JP2002170962A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JP2002170962A
JP2002170962A JP2001073682A JP2001073682A JP2002170962A JP 2002170962 A JP2002170962 A JP 2002170962A JP 2001073682 A JP2001073682 A JP 2001073682A JP 2001073682 A JP2001073682 A JP 2001073682A JP 2002170962 A JP2002170962 A JP 2002170962A
Authority
JP
Japan
Prior art keywords
semiconductor
gan
pressure sensor
layer
piezoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001073682A
Other languages
Japanese (ja)
Inventor
Toshiaki Kuniyasu
利明 国安
Toshiaki Fukunaga
敏明 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001073682A priority Critical patent/JP2002170962A/en
Publication of JP2002170962A publication Critical patent/JP2002170962A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor pressure sensor utilizing a piezoelectric resistance effect which can be used stably at a high temperature and which can attain a high reliability against aging. SOLUTION: An i-Ga1-z1Alz1N layer 16 and a p-GaN piezoelectric resistance layer 17 are grown on a GaN substrate 15'. The p-GaN layer 17 is etched to form a piezoelectric resistance 18. Then an SiN insulating film 19 is formed over the hole surface and the part as the piezoelectric resistance 18 is opened, after which an electrode 20 consisting of Ni/Au is formed. An SiN film 21 is formed over the whole back surface of the GaN substrate 15' by P-CVD method. The SiN film 21 and the GaN substrate 15' are etched by selective etching down to expose the i-Ga1-z1Alz1N layer 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体薄膜にピエ
ゾ抵抗部を設け、加えられた圧力をピエゾ抵抗部の抵抗
値変化として検出するピエゾ抵抗効果を利用した半導体
圧力センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor pressure sensor utilizing a piezoresistive effect in which a piezoresistive section is provided on a semiconductor thin film and the applied pressure is detected as a change in the resistance value of the piezoresistive section.

【0002】[0002]

【従来の技術】外部から加えられた応力により半導体等
の電気抵抗が変わるピエゾ抵抗効果を利用した圧力セン
サが知られている。近年、半導体材料を用いた半導体圧
力センサは、省スペース化と集積化が実現できるという
利点を持つために、その研究および開発が進められてい
る。例えば、米国特許第5,514,898号においては、Si材
を用いて微細化技術を適用した半導体圧力センサが報告
されている。
2. Description of the Related Art There is known a pressure sensor utilizing a piezoresistive effect in which the electric resistance of a semiconductor or the like is changed by an externally applied stress. 2. Description of the Related Art In recent years, research and development of semiconductor pressure sensors using semiconductor materials have been promoted because of their advantages of realizing space saving and integration. For example, U.S. Pat. No. 5,514,898 reports a semiconductor pressure sensor to which a miniaturization technique is applied using a Si material.

【0003】一方、III-V族化合物半導体、例えば、Ga
AsあるいはAlGaAs材等を用いた、ピエゾ抵抗効果による
半導体圧力センサが提案されている。これらの材料で
は、Siに比べバンドギャップが大きいことから、従来の
Si材等を用いたものに対して高温下での安定な使用が期
待されている。例えば、1999発行のCompound Semicond
uctor 5(9)November/December,pp.L68において、HANS
L.HARTNAGEL氏らによるCompound Semiconductor MEMS f
or Sensing and Optical Communication Applications
が報告されている。これは、GaAs/AlGaAs/p-GaAs材をこ
の順に積層し、GaAs部分をアーチ状にエッチングし、ピ
エゾ抵抗器となるp-GaAsを、アーチ状にエッチングした
エッジ部分のAlGaAs上に配した構造からなるピエゾセン
サである。III-V族化合物半導体を用いたセンサは、従
来のSi材に対して高温下での安定な動作ができることが
記載されている。また、これらの特性を利用してAlGaAs
/InGaAsによる圧力センサやInP材をベースとしたMEMS
(Micro-Electro-Mechanical Systems)あるいは光フィ
ルタ等の事例も示されている。
On the other hand, III-V compound semiconductors such as Ga
A semiconductor pressure sensor based on a piezoresistive effect using an As or AlGaAs material has been proposed. Because these materials have a larger band gap than Si,
Stable use at high temperatures is expected for those using Si materials and the like. For example, Compound Semicond published in 1999
In uctor 5 (9) November / December, pp.L68, HANS
Compound Semiconductor MEMS f by L.HARTNAGEL et al.
or Sensing and Optical Communication Applications
Have been reported. This is a structure in which GaAs / AlGaAs / p-GaAs materials are stacked in this order, the GaAs portion is etched in an arch shape, and p-GaAs to be a piezoresistor is arranged on AlGaAs in the edge portion etched in an arch shape. Is a piezo sensor. It is described that a sensor using a III-V compound semiconductor can operate stably at a higher temperature than a conventional Si material. In addition, utilizing these characteristics, AlGaAs
/ InGaAs pressure sensor and MEMS based on InP material
(Micro-Electro-Mechanical Systems) or examples of optical filters are also shown.

【0004】[0004]

【発明が解決しようとする課題】高いピエゾ抵抗効果を
示す材料として、他に、石英、LN(Lithium niobate)
あるいはセラミック材が挙げられるが、III-V族化合物
半導体のもつ利点としては集積化が容易であり、MEMSへ
の適用、展開が期待されるという点にある。
Other materials exhibiting a high piezoresistance effect include quartz and LN (Lithium niobate).
Alternatively, a ceramic material can be used, but the advantages of the group III-V compound semiconductor are that integration is easy, and application and development to MEMS are expected.

【0005】しかし、GaAs/AlGaAs材はSi材に比べバン
ドギャップエネルギーが大きいといった利点はあるもの
の、強度的にはSi材には及ばない。そのためにピエゾ抵
抗効果を得るために外圧力による反り等の塑性変形に対
する経時耐性においてもSi材に及ばないことが懸念され
る。
[0005] However, although the GaAs / AlGaAs material has an advantage that the band gap energy is larger than that of the Si material, it is not as strong as the Si material. Therefore, in order to obtain a piezoresistive effect, there is a concern that the aging resistance against plastic deformation such as warpage due to external pressure is not as high as that of the Si material.

【0006】本発明は上記事情に鑑みて、Si材と同等以
上の材料強度を有し、高温下で信頼性が高く、且つ経時
信頼性の高い半導体圧力センサを提供することを目的と
するものである。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a semiconductor pressure sensor having material strength equal to or higher than that of a Si material, high reliability at high temperatures, and high reliability over time. It is.

【0007】[0007]

【課題を解決するための手段】本発明の半導体圧力セン
サは、下面の一部を露出させて半導体の支持部で支持さ
れた半導体薄膜層の上面の、露出された露出部と支持部
との境界付近にピエゾ抵抗部が設けられてなる半導体圧
力センサにおいて、支持部と半導体薄膜層とピエゾ抵抗
部とが、窒化物半導体からなることを特徴とするもので
ある。
According to a semiconductor pressure sensor of the present invention, a portion of an upper surface of a semiconductor thin film layer supported by a semiconductor supporting portion by exposing a part of a lower surface is formed between an exposed exposed portion and a supporting portion. In a semiconductor pressure sensor provided with a piezoresistive portion near a boundary, the support portion, the semiconductor thin film layer, and the piezoresistive portion are made of a nitride semiconductor.

【0008】窒化物半導体は、GaN系あるいはAlN
系であることが望ましい。
The nitride semiconductor is made of GaN or AlN
A system is desirable.

【0009】支持部はGaNあるいはAlNからなり、
半導体薄膜層は抵抗値の高いi型のAlGaNからな
り、ピエゾ抵抗部はp型あるいはn型のGaNからなる
ことが望ましい。
The support is made of GaN or AlN,
Preferably, the semiconductor thin film layer is made of i-type AlGaN having a high resistance value, and the piezoresistive section is made of p-type or n-type GaN.

【0010】また、半導体薄膜層およびp型のピエゾ抵
抗部を覆うように、該p型のピエゾ抵抗部上の少なくと
も一部に開口を有するSiN膜が形成されており、該開
口部に露出したp型のピエゾ抵抗部上に、NiおよびA
uがこの順に積層されてなる電極が形成されていること
が望ましい。
An SiN film having an opening in at least a part of the p-type piezoresistor is formed so as to cover the semiconductor thin film layer and the p-type piezoresistor, and is exposed to the opening. Ni and A on the p-type piezoresistor
It is desirable that an electrode formed by laminating u in this order is formed.

【0011】あるいは、半導体薄膜層およびn型のピエ
ゾ抵抗部を覆うように、該n型のピエゾ抵抗部上の少な
くとも一部に開口を有するSiN膜が形成されており、
該開口部に露出したn型のピエゾ抵抗部上に、Tiおよ
びAlがこの順に積層されてなる電極が形成されている
ことが望ましい。
Alternatively, an SiN film having an opening in at least a part of the n-type piezoresistor is formed so as to cover the semiconductor thin film layer and the n-type piezoresistor,
It is preferable that an electrode formed by laminating Ti and Al in this order is formed on the n-type piezoresistor exposed at the opening.

【0012】上記GaN系とは、少なくともNとGaを
含むことを示す。また、上記AlN系も同様に、少なく
ともNとAlを含むことを示す。
The above-mentioned GaN-based material contains at least N and Ga. In addition, it also indicates that the AlN-based material also contains at least N and Al.

【0013】[0013]

【発明の効果】本発明の半導体圧力センサによれば、上
記のような構成による半導体圧力センサにおいて、支持
部と半導体薄膜とピエゾ抵抗部とが、窒化物半導体から
なることにより、窒化物半導体はバンドギャップがSi
系の半導体に比べて大きいので、高温下において安定に
動作させることができる。さらに窒化物半導体はSiあ
るいはGaAs系の半導体に比べ格子定数が小さく硬い
ので、特に、半導体薄膜の露出している部分と支持部と
の境界付近が、外部からの圧力による撓みによって、経
時で亀裂が生じることが抑制される。よって、高い経時
信頼性を得ることができる。
According to the semiconductor pressure sensor of the present invention, in the semiconductor pressure sensor having the above-described structure, the supporting portion, the semiconductor thin film, and the piezoresistive portion are made of a nitride semiconductor. Band gap is Si
Since it is larger than a system semiconductor, it can be stably operated at a high temperature. Furthermore, since the nitride semiconductor has a smaller lattice constant than the Si or GaAs-based semiconductor and is hard, the vicinity of the boundary between the exposed portion of the semiconductor thin film and the support portion is cracked over time due to bending due to external pressure. Is suppressed. Therefore, high temporal reliability can be obtained.

【0014】支持部にGaNあるいはAlNを用いた場
合、上記のように強度が高いので強靭な支持部を実現で
きる。
In the case where GaN or AlN is used for the supporting portion, a strong supporting portion can be realized because the strength is high as described above.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】本発明の一実施の形態による半導体圧力セ
ンサについてその製造過程に沿って説明する。その半導
体圧力センサの製造過程における断面図を図1に示す。
なお、以下に記載の各半導体層の成長用原料として、ト
リメチルガリウム(TMG)、トリメチルインジュウム(T
MI)、トリメチルアルミニウム(TMA)とアンモニアを
用い、n型ドーパントガスとして、シランガスを用い、p
型ドーパントとしてシクロペンタジエニルマグネシウム
(Cp2Mg)を用いる。
A semiconductor pressure sensor according to an embodiment of the present invention will be described along a manufacturing process. FIG. 1 shows a sectional view of the semiconductor pressure sensor in a manufacturing process.
In addition, trimethyl gallium (TMG), trimethyl indium (T
MI), trimethylaluminum (TMA) and ammonia, silane gas as n-type dopant gas, p
Cyclopentadienyl magnesium (Cp 2 Mg) is used as the type dopant.

【0017】図1(a)に示すように、有機金属気相成
長法により(0001)C面サファイア基板11上に、成
長温度500℃で30nmの膜厚のGaN低温層10を形成
し、その上に成長温度1100℃で低圧1.33×104(P
a)で、GaNバッファ層12を2μm程度の膜厚で形成
する。0.1μm厚のSiO2膜13をP-CVD装置で形成し、
フォトリソエッチングにより、5μm幅のSiO2膜13膜を
残すように2μm間隔でストライプパターンを形成す
る。このSiO2膜マスクパターン上に20μm厚のGaN
膜14を成長させる。さらにHVPE(hydride vapor phase
epitaxy)法を用いて1000℃で200μmのノンドープ
GaN膜15を積層成長させる。
As shown in FIG. 1A, a 30-nm-thick GaN low-temperature layer 10 at a growth temperature of 500 ° C. is formed on a (0001) C-plane sapphire substrate 11 by metal organic chemical vapor deposition. The growth temperature is 1100 ° C and the low pressure is 1.33 × 10 4 (P
In a), a GaN buffer layer 12 is formed with a thickness of about 2 μm. A SiO 2 film 13 having a thickness of 0.1 μm is formed by a P-CVD apparatus,
By a photolithographic etching to form a stripe pattern in 2μm intervals so as to leave the SiO 2 film 13 film of 5μm wide. On this SiO 2 film mask pattern, a 20 μm thick GaN
The film 14 is grown. In addition, HVPE (hydride vapor phase
A 200 .mu.m non-doped GaN film 15 is grown at 1000.degree. C. using an epitaxy method.

【0018】次に、図1(b)に示すように、HVPE法で
成長したノンドープGaN膜15を、このGaN膜15の厚
さが150μmになるまで、サファイヤ基板裏面から切
削および研磨を行ないGaN基板15'を作製する。そし
て、GaN基板15'上に、i−Ga1-z1Alz1N層16(厚
さ2μm程度)、p−GaNピエゾ抵抗層17を成長する。
Next, as shown in FIG. 1B, the non-doped GaN film 15 grown by the HVPE method is cut and polished from the back surface of the sapphire substrate until the thickness of the GaN film 15 becomes 150 μm. The substrate 15 'is manufactured. Then, an i-Ga 1 -z 1 Al z1 N layer 16 (about 2 μm thick) and a p-GaN piezoresistive layer 17 are grown on the GaN substrate 15 ′.

【0019】次に、図1(c)に示すように、p−Ga
Nピエゾ抵抗層17上にSiO2膜(図示せず)とレジスト
(図示せず)を形成し、通常のリソグラフィーによりピ
エゾ抵抗部18以外のSiO2膜をBHF(バッファードフッ酸
溶液)で除去する。レジストを除去した後、このSiO2
をエッチングマスクとしてRIE(反応性イオンエッチン
グ)装置で選択エッチングにより、p-GaNピエゾ抵
抗層17をエッチングし、i−Ga1-z1Alz1N層16を露
出させる。これにより、i−Ga1-z1Alz1N層16の上
にp-GaNピエゾ抵抗層17からなるピエゾ抵抗部18が
形成される。層16をGaAlNとすることによって、層
16の表面でエッチングを自動的に停止させることができ
る。
Next, as shown in FIG. 1C, p-Ga
N SiO 2 film on the piezoresistive layer 17 (not shown) and the resist (not shown) is formed, removing the SiO 2 film except the piezoresistive portion 18 in BHF (buffered hydrofluoric acid solution) by the usual lithography I do. After removing the resist, the p-GaN piezoresistive layer 17 is etched by selective etching with a RIE (reactive ion etching) apparatus using the SiO 2 film as an etching mask, and the i-Ga 1 -z 1 Al z1 N layer 16 is removed. Expose. Thus, piezoresistive portion 18 made of p-GaN piezoresistive layer 17 on the i-Ga 1-z1 Al z1 N layer 16 is formed. By making the layer 16 GaAlN,
Etching can be stopped automatically on 16 surfaces.

【0020】次に、SiO2エッチングマスクをBHFで除去
した後、P-CVD法によってSiN絶縁膜19を全面に形成
し、通常のリソグラフィーによりピエゾ抵抗部18の部分
を開口し、RIE(反応性イオンエッチング)装置で選択エ
ッチングによりSiN絶縁膜19をエッチングする。レジ
スト剥離した後に、Ni/Auからなる電極材をEB蒸着法に
よって蒸着する。通常のリソグラフィーにより、少なく
とも露出したピエゾ抵抗部18上に電極材が残るように該
上部をレジストマスクで覆い、それ以外の領域の電極材
をヨウ素系エッチング液で除去し、その後レジスト剥離
を行い、Ni/Auからなる電極20を形成する。
Next, after removing the SiO 2 etching mask by BHF, a SiN insulating film 19 is formed on the entire surface by the P-CVD method, the piezoresistive portion 18 is opened by ordinary lithography, and RIE (reactive The SiN insulating film 19 is etched by selective etching with an (ion etching) apparatus. After stripping the resist, an electrode material made of Ni / Au is deposited by EB deposition. By normal lithography, the upper portion is covered with a resist mask so that the electrode material remains on at least the exposed piezoresistive portion 18, and the electrode material in other areas is removed with an iodine-based etchant, and then the resist is peeled off. An electrode 20 made of Ni / Au is formed.

【0021】次に、p−GaNピエゾ抵抗部18側全面に
レジスト保護膜を形成し、GaN基板15'の裏面全面にP
-CVD法によってSiN膜21を形成し、通常のリソグラフ
ィーによりGaN基板15'の紙面左右の側面付近を残す
ようにその内側を開口させ、RIE(反応性イオンエッチ
ング)装置で選択エッチングによりSiN膜21とGaN
基板15'をエッチングする。層16をGaAlNとするこ
とによって、層16の表面でエッチングを自動的に停止さ
せることができる。次に、表面と裏面のレジストを同時
剥離し、半導体圧力センサを作製する。
Next, a resist protective film is formed on the entire surface of the p-GaN piezoresistor 18 side, and a P
A SiN film 21 is formed by a -CVD method, the inside thereof is opened by normal lithography so as to leave near the left and right side surfaces of the GaN substrate 15 ′, and the SiN film 21 is selectively etched by a RIE (reactive ion etching) apparatus. And GaN
The substrate 15 'is etched. Etching can be automatically stopped at the surface of the layer 16 by making the layer 16 GaAlN. Next, the resist on the front surface and the back surface is simultaneously peeled off, and a semiconductor pressure sensor is manufactured.

【0022】本実施の形態による半導体圧力センサは、
GaN基板15'の中央部がエッチングされて、紙面左右
の側面付近のGaN基板15'が残されてなる支持部を有
しており、その上に半導体薄膜層16が形成され、その支
持部と半導体薄膜層16との境界付近であって、半導体薄
膜層16の上面にピエゾ抵抗部18を備えるものである。
The semiconductor pressure sensor according to this embodiment is
A central portion of the GaN substrate 15 'is etched to have a support portion in which the GaN substrate 15' near the left and right side surfaces of the paper is left, and a semiconductor thin film layer 16 is formed thereon. The piezoresistive portion 18 is provided near the boundary with the semiconductor thin film layer 16 and on the upper surface of the semiconductor thin film layer 16.

【0023】本実施の形態における半導体圧力センサ
は、圧力が加えられると、ピエゾ抵抗部が撓み、その撓
みによりピエゾ抵抗部18の抵抗が変化する。その変化を
電極20により電気信号として検知するものである。
In the semiconductor pressure sensor according to the present embodiment, when pressure is applied, the piezoresistor bends, and the flexure changes the resistance of the piezoresistor 18. The change is detected by the electrode 20 as an electric signal.

【0024】GaN基板15'の支持部が形成されるため
に除去される領域のセンサ上部から見た形状は、上記実
施の形態における形状に限定されるものではなく、セン
サの4端面付近のGaN基板15'を残すように、多角形
に除去されてもよく、あるいは、円形状(楕円形を含
む)に除去されてもよい。また、該除去される領域は複
数箇所あってもよい。
The shape of the region removed from the GaN substrate 15 'where the support is formed as viewed from above the sensor is not limited to the shape described in the above embodiment, but may be the GaN near the four end faces of the sensor. The substrate 15 'may be removed in a polygonal shape or a circular shape (including an elliptical shape) so as to leave the substrate 15'. There may be a plurality of areas to be removed.

【0025】また、本実施の形態では、GaNを支持部
としているが、AlNを適用してもよい。AlNはメル
ティング温度とバンドギャップがGaNに比べて高く、
高温下にいて安定動作が可能である。
Further, in the present embodiment, GaN is used as the support, but AlN may be applied. AlN has a higher melting temperature and band gap than GaN,
Stable operation is possible at high temperatures.

【0026】本実施の形態における半導体圧力センサ
は、窒化物半導体からなるため、これまでに提案されて
いるSi系の材料に比べてバンドギャップが大きいた
め、高温下においても高い信頼性を得ることができる。
また、格子定数もSiあるいはGaAs系の材料に比べ
て小さいため硬く、撓みによる亀裂等の発生を抑制で
き、高い経時信頼性を得ることができる。よって、これ
までのSi材あるいはGaAs系の材料からなる半導体
圧力センサに比べ、高温下での信頼性および経時信頼性
が高い。
Since the semiconductor pressure sensor according to the present embodiment is made of a nitride semiconductor, it has a large band gap as compared with the Si-based materials proposed so far, so that high reliability can be obtained even at high temperatures. Can be.
Further, since the lattice constant is smaller than that of the Si or GaAs-based material, the material is hard, and the generation of cracks or the like due to bending can be suppressed, and high temporal reliability can be obtained. Therefore, the reliability at high temperatures and the reliability over time are higher than those of conventional semiconductor pressure sensors made of a Si material or a GaAs material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による半導体圧力センサ
の製造過程を示す断面図
FIG. 1 is a sectional view showing a manufacturing process of a semiconductor pressure sensor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 基板 10 GaN低温層 12 GaNバッファ層 13 SiO2膜 14 GaN膜 15 ノンドープGaN膜 15' GaN基板 16 i−Ga1-z1Alz1N層 17 p−GaNピエゾ抵抗層 18 ピエゾ抵抗部 19 SiN絶縁膜 20 Ni/Au電極 21 SiN膜11 substrate 10 GaN low-temperature layer 12 GaN buffer layer 13 SiO 2 film 14 GaN film 15 non-doped GaN film 15 ′ GaN substrate 16 i-Ga 1-z1 Al z1 N layer 17 p-GaN piezoresistive layer 18 piezoresistive part 19 SiN insulation Film 20 Ni / Au electrode 21 SiN film

フロントページの続き Fターム(参考) 2F055 AA40 BB20 CC02 DD04 EE14 FF38 FF49 GG01 GG12 4K030 AA11 BA38 BB12 CA05 FA10 HA03 LA14 4M112 AA01 BA01 CA03 CA07 CA11 DA03 DA06 DA07 EA07 EA09 EA10 EA11 EA20 FA05 5F045 AA04 AB14 AB17 AC01 AC08 AC12 AC19 AD08 AD09 AD14 AD15 DA53 HA21 Continued on the front page F-term (reference) 2F055 AA40 BB20 CC02 DD04 EE14 FF38 FF49 GG01 GG12 4K030 AA11 BA38 BB12 CA05 FA10 HA03 LA14 4M112 AA01 BA01 CA03 CA07 CA11 DA03 DA06 DA07 EA07 EA09 EA10 EA11 AC01 AB05 AC05 AD08 AD09 AD14 AD15 DA53 HA21

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下面の一部を露出させて半導体の支持部
で支持された半導体薄膜層の上面の、前記露出された露
出部と前記支持部との境界付近にピエゾ抵抗部が設けら
れてなる半導体圧力センサにおいて、 前記支持部と半導体薄膜層とピエゾ抵抗部とが、窒化物
半導体からなることを特徴とする半導体圧力センサ。
A piezoresistive portion provided on a top surface of a semiconductor thin film layer supported by a semiconductor support portion with a part of a lower surface exposed, near a boundary between the exposed portion and the support portion; A semiconductor pressure sensor according to claim 1, wherein said support portion, said semiconductor thin film layer, and said piezoresistive portion are made of a nitride semiconductor.
【請求項2】 前記窒化物半導体が、GaN系あるいは
AlN系であることを特徴とする請求項1記載の半導体
圧力センサ。
2. The semiconductor pressure sensor according to claim 1, wherein the nitride semiconductor is a GaN-based or AlN-based.
【請求項3】 前記支持部がGaNあるいはAlNから
なり、前記半導体薄膜層が抵抗値が高いi型のAlGa
Nからなり、前記ピエゾ抵抗部がp型あるいはn型のG
aNからなることを特徴とする請求項1または2記載の
半導体圧力センサ。
3. The semiconductor thin film layer according to claim 1, wherein said support portion is made of GaN or AlN, and said semiconductor thin film layer is an i-type AlGa
N, and the piezoresistive portion is a p-type or n-type G
3. The semiconductor pressure sensor according to claim 1, wherein the semiconductor pressure sensor is made of aN.
【請求項4】 前記半導体薄膜層およびp型のピエゾ抵
抗部を覆うように、該p型のピエゾ抵抗部上の少なくと
も一部に開口を有するSiN膜が形成されており、該開
口部に露出した前記p型のピエゾ抵抗部上に、Niおよ
びAuがこの順に積層されてなる電極が形成されている
ことを特徴とする請求項1、2または3記載の半導体圧
力センサ。
4. An SiN film having an opening in at least a part of the p-type piezoresistor so as to cover the semiconductor thin film layer and the p-type piezoresistor, and is exposed to the opening. 4. The semiconductor pressure sensor according to claim 1, wherein an electrode formed by laminating Ni and Au in this order is formed on the p-type piezoresistive portion.
【請求項5】 前記半導体薄膜層およびn型のピエゾ抵
抗部を覆うように、該n型のピエゾ抵抗部上の少なくと
も一部に開口を有するSiN膜が形成されており、該開
口部に露出した前記n型のピエゾ抵抗部上に、Tiおよ
びAlがこの順に積層されてなる電極が形成されている
ことを特徴とする請求項1、2または3記載の半導体圧
力センサ。
5. An SiN film having an opening in at least a part of the n-type piezoresistor so as to cover the semiconductor thin film layer and the n-type piezoresistor, and is exposed to the opening. 4. The semiconductor pressure sensor according to claim 1, wherein an electrode formed by laminating Ti and Al in this order is formed on the n-type piezoresistive portion.
JP2001073682A 2000-09-25 2001-03-15 Semiconductor pressure sensor Withdrawn JP2002170962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073682A JP2002170962A (en) 2000-09-25 2001-03-15 Semiconductor pressure sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-289814 2000-09-25
JP2000289814 2000-09-25
JP2001073682A JP2002170962A (en) 2000-09-25 2001-03-15 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JP2002170962A true JP2002170962A (en) 2002-06-14

Family

ID=26600617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073682A Withdrawn JP2002170962A (en) 2000-09-25 2001-03-15 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JP2002170962A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300493A (en) * 2004-04-16 2005-10-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor displacement-detecting element and detector
EP1606600A2 (en) * 2003-03-18 2005-12-21 Microgan GmbH Sensor element with self-supporting bar structures made of group iii nitride based semiconductors
JP2006098408A (en) * 2004-09-28 2006-04-13 Rosemount Aerospace Inc Pressure sensor
JP2007527515A (en) * 2003-07-08 2007-09-27 ナショナル ユニヴァーシティ オブ シンガポール Contact pressure sensor and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1606600A2 (en) * 2003-03-18 2005-12-21 Microgan GmbH Sensor element with self-supporting bar structures made of group iii nitride based semiconductors
JP2007527515A (en) * 2003-07-08 2007-09-27 ナショナル ユニヴァーシティ オブ シンガポール Contact pressure sensor and manufacturing method thereof
JP2005300493A (en) * 2004-04-16 2005-10-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor displacement-detecting element and detector
JP2006098408A (en) * 2004-09-28 2006-04-13 Rosemount Aerospace Inc Pressure sensor

Similar Documents

Publication Publication Date Title
US6100104A (en) Method for fabricating a plurality of semiconductor bodies
US8686474B2 (en) III-V compound semiconductor epitaxy from a non-III-V substrate
CN101421859B (en) Gan-based semiconductor light-emitting device and method for the fabrication thereof
US8664687B2 (en) Nitride semiconductor light-emitting device and process for producing the same
WO2011033776A1 (en) Method for producing compound semiconductor crystal, method for manufacturing electronic device, and semiconductor substrate
JP2003063897A (en) Nitride-based iii-v group compound semiconductor substrate and method for producing the same, method for producing light emitting device of semiconductor and method for producing semiconductor device
US8815618B2 (en) Light-emitting diode on a conductive substrate
KR20070015863A (en) Gallium nitride device substrate containing a lattice parameter altering element
US20240079856A1 (en) Method of fabricating a resonant cavity and distributed bragg reflector mirrors for a vertical cavity surface emitting laser on a wing of an epitaxial lateral overgrowth region
EP3271950B1 (en) Strain relief epitaxial lift-off via pre-patterned mesas
US9318653B2 (en) Luminescent device and manufacturing method for luminescent device and semiconductor device
JP2019134101A (en) Method for manufacturing semiconductor device
US20070298592A1 (en) Method for manufacturing single crystalline gallium nitride material substrate
US8309381B2 (en) Group III nitride semiconductor light-emitting device and production method therefor
JP2002170962A (en) Semiconductor pressure sensor
JP4043193B2 (en) Nitride semiconductor substrate and manufacturing method thereof
JP2003163375A (en) Nitride semiconductor element and its manufacturing method
US20020123162A1 (en) Nitride-based semiconductor element and method of forming nitride-based semiconductor
CN112219287A (en) Method for fabricating non-polar and semi-polar devices using epitaxial lateral overgrowth
EP4177970A1 (en) Junction semiconductor light-receiving element and production method for junction semiconductor light-receiving element
JP3765457B2 (en) Semiconductor element
JP4257815B2 (en) Semiconductor device
JP2001308458A (en) Semiconductor light emitting element and method for manufacturing the same and semiconductor device and method for manufacturing the same
KR101874228B1 (en) Method for manufacturing a gallium nitride light emitting device
JP4285928B2 (en) Method for forming semiconductor layer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603