JP2002176133A - Flat semiconductor device and its manufacturing method - Google Patents

Flat semiconductor device and its manufacturing method

Info

Publication number
JP2002176133A
JP2002176133A JP2000373677A JP2000373677A JP2002176133A JP 2002176133 A JP2002176133 A JP 2002176133A JP 2000373677 A JP2000373677 A JP 2000373677A JP 2000373677 A JP2000373677 A JP 2000373677A JP 2002176133 A JP2002176133 A JP 2002176133A
Authority
JP
Japan
Prior art keywords
solder
plate
weight
plates
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000373677A
Other languages
Japanese (ja)
Inventor
Kyoichi Tobu
恭一 ト部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000373677A priority Critical patent/JP2002176133A/en
Publication of JP2002176133A publication Critical patent/JP2002176133A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flat semiconductor device whose thickness of constituent members can be stably adjusted without generating the dislocation of the constituent members. SOLUTION: Three-layer solder plates 6, 7 which operate as thickness adjusting plates are arranged in the upper part and the lower part of a plurality of semiconductor chips 1. Thermal buffer plates 2, 3 and the plurality of semiconductor chips 1 are fixed and bonded via the solder plates 6, 7, and they are sandwiched and held between a pressure contact plate 4 as a collector cathode plate and a pressure contact plate 5 as an emitter electrode plate. When the solder plates 6, 7 are melted and solidified while being pressurized, the plurality of semiconductor chips 1 and the plates 2, 3 are fixed and bonded, the whole thickness of the semiconductor chips 1, the solder plates 6, 7 and the plates 2, 3 is set to a uniform height, and an equal pressurization force is applied to the plurality of semiconductor chips 1 which are arranged between the plates 4, 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、複数個の半導体
チップを一括して圧接した構造の平型絶縁ゲート型バイ
ポーラトランジスタなどの平型半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat semiconductor device such as a flat insulated gate bipolar transistor having a structure in which a plurality of semiconductor chips are pressed together.

【0002】[0002]

【従来の技術】図3は、従来の平型半導体装置の要部断
面図である。平型構造の絶縁ゲート型バイポーラトラン
ジスタ(以下、IGBTと称す)など、複数個の半導体
チップ61(例えば、IGBTチップとフリーホイール
ダイオードチップ)を一括して圧接した状態で使用する
平型半導体装置は、対向する2つの圧接電極板66、6
7の間に、半導体チップ61と、その上下両面に熱緩衝
板62、63を重ねたものを挟み込む構造となってお
り、特開平8−88240号に開示されている。
2. Description of the Related Art FIG. 3 is a sectional view of a main part of a conventional flat type semiconductor device. A flat semiconductor device that uses a plurality of semiconductor chips 61 (for example, an IGBT chip and a freewheel diode chip) in a press-contact state, such as an insulated gate bipolar transistor (hereinafter, referred to as an IGBT) having a flat structure, is used. , Two opposed pressure contact electrode plates 66, 6
7, a semiconductor chip 61 and a structure in which thermal buffer plates 62 and 63 are stacked on both upper and lower surfaces of the semiconductor chip 61 are sandwiched therebetween, which is disclosed in JP-A-8-88240.

【0003】この半導体チップ61の両面に重ねられる
熱緩衝板62、63は、熱伝導が良好な厚み1〜3mm
のMo板からなり、半導体チップ61で発生した熱を、
半導体チップ61の上下両面から放散する働きがあり、
いわゆる、両面冷却を可能としている。前記の特開平8
−88240号では、さらに半導体チップ61や熱緩衝
板62、63に厚みのばらつきや片加圧が生じた場合、
圧接する圧力にばらつきが生じる。そうすると、半導体
チップ61、熱緩衝板61、63、圧接電極板間66、
67の良好な電気的接触を得ることが困難となる。それ
を解消するために、圧接電極板66、67と熱緩衝板6
2、63の間に、Ag箔の軟金属シートからなる厚み補
正板64、65を介在させ、半導体チップ61、熱緩衝
板62、63、圧接電極板66、67の良好な電気的接
触を確保している。
The heat buffer plates 62 and 63 superposed on both surfaces of the semiconductor chip 61 have a thickness of 1 to 3 mm with good heat conduction.
Heat generated by the semiconductor chip 61
There is a function to radiate from both upper and lower surfaces of the semiconductor chip 61,
So-called double-sided cooling is enabled. Japanese Unexamined Patent Publication No. Hei 8
In the case of -88240, if the semiconductor chip 61 and the thermal buffer plates 62 and 63 are uneven in thickness or pressurized,
Variations occur in the pressure applied. Then, the semiconductor chip 61, the heat buffer plates 61 and 63, the press-contact electrode plate 66,
It is difficult to obtain 67 good electrical contacts. In order to solve this, the pressure contact electrode plates 66 and 67 and the heat buffer plate 6
Thickness correction plates 64 and 65 made of a soft metal sheet of Ag foil are interposed between 2 and 63 to ensure good electrical contact between the semiconductor chip 61, the thermal buffer plates 62 and 63, and the press-contact electrode plates 66 and 67. are doing.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの技術
には問題がある。半導体チップ61、熱緩衝板62、6
3は互いに分離した状態で、圧接電極板66、67間に
組み込まれるため、加圧状態以外では、位置ずれを生じ
る可能性がある。これを防止するために、前記の特開平
8−88240号では、半導体チップ61、熱緩衝板6
2、63を位置決めフレーム68内に収納し、保持する
構造としている。この場合、確かに位置ずれは生じにく
くなるが、半導体チップ61、熱緩衝板62、63が密
着固定されていないため、位置ずれ防止策としては十分
でない。
However, these techniques have problems. Semiconductor chip 61, thermal buffer plates 62, 6
3 is assembled between the press contact electrode plates 66 and 67 in a state separated from each other, and therefore, there is a possibility that a displacement occurs in a state other than the pressurized state. To prevent this, Japanese Patent Application Laid-Open No. 8-88240 discloses a semiconductor chip 61 and a heat buffer plate 6.
2, 63 are housed in the positioning frame 68 and held. In this case, displacement is unlikely to occur, but is not sufficient as a measure for preventing displacement because the semiconductor chip 61 and the thermal buffer plates 62 and 63 are not tightly fixed.

【0005】また、半導体チップ61など構成部材の厚
みのばらつきを補正するために、一度加圧し、厚み補正
板64、65のAg箔を減少させた後で、再度加圧する
場合、この位置ずれがあると、再加圧後の厚み調整は困
難となる。これらの不都合を解決するために、特開平7
−026421号公報で開示された構造(図4)があ
る。この平型半導体装置では、半導体チップ61と下部
の熱緩衝板62の間を半田69で固着することで、この
半田69に位置決めと厚み調整の働きをさせている。
In order to correct the variation in the thickness of the constituent members such as the semiconductor chip 61, if the pressure is applied once, the Ag foils of the thickness correction plates 64 and 65 are reduced, and then the pressure is applied again, this positional deviation may occur. If so, it is difficult to adjust the thickness after re-pressing. To solve these inconveniences, Japanese Patent Application Laid-Open
There is a structure (FIG. 4) disclosed in Japanese Patent Publication No. -026421. In this flat type semiconductor device, the semiconductor chip 61 and the lower thermal buffer plate 62 are fixed with solder 69 so that the solder 69 performs positioning and thickness adjustment.

【0006】しかし、この特開平7−026421号公
報で開示された半田69は鉛(Pb90.0〜98.0
重量%)、錫(Sn10.0〜2.0重量%)の単一の
半田であるため、固相線温度より高い温度で接合すれ
ば、半田69が圧縮されすぎて、厚み調整が困難とな
り、固相線温度より低い温度では厚み調整は容易になる
が、接合性が悪化する。そのため、この方法では、半導
体チップ61と熱緩衝板62との接合強度を確保しなが
ら、厚み調整を精度よく行うことは困難となる。
However, the solder 69 disclosed in Japanese Unexamined Patent Publication No. Hei 7-026421 uses lead (Pb 90.0 to 98.0).
Wt%) and tin (Sn 10.0 to 2.0 wt%), so if joined at a temperature higher than the solidus temperature, the solder 69 will be compressed too much, making it difficult to adjust the thickness. At a temperature lower than the solidus temperature, the thickness can be easily adjusted, but the bondability is deteriorated. Therefore, in this method, it is difficult to accurately adjust the thickness while securing the bonding strength between the semiconductor chip 61 and the thermal buffer plate 62.

【0007】この発明の目的は、前記の課題を解決し
て、半導体チップおよび熱緩衝板などの構成部材を圧接
電極間に挟み込んで組み立てた後、加圧時はもちろんの
こと、加圧除去時においても、組み込まれた構成部材の
位置ずれを生ずることなく、安定した構成部材の厚み調
整が可能となる平型半導体装置提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to assemble components such as a semiconductor chip and a heat buffer plate by sandwiching them between press-contact electrodes. It is another object of the present invention to provide a flat type semiconductor device capable of stably adjusting the thickness of a constituent member without causing displacement of a built-in constituent member.

【0008】[0008]

【課題を解決するための手段】前記の目的を達成するた
めに、同一平面上に配設された複数の半導体チップと、
該半導体チップごとに、その両主面に重ねて設けた熱緩
衝板と、これらを挟持する2つの圧接電極板と、前記半
導体チップと前記熱緩衝板との間に介在し、両者を固着
する厚み調整用の半田とを有する平型半導体装置であっ
て、該半田が固相線温度の異なる複数の半田板を有する
構成とする。
In order to achieve the above-mentioned object, a plurality of semiconductor chips arranged on the same plane are provided.
For each of the semiconductor chips, a heat buffer plate provided on both main surfaces thereof, two press-contacting electrode plates sandwiching these, and interposed between the semiconductor chip and the heat buffer plate to fix them together. A flat semiconductor device having a solder for thickness adjustment, wherein the solder has a plurality of solder plates having different solidus temperatures.

【0009】また、前記半田が、固相線温度の高い半田
板を、固相線温度の低い半田板で挟み込む構造であると
よい。また、前記半田が、3層からなり、第1半田板と
第2半田板により、該第1、第2半田板より固相線温度
の高い第3半田板を挟み込む構造であるとよい。前記第
1半田板と前記第2半田板が、錫(Sn)90.0重量
%と銀(Ag)10.0重量%から錫(Sn)98.0
重量%と銀(Ag)2.0重%の範囲にあるとよい。
It is preferable that the solder has a structure in which a solder plate having a high solidus temperature is sandwiched by a solder plate having a low solidus temperature. Further, it is preferable that the solder has a three-layer structure in which a first solder plate and a second solder plate sandwich a third solder plate having a higher solidus temperature than the first and second solder plates. The first solder plate and the second solder plate may be composed of 90.0% by weight of tin (Sn) and 10.0% by weight of silver (Ag) to 98.0% by weight of tin (Sn).
% By weight and 2.0% by weight of silver (Ag).

【0010】さらに、前記第1半田板と第2半田板が、
錫(Sn)95.0重量%と銀(Ag)5.0重量%か
ら錫(Sn)98.0重量%と銀(Ag)2.0重%の
範囲にあると効果的である。また、前記第3半田板が、
錫(Sn)90.0重量%とアンチモン(Sb)10重
量%から錫(Sn)98.0重量%とアンチモン(S
b)2.0重%の範囲にあるとよい。
Further, the first solder plate and the second solder plate may include:
It is effective if the content is in the range of 95.0% by weight of tin (Sn) and 5.0% by weight of silver (Ag) to 98.0% by weight of tin (Sn) and 2.0% by weight of silver (Ag). Further, the third solder plate is
From 90.0% by weight of tin (Sn) and 10% by weight of antimony (Sb), 98.0% by weight of tin (Sn) and
b) It is preferably in the range of 2.0% by weight.

【0011】さらに、前記第3半田板が、錫(Sn)9
0.0重量%とアンチモン(Sb)10重量%から錫
(Sn)95.0重量%とアンチモン(Sb)5.0重
%の範囲にあると効果的である。また、同一平面上に配
設された複数の半導体チップと、該半導体チップ毎に、
その少なくとも一方の主面に重ねて設けた熱緩衝板と、
前記半導体チップと前記熱緩衝板との間に介在する半田
で接合した平型半導体装置の製造方法において、同一平
面上に、前記半導体チップと固相線温度の異なる複数の
半田板と熱緩衝板を積層したものを複数配置する工程
と、上下方向から加圧しながら所定の第1の温度で固相
線温度の低い半田を溶融する工程と、上下寄り加圧しな
がら前記第1の温度より高い所定の第2の温度にして前
記固相線温度より低い半田板固相線恩田が高い半田板の
個々の厚さを調節することにより、前記半田チップと前
記半田板および前記熱緩衝板を合わせた厚さを揃える工
程を含む製造方法とする。
Further, the third solder plate is made of tin (Sn) 9
It is effective to be in the range of 0.0% by weight and 10% by weight of antimony (Sb) to 95.0% by weight of tin (Sn) and 5.0% by weight of antimony (Sb). Also, a plurality of semiconductor chips arranged on the same plane, and for each of the semiconductor chips,
A heat buffer plate provided on at least one main surface thereof,
In the method of manufacturing a flat semiconductor device joined by solder interposed between the semiconductor chip and the thermal buffer, a plurality of solder plates having different solidus temperatures from the semiconductor chip and a thermal buffer are provided on the same plane. A step of melting a solder having a low solidus temperature at a predetermined first temperature while applying pressure from above and below, and a step of applying a pressure higher than the first temperature while pressing vertically. By adjusting the individual thickness of the solder plate having a lower solidus temperature than the solidus temperature and a higher solidus temperature than the solidus temperature at the second temperature, the solder chip and the solder plate and the thermal buffer plate were combined. The manufacturing method includes a step of adjusting the thickness.

【0012】また、同一平面上に配設された複数の半導
体チップと、該半導体チップごとに、その両主面に重ね
て設けた熱緩衝板と、これらを挟持する2つの圧接電極
板と、前記半導体チップと前記熱緩衝板との間に介在
し、両者を固着する厚み調整用の半田とを有する平型半
導体装置の製造方法において、前記半導体チップ上に固
相線温度の低い第1半田板、該第1半田板上に固相線温
度の高い第3半田板、該第3半田板上に固相線温度の低
い第2半田板、該第2半田板上に前記熱緩衝板をそれぞ
れ順に積層する工程と、前記第1、第2、第3半田板で
構成される前記3層の半田板を前記低い固相線温度に昇
温する工程と、前記3層の半田板を所定の加圧力で加圧
しながら高い固相線温度に昇温し、前記半導体チップと
前記3層の半田板および前記熱緩衝板を合わせた全体の
厚み調整し、各半導体チップ毎に揃える工程と、前記3
層の半田板を冷却し、前記半導体チップと前記熱緩衝板
とを固着する工程とを含む製造方法とする。
A plurality of semiconductor chips arranged on the same plane, a thermal buffer plate provided for each of the semiconductor chips so as to be superimposed on both main surfaces thereof, and two press-contacting electrode plates sandwiching these; In a method of manufacturing a flat semiconductor device having a thickness adjusting solder interposed between the semiconductor chip and the heat buffer plate and fixing the both, the first solder having a low solidus temperature is provided on the semiconductor chip. A third solder plate having a high solidus temperature on the first solder plate, a second solder plate having a low solidus temperature on the third solder plate, and the thermal buffer plate on the second solder plate. Sequentially laminating each of the first, second, and third solder plates; raising the three-layer solder plate to the low solidus temperature; The semiconductor chip and the three-layer solder plate and the three-layer solder plate are heated while being pressurized with a pressing force to a high solidus temperature. Fine the thermal buffer plate to adjust the total thickness of the combined, and the process to align each semiconductor chip, the 3
Cooling the layer solder plate and fixing the semiconductor chip and the thermal buffer plate.

【0013】[0013]

【発明の実施の形態】図1は、この発明の第1実施例の
平型半導体装置の構成図であり、同図(a)は要部断面
図、同図(b)は同図(a)のA部拡大図である。IG
BTチップやフリーホイールダイオードチップなどの半
導体チップ1の上下に、それぞれ厚み調整板の役割をす
る3層の半田板6、7を配置し、この3層の半田板6、
7を介して熱緩衝板2、3と半導体チップ1とを固着
し、コレクタ電極板である圧接電極板4とエミッタ電極
板である圧接電極板5の間に挟持する。
FIG. 1 is a structural view of a flat type semiconductor device according to a first embodiment of the present invention. FIG. 1 (a) is a sectional view of an essential part, and FIG. 1 (b) is a sectional view of FIG. FIG. IG
On the upper and lower sides of a semiconductor chip 1 such as a BT chip or a freewheel diode chip, three layers of solder plates 6 and 7 each serving as a thickness adjusting plate are arranged.
The heat buffer plates 2 and 3 and the semiconductor chip 1 are fixed via the intermediary 7 and sandwiched between the press contact electrode plate 4 as the collector electrode plate and the press contact electrode plate 5 as the emitter electrode plate.

【0014】3層の半田板6、7は、加圧しながら溶融
・固化することで、半導体チップ1と熱緩衝板2、3を
固着すると同時に、半導体チップ1、熱緩衝板2、3の
厚みにばらつきがある場合、その厚みを調整して、半導
体チップ1と3層の半田板6、7と熱緩衝板2、3の全
体の厚さを揃え、圧接電極板4、5間に配置された複数
個の半導体チップ1に均等な加圧力が加わるようにす
る。
The three-layer solder plates 6 and 7 are melted and solidified while applying pressure, so that the semiconductor chip 1 and the thermal buffer plates 2 and 3 are fixed, and at the same time, the thickness of the semiconductor chip 1 and the thermal buffer plates 2 and 3 is increased. If there is a variation in the thickness, the thickness is adjusted so that the semiconductor chip 1 and the three-layer solder plates 6 and 7 and the thermal buffer plates 2 and 3 have the same overall thickness. A uniform pressure is applied to the plurality of semiconductor chips 1.

【0015】この3層の半田板6、7は、半導体チップ
1と接する固相線温度の低い第1半田板6a、7aと、
熱緩衝板2、3と接する固相線温度の低い第2半田板6
b、7bと、第1半田板6a、6bと第2半田板7a、
7bに挟まれる、固相線温度の高い第3半田板6c、7
cで構成される。この3層の半田板6、7を圧接電極板
4、5を介して加圧しながら、昇温し、半導体チップ1
と前記3層の半田板6、7および前記熱緩衝板2、3を
合わせた全体の厚みを、各半導体チップ毎に厚みを揃
え、冷却して、半導体チップ1と前記熱緩衝板2、3と
を固着する。
The three-layer solder plates 6 and 7 include first solder plates 6 a and 7 a having a low solidus temperature in contact with the semiconductor chip 1, and
Second solder plate 6 having a low solidus temperature in contact with thermal buffer plates 2 and 3
b, 7b, first solder plates 6a, 6b and second solder plate 7a,
7b, the third solder plates 6c and 7 having a high solidus temperature
c. The temperature of the three-layer solder plates 6 and 7 is increased while pressurizing them via the pressure-contact electrode plates 4 and 5 to increase the temperature of the semiconductor chip 1.
And the three-layer solder plates 6 and 7 and the thermal buffer plates 2 and 3 are combined. Is fixed.

【0016】前記の第1半田板6a、7aおよび第2半
田板6b、7bは、錫(Sn)96.5重量%と銀(A
g)3.5重量%、厚み0.05mm程度であり、第3
半田板6c、7cは、錫(Sn)91.5重量%とアン
チモン(Sb)8.5重量%、厚み0.1mm程度であ
る。この第1半田板6a、7aおよび第2半田板6b、
7bにおいて、錫(Sn)の量に対して、銀(Ag)の
量が増加すると半田の接合強度は高まるが、増加しすぎ
るとSnに分散していたAgSnの塊が粗大となり、半
田としての接合強度が小さくなる。一方、減少しすぎる
と半田の接合強度が小さくなる。そのために、第1半田
板6a、7aと第2半田板6b、7bが、錫(Sn)9
0.0重量%と銀(Ag)10.0重量%から錫(S
n)98.0重量%と銀(Ag)2.0重%の範囲にあ
るとよい。さらに、好ましくは、錫(Sn)95.0重
量%と銀(Ag)5.0重量%から錫(Sn)98.0
重量%と銀(Ag)2.0重%の範囲にあるとよい。
The first solder plates 6a, 7a and the second solder plates 6b, 7b are composed of 96.5% by weight of tin (Sn) and silver (A).
g) 3.5% by weight and thickness of about 0.05 mm;
The solder plates 6c and 7c are 91.5% by weight of tin (Sn), 8.5% by weight of antimony (Sb), and about 0.1 mm in thickness. The first solder plates 6a, 7a and the second solder plate 6b,
In FIG. 7b, when the amount of silver (Ag) increases with respect to the amount of tin (Sn), the bonding strength of the solder increases. The joining strength is reduced. On the other hand, if it decreases too much, the bonding strength of the solder will decrease. Therefore, the first solder plates 6a, 7a and the second solder plates 6b, 7b are made of tin (Sn) 9
From 0.0% by weight and 10.0% by weight of silver (Ag) to tin (S
n) It is good to be in the range of 98.0% by weight and 2.0% by weight of silver (Ag). More preferably, tin (Sn) is 95.0% by weight and silver (Ag) is 5.0% by weight to tin (Sn) 98.0%.
% By weight and 2.0% by weight of silver (Ag).

【0017】前記の第3半田板6c、7cにおいて、錫
(Sn)の量に対して、アンチモン(Sb)の量が増加
すると、固相線温度が上昇して、第1、第2半田板6
a、6b、7a、7bの固相線温度と差がついて好まし
いが、増加しすぎると、硬くなり、もろくなる。一方、
減少しすぎると固相線温度が低下して第1、第2半田板
6a、6b、7a、7bの固相線温度と差がつかなくな
る。そのために、第3半田板6c、7cは、錫(Sn)
90.0重量%とアンチモン(Sb)10重量%から錫
(Sn)98.0重量%とアンチモン(Sb)2.0重
%の範囲にあるとよい。さらに、好ましくは、錫(S
n)90.0重量%とアンチモン(Sb)10重量%か
ら錫(Sn)95.0重量%とアンチモン(Sb)5.
0重%の範囲にあるとよい。
In the third solder plates 6c and 7c, when the amount of antimony (Sb) is increased with respect to the amount of tin (Sn), the solidus temperature rises, and the first and second solder plates are increased. 6
The solidus temperatures of a, 6b, 7a, and 7b are preferably different from each other, but if they are excessively increased, they become hard and brittle. on the other hand,
If the temperature decreases too much, the solidus temperature decreases, and the solidus temperature of the first and second solder plates 6a, 6b, 7a, and 7b becomes indistinguishable. Therefore, the third solder plates 6c and 7c are made of tin (Sn).
The range is preferably 90.0% by weight and 10% by weight of antimony (Sb) to 98.0% by weight of tin (Sn) and 2.0% by weight of antimony (Sb). Further, preferably, tin (S
n) 90.0% by weight and 10% by weight of antimony (Sb) to 95.0% by weight of tin (Sn) and 5% by weight of antimony (Sb).
It is good to be in the range of 0% by weight.

【0018】前記のように、3層の半田板6、7を、固
相線温度の低い錫、銀系の第1、第2半田板6a、6
b、7a、7aと、固相線温度の高い錫、アンチモン系
の第3半田板6c、7cで構成し、先ず、固相線温度の
低い錫、銀系の第1、第2半田板6a、6b、7a、7
aで、半導体チップ1と第3半田板6c、7cおよび熱
緩衝板2、3と第3半田板6c、7cを接合し、つぎ
に、温度を上げて、第3半田板6c、7cを溶融・固化
することで、半導体チップ1と3層の半田板6、7と熱
緩衝板2、3の全体の厚さを揃えることができる。厚さ
が揃うことで、図示しないパッケージに収納された、全
ての半導体チップ1に均一な加圧力を加えることができ
る。また、第3半田板6c、7cは、厚み調整の中心的
な働きをしている。
As described above, the three-layer solder plates 6 and 7 are replaced with tin and silver-based first and second solder plates 6a and 6 having a low solidus temperature.
b, 7a, and 7a, and tin and antimony-based third solder plates 6c and 7c having a high solidus temperature, and first, tin and silver-based first and second solder plates 6a having a low solidus temperature. , 6b, 7a, 7
a, the semiconductor chip 1 and the third solder plates 6c and 7c and the thermal buffer plates 2 and 3 and the third solder plates 6c and 7c are joined, and then the temperature is increased to melt the third solder plates 6c and 7c. By solidifying, the overall thicknesses of the semiconductor chip 1, the three-layer solder plates 6, 7 and the thermal buffer plates 2, 3 can be made uniform. With the uniform thickness, a uniform pressing force can be applied to all the semiconductor chips 1 housed in a package (not shown). The third solder plates 6c and 7c have a central function of adjusting the thickness.

【0019】前記では、上方に配置された熱緩衝板3と
半導体チップ1も3層の半田板7で固着されているが、
こちらは、固着させずにAgなどの厚み調整板を用いて
も構わない。また、この3層の半田板6、7には鉛(P
b)が含まれないので、環境汚染の問題が起こらない。
In the above description, the heat buffer plate 3 and the semiconductor chip 1 arranged above are also fixed by the three-layer solder plate 7,
Here, a thickness adjusting plate made of Ag or the like may be used without being fixed. Also, lead (P) is added to the three-layer solder plates 6 and 7.
Since b) is not included, the problem of environmental pollution does not occur.

【0020】図2は、図1の平型半導体装置の製造方法
であり、同図(a)から同図(c)は、工程順に示した
要部製造工程断面図である。同図(a)において、下部
の圧接電極板4上に熱緩衝板2を配置し、この熱緩衝板
2上に固相線温度の低い第2半田板6aを配置し、この
第2半田板6a上に固相線温度の高い第3半田板6cを
配置し、この第3半田板6c上に固相線温度の低い第1
半田板6bを配置し、この第1半田板6b上に半導体チ
ップ1を配置する。第1、第2半田板6a、6bは錫
(Sn)96.5重量%と銀(Ag)3.5重量%、厚
み0.05mm程度であり、第3半田板6cは、錫(S
n)91.5重量%とアンチモン(Sb)8.5重量
%、厚み0.1mm程度である。
2A to 2C show a method of manufacturing the flat semiconductor device of FIG. 1. FIGS. 2A to 2C are cross-sectional views of a main part manufacturing process shown in the order of processes. In FIG. 2A, a thermal buffer plate 2 is disposed on a lower pressure contact electrode plate 4, a second solder plate 6a having a low solidus temperature is disposed on the thermal buffer plate 2, and a second solder plate is provided. A third solder plate 6c having a high solidus temperature is disposed on the second solder plate 6a, and a first solder plate 6c having a low solidus temperature is provided on the third solder plate 6c.
The solder plate 6b is arranged, and the semiconductor chip 1 is arranged on the first solder plate 6b. The first and second solder plates 6a and 6b are 96.5% by weight of tin (Sn) and 3.5% by weight of silver (Ag) and have a thickness of about 0.05 mm, and the third solder plate 6c is formed of tin (Sn).
n) 91.5% by weight, 8.5% by weight of antimony (Sb) and about 0.1 mm in thickness.

【0021】同図(b)において、半導体チップ1上に
第1半田板7aを配置し、この第1半田板7a上に第3
半田板7cを配置し、この第3半田板7c上に第2半田
板7bを配置し、この第2半田板7b上に熱緩衝板3を
配置し、その上に上部の圧接電極板5を配置する。同図
(c)において、上下の圧接電極板4、5から1個の半
導体チップ当たり、5〜10Nの加圧力を加え、225
℃に加熱し、第1、第2半田板6a、6b、7a、7b
を溶融して、第3半田板6c、7cと半導体チップ1、
第3半田板6c、7cと熱緩衝板2、3とをそれぞれ固
着し、続いて、加圧力を20〜40Nに上げ、加熱温度
を234℃として、その後、そのままの加圧力で加圧し
ながら冷却し、半導体チップ1と3層の半田板6、7と
熱緩衝板2、3の全体の厚さを各半導体チップで揃え
る。前記の全体の厚み調整は、固相線温度より高い第3
半田板6c、7cをその固相線温度と同じあるいは、
2、3℃低い温度にて、加圧力を調整することによって
行うことが望ましい。
In FIG. 1B, a first solder plate 7a is disposed on the semiconductor chip 1, and a third solder plate 7a is provided on the first solder plate 7a.
A solder plate 7c is disposed, a second solder plate 7b is disposed on the third solder plate 7c, a thermal buffer plate 3 is disposed on the second solder plate 7b, and an upper pressure contact electrode plate 5 is disposed thereon. Deploy. In FIG. 3C, a pressing force of 5 to 10 N is applied to each semiconductor chip from the upper and lower press contact electrode plates 4 and 5 to reach 225.
° C, and the first and second solder plates 6a, 6b, 7a, 7b
And the third solder plates 6c, 7c and the semiconductor chip 1,
The third solder plates 6c and 7c are fixed to the heat buffer plates 2 and 3, respectively. Then, the pressing force is increased to 20 to 40N, the heating temperature is set to 234 ° C, and then the cooling is performed while applying the pressure as it is. Then, the entire thickness of the semiconductor chip 1, the three-layer solder plates 6, 7 and the thermal buffer plates 2, 3 is made uniform for each semiconductor chip. The entire thickness adjustment is performed at a third temperature higher than the solidus temperature.
The solder plates 6c and 7c are the same as their solidus temperatures or
It is desirable to adjust the pressure at a temperature lower by a few degrees.

【0022】尚、前記の225℃の加熱時と、冷却時の
加圧はあった方が好ましいが、なしでも構わない。半導
体チップ1と熱緩衝板2、3との固着を第1、第2半田
板6a、6b、7a、7bで行い、厚み調整を第3半田
板6c、7cで行うことで、半田を溶融させる温度を広
く選定できて、生産性が向上する。また、半導体チップ
1と熱緩衝板2、3とを固着させることで、半導体チッ
プ1、熱緩衝板2、3の位置を固定する位置決めフレー
ムを不要し、製造コストを低減できる。
It is preferable to apply pressure at the time of heating at 225 ° C. and at the time of cooling. The first and second solder plates 6a, 6b, 7a, 7b fix the semiconductor chip 1 to the thermal buffer plates 2, 3, and the thickness is adjusted by the third solder plates 6c, 7c to melt the solder. Temperature can be selected widely, and productivity is improved. Further, by fixing the semiconductor chip 1 and the thermal buffer plates 2 and 3, a positioning frame for fixing the positions of the semiconductor chip 1 and the thermal buffer plates 2 and 3 becomes unnecessary, and the manufacturing cost can be reduced.

【0023】[0023]

【発明の効果】この発明によれば、圧接電極板間に挟持
されて平型半導体装置を構成する半導体チップおよび熱
緩衝板間に厚み調整の役割をする3層の半田板を用いる
ことにより、半導体チップおよび熱緩衝板の厚みのばら
つきの調整が容易にできるとともに、半導体チップおよ
び熱緩衝板とを固着させることができる。この固着によ
って、半導体チップと熱緩衝板が一体化されるため、加
圧が除去された状態にても半導体チップと熱緩衝板が分
離して位置ずれを起こすことがなくなり、厚み調整を安
定してさせることができる。さらに、半導体チップと熱
緩衝板が固着することで、強い衝撃があった場合でも、
半導体チップと熱緩衝板の位置ずれを防止できる。ま
た、半導体チップ、熱緩衝板の位置を固定する位置決め
フレームを不要し、製造コストを低減できる。
According to the present invention, by using a three-layer solder plate which serves to adjust the thickness between a semiconductor chip and a heat buffer plate which are sandwiched between press-contact electrode plates and constitute a flat semiconductor device, The thickness variation of the semiconductor chip and the thermal buffer plate can be easily adjusted, and the semiconductor chip and the thermal buffer plate can be fixed. Due to this fixation, the semiconductor chip and the heat buffer plate are integrated, so that even when pressure is removed, the semiconductor chip and the heat buffer plate do not separate from each other and cause a position shift, thereby stabilizing the thickness adjustment. You can let me. Furthermore, even if there is a strong shock due to the semiconductor chip and the thermal buffer plate being fixed,
The displacement between the semiconductor chip and the heat buffer plate can be prevented. Further, a positioning frame for fixing the positions of the semiconductor chip and the heat buffer plate is not required, and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1実施例の平型半導体装置の構成
図であり、(a)は要部断面図、(b)は(a)のA部
拡大図
FIGS. 1A and 1B are configuration diagrams of a flat type semiconductor device according to a first embodiment of the present invention, wherein FIG. 1A is a sectional view of a main part, and FIG.

【図2】第1実施例の平型半導体装置の製造方法であ
り、(a)から(c)は工程順に示した要部製造工程断
面図
FIGS. 2A to 2C are cross-sectional views of a main part manufacturing process shown in the order of processes, showing a method of manufacturing the flat semiconductor device according to the first embodiment;

【図3】従来の平型半導体装置の要部断面図FIG. 3 is a sectional view of a main part of a conventional flat semiconductor device.

【図4】従来の別の平型半導体装置の要部断面図FIG. 4 is a sectional view of a main part of another conventional flat semiconductor device.

【符号の説明】[Explanation of symbols]

1 半導体チップ 2、3 熱緩衝板 4、5 圧接電極板 6、7 3層の半田板 6a、7a 第1半田板 6b、7b 第2半田板 6c、7c 第3半田板 DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2, 3 Thermal buffer plate 4, 5 Pressure contact electrode plate 6, 7 Three-layer solder plate 6a, 7a First solder plate 6b, 7b Second solder plate 6c, 7c Third solder plate

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】同一平面上に配設された複数の半導体チッ
プと、該半導体チップごとに、その両主面に重ねて設け
た熱緩衝板と、これらを挟持する2つの圧接電極板と、
前記半導体チップと前記熱緩衝板との間に介在し、両者
を固着する厚み調整用の半田とを有する平型半導体装置
であって、該半田が、固相線温度の異なる複数の半田板
を有することを特徴とする平型半導体装置。
1. A plurality of semiconductor chips arranged on the same plane, a heat buffer plate provided for each of the semiconductor chips so as to be overlapped on both main surfaces thereof, and two press-contact electrode plates sandwiching these.
A flat semiconductor device having a thickness adjusting solder that is interposed between the semiconductor chip and the thermal buffer plate and fixes the two, wherein the solder has a plurality of solder plates having different solidus temperatures. A flat semiconductor device characterized by having:
【請求項2】前記半田が、固相線温度の高い半田板を、
固相線温度の低い半田板で挟み込む構造からなることを
特徴とする請求項1に記載の平型半導体装置。
2. The method according to claim 1, wherein the solder is a solder plate having a high solidus temperature.
2. The flat semiconductor device according to claim 1, wherein the flat semiconductor device has a structure sandwiched between solder plates having a low solidus temperature.
【請求項3】前記半田が、3層からなり、第1半田板と
第2半田板により、該第1、第2半田板より固相線温度
の高い第3半田板を挟み込む構造からなることを特徴と
する請求項2に記載の平型半導体装置。
3. A structure in which the solder comprises three layers, and a first solder plate and a second solder plate sandwich a third solder plate having a higher solidus temperature than the first and second solder plates. 3. The flat semiconductor device according to claim 2, wherein:
【請求項4】前記第1半田板と前記第2半田板が、錫
(Sn)90.0重量%と銀(Ag)10.0重量%か
ら錫(Sn)98.0重量%と銀(Ag)2.0重%の
範囲にあることを特徴とする請求項2に記載の平型半導
体装置。
4. The method according to claim 1, wherein the first solder plate and the second solder plate are composed of 90.0% by weight of tin (Sn) and 10.0% by weight of silver (Ag) to 98.0% by weight of tin (Sn) and 3. The flat semiconductor device according to claim 2, wherein Ag is in a range of 2.0% by weight.
【請求項5】前記第1半田板と前記第2半田板が、錫
(Sn)95.0重量%と銀(Ag)5.0重量%から
錫(Sn)98.0重量%と銀(Ag)2.0重%の範
囲にあることを特徴とする請求項3に記載の平型半導体
装置。
5. The method according to claim 1, wherein the first solder plate and the second solder plate are composed of 95.0% by weight of tin (Sn) and 5.0% by weight of silver (Ag) to 98.0% by weight of tin (Sn) and 4. The flat semiconductor device according to claim 3, wherein Ag is in a range of 2.0% by weight.
【請求項6】前記第2半田板が、錫(Sn)90.0重
量%とアンチモン(Sb)10重量%から錫(Sn)9
8.0重量%とアンチモン(Sb)2.0重%の範囲に
あることを特徴とする請求項2に記載の平型半導体装
置。
6. The method according to claim 1, wherein the second solder plate comprises tin (Sn) 90.0% by weight and antimony (Sb) 10% by weight and tin (Sn) 9
3. The flat semiconductor device according to claim 2, wherein the content is in a range of 8.0% by weight and 2.0% by weight of antimony (Sb).
【請求項7】前記第2半田板が、錫(Sn)90.0重
量%とアンチモン(Sb)10重量%から錫(Sn)9
5.0重量%とアンチモン(Sb)5.0重%の範囲に
あることを特徴とする請求項2に記載の平型半導体装
置。
7. The method according to claim 7, wherein the second solder plate comprises tin (Sn) 90.0% by weight and antimony (Sb) 10% by weight and tin (Sn) 9
3. The flat semiconductor device according to claim 2, wherein the content is in a range of 5.0% by weight and 5.0% by weight of antimony (Sb).
【請求項8】同一平面上に配設された複数の半導体チッ
プと、該半導体チップ毎に、その少なくとも一方の主面
に重ねて設けた熱緩衝板と、前記半導体チップと前記熱
緩衝板との間に介在する半田で接合した平型半導体装置
の製造方法において、同一平面上に、前記半導体チップ
と固相線温度の異なる複数の半田板と熱緩衝板を積層し
たものを複数配置する工程と、上下方向から加圧しなが
ら所定の第1の温度で固相線温度の低い半田を溶融する
工程と、上下寄り加圧しながら前記第1の温度より高い
所定の第2の温度にして前記固相線温度より低い半田板
固相線恩田が高い半田板の個々の厚さを調節することに
より、前記半田チップと前記半田板および前記熱緩衝板
を合わせた厚さを揃える工程を含むことを特徴とする平
型半導体装置の製造方法。
8. A plurality of semiconductor chips arranged on the same plane, a heat buffer plate provided for each of the semiconductor chips so as to overlap at least one main surface thereof, the semiconductor chip and the heat buffer plate. In a method of manufacturing a flat type semiconductor device joined by solder interposed therebetween, a step of arranging a plurality of semiconductor chips, a plurality of solder plates having different solidus temperatures and a thermal buffer plate on the same plane. Melting a solder having a low solidus temperature at a predetermined first temperature while applying pressure from above and below, and setting the solidification to a predetermined second temperature higher than the first temperature while applying upward and downward pressure. By adjusting the individual thickness of the solder plate having a higher solidus wire solid phase solder than the phase line temperature, it is possible to include a step of adjusting the thickness of the solder chip and the solder plate and the thermal buffer plate together. Manufacture of flat type semiconductor devices Method.
【請求項9】同一平面上に配設された複数の半導体チッ
プと、該半導体チップごとに、その両主面に重ねて設け
た熱緩衝板と、これらを挟持する2つの圧接電極板と、
前記半導体チップと前記熱緩衝板との間に介在し、両者
を固着する厚み調整用の半田とを有する平型半導体装置
の製造方法において、前記半導体チップ上に固相線温度
の低い第1半田板、該第1半田板上に固相線温度の高い
第3半田板、該第3半田板上に固相線温度の低い第2半
田板、該第2半田板上に前記熱緩衝板をそれぞれ順に積
層する工程と、前記第1、第2、第3半田板で構成され
る前記3層の半田板を前記低い固相線温度に昇温する工
程と、前記3層の半田板を所定の加圧力で加圧しながら
高い固相線温度に昇温し、前記半導体チップと前記3層
の半田板および前記熱緩衝板を合わせた全体の厚み調整
し、各半導体チップ毎に揃える工程と、前記3層の半田
板を冷却し、前記半導体チップと前記熱緩衝板とを固着
する工程とを含むことを特徴とする平型半導体装置の製
造方法。
9. A plurality of semiconductor chips arranged on the same plane, a heat buffer plate provided for each of the semiconductor chips so as to be superposed on both main surfaces thereof, and two press-contacting electrode plates sandwiching them.
In a method of manufacturing a flat semiconductor device having a thickness adjusting solder interposed between the semiconductor chip and the heat buffer plate and fixing the both, the first solder having a low solidus temperature is provided on the semiconductor chip. A third solder plate having a high solidus temperature on the first solder plate, a second solder plate having a low solidus temperature on the third solder plate, and the thermal buffer plate on the second solder plate. Sequentially laminating each of the first, second, and third solder plates; raising the three-layer solder plate to the low solidus temperature; Raising the temperature to a high solidus temperature while pressing with a pressing force, adjusting the overall thickness of the semiconductor chip and the three-layer solder plate and the thermal buffer plate together, and aligning the semiconductor chips with each other; Cooling the three-layer solder plate and fixing the semiconductor chip and the thermal buffer plate. Method of manufacturing a flat type semiconductor device according to claim and.
JP2000373677A 2000-12-08 2000-12-08 Flat semiconductor device and its manufacturing method Pending JP2002176133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000373677A JP2002176133A (en) 2000-12-08 2000-12-08 Flat semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000373677A JP2002176133A (en) 2000-12-08 2000-12-08 Flat semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002176133A true JP2002176133A (en) 2002-06-21

Family

ID=18843001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000373677A Pending JP2002176133A (en) 2000-12-08 2000-12-08 Flat semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002176133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244166A (en) * 2004-01-30 2005-09-08 Denso Corp Semiconductor device
US10658343B2 (en) 2016-12-16 2020-05-19 Fuji Electric Co., Ltd. Semiconductor module including pressure contact adjustment screws

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244166A (en) * 2004-01-30 2005-09-08 Denso Corp Semiconductor device
US10658343B2 (en) 2016-12-16 2020-05-19 Fuji Electric Co., Ltd. Semiconductor module including pressure contact adjustment screws

Similar Documents

Publication Publication Date Title
JP4076841B2 (en) Manufacturing method of semiconductor device
JP2002289768A (en) Semiconductor device and its manufacturing method
JP2004079760A (en) Semiconductor device and its assembling method
WO2020179369A1 (en) Semiconductor device and bonding method
JP3614079B2 (en) Semiconductor device and manufacturing method thereof
US20070236891A1 (en) Semiconductor device having heat radiation member and semiconductor chip and method for manufacturing the same
JP3705159B2 (en) Manufacturing method of semiconductor device
JP2002176133A (en) Flat semiconductor device and its manufacturing method
JP2003124262A5 (en)
US20220359229A1 (en) Semiconductor device and method for manufacturing the semiconductor device
JP3823974B2 (en) Manufacturing method of semiconductor device
KR101750206B1 (en) Heating header of semiconductor mounting apparatus and bonding method for semiconductor
JP7322054B2 (en) Semiconductor device and method for manufacturing semiconductor device
JPH0438859A (en) Electronic component assembly structure and assembly method
JP2001284510A (en) Manufacturing method of electrical equipment
JP3428488B2 (en) Electronic component manufacturing method
JP2004296901A (en) Thermoelectric module
JP7329919B2 (en) Semiconductor device, method for manufacturing semiconductor device, and clip lead
JPS62580B2 (en)
JPS62581B2 (en)
JP4096492B2 (en) Flat semiconductor device and manufacturing method thereof
JPH06140554A (en) Outgoing lead of electronic component and joining method therefor
JPH11340278A (en) Resin sheet for mounting semiconductor device, flip chip mounting method and circuit board
JP3368140B2 (en) Electronic component mounting method and structure
JP2972106B2 (en) Bonding method of lead to substrate