704 A JP2002176704 A JP 2002176704A JP 2000385340 A JP2000385340 A JP 2000385340A JP 2000385340 A JP2000385340 A JP 2000385340A JP 2002176704 A JP2002176704 A JP 2002176704A
Authority
JP
Japan
Prior art keywords
voltage
power
low
storage device
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000385340A
Other languages
Japanese (ja)
Inventor
Takashi Torii
孝史 鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000385340A priority Critical patent/JP2002176704A/en
Publication of JP2002176704A publication Critical patent/JP2002176704A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a driving gear for a hybrid vehicle having two power supplying sources that makes it possible to reduce vehicle weight without deteriorating performance as the hybrid vehicle and to reduce the voltage fluctuation when a large current of a high-voltage battery is used. SOLUTION: In the hybrid vehicle having the two power supplying sources, if a DC-DC converter 8 that supplies electric power from a high-voltage electricity-storing device 1 to a low-voltage one 9 is changed to a two-way converter, a part of large electric power for starting an engine can be shared by the low-voltage electricity-storing device 9 for supplying power to a low- voltage electric load 11. As a result, it is possible to reduce capacity and weight of the high-voltage electricity-storing device 1 that accumulates the engine- starting electric power. Also, the capacity of an inverter can be reduced by suppressing a terminal voltage drop of the high-voltage electricity-storing device 1. Furthermore, production cost can be reduced and weight of the hybrid vehicle can be made light without a complex circuit structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二電源系を有する
ハイブリッド自動車の駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive device for a hybrid vehicle having a dual power supply system.

【0002】[0002]

【従来の技術】エンジンとトルク授受可能に連結された
発電電動機を有するハイブリッド自動車では、この発電
電動機を用いてエンジンの始動、その後のトルクアシス
ト、車両電気負荷給電のための発電、回生制動を行うこ
とにより、燃費やエミッションの低減を図っている。
2. Description of the Related Art In a hybrid vehicle having a generator motor connected to an engine so as to be capable of transmitting and receiving torque, the generator motor is used to start the engine, subsequently perform torque assist, generate power for supplying electric load to the vehicle, and perform regenerative braking. This reduces fuel consumption and emissions.

【0003】また、この発電電動機によるエンジンの始
動、その後の車両変速時のトルクアシストなどでは、バ
ッテリと発電電動機との間でインバータを通じて大電力
を授受する必要があるので、電源電圧を従来の定格電圧
12Vより高い電圧たとえば36Vや144Vあるいは
約300Vといった高圧に設定して送電損失の低減やイ
ンバータを構成するスイッチング素子の小型化を図って
いる。
Further, in starting the engine by the generator motor, and subsequently in assisting the torque at the time of shifting the vehicle, it is necessary to transfer a large amount of electric power between the battery and the generator motor through an inverter. A voltage higher than the voltage 12 V, for example, a high voltage such as 36 V, 144 V, or about 300 V, is set to reduce power transmission loss and to downsize a switching element constituting an inverter.

【0004】更に、車両には従来同様定格電圧が約12
V程度の低圧電気負荷が多数搭載されるのでそれらに給
電するために低圧バッテリも配置し、高圧バッテリ(又
は発電電動機)からこの低圧バッテリへ送電するDC−
DCコンバータからなる充電装置を設けたいわゆる二電
源系を採用することが行われている。
Further, the rated voltage of the vehicle is about 12 as in the prior art.
Since a large number of low-voltage electric loads of about V are mounted, a low-voltage battery is also arranged to supply power to them, and a DC-power supply from the high-voltage battery (or generator motor) to this low-voltage battery
A so-called dual power supply system provided with a charging device including a DC converter has been used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ハイブ
リッド自動車では、通常の純内燃エンジン自動車に比較
して大容量の高圧バッテリを搭載する必要があるため、
車両重量が増大し、その分、燃費が低下するというジレ
ンマがあった。
However, in a hybrid vehicle, it is necessary to mount a large-capacity high-voltage battery as compared with a normal pure internal combustion engine vehicle.
There was a dilemma that the weight of the vehicle increased and the fuel efficiency decreased accordingly.

【0006】高圧バッテリの容量を削減すればその軽量
化は可能であるが、ハイブリッド自動車としてのパーフ
ォーマンスは、高圧バッテリに蓄積されたエンジン始動
エネルギーや車両加速エネルギーの減少分だけ低下して
しまう。また、エンジン始動時や大加速時に高圧バッテ
リの高率放電により高圧バッテリの端子電圧が大きく低
下し、その結果、発電電動機への必要電力の給電のため
にインバータの大型化も必要となってしまう。
[0006] If the capacity of the high-voltage battery is reduced, the weight can be reduced, but the performance as a hybrid vehicle is reduced by the reduction of the engine starting energy and the vehicle acceleration energy stored in the high-voltage battery. In addition, the terminal voltage of the high-voltage battery is greatly reduced due to the high-rate discharge of the high-voltage battery at the time of engine start or large acceleration. As a result, the inverter needs to be upsized to supply necessary power to the generator motor. .

【0007】本発明は上記問題点に鑑みなされたもので
あり、ハイブリッド自動車としての性能を低下させるこ
となく車両重量の低減し、高圧バッテリの大電流使用時
の電圧変動を低減可能な二電源系を有するハイブリッド
自動車の駆動装置を提供することを、その目的としてい
る。
The present invention has been made in view of the above-mentioned problems, and has a dual power supply system capable of reducing the weight of a vehicle without deteriorating the performance as a hybrid vehicle and reducing a voltage fluctuation when a high current of a high voltage battery is used. It is an object of the present invention to provide a drive device for a hybrid vehicle having the following.

【0008】[0008]

【課題を解決するための手段】請求項1記載の二電源系
を有するハイブリッド自動車の駆動装置は、エンジンと
トルク授受可能に連結された発電電動機と、前記発電電
動機に電力授受可能に接続される高圧蓄電装置と、低圧
電気負荷に給電する低圧蓄電装置と、前記両蓄電装置を
双方向電力授受可能に接続するDC−DCコンバータと
を備える二電源系を有するハイブリッド自動車の駆動装
置において、前記発電電動機による前記エンジンの始動
時に前記DC−DCコンバータを駆動して前記低圧蓄電
装置から前記高圧蓄電装置に送電を行わせる制御装置を
有することを特徴としている。
According to a first aspect of the present invention, there is provided a drive apparatus for a hybrid vehicle having a dual power supply system, wherein a generator motor is connected to an engine so as to be able to transfer torque, and is connected to the generator motor so as to be able to transfer power. The driving apparatus for a hybrid vehicle having a dual power supply system including a high-voltage power storage device, a low-voltage power storage device that supplies power to a low-voltage electric load, and a DC-DC converter that connects the two power storage devices so as to be capable of bidirectional power transfer. When the engine is started by the electric motor, the control device drives the DC-DC converter to transmit power from the low-voltage power storage device to the high-voltage power storage device.

【0009】すなわち、本発明は、二電源系を有するハ
イブリッド自動車において高圧蓄電装置から低圧蓄電装
置に給電するDC−DCコンバータを双方向性に変更す
ることにより、大きなエンジン始動用電力の一部を低圧
電気負荷給電用の低圧蓄電装置に分担させることを特徴
としている。これにより、エンジン始動電力を蓄積する
高圧蓄電装置の小容量化、軽量化と高圧蓄電装置の端子
電圧低下の抑止によるインバータの小容量化を実現する
ことができ、回路構成を複雑化することなく、製造費用
の低減及びハイブリッド自動車の軽量化を実現すること
ができる。
That is, in the present invention, a part of a large amount of electric power for starting an engine is changed by changing a DC-DC converter for supplying electric power from a high-voltage power storage device to a low-voltage power storage device to a bidirectional power in a hybrid vehicle having a dual power supply system. It is characterized in that a low-voltage power storage device for supplying a low-voltage electric load is shared. As a result, it is possible to reduce the capacity and weight of the high-voltage power storage device that stores the engine starting power, and to reduce the capacity of the inverter by preventing the terminal voltage of the high-voltage power storage device from decreasing, without complicating the circuit configuration. In addition, it is possible to reduce the manufacturing cost and the weight of the hybrid vehicle.

【0010】請求項2記載の二電源系を有するハイブリ
ッド自動車の駆動装置は、エンジンとトルク授受可能に
連結された発電電動機と、前記発電電動機に電力授受可
能に接続される高圧蓄電装置バッテリと、低圧電気負荷
に給電する低圧蓄電装置と、前記両蓄電装置を双方向電
力授受可能に接続するDC−DCコンバータとを備える
二電源系を有するハイブリッド自動車の駆動装置におい
て、前記発電電動機による前記エンジンの所定電力以上
でのトルクアシスト時に前記DC−DCコンバータを駆
動して前記低圧蓄電装置から前記高圧蓄電装置に送電を
行わせる制御装置を有することを特徴としている。
According to a second aspect of the present invention, there is provided a drive device for a hybrid vehicle having a dual power supply system, comprising: a generator motor connected to an engine so as to be capable of transmitting and receiving torque; a high-voltage power storage device battery connected to the generator motor so as to be able to transmit and receive power; In a drive device for a hybrid vehicle having a dual power supply system including a low-voltage power storage device that supplies power to a low-voltage electric load and a DC-DC converter that connects the two power storage devices so as to be capable of bidirectional power transfer, the generator motor drives the engine. It is characterized in that it has a control device for driving the DC-DC converter to transmit power from the low-voltage power storage device to the high-voltage power storage device at the time of torque assist at a predetermined power or more.

【0011】すなわち、本発明は、二電源系を有するハ
イブリッド自動車において高圧蓄電装置から低圧蓄電装
置に給電するDC−DCコンバータを双方向性に変更す
ることにより、大電力を必要とする急加速時に、この急
加速用電力の一部を低圧電気負荷給電用の低圧蓄電装置
に分担させることを特徴としている。これにより、エン
ジン始動電力を蓄積する高圧蓄電装置の小容量化、軽量
化と高圧蓄電装置の端子電圧低下の抑止によるインバー
タの小容量化、加速性能の向上を実現することができ、
回路構成を複雑化することなく、製造費用の低減及びハ
イブリッド自動車の軽量化を実現することができる。
That is, the present invention provides a hybrid vehicle having a dual power supply system, in which a DC-DC converter for supplying electric power from a high-voltage power storage device to a low-voltage power storage device is changed to a bidirectional power supply, thereby enabling rapid acceleration when large power is required. In addition, a part of the sudden acceleration power is shared by a low-voltage power storage device for supplying a low-voltage electric load. As a result, it is possible to reduce the capacity and weight of the high-voltage power storage device that accumulates engine start-up power, realize a reduction in the capacity of the inverter by suppressing terminal voltage drop of the high-voltage power storage device, and improve acceleration performance.
The manufacturing cost can be reduced and the weight of the hybrid vehicle can be reduced without complicating the circuit configuration.

【0012】請求項3記載の二電源系を有するハイブリ
ッド自動車の駆動装置は、エンジンとトルク授受可能に
連結された発電電動機と、前記発電電動機に電力授受可
能に接続される高圧蓄電装置と、低圧電気負荷に給電す
る低圧蓄電装置と、前記両蓄電装置を双方向電力授受可
能に接続するDC−DCコンバータとを備える二電源系
を有するハイブリッド自動車の駆動装置において、前記
DC−DCコンバータは、所定のエンジン停止期間中
に、前記低圧蓄電装置から前記高圧蓄電装置へ送電を行
うことを特徴としている。
According to a third aspect of the present invention, there is provided a drive apparatus for a hybrid vehicle having a dual power supply system, comprising: a generator motor connected to an engine so as to be able to transfer torque; a high voltage power storage device connected to the generator motor so as to be able to transfer power; In a drive device for a hybrid vehicle having a dual power supply system including a low-voltage power storage device that supplies power to an electric load and a DC-DC converter that connects the power storage devices so as to be able to exchange power bidirectionally, the DC-DC converter is a predetermined power During the engine stop period, power is transmitted from the low-voltage power storage device to the high-voltage power storage device.

【0013】すなわち、本発明は、二電源系を有するハ
イブリッド自動車の駆動装置において高圧蓄電装置から
低圧蓄電装置に給電するDC−DCコンバータを双方向
性に変更し、更に所定のエンジン停止期間に低圧蓄電装
置から高圧蓄電装置に逆送電を行うものである。
That is, in the present invention, a DC-DC converter for supplying power from a high-voltage power storage device to a low-voltage power storage device is changed to bidirectional in a drive device of a hybrid vehicle having a dual power supply system. Reverse power transmission is performed from the power storage device to the high-voltage power storage device.

【0014】このようにすれば、その後のエンジン始動
時(たとえばアイドルストップ後のエンジン始動時)に
おいて、低圧蓄電装置から高圧蓄電装置への送電電流を
大きく設定する必要なしに高圧蓄電装置の放電を十分確
保することができ、高圧蓄電装置の小容量化を実現する
こともできる。
With this configuration, when the engine is started thereafter (for example, when the engine is started after an idle stop), the discharge of the high-voltage storage device can be performed without having to set a large transmission current from the low-voltage storage device to the high-voltage storage device. Sufficient securing can be achieved, and reduction in capacity of the high-voltage power storage device can also be realized.

【0015】請求項4記載の構成によれば請求項3記載
の二電源系を有するハイブリッド自動車の駆動装置にお
いて更に、前記所定のエンジン停止期間は、アイドルス
トップによるエンジン停止期間であることを特徴として
いる。
According to a fourth aspect of the present invention, in the drive device for a hybrid vehicle having a dual power supply system according to the third aspect, the predetermined engine stop period is an engine stop period due to idle stop. I have.

【0016】すなわち、本発明によれば、アイドルスト
ップ指令によるエンジン停止時に、その後のエンジン始
動を予測して低圧蓄電装置から高圧蓄電装置への送電を
あらかじめ行って、高圧蓄電装置の充電レベルを高めて
おく。
That is, according to the present invention, when the engine is stopped by the idle stop command, the subsequent start of the engine is predicted, and the power transmission from the low-voltage power storage device to the high-voltage power storage device is performed in advance to increase the charge level of the high-voltage power storage device. Keep it.

【0017】これにより、高圧蓄電装置を小型化しても
アイドルストップ後のエンジン始動を確実に実施するこ
とができる。なお、蓄電装置は通常において、回生制動
に備えるなどの理由で、通常状態で半充電状態に保持さ
れるため、上記前もっての逆送電が可能となるものであ
る。もちろん、回生制動直後などにより高圧蓄電装置が
満充電に近い状態では、上記エンジン停止時における逆
送電は中止することが望ましい。
[0017] Thus, even if the high-voltage power storage device is downsized, the engine can be reliably started after the idle stop. Note that the power storage device is normally held in a half-charged state in a normal state for the purpose of preparing for regenerative braking, so that the above-described reverse power transmission can be performed in advance. Of course, in a state where the high-voltage power storage device is almost fully charged, for example, immediately after regenerative braking, it is desirable to stop the reverse power transmission when the engine is stopped.

【0018】その他、運転者が車両のドアを開けて車両
に乗り込んだ時、その後のエンジン始動を予測してただ
ちに上記逆送電を実施してもよい。なお、運転者が車両
のドアを開けて車両から降りる場合と乗る場合との区別
は、降りる場合は通常、イグニッションキーをオフした
後の所定期間内であると仮定して容易に判別することが
できる。また、運転者が運転席に座ってシートベルトを
装着したことを検出して上記逆送電を行ってもよい。ま
た、運転者が運転席に座り、内部からドアをロックした
ことを検出して上記逆送電を行ってもよい。このように
すれば、最初のエンジン始動の際にも低圧蓄電装置の電
力をエンジン始動前に高圧蓄電装置に送電しておくこと
ができる。
In addition, when the driver opens the door of the vehicle and gets into the vehicle, the above-mentioned reverse power transmission may be performed immediately after predicting the subsequent engine start. The distinction between the case where the driver opens the door of the vehicle and gets off the vehicle and the case where the driver gets on the vehicle can be easily determined by assuming that the driver is usually within a predetermined period after turning off the ignition key. it can. Alternatively, the reverse power transmission may be performed by detecting that the driver is sitting on the driver's seat and wearing the seat belt. Alternatively, the reverse power transmission may be performed by detecting that the driver is sitting in the driver's seat and locking the door from the inside. With this configuration, even when the engine is first started, the power of the low-voltage power storage device can be transmitted to the high-voltage power storage device before the engine is started.

【0019】請求項5記載の二電源系を有するハイブリ
ッド自動車の駆動装置は、エンジンとトルク授受可能に
連結された発電電動機と、前記発電電動機に電力授受可
能に接続される高圧蓄電装置と、低圧電気負荷に給電す
る低圧蓄電装置と、前記両蓄電装置を双方向電力授受可
能に接続するDC−DCコンバータとを備える二電源系
を有するハイブリッド自動車の駆動装置において、前記
DC−DCコンバータは、前記発電電動機が車両制動時
に行う回生制動中に、その前後の低圧蓄電装置充電時よ
りも大きい電力で前記低圧蓄電装置を充電することを特
徴としている。
According to a fifth aspect of the present invention, there is provided a drive device for a hybrid vehicle having a dual power supply system, comprising: a generator motor connected to an engine so as to be able to transfer torque; a high voltage power storage device connected to the generator motor so as to be able to transfer power; In a driving apparatus for a hybrid vehicle having a dual power supply system including a low-voltage power storage device that supplies power to an electric load and a DC-DC converter that connects the two power storage devices so that bidirectional power can be exchanged, the DC-DC converter includes: The regenerative braking performed by the generator motor during vehicle braking is characterized in that the low-voltage power storage device is charged with a larger electric power than before and after charging the low-voltage power storage device.

【0020】すなわち、本発明は、二電源系を有するハ
イブリッド自動車の駆動装置において、車両制動時に上
記発電電動機を用いて回生制動する際、回生制動電力を
高圧蓄電装置だけでなく、低圧蓄電装置の充電にも用い
る。
That is, the present invention relates to a driving apparatus for a hybrid vehicle having a dual power supply system, in which regenerative braking power is supplied not only to a high-voltage power storage device but also to a low-voltage power storage device when regenerative braking is performed using the generator motor during vehicle braking. Also used for charging.

【0021】このようにすれば、高圧蓄電装置の負担を
減らしつつ大電力の回生制動を行うことにより大きな制
動トルクを得ることができ、更に低圧蓄電装置に回生し
た電力をたとえばその後のエンジン始動などに有効利用
することもできる。
With this configuration, a large braking torque can be obtained by performing regenerative braking with high power while reducing the load on the high-voltage power storage device. Further, the power regenerated in the low-voltage power storage device can be used for, for example, starting the engine afterwards. It can also be used effectively.

【0022】なお、車両制動電力が小さい場合には上記
低圧蓄電装置の大電力送電は禁止して、高圧蓄電装置だ
けで回生電力を吸収するようにすることが好ましく、高
圧蓄電装置の充電レベルが低い場合も高圧蓄電装置だけ
で回生電力を吸収するようにすることが好ましい。
When the vehicle braking power is small, it is preferable to prohibit the transmission of large power by the low-voltage power storage device and to absorb regenerative power only by the high-voltage power storage device. It is preferable that the regenerative power be absorbed only by the high-voltage power storage device even when the power is low.

【0023】また、上記説明した各発明において、高圧
蓄電装置はバッテリを電気二重層コンデンサに置換した
り、両者を併用するようにしてもよい。
In each of the above-described inventions, the high-voltage power storage device may be configured such that the battery is replaced with an electric double layer capacitor, or both may be used in combination.

【0024】好適態様において、高圧蓄電装置は、電気
二重層コンデンサとスイッチとを直列接続して構成さ
れ、このスイッチは、エンジン始動時、回生制動時、上
述したアイドルストップにおける充電時、制動直後の加
速時にオンされる。
In a preferred embodiment, the high-voltage power storage device is configured by connecting an electric double layer capacitor and a switch in series, and this switch is used for starting the engine, for regenerative braking, for charging in the idle stop described above, and for immediately after braking. Turns on during acceleration.

【0025】このようにすれば、エンジン始動や制動直
後の加速時にのみ電気二重層コンデンサの蓄電電力によ
るエンジン始動やトルクアシストを行うとともに、他の
期間において電気二重層コンデンサの漏れ電流による容
量低下損失を回避することができる。
In this way, the engine is started or torque assisted by the stored electric power of the electric double-layer capacitor only during acceleration immediately after the engine is started or braked, and the capacity reduction loss due to the leakage current of the electric double-layer capacitor during other periods. Can be avoided.

【0026】[0026]

【発明の実施の形態】本発明の二電源系を有するハイブ
リッド自動車の駆動装置の好適な実施態様を図面を参照
して以下説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a drive apparatus for a hybrid vehicle having a dual power supply system according to the present invention will be described below with reference to the drawings.

【0027】[0027]

【実施例1】図1に示す実施例1のハイブリッド自動車
駆動装置装置において、1は高圧バッテリ(定格電圧約
300V)、2は界磁コイル型の同期発電電動機、3は
同期発電電動機2の界磁コイル、4は界磁コイル3への
通電電流を断続制御するスイッチング素子、5は界磁コ
イル3と逆並列接続されたフライホイルダイオード、6
は、スイッチング素子4と逆並列接続されたフライホイ
ルダイオード、7はインバータ、8は双方向DC−DC
コンバータ、9は低圧バッテリ(定格電圧約12V)、
10はコントローラ、11は低圧電気負荷、12は平滑
コンデンサである。
Embodiment 1 In the hybrid vehicle driving apparatus of Embodiment 1 shown in FIG. 1, reference numeral 1 denotes a high-voltage battery (rated voltage of about 300 V), 2 denotes a field coil type synchronous generator motor, and 3 denotes a field of the synchronous generator motor 2. A magnetic coil, a switching element for intermittently controlling a current flowing through the field coil, a flywheel diode connected in antiparallel with the field coil,
Is a flywheel diode connected in anti-parallel with the switching element 4, 7 is an inverter, 8 is a bidirectional DC-DC
Converter, 9 is a low voltage battery (rated voltage about 12V),
10 is a controller, 11 is a low voltage electric load, and 12 is a smoothing capacitor.

【0028】発電電動機2は、図示しないエンジンとト
ルク授受可能に連結され、高圧バッテリ1からインバー
タ7を通じて給電されて電動動作したり、エンジンによ
り駆動されて発電を行ってインバータ1を通じて高圧バ
ッテリ1を充電したりする。
The generator motor 2 is connected to an engine (not shown) so as to be capable of transmitting and receiving torque. The generator motor 2 is supplied with electric power from the high voltage battery 1 through the inverter 7 to operate electrically, or is driven by the engine to generate electric power, and the high voltage battery 1 is driven through the inverter 1. Or charge it.

【0029】三相のインバータ7は合計6個のスイッチ
ング素子と、各スイッチング素子と個別に逆並列接続さ
れたフライホイルダイオードとからなり、各スイッチン
グ素子はコントローラ10により断続制御されて直流電
圧を、発電電動機2の回転と同期した三相交流電圧に変
換する。コントローラ10は、同期発電電動機2の回転
を検出する不図示の回転位置検出センサからの信号に基
づいてインバータ7を位相制御したり、スイッチング素
子6やインバータ7のスイッチング素子のPWMデュー
ティ比を制御して、発電電動機2のトルクを調整する。
The three-phase inverter 7 is composed of a total of six switching elements and flywheel diodes individually and anti-parallel connected to each switching element. Each switching element is intermittently controlled by the controller 10 to output a DC voltage. Conversion into a three-phase AC voltage synchronized with the rotation of the generator motor 2. The controller 10 controls the phase of the inverter 7 based on a signal from a rotation position detection sensor (not shown) that detects the rotation of the synchronous generator motor 2, and controls the PWM duty ratio of the switching element 6 and the switching element of the inverter 7. Thus, the torque of the generator motor 2 is adjusted.

【0030】上記した界磁コイル型の同期発電電動機
2、それを駆動制御する三相のインバータ7及びそれを
制御するコントローラ10の構成や動作自体は周知であ
るので、これ以上の説明を省略する。
Since the configuration and operation of the field coil type synchronous generator motor 2, the three-phase inverter 7 for driving and controlling the same, and the controller 10 for controlling the same are well known, further description is omitted. .

【0031】DC−DCコンバータ8は、低圧電気負荷
11に給電する低圧バッテリ9と高圧バッテリ1との間
の送電を制御する。この実施例では、DC−DCコンバ
ータ9は双方向送電可能な構成を採用している。この種
の双方向送電可能なDC−DCコンバータはよく知られ
ている。
The DC-DC converter 8 controls power transmission between the low-voltage battery 9 for supplying power to the low-voltage electric load 11 and the high-voltage battery 1. In this embodiment, the DC-DC converter 9 has a configuration capable of bidirectional power transmission. DC-DC converters of this type capable of bidirectional power transmission are well known.

【0032】この実施例で用いた双方向送電可能なDC
−DCコンバータ8を図2を参照して説明する。
The DC capable of bidirectional power transmission used in this embodiment
The DC converter 8 will be described with reference to FIG.

【0033】このDC−DCコンバータ8は、チョーク
コイル81と、チョークコイル81の一端と高圧バッテ
リ1の正極とを接続する第一スイッチング素子82と、
チョークコイル81の一端と高圧バッテリ1及び低圧バ
ッテリ9の負極とを接続する第二スイッチング素子83
とを有し、チョークコイル81の他端は低圧バッテリ9
の正極に接続されている。84,85は両スイッチング
素子82、83と個別に逆並列に接続されたフライホイ
ルダイオードである。スイッチング素子82,83の耐
圧に問題がなければフライホイルダイオード84又は8
5の省略は可能である。
The DC-DC converter 8 includes a choke coil 81, a first switching element 82 connecting one end of the choke coil 81 and the positive electrode of the high-voltage battery 1,
Second switching element 83 that connects one end of choke coil 81 to the negative electrodes of high-voltage battery 1 and low-voltage battery 9
The other end of the choke coil 81 is connected to the low-voltage battery 9.
Is connected to the positive electrode. Reference numerals 84 and 85 denote flywheel diodes that are individually connected in antiparallel with the switching elements 82 and 83, respectively. If there is no problem with the breakdown voltage of the switching elements 82 and 83, the flywheel diode 84 or 8
Omission of 5 is possible.

【0034】このDC−DCコンバータ8の動作は既に
知られているが簡単に説明する。
The operation of the DC-DC converter 8 is already known, but will be briefly described.

【0035】高圧バッテリ1から低圧バッテリ9に送電
する場合、コントローラ10は両スイッチング素子を異
なるタイミングで所定周波数の断続を行う。まず、第一
の所定期間だけ、スイッチング素子82をオンし、スイ
ッチング素子83をオフする。高圧バッテリ1はチョー
クコイル81を通じて低圧バッテリ9に給電するが、電
圧の大部分はチョークコイル81により消費される。こ
の期間に、チョークコイル81に磁気エネルギーが蓄積
される。
When power is transmitted from the high-voltage battery 1 to the low-voltage battery 9, the controller 10 switches on and off the two switching elements at different timings at a predetermined frequency. First, the switching element 82 is turned on and the switching element 83 is turned off only for a first predetermined period. The high-voltage battery 1 supplies power to the low-voltage battery 9 through the choke coil 81, but most of the voltage is consumed by the choke coil 81. During this period, magnetic energy is stored in the choke coil 81.

【0036】次に、第二の所定期間だけ、スイッチング
素子82をオフし、スイッチング素子83をオンする。
チョークコイル81に蓄積された上記磁気エネルギー
は、スイッチング素子83及びフライホイルダイオード
85を通じてチョークコイル81への上記通電を持続さ
せ、低圧バッテリ9の充電が持続され、チョークコイル
81に蓄積された上記磁気エネルギーは消費される。以
後上記二つの期間を繰り返せばよい。第一期間と第二期
間の比率やスイッチング周波数の変更により、低圧バッ
テリ9の充電電流を制御することができる。
Next, the switching element 82 is turned off and the switching element 83 is turned on only for the second predetermined period.
The magnetic energy stored in the choke coil 81 maintains the energization of the choke coil 81 through the switching element 83 and the flywheel diode 85, the charging of the low-voltage battery 9 is continued, and the magnetic energy stored in the choke coil 81 is maintained. Energy is consumed. Thereafter, the above two periods may be repeated. The charging current of the low-voltage battery 9 can be controlled by changing the ratio between the first period and the second period and the switching frequency.

【0037】低圧バッテリ9から高圧バッテリ1に送電
する場合、コントローラ10は両スイッチング素子を異
なるタイミングで所定周波数の断続を行う。まず、第三
の所定期間だけ、スイッチング素子83をオンし、スイ
ッチング素子82をオフする。低圧バッテリ91はチョ
ークコイル81を通じて電流を流し、チョークコイル8
1に磁気エネルギーが蓄積される。
When power is transmitted from the low-voltage battery 9 to the high-voltage battery 1, the controller 10 switches on and off the two switching elements at different timings at a predetermined frequency. First, the switching element 83 is turned on and the switching element 82 is turned off only for the third predetermined period. The low-voltage battery 91 passes a current through the choke coil 81 and the choke coil 8
1 stores magnetic energy.

【0038】次に、第四の所定期間だけ、スイッチング
素子83をオフし、スイッチング素子82をオンする。
チョークコイル81に蓄積された上記磁気エネルギー
は、スイッチング素子82及びフライホイルダイオード
84を通じて高圧バッテリ1を充電し、チョークコイル
81に蓄積された上記磁気エネルギーは消費される。以
後上記二つの期間を繰り返せばよい。第三期間と第四期
間の比率やスイッチング周波数の変更により、高圧バッ
テリ1の充電電流を制御することができる。
Next, the switching element 83 is turned off and the switching element 82 is turned on only for the fourth predetermined period.
The magnetic energy stored in the choke coil 81 charges the high-voltage battery 1 through the switching element 82 and the flywheel diode 84, and the magnetic energy stored in the choke coil 81 is consumed. Thereafter, the above two periods may be repeated. The charging current of the high-voltage battery 1 can be controlled by changing the ratio between the third period and the fourth period and the switching frequency.

【0039】以下、この実施例の特徴をなす制御をコン
トローラ10の制御動作を示す図3のフローチャートを
参照して以下に説明する。
The control which characterizes this embodiment will be described below with reference to the flowchart of FIG.

【0040】まず、エンジン始動指令が入力されたかど
うかを調べ(S100)、開始でなければS104へジ
ャンプし、開始であればDC−DCコンバータ8を高圧
バッテリ1を充電するモードで運転する(S102)。
次に、エンジン始動完了かどうかを調べ(S104)、
完了でなければS106より下流にジャンプし、完了で
あればDC−DCコンバータ8の上記高圧バッテリ充電
モードを停止する(S106)。なお、エンジン始動開
始はイグニッションキーのターンオンで検出でき、エン
ジン始動完了はエンジン回転数が所定値に達したことで
検出すればよい。
First, it is checked whether or not an engine start command has been input (S100). If the command has not been started, the process jumps to S104. If the command has been started, the DC-DC converter 8 is operated in a mode for charging the high-voltage battery 1 (S102). ).
Next, it is determined whether or not the engine has been started (S104).
If it is not completed, it jumps downstream from S106. If it is completed, it stops the high-voltage battery charging mode of the DC-DC converter 8 (S106). The start of the engine can be detected by turning on the ignition key, and the completion of the engine can be detected when the engine speed reaches a predetermined value.

【0041】この実施例によれば、エンジン始動用電力
の一部を低圧電気負荷11へ給電するための低圧バッテ
リ9に分担させることができ、その結果、エンジン始動
電力を蓄積する高圧バッテリ1の小容量、軽量化と高圧
バッテリ1の端子電圧低下の抑止によるインバータ7の
小容量化を実現することができ、回路構成を複雑化する
ことなく、製造費用の低減及びハイブリッド自動車の軽
量化を実現することができる。
According to this embodiment, part of the power for starting the engine can be shared by the low-voltage battery 9 for supplying power to the low-voltage electric load 11, and as a result, the high-voltage battery 1 that stores the power for starting the engine can be used. The capacity of the inverter 7 can be reduced by reducing the capacity and weight and suppressing the voltage drop of the terminal of the high-voltage battery 1, and the manufacturing cost can be reduced and the weight of the hybrid vehicle can be reduced without complicating the circuit configuration. can do.

【0042】[0042]

【実施例2】他の実施例を図3を参照して以下に説明す
る。
Embodiment 2 Another embodiment will be described below with reference to FIG.

【0043】ただし、この実施例ではS100は「加速
指令は第一の所定値以上か」という判断ステップに置き
換えられ、S104は、「加速指令は第二所定値以下
か」という判断ステップに置き換えられる。なお第二の
所定値は第一の所定値より小さい値に設定される。この
ようにすれば、大加速時にも、実施例1と同様の効果を
奏することができる。
However, in this embodiment, S100 is replaced by a determination step of "Is the acceleration command greater than or equal to a first predetermined value?", And S104 is replaced by a determination step of "Is the acceleration command less than or equal to a second predetermined value?" . Note that the second predetermined value is set to a value smaller than the first predetermined value. By doing so, the same effects as in the first embodiment can be obtained even during large acceleration.

【0044】(変形態様)上記実施例では、低圧蓄電装
置としてバッテリを用いたが、大容量コンデンサでもよ
いことはもちろんである。
(Modification) In the above embodiment, a battery was used as the low-voltage power storage device, but a large-capacity capacitor may be used.

【0045】[0045]

【実施例3】他の実施例を図4に示すフローチャートを
参照して以下に説明する。
Embodiment 3 Another embodiment will be described below with reference to the flowchart shown in FIG.

【0046】この実施例は、図3に示す実施例1におい
て、車両のアイドル停止時に、低圧バッテリ9から高圧
バッテリ1へ逆送電を行って、その後のエンジン始動に
おける発電電動機2の大きな電力消費に備えるものであ
る。
This embodiment is different from the first embodiment shown in FIG. 3 in that when the vehicle is stopped at idle, reverse power is transmitted from the low-voltage battery 9 to the high-voltage battery 1 so that the power consumption of the generator motor 2 at the time of starting the engine is increased. It is provided.

【0047】まず、エンジンがアイドルストップにより
停止したかどうかを判定する(S200)。なお、この
判定は、ECU(エンジン制御装置)からのエンジン停
止信号の受信によって行ってもよく、エンジン回転数又
はそれと連動する電気信号によりエンジン回転数により
行ってもよい。なお、イグニッションスイッチをオフし
た場合のエンジン停止の場合は、このフローチャートを
実行する制御装置自体が動作停止となるため、後述する
低圧バッテリ9から高圧バッテリ1への逆送電が実行さ
れることはなく、したがってECU(エンジン制御装
置)がアイドルストップと判定してエンジンを停止する
場合にのみ後述する逆送電動作が実行される。このEC
Uによるアイドルストップ動作制御自体は本発明の要旨
ではないので、詳細な説明は省略するが、たとえば車両
の走行、停止が直前の所定期間内に所定回数繰り返され
た場合に市街地走行と判定し、その後の停車時にエンジ
ン停止すなわちアイドルストップを指令することが好適
である。当然、ECUがアイドルストップのためにエン
ジンを停止したということは、短期間後にエンジン始動
を指令が生じることを意味する。
First, it is determined whether or not the engine has stopped due to idle stop (S200). This determination may be made by receiving an engine stop signal from an ECU (engine control device), or may be made based on the engine speed based on the engine speed or an electric signal linked thereto. In the case where the engine is stopped when the ignition switch is turned off, the control device that executes this flowchart itself stops operating, so that the reverse power transmission from the low-voltage battery 9 to the high-voltage battery 1 described below is not performed. Therefore, only when the ECU (engine control device) determines that the engine is idling stop and stops the engine, the reverse power transmission operation described later is executed. This EC
Since the idle stop operation control by U itself is not the gist of the present invention, a detailed description is omitted, for example, when the running and stopping of the vehicle are repeated a predetermined number of times within a predetermined period immediately before, it is determined that the vehicle is traveling in an urban area. It is preferable to instruct the engine stop, that is, the idle stop, when the vehicle stops thereafter. Naturally, the fact that the ECU has stopped the engine for idling stop means that a command to start the engine will be issued after a short period of time.

【0048】そこで、コントローラ10は、エンジン停
止を認識したら、低圧バッテリ(低圧蓄電装置)9から
高圧バッテリ(高圧蓄電装置)1への逆送電を実施する
(S202)。なお、通常のアイドルストップ期間は信
号停止期間に関連する時間持続するので、この時間と逆
送電するべき電力量との関係で逆送電電流の大きさを決
定する。逆送電電流の大きさは、DC−DCコンバータ
8内のインバータ又はスイッチング素子のデューティ比
を増大することによりなされる。高圧バッテリ1の蓄電
電力量に応じて逆送電電流の大きさを制御してもよい。
Therefore, when the controller 10 recognizes that the engine has stopped, it performs reverse power transmission from the low-voltage battery (low-voltage power storage device) 9 to the high-voltage battery (high-voltage power storage device) 1 (S202). Since the normal idle stop period lasts for a time related to the signal stop period, the magnitude of the reverse transmission current is determined based on the relationship between this time and the amount of power to be reversely transmitted. The magnitude of the reverse transmission current is determined by increasing the duty ratio of the inverter or the switching element in the DC-DC converter 8. The magnitude of the reverse transmission current may be controlled according to the amount of stored power of the high-voltage battery 1.

【0049】次に、高圧バッテリ1の端子電圧VH(又
はその充放電電流の積算などにより推定した高圧バッテ
リ1の蓄電容量)が所定値VHth以上に達したか、又
は低圧バッテリ9の端子電圧VLが所定値VLth以下
になったかどうかを調べ(S204)、そうであればS
208へ進み、そうでなければ、S202の逆充電の実
施時間が所定値に達したかどうかを調べ(S206)、
達したらこの逆送電(高圧バッテリ充電モード)を停止
する(S208)。次に、図3に示すS100に進み、
エンジンが始動したかどうかを判定する。
Next, the terminal voltage VH of the high-voltage battery 1 (or the storage capacity of the high-voltage battery 1 estimated by integrating the charge / discharge current thereof) has reached a predetermined value VHth or more, or the terminal voltage VL of the low-voltage battery 9 Is determined to be less than or equal to a predetermined value VLth (S204).
If not, it is determined whether the execution time of the reverse charging in S202 has reached a predetermined value (S206).
When it reaches, the reverse power transmission (high-voltage battery charging mode) is stopped (S208). Next, the process proceeds to S100 shown in FIG.
Determine if the engine has started.

【0050】これにより、大電力を要するその後のエン
ジン始動に際して、高圧バッテリ1は良好な蓄電状態で
対応することができる。
Thus, at the time of starting the engine which requires a large amount of electric power, the high-voltage battery 1 can cope with a good power storage state.

【0051】[0051]

【実施例4】他の実施例を図5に示すフローチャートを
参照して以下に説明する。
Embodiment 4 Another embodiment will be described below with reference to the flowchart shown in FIG.

【0052】この実施例は、図3に示す実施例1におい
て、車両の減速時に、発電電動機2を回生制動させると
ともに、この回生制動時に、DC−DCコンバータ8に
より順送電(高圧バッテリ1から低圧バッテリ9への送
電)を行って、回生制動時の高圧バッテリ1の充電負担
を減らすものである。なお、発電電動機2の回生制動自
体は、良く知られているので詳細な説明は省略する。
This embodiment is different from the first embodiment shown in FIG. 3 in that the generator motor 2 is regeneratively braked when the vehicle is decelerated, and during this regenerative braking, the DC-DC converter 8 forwards power (from the high-voltage battery 1 to the low-voltage battery 1). (Power transmission to the battery 9) to reduce the burden of charging the high-voltage battery 1 during regenerative braking. Since the regenerative braking of the generator motor 2 is well known, a detailed description thereof will be omitted.

【0053】まず、回生制動が発生したかどうかを調べ
る。回生制動自体は、発電電動機2の状態を電気的に検
出してもよく、エンジン回転数又は車速の減少を検出し
てもよく、ブレーキレバーの踏み込みを検出してもよ
い。
First, it is checked whether regenerative braking has occurred. The regenerative braking itself may electrically detect the state of the generator motor 2, may detect a decrease in the engine speed or the vehicle speed, or may detect depression of a brake lever.

【0054】回生制動が発生した場合には、回生制動電
力が所定値以上であるかどうかを調べ(S302)、Y
ESであればS304に進み、そうでなければS304
〜S308を迂回して回生制動時の順送電電流の一時的
増大を行わない。
If regenerative braking has occurred, it is determined whether the regenerative braking power is equal to or greater than a predetermined value (S302).
If it is ES, proceed to S304; otherwise, S304
Steps S308 to S308 are not performed to temporarily increase the forward power transmission current during regenerative braking.

【0055】S304では、高圧バッテリ1の蓄電レベ
ルを調べ、それが所定レベル未満であれば、S306に
進み、そうでなければS306、S308を迂回して回
生制動時の順送電電流の一時的増大を行わない。
In step S304, the power storage level of the high-voltage battery 1 is checked. If the level is lower than the predetermined level, the process proceeds to step S306. Otherwise, the process bypasses steps S306 and S308 to temporarily increase the forward power supply current during regenerative braking. Do not do.

【0056】S306では、DC−DCコンバータ8の
順送電電力(高圧バッテリ1から低圧バッテリ9への送
電電力)を所定量だけ増大する。この増大はたとえば、
DC−DCコンバータ8内のインバータ又はスイッチン
グ素子のデューティ比を増大することによりなされる。
順送電電力の増大量を回生制動の大きさに連動させても
よい。
In S306, the forward transmission power of the DC-DC converter 8 (the transmission power from the high-voltage battery 1 to the low-voltage battery 9) is increased by a predetermined amount. This increase is, for example,
This is performed by increasing the duty ratio of the inverter or the switching element in the DC-DC converter 8.
The increase amount of the forward transmission power may be linked to the magnitude of the regenerative braking.

【0057】次に、低圧バッテリ9の端子電圧又はその
充放電電流の積算などにより推定した低圧バッテリ9の
蓄電容量が所定値以上に達したかどうかを調べ(S30
8)、そうであればS310へ、そうでなければS30
0へ進む。
Next, it is checked whether or not the storage capacity of the low-voltage battery 9 estimated by the terminal voltage of the low-voltage battery 9 or the integration of the charging / discharging current thereof has reached a predetermined value or more (S30).
8) If so, proceed to S310; otherwise, proceed to S30
Go to 0.

【0058】次に、図3に示すS100又は図4に示す
S200に進み、エンジンが始動したかどうか又はエン
ジンがアイドルストップにより停止したかどうかを検出
する。
Next, the process proceeds to S100 shown in FIG. 3 or S200 shown in FIG. 4, and it is detected whether the engine has been started or the engine has been stopped due to idle stop.

【0059】このようにすれば、大回生制動時における
高圧バッテリ1の充電負担を解消でき、高圧バッテリ1
の寿命を延長することができる。
In this way, the charging burden on the high-voltage battery 1 during the large regenerative braking can be eliminated, and the high-voltage battery 1
Life can be extended.

【0060】この実施例では、高圧バッテリ1が受け入
れることができる範囲かつ回生電力が小さい範囲におけ
る回生制動電力は高圧バッテリ1に蓄電される。これ
は、その後の車両加速又はエンジン始動において高圧バ
ッテリ1の蓄電レベルを高くする点で好ましい。
In this embodiment, the regenerative braking power in the range that the high-voltage battery 1 can accept and the range in which the regenerative power is small is stored in the high-voltage battery 1. This is preferable in that the storage level of the high-voltage battery 1 is increased in the subsequent vehicle acceleration or engine start.

【0061】[0061]

【実施例5】他の実施例を図6を参照して以下に説明す
る。
Embodiment 5 Another embodiment will be described below with reference to FIG.

【0062】この実施例では、上記各実施例において、
高圧バッテリ1を電気二重層コンデンサ20とスイッチ
21との直列接続回路に置換したものである。
In this embodiment, in each of the above embodiments,
The high voltage battery 1 is replaced with a series connection circuit of an electric double layer capacitor 20 and a switch 21.

【0063】この実施例では、スイッチ21は、上述し
たアイドルストップ期間の逆送電時、回生制動時、エン
ジン始動時及びトルクアシスト時にオンされ、回生制動
電力及びアイドルストップ後のエンジン始動電力を一時
的に蓄電する。
In this embodiment, the switch 21 is turned on at the time of reverse power transmission during the idle stop period, at the time of regenerative braking, at the time of engine starting and at the time of torque assist, and temporarily switches the regenerative braking power and the engine starting power after the idle stop. To store electricity.

【0064】なお、この実施例では、アイドルストップ
期間直後のエンジン始動以外のエンジン始動において、
電気二重層コンデンサ20に蓄電されたエンジン始動電
力が不足することがある。
In this embodiment, in the engine start other than the engine start immediately after the idle stop period,
The engine starting power stored in the electric double layer capacitor 20 may be insufficient.

【0065】そこで、図7に示すように、エンジン始動
指令がコントローラ10に入力されたら(S400)、
電気二重層コンデンサ20の蓄電電力を調べ(S40
2)、それが所定レベル以下であれば、スイッチ21を
オンし、更に上記逆送電により低圧バッテリ9から電気
二重層コンデンサ20に逆送電して、電気二重層コンデ
ンサ20に所定の電力を蓄電し(S404)、その後、
S100にジャンプしてインバータ7にエンジン始動動
作を指令するとともに、電気二重層コンデンサ20及び
低圧バッテリ9からインバータ7に給電する。
Therefore, as shown in FIG. 7, when an engine start command is input to the controller 10 (S400),
The storage power of the electric double layer capacitor 20 is checked (S40
2) If it is lower than a predetermined level, the switch 21 is turned on, and the reverse power is transmitted from the low-voltage battery 9 to the electric double layer capacitor 20 to store predetermined power in the electric double layer capacitor 20. (S404), and then
The process jumps to S100 to instruct the inverter 7 to perform an engine start operation, and to supply power to the inverter 7 from the electric double layer capacitor 20 and the low voltage battery 9.

【0066】このようにすれば、電気二重層コンデンサ
20の漏れ電流損失を最小に抑止しつつ、エンジン始動
用の電力や回生制動電力を一時的に電気二重層コンデン
サ20に蓄電して、その後のエンジン始動や車両加速に
備えることができる。
In this way, the electric power for starting the engine and the regenerative braking electric power are temporarily stored in the electric double-layer capacitor 20 while the leakage current loss of the electric double-layer capacitor 20 is suppressed to the minimum, and thereafter, It can be prepared for starting the engine or accelerating the vehicle.

【0067】なお、この実施例では、回生制動時におい
て低圧バッテリ9が受け取る回生電力の割合を大きくす
ることが好ましい。
In this embodiment, it is preferable to increase the ratio of the regenerative power received by the low-voltage battery 9 during regenerative braking.

【0068】(変形態様)上記実施例では、電気二重層
コンデンサ20と直列にスイッチ21を設けたが、電気
二重層コンデンサ20の漏れ電流が改善されればスイッ
チ21を省略することもできる。
(Modification) In the above embodiment, the switch 21 is provided in series with the electric double layer capacitor 20. However, if the leakage current of the electric double layer capacitor 20 is improved, the switch 21 can be omitted.

【0069】また、電気二重層コンデンサ20とスイッ
チ21との直列接続回路を、高圧バッテリ1と並列配置
することも可能である。
It is also possible to arrange a series connection circuit of the electric double layer capacitor 20 and the switch 21 in parallel with the high voltage battery 1.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の二電源系を有するハイブリッド自動
車の駆動装置を示すブロック回路図である。
FIG. 1 is a block circuit diagram illustrating a drive device of a hybrid vehicle having a dual power supply system according to a first embodiment.

【図2】図1のDC−DCコンバータの回路図である。FIG. 2 is a circuit diagram of the DC-DC converter of FIG.

【図3】実施例1の動作を示すフローチャートである。FIG. 3 is a flowchart illustrating the operation of the first embodiment.

【図4】実施例3の動作を示すフローチャートである。FIG. 4 is a flowchart illustrating an operation of a third embodiment.

【図5】実施例4の動作を示すフローチャートである。FIG. 5 is a flowchart illustrating an operation of a fourth embodiment.

【図6】実施例5の回路構成を示すブロック回路図であ
る。
FIG. 6 is a block circuit diagram showing a circuit configuration of a fifth embodiment.

【図7】実施例5の動作を示すフローチャートである。FIG. 7 is a flowchart illustrating the operation of the fifth embodiment.

【符号の説明】[Explanation of symbols]

1:高圧バッテリ(高圧蓄電装置) 2:発電電動機 7:インバータ 8:DC−DCコンバータ 9:低圧バッテリ(低圧蓄電装置) 10:コントローラ(制御装置) 11:低圧電気負荷 1: High voltage battery (high voltage power storage device) 2: Generator motor 7: Inverter 8: DC-DC converter 9: Low voltage battery (low voltage power storage device) 10: Controller (control device) 11: Low voltage electric load

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/00 H02J 7/34 B 7/34 H02M 3/155 F H02M 3/155 H B60K 9/00 ZHVE Fターム(参考) 3G092 AC02 AC03 DF05 EA11 GA12 GB08 HF19Z 3G093 AA07 AA16 BA00 BA14 BA19 CB06 EB09 5G003 AA07 BA04 DA07 DA18 FA06 GA01 GB03 GB06 5H115 PG04 PI15 PI16 PI29 PI30 PO17 PU10 PU25 PV02 PV09 PV23 QE10 QI04 QN12 RB22 RE01 SE04 SE05 5H730 AA15 AS08 AS17 BB13 BB14 BB57 DD04 EE14 FG05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02J 7/00 H02J 7/34 B 7/34 H02M 3/155 F H02M 3/155 H B60K 9/00 ZHVE F term (reference) 3G092 AC02 AC03 DF05 EA11 GA12 GB08 HF19Z 3G093 AA07 AA16 BA00 BA14 BA19 CB06 EB09 5G003 AA07 BA04 DA07 DA18 FA06 GA01 GB03 GB06 5H115 PG04 PI15 PI16 PI29 PI30 PO17 PU10 PU25 PV02 PV09 Q04 PV23 Q02 AA15 AS08 AS17 BB13 BB14 BB57 DD04 EE14 FG05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】エンジンとトルク授受可能に連結された発
電電動機と、 前記発電電動機に電力授受可能に接続される高圧蓄電装
置と、 低圧電気負荷に給電する低圧蓄電装置と、 前記両蓄電装置を双方向電力授受可能に接続するDC−
DCコンバータと、 を備える二電源系を有するハイブリッド自動車の駆動装
置において、 前記発電電動機による前記エンジンの始動時に前記DC
−DCコンバータを駆動して前記低圧蓄電装置から前記
高圧蓄電装置に送電を行わせる制御装置を有することを
特徴とする二電源系を有するハイブリッド自動車の駆動
装置。
1. A generator motor connected to an engine so as to be capable of transmitting and receiving torque, a high-voltage power storage device connected to the generator motor so as to be able to transmit and receive electric power, a low-voltage power storage device for supplying power to a low-voltage electric load, and both of the power storage devices. DC- connected to enable bidirectional power transfer
A drive device for a hybrid vehicle having a dual power supply system, comprising: a DC converter; and
A drive device for a hybrid vehicle having a dual power supply system, comprising: a control device that drives a DC converter to transmit power from the low-voltage power storage device to the high-voltage power storage device.
【請求項2】エンジンとトルク授受可能に連結された発
電電動機と、 前記発電電動機に電力授受可能に接続される高圧蓄電装
置と、 低圧電気負荷に給電する低圧蓄電装置と、 前記両蓄電装置を双方向電力授受可能に接続するDC−
DCコンバータと、 を備える二電源系を有するハイブリッド自動車の駆動装
置において、 前記発電電動機による前記エンジンの所定電力以上での
急加速に前記DC−DCコンバータを駆動して前記低圧
蓄電装置から前記高圧蓄電装置に送電を行わせる制御装
置を有することを特徴とする二電源系を有するハイブリ
ッド自動車の駆動装置。
2. A generator motor connected to an engine so as to be capable of transmitting and receiving torque, a high-voltage power storage device connected to the generator motor so as to be able to transmit and receive electric power, a low-voltage power storage device for supplying power to a low-voltage electric load, and both of the power storage devices. DC- connected to enable bidirectional power transfer
A drive device for a hybrid vehicle having a dual power supply system, comprising: A drive device for a hybrid vehicle having a dual power supply system, comprising a control device for causing the device to transmit power.
【請求項3】エンジンとトルク授受可能に連結された発
電電動機と、 前記発電電動機に電力授受可能に接続される高圧蓄電装
置と、 低圧電気負荷に給電する低圧蓄電装置と、 前記両蓄電装置を双方向電力授受可能に接続するDC−
DCコンバータと、 を備える二電源系を有するハイブリッド自動車の駆動装
置において、 前記DC−DCコンバータは、所定のエンジン停止期間
中に、前記低圧蓄電装置から前記高圧蓄電装置へ送電を
行うことを特徴とするハイブリッド自動車の駆動装置。
3. A generator motor connected to an engine so as to be capable of transmitting and receiving torque, a high-voltage power storage device connected to the generator motor so as to be able to transfer electric power, a low-voltage power storage device for supplying power to a low-voltage electric load, and both of the power storage devices. DC- connected to enable bidirectional power transfer
A drive device for a hybrid vehicle having a dual power supply system comprising: a DC converter; and wherein the DC-DC converter transmits power from the low-voltage power storage device to the high-voltage power storage device during a predetermined engine stop period. For hybrid vehicles.
【請求項4】請求項3記載の二電源系を有するハイブリ
ッド自動車の駆動装置において、 前記所定のエンジン停止期間は、アイドルストップによ
るエンジン停止期間であることを特徴とするハイブリッ
ド自動車の駆動装置。
4. A drive apparatus for a hybrid vehicle having a dual power supply system according to claim 3, wherein said predetermined engine stop period is an engine stop period due to idle stop.
【請求項5】エンジンとトルク授受可能に連結された発
電電動機と、 前記発電電動機に電力授受可能に接続される高圧蓄電装
置と、 低圧電気負荷に給電する低圧蓄電装置と、 前記両蓄電装置を双方向電力授受可能に接続するDC−
DCコンバータと、 を備える二電源系を有するハイブリッド自動車の駆動装
置において、 前記DC−DCコンバータは、前記発電電動機が車両制
動時に行う回生制動中に、その前後の低圧蓄電装置充電
時よりも大きい電力で前記低圧蓄電装置を充電すること
を特徴とするハイブリッド自動車の駆動装置。
5. A generator motor connected to an engine so as to be capable of transmitting and receiving torque, a high-voltage power storage device connected to the generator motor so as to be able to transfer electric power, a low-voltage power storage device for supplying a low-voltage electric load, and both of the power storage devices. DC- connected to enable bidirectional power transfer
And a DC converter comprising: a drive device for a hybrid vehicle having a dual power supply system, comprising: a DC-DC converter, the regenerative braking performed by the generator motor at the time of vehicle braking; And charging the low-voltage power storage device.
JP2000385340A 2000-09-29 2000-12-19 Driving gear for hybrid vehicle having two power supplying sources Pending JP2002176704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000385340A JP2002176704A (en) 2000-09-29 2000-12-19 Driving gear for hybrid vehicle having two power supplying sources

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-300198 2000-09-29
JP2000300198 2000-09-29
JP2000385340A JP2002176704A (en) 2000-09-29 2000-12-19 Driving gear for hybrid vehicle having two power supplying sources

Publications (1)

Publication Number Publication Date
JP2002176704A true JP2002176704A (en) 2002-06-21

Family

ID=26601214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000385340A Pending JP2002176704A (en) 2000-09-29 2000-12-19 Driving gear for hybrid vehicle having two power supplying sources

Country Status (1)

Country Link
JP (1) JP2002176704A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287273A (en) * 2004-03-31 2005-10-13 Tdk Corp Power converting device
JP2007237810A (en) * 2006-03-06 2007-09-20 Toyota Motor Corp Power supply system for vehicle
WO2007135497A2 (en) 2006-05-16 2007-11-29 Toyota Jidosha Kabushiki Kaisha Dual power supply system for a vehicle and power supply method
WO2008010062A1 (en) 2006-07-18 2008-01-24 Toyota Jidosha Kabushiki Kaisha Electric power source system and method for the same
KR100867825B1 (en) 2006-12-12 2008-11-10 현대자동차주식회사 Emergency start-up control method for fuel cell hybrid electric vehicle
JP2009130961A (en) * 2007-11-20 2009-06-11 Denso Corp Vehicular power unit
KR100974739B1 (en) 2008-11-27 2010-08-06 현대자동차주식회사 Starting System for Hybrid Vehicle
US7911078B2 (en) 2004-11-09 2011-03-22 Denso Corporation Dual type vehicle power-supply apparatus
US8067853B2 (en) 2007-09-18 2011-11-29 Toyota Jidosha Kabushiki Kaisha Power supply system
WO2012140746A1 (en) * 2011-04-13 2012-10-18 トヨタ自動車株式会社 Power supply device for electric vehicle and method for controlling same
JP2013031320A (en) * 2011-07-29 2013-02-07 Denso Corp Vehicular power control device
US8384237B2 (en) 2010-07-27 2013-02-26 Ford Global Technologies, Llc Low voltage bus stability
JP2013236545A (en) * 2008-10-30 2013-11-21 Japan Aerospace Exploration Agency Power system
JP2017100627A (en) * 2015-12-03 2017-06-08 いすゞ自動車株式会社 Hybrid vehicle and method for controlling the same
US10604140B2 (en) 2017-12-20 2020-03-31 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method for hybrid vehicle
US10771001B2 (en) 2015-09-11 2020-09-08 Invertedpower Pty Ltd Controller for an inductive load having one or more inductive windings
CN112848925A (en) * 2019-11-28 2021-05-28 丰田自动车株式会社 Vehicle control device
US11267358B2 (en) 2017-05-08 2022-03-08 Invertedpower Pty Ltd Vehicle charging station
US11479139B2 (en) 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287273A (en) * 2004-03-31 2005-10-13 Tdk Corp Power converting device
US7911078B2 (en) 2004-11-09 2011-03-22 Denso Corporation Dual type vehicle power-supply apparatus
JP2007237810A (en) * 2006-03-06 2007-09-20 Toyota Motor Corp Power supply system for vehicle
WO2007135497A2 (en) 2006-05-16 2007-11-29 Toyota Jidosha Kabushiki Kaisha Dual power supply system for a vehicle and power supply method
US7923858B2 (en) 2006-07-18 2011-04-12 Toyota Jidosha Kabushiki Kaisha Electric power source system and method for the same
WO2008010062A1 (en) 2006-07-18 2008-01-24 Toyota Jidosha Kabushiki Kaisha Electric power source system and method for the same
KR100867825B1 (en) 2006-12-12 2008-11-10 현대자동차주식회사 Emergency start-up control method for fuel cell hybrid electric vehicle
US8067853B2 (en) 2007-09-18 2011-11-29 Toyota Jidosha Kabushiki Kaisha Power supply system
US7977812B2 (en) 2007-11-20 2011-07-12 Denso Corporation Electric power system for vehicle
JP4687704B2 (en) * 2007-11-20 2011-05-25 株式会社デンソー Vehicle power supply
DE102008057074B4 (en) 2007-11-20 2022-10-13 Denso Corporation Electric power system for a vehicle
JP2009130961A (en) * 2007-11-20 2009-06-11 Denso Corp Vehicular power unit
JP2013236545A (en) * 2008-10-30 2013-11-21 Japan Aerospace Exploration Agency Power system
KR100974739B1 (en) 2008-11-27 2010-08-06 현대자동차주식회사 Starting System for Hybrid Vehicle
US8384237B2 (en) 2010-07-27 2013-02-26 Ford Global Technologies, Llc Low voltage bus stability
WO2012140746A1 (en) * 2011-04-13 2012-10-18 トヨタ自動車株式会社 Power supply device for electric vehicle and method for controlling same
CN102858582A (en) * 2011-04-13 2013-01-02 丰田自动车株式会社 Power Supply Device For Electric Vehicle And Method For Controlling Same
JP5348334B2 (en) * 2011-04-13 2013-11-20 トヨタ自動車株式会社 Power supply device for electric vehicle and control method thereof
CN102858582B (en) * 2011-04-13 2015-05-06 丰田自动车株式会社 Power supply device for electric vehicle and method for controlling same
US9315112B2 (en) 2011-04-13 2016-04-19 Toyota Jidosha Kabushiki Kaisha Power source apparatus for electrically powered vehicle and control method therefor
JP2013031320A (en) * 2011-07-29 2013-02-07 Denso Corp Vehicular power control device
US10771001B2 (en) 2015-09-11 2020-09-08 Invertedpower Pty Ltd Controller for an inductive load having one or more inductive windings
US11479139B2 (en) 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle
WO2017094826A1 (en) * 2015-12-03 2017-06-08 いすゞ自動車株式会社 Hybrid vehicle and method for controlling same
CN108290576A (en) * 2015-12-03 2018-07-17 五十铃自动车株式会社 Hybrid vehicle and its control method
JP2017100627A (en) * 2015-12-03 2017-06-08 いすゞ自動車株式会社 Hybrid vehicle and method for controlling the same
US11267358B2 (en) 2017-05-08 2022-03-08 Invertedpower Pty Ltd Vehicle charging station
US10604140B2 (en) 2017-12-20 2020-03-31 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method for hybrid vehicle
CN112848925A (en) * 2019-11-28 2021-05-28 丰田自动车株式会社 Vehicle control device
CN112848925B (en) * 2019-11-28 2023-05-30 丰田自动车株式会社 Control device for vehicle

Similar Documents

Publication Publication Date Title
JP2002176704A (en) Driving gear for hybrid vehicle having two power supplying sources
US9004207B2 (en) Control apparatus and control method for hybrid vehicle
JP4438887B1 (en) Electric vehicle and charging control method for electric vehicle
US8154149B2 (en) Method and apparatus for charging a vehicle energy storage system
EP1151892B1 (en) Vehicle with a high voltage power source system and method of controlling the start of such vehicle
KR101039679B1 (en) Mild hybrid system and method controlling thereof
US9676278B2 (en) Vehicle electrical network having at least two energy storage devices, method for operating a vehicle electrical network, and means for the implementation thereof
JP3180304B2 (en) Power circuit of hybrid car
US20090315518A1 (en) Power supply device and vehicle
JP7019296B2 (en) Start / stop system for vehicles and how to make it
US20110251745A1 (en) Power supply system for electrically powered vehicle, electrically powered vehicle, and method for controlling the same
WO2008007540A1 (en) Power supply device
US9718372B2 (en) Control apparatus for vehicle and vehicle
WO2011000259A1 (en) Control method for generator set of electric vehicle
JPWO2012111087A1 (en) Electric vehicle and control method thereof
US20180337593A1 (en) Motor vehicle
JP2010070030A (en) Control device for vehicle
JP4192658B2 (en) Vehicle control apparatus and control method
CN111483453B (en) double-BSG (binary System generator) weakly mixing system for medium-weight card and control method
KR101836643B1 (en) Mild hybrid system of vehicle
JP7373113B2 (en) Vehicle power control device
JP2005532777A (en) Power transmission method and apparatus for a motor vehicle including a heat engine and at least one electric machine
US9000700B2 (en) Motor control apparatus
JP7373114B2 (en) Vehicle power control device
JP2020043689A (en) Vehicular power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016