JP2002168666A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter

Info

Publication number
JP2002168666A
JP2002168666A JP2000362640A JP2000362640A JP2002168666A JP 2002168666 A JP2002168666 A JP 2002168666A JP 2000362640 A JP2000362640 A JP 2000362640A JP 2000362640 A JP2000362640 A JP 2000362640A JP 2002168666 A JP2002168666 A JP 2002168666A
Authority
JP
Japan
Prior art keywords
excitation
electromotive force
component
magnetic field
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000362640A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Koike
泰美 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2000362640A priority Critical patent/JP2002168666A/en
Publication of JP2002168666A publication Critical patent/JP2002168666A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic flowmeter for calculating adhered amount of an adhered insulating adhered. SOLUTION: As shown in Fig. (a), an excitation current is non-excited during periods K1, K3 and K5, excited positively during a period K2, and excited negatively during a period K4; and a flow rate electromotive force, having a signal voltage component and a ramp-like noise voltage component, is generated. As shown in Fig. (b), the signal voltage component is (differentiated noise component (e)+(adhesion influence component (n)) during the periods K1, K3 and K5 and e+n+(flow rate signal component (s)) during the periods K2 and K4. As shown in Fig. (c), the lamp-like noise voltage component is (fixed content (a)) during the period K1. Similarly, it is a+ (changing content 4b) during the period K5. Calculated results R1 to R3 are calculated, based on an amplitude of the electromotive force obtained from the periods K1 to K5, and (n) is obtained from the R1 to R3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁流量計に関
し、より詳細には、電磁流量計の電極に付着した絶縁性
付着物の検出を行う電磁流量計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic flowmeter, and more particularly, to an electromagnetic flowmeter for detecting an insulating substance attached to an electrode of an electromagnetic flowmeter.

【0002】[0002]

【従来の技術】電磁流量計は、励磁コイルに励磁電流を
流して管内に磁界を作り、管内を流れる液体の導電率に
従って発生する流体起電力の大きさを検出して液体の流
量を測定する形式の流量計である。電磁流量計は、管内
に可動部や障害物の無い構造により液体の流れに影響を
与えない流量の測定が行えること、及び、メンテナンス
の手間が少ないことから、絶縁物が管内に付着するよう
な液体、高粘土の液体、及び、高腐食性の液体の流量を
安定して測定できる特長がある。このため、電磁流量計
は、環境施設におけるごみ処理浸出水や濃縮汚泥水、石
油施設における油井の油及び水の混合流体、並びに、鉱
山施設におけるアルミ精練での白泥や赤泥等の絶縁性付
着物の流量の測定に使用されている。
2. Description of the Related Art An electromagnetic flowmeter measures the flow rate of a liquid by detecting the magnitude of a fluid electromotive force generated in accordance with the conductivity of a liquid flowing in the pipe by passing an exciting current through an exciting coil to generate a magnetic field in the pipe. It is a type flow meter. Electromagnetic flowmeters can measure the flow rate without affecting the flow of liquid due to the structure without moving parts and obstacles in the pipe. It has the feature that the flow rate of liquid, high clay liquid, and highly corrosive liquid can be measured stably. For this reason, electromagnetic flowmeters are used for the treatment of wastewater leachate and concentrated sludge water in environmental facilities, mixed fluids of oil and water from oil wells in oil facilities, and insulating properties such as white mud and red mud in aluminum scouring in mining facilities. It is used to measure the flow rate of deposits.

【0003】図9は、従来の電磁流量計が取り扱う各信
号のタイムチャートである。同図(a)に示すように、
電磁流量計では、正の励磁電流による正励磁、励磁電流
を0とする無励磁、及び、負の励磁電流による負励磁を
含む高周波の3値励磁方式が採用される。高周波励磁方
式は、様々な流体の流量測定に際して安定性及び高速応
答性のメリットがある。
FIG. 9 is a time chart of each signal handled by a conventional electromagnetic flow meter. As shown in FIG.
The electromagnetic flowmeter employs a high-frequency ternary excitation method including positive excitation by a positive excitation current, non-excitation by setting the excitation current to 0, and negative excitation by a negative excitation current. The high frequency excitation method has advantages of stability and high-speed response when measuring the flow rate of various fluids.

【0004】図9において、期間K1、K3、及び、K5
は、無励磁期間であり、期間K2及びK6は、正励磁期間
であり、期間K4は、負励磁期間である。検出される流
体起電力は、信号電圧成分及びランプ状(傾斜)ノイズ
電圧成分から成り、液体の流量及び管内の磁界に従って
変化する。流体起電力は、各期間の終了時刻直前にサン
プリングされ、その大きさが測定される。
In FIG. 9, periods K 1 , K 3 and K 5
Is a non-excitation period, the period K 2 and K 6 are positive exciting period, the period K 4 is the negative exciting period. The detected fluid electromotive force consists of a signal voltage component and a ramp-like (slope) noise voltage component, which varies according to the flow rate of the liquid and the magnetic field in the tube. The fluid electromotive force is sampled immediately before the end time of each period, and its magnitude is measured.

【0005】同図(b)に示すように、信号電圧成分
は、流量信号成分及び微分ノイズ成分から成り、液体の
流量及び管内の磁界に基づいて、大きさ及び方向が変化
する。信号電圧成分の大きさは、微分ノイズ成分をeと
し、流量信号成分をsとすると、期間K1、K3、及び、
5にeであり、期間K2、K4、及び、K6にe+sであ
る。
As shown in FIG. 1B, the signal voltage component is composed of a flow signal component and a differential noise component, and changes in magnitude and direction based on the flow rate of the liquid and the magnetic field in the pipe. Assuming that the differential noise component is e and the flow signal component is s, the magnitudes of the signal voltage components are periods K 1 , K 3 , and
K 5 in a e, the period K 2, K 4, and is a K 6 e + s.

【0006】同図(c)に示すように、ランプ状ノイズ
電圧成分は、その大きさが時間に比例して直線的に増加
する。ここで、期間K1の開始時刻のランプ状ノイズ電
圧成分の大きさをゼロにする。ランプ状ノイズ電圧成分
の大きさは、ランプ状ノイズ成分の大きさの固定分をa
とし、変化分をbとすると、期間K1にaであり、期間
2にa+bであり、期間K3にa+2bであり、以下同
様にして、期間K6にa+5bである。
As shown in FIG. 1C, the magnitude of the ramp noise voltage component linearly increases in proportion to time. Here, the magnitude of the ramp-like noise voltage component of the start time of the period K 1 to zero. The magnitude of the ramp noise voltage component is a fixed component of the magnitude of the ramp noise component, a
And then, a variation when is b, a a period K 1, the period K 2 is a + b, a a + 2b in the period K 3, in the same manner, it is a + 5b period K 6.

【0007】流体起電力は、信号電圧成分とランプ状ノ
イズ電圧成分との合計電圧であり、励磁期間K1〜K5
ら得られる流体起電力の大きさV91〜V95は、以下の式
91〜式95に示すようになる。 V91=e+a・・・・・式91 V92=e+s+a+b・・・・・式92 V93=−e+a+2b・・・・・式93 V94=−e−s+a+3b・・・・・式94 V95=e+a+4b・・・・・式95
The fluid electromotive force is the total voltage of the signal voltage component and the ramp-shaped noise voltage component, and the magnitude of the fluid electromotive force V 91 to V 95 obtained from the excitation periods K 1 to K 5 is given by the following equation:
From 91 to 95 are obtained. V 91 = e + a ····· formula 91 V 92 = e + s + a + b ····· formula 92 V 93 = -e + a + 2b ····· formula 93 V 94 = -e-s + a + 3b ····· formula 94 V 95 = E + a + 4b ... Equation 95

【0008】演算結果R9は、以下に示す式96に式91〜9
5を代入して求められる。 R9= −V91+2V92−2V94+V95・・・・・式96 R9= −(e+a)+2(e+s+a+b)−2(−e−s+a+3b)+(e +a+4b) = −e−a+2e+2s+2a+2b+2e+2s−2a−6b +e+a+4b=4s+4e・・・・・式97
The calculation result R 9 is obtained by adding Expressions 91 to 9 to Expression 96 shown below.
Determined by substituting 5. R 9 = −V 91 + 2V 92 −2V 94 + V 95 ... Equation 96 R 9 = − (e + a) +2 (e + s + a + b) −2 (−e−s + a + 3b) + (e + a + 4b) = − e−a + 2e + 2s + 2a + 2b + 2e + 2s− 2a-6b + e + a + 4b = 4s + 4e Equation 97

【0009】[0009]

【発明が解決しようとする課題】上記従来の電磁流量計
では、式97に示すように、演算結果R9に微分ノイズ成
分eの項が含まれるので、高周波に代えて低周波の励磁
電流を採用し、信号電圧成分が微分ノイズ成分を含まな
いようにすれば、式97から直ちに流量信号成分sを求め
ることができるが、高周波励磁方式によるメリットが失
われる。
In the above conventional electromagnetic flow meter, as shown in equation 97, the operation result R 9 includes the term of the differential noise component e, so that the excitation current of the low frequency is used instead of the high frequency. If adopted and the signal voltage component does not include the differential noise component, the flow rate signal component s can be immediately obtained from Expression 97, but the advantage of the high frequency excitation method is lost.

【0010】また、電磁流量計の検出器の管内に絶縁性
付着物が付着すると、その付着量に応じて流体起電力に
影響を与える付着影響成分が発生するが、式97は、この
付着影響成分を考慮していない。従来の電磁流量計で
は、流体の流れを一時停止させ、移動中と停止中の流体
起電力を比較して、その付着影響成分を検出するが、電
磁流量計の設置場所によって、流体の流れを一時停止で
きない場合もあり不都合があった。
When an insulating deposit adheres to the inside of the detector tube of the electromagnetic flowmeter, an adhesion-influencing component that affects the fluid electromotive force is generated in accordance with the amount of the adhesion. Does not consider ingredients. In conventional electromagnetic flowmeters, the flow of fluid is temporarily stopped, the electromotive force of the fluid during movement is compared with that of the stopped fluid, and the component that affects the adhesion is detected.However, the flow of the fluid depends on the installation location of the electromagnetic flowmeter. In some cases, it was not possible to pause, which caused inconvenience.

【0011】本発明は、上記したような従来の技術が有
する問題点を解決するためになされたものであり、付着
した絶縁性付着物の付着量を演算する電磁流量計を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and has as its object to provide an electromagnetic flowmeter for calculating the amount of adhered insulating deposits. And

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の電磁流量計は、管内を移動する導電性流体
の前記移動方向に垂直な磁界を印加する磁界印加手段
と、前記磁界によって導電性流体内に発生する起電力を
測定する起電力測定手段とを備え、前記磁界印加手段が
一方の方向の磁界を発生する正励磁、磁界を停止する無
励磁、及び、前記一方の方向と逆方向の磁界を発生する
負励磁を繰り返す3値励磁を行う電磁流量計において、
前記起電力測定手段によって予め絶縁性付着物が付着し
ない状態で流体の移動中に検出された起電力と、絶縁性
付着物が付着した状態で流体の移動中に検出された起電
力とに基づいて、前記電磁流量計に付着した絶縁性付着
物の付着量を演算することを特徴とする。
To achieve the above object, an electromagnetic flowmeter according to the present invention comprises: a magnetic field applying means for applying a magnetic field perpendicular to the moving direction of a conductive fluid moving in a pipe; An electromotive force measuring means for measuring an electromotive force generated in the conductive fluid by the magnetic field applying means, wherein the magnetic field applying means generates a magnetic field in one direction, a positive excitation, a non-excitation for stopping the magnetic field, and the one direction. An electromagnetic flowmeter that performs ternary excitation that repeats negative excitation that generates a magnetic field in the opposite direction to
Based on the electromotive force detected in advance by the electromotive force measuring means during the movement of the fluid in a state where the insulating deposit is not attached, and the electromotive force detected in the movement of the fluid in the state where the insulating deposit is attached. And calculating the amount of the attached insulating material attached to the electromagnetic flowmeter.

【0013】本発明の電磁流量計は、正励磁、無励磁、
及び、負励磁の3値励磁方式の各励磁期間に、流体の移
動中に検出された起電力を演算することにより、付着影
響成分を検出できるので、絶縁性付着物の付着量を調べ
る自己診断が行える。
The electromagnetic flow meter of the present invention has a positive excitation, a non-excitation,
In addition, during each excitation period of the ternary excitation method of negative excitation, the adhesion influence component can be detected by calculating the electromotive force detected during the movement of the fluid. Can be performed.

【0014】本発明の電磁流量計では、前記絶縁性付着
物が付着しない状態で検出された起電力は、微分ノイズ
成分と流量信号成分とを含み、前記絶縁性付着物が付着
しない状態で3値励磁を行って測定された起電力から前
記微分ノイズ成分を求めることが好ましい。この場合、
絶縁性付着物が付着した状態で検出された起電力を求
め、微分ノイズ成分を減算すれば、電磁流量計に付着し
た絶縁性付着物の付着量を演算できる。
In the electromagnetic flowmeter according to the present invention, the electromotive force detected in a state where the insulative deposit is not attached includes a differential noise component and a flow signal component, and is 3 in a state where the insulative deposit is not attached. It is preferable to obtain the differential noise component from the electromotive force measured by performing the value excitation. in this case,
If the electromotive force detected in a state where the insulating deposit is attached is obtained, and the differential noise component is subtracted, the amount of the insulating deposit attached to the electromagnetic flowmeter can be calculated.

【0015】前記絶縁性付着物が付着しない状態で、連
続する無励磁、正励磁、無励磁、負励磁、及び、無励磁
のときに検出された起電力を夫々V11、V12、V13、V
14、及び、V15とすると、前記微分ノイズ成分を、V11
/4−V13/2+V15/4によって求めること、又は、
前記絶縁性付着物が付着した状態で、連続する無励磁、
正励磁、無励磁、負励磁、及び、無励磁のときに検出さ
れた起電力を夫々V21、V22、V23、V24、及び、V25
とすると、絶縁性付着物の付着影響成分を、(V21/4
−V23/2+V25/4)−(V11/4−V13/2+V15
/4)によって求めることも本発明の好ましい態様であ
る。この場合、3値励磁方式における絶縁性付着物の付
着量を求める演算が容易になる。
The electromotive force detected at the time of continuous non-excitation, positive excitation, non-excitation, negative excitation, and non-excitation in a state where the insulative deposit does not adhere is V 11 , V 12 , and V 13, respectively. , V
14 and V 15 , the differential noise component is calculated as V 11
/ 4-V 13/2 + V 15/4 by obtaining, or,
In the state where the insulating deposit is attached, continuous de-excitation,
Positive excitation, non-excited, the negative excitation, and an electromotive force respectively V 21 that is detected when the non-excited, V 22, V 23, V 24 and,, V 25
Then, the adhesion-influencing component of the insulating deposit is expressed as (V 21/4
-V 23/2 + V 25/ 4) - (V 11/4-V 13/2 + V 15
/ 4) is also a preferred embodiment of the present invention. In this case, it is easy to calculate the amount of the adhered insulating substance in the ternary excitation method.

【0016】また、本発明の電磁流量計は、管内を移動
する導電性流体の前記移動方向に垂直な磁界を印加する
磁界印加手段と、前記磁界によって導電性流体内に発生
する起電力を測定する起電力測定手段とを備え、前記磁
界印加手段が一方の方向の磁界を発生する正励磁、及
び、前記一方の方向と逆方向の磁界を発生する負励磁を
繰り返す2値励磁を行う電磁流量計において、前記起電
力測定手段によって予め絶縁性付着物が付着しない状態
で、前記導電性流体の移動中に第1の周波数、及び、該
第1の周波数よりも低い第2の周波数で、夫々前記2値
励磁を繰り返して検出された各起電力と、絶縁性付着物
が付着した状態で、前記導電性流体の移動中に前記第1
及び第2の周波数で、夫々前記2値励磁を繰り返して検
出された各起電力とに基づいて、前記電磁流量計に付着
した絶縁性付着物の付着量を演算することを特徴とす
る。
Also, the electromagnetic flowmeter of the present invention has a magnetic field applying means for applying a magnetic field perpendicular to the moving direction of the conductive fluid moving in the pipe, and measures an electromotive force generated in the conductive fluid by the magnetic field. And an electromagnetic flow rate for performing a binary excitation in which the magnetic field applying means repeats positive excitation for generating a magnetic field in one direction and negative excitation for generating a magnetic field in a direction opposite to the one direction. A first frequency and a second frequency lower than the first frequency during the movement of the conductive fluid, respectively, in a state where the insulative deposit is not attached in advance by the electromotive force measuring means. Each of the electromotive forces detected by repeating the binary excitation and the first electromotive force during the movement of the conductive fluid in a state where the insulating attachment is attached.
And calculating, based on each electromotive force detected by repeating the binary excitation at the second frequency, the amount of the insulating deposit attached to the electromagnetic flowmeter.

【0017】本発明の電磁流量計は、第1の周波数及び
第2の周波数で正励磁及び負励磁の2値励磁方式の各励
磁期間に、流体の移動中に検出された起電力を演算する
ことにより、付着影響成分を検出できるので、絶縁性付
着物の付着量を調べる自己診断が行える。
The electromagnetic flowmeter according to the present invention calculates the electromotive force detected during the movement of the fluid during each of the excitation periods of the binary excitation system of the positive excitation and the negative excitation at the first frequency and the second frequency. Thus, the adhesion-influencing component can be detected, so that a self-diagnosis for checking the amount of the adhered insulating substance can be performed.

【0018】本発明の電磁流量計では、前記絶縁性付着
物が付着しない状態では、第1の周波数で検出される起
電力は微分ノイズ成分と流量信号成分とを含み、第2の
周波数で検出される起電力は流量信号成分を含み、該双
方の起電力に基づいて前記微分ノイズ成分を求めるこ
と、又は、前記絶縁性付着物が付着した状態では、前記
第1の周波数で検出される起電力は微分ノイズ成分と流
量信号成分と絶縁性付着物の付着影響成分とを含み、前
記第2の周波数で検出された起電力は流量信号成分を含
み、該双方の起電力に基づいて前記微分ノイズ成分及び
付着影響成分を求めることが好ましい。この場合、2値
励磁方式における絶縁性付着物の付着量を求める演算が
容易になる。
In the electromagnetic flow meter according to the present invention, when the insulating deposit is not attached, the electromotive force detected at the first frequency includes a differential noise component and a flow signal component, and is detected at the second frequency. The generated electromotive force includes a flow signal component, and the differential noise component is obtained based on the both electromotive forces, or the electromotive force detected at the first frequency in a state where the insulating deposit is attached. The power includes a differential noise component, a flow signal component, and an adhesion-influencing component of the insulating deposit, and the electromotive force detected at the second frequency includes a flow signal component. It is preferable to obtain a noise component and an adhesion influence component. In this case, it is easy to calculate the amount of the adhered insulating substance in the binary excitation method.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態例に基づ
いて、本発明の電磁流量計について図面を参照して説明
する。図1は、本発明の第1実施形態例の電磁流量計が
取り扱う各信号のタイムチャートである。電磁流量計
は、励磁コイルに励磁電流を流し、管内を流れる液体の
移動方向と垂直な方向に、3値励磁方式により磁界を作
る。電磁流量計の検出器は、液体の流量及び導電率に従
って、液体の移動方向及び磁界方向と垂直な方向に発生
する流体起電力を検出する。3値励磁方式は、正方向の
励磁電流による正励磁、励磁電流をゼロとする無励磁、
及び、負方向の励磁電流による負励磁を繰り返す。本実
施形態例の電磁流量計では、その繰返し周期を短くし、
低導電率の流体における安定性及び高速応答性を向上さ
せるが、微分ノイズ成分が流体起電力中に発生する。流
体起電力は、信号電圧成分及びランプ状ノイズ電圧成分
から成る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An electromagnetic flow meter according to the present invention will be described below with reference to the drawings based on an embodiment of the present invention. FIG. 1 is a time chart of each signal handled by the electromagnetic flow meter according to the first embodiment of the present invention. An electromagnetic flowmeter supplies an exciting current to an exciting coil, and creates a magnetic field in a direction perpendicular to the moving direction of the liquid flowing in the tube by a ternary excitation method. The detector of the electromagnetic flow meter detects a fluid electromotive force generated in a direction perpendicular to the moving direction of the liquid and the direction of the magnetic field according to the flow rate and conductivity of the liquid. The ternary excitation method is a positive excitation by a positive excitation current, a non-excitation with zero excitation current,
And, the negative excitation by the excitation current in the negative direction is repeated. In the electromagnetic flow meter of the present embodiment, the repetition period is shortened,
While improving stability and fast responsiveness in low conductivity fluids, a differential noise component is generated in the fluid electromotive force. The fluid electromotive force consists of a signal voltage component and a ramp noise voltage component.

【0020】同図(a)は、励磁電流のタイムチャート
である。期間K1、K3、及び、K5は、無励磁であり、
期間K2及びK6は、正励磁であり、期間K4は、負励磁
である。
FIG. 2A is a time chart of the exciting current. The periods K 1 , K 3 and K 5 are non-excited,
Period K 2 and K 6 are positive excitation, the period K 4 is the negative excitation.

【0021】同図(b)は、信号電圧成分のタイムチャ
ートである。信号電圧成分は、期間K1〜K6の励磁電流
に同期して、その大きさ及び方向が変化し、各期間の開
始時刻の直後に大きく変化し、各期間の終了時刻の直前
に安定する。微分ノイズ成分eは、励磁電流の励磁周波
数に高周波を採用すると発生し、励磁周波数に応じて増
加する。付着影響成分nは、電磁流量計の検出器に絶縁
性付着物が付着すると発生し、その付着量に応じて増加
する。流量信号成分sは、液体が移動すると発生し、流
体の流量及び導電率に応じて増加する。電磁流量計は、
各期間の終了時刻の直前に信号電圧成分をサンプリング
する。信号電圧成分の大きさは、期間K 1、K3、及び、
5にe+nであり、期間K2、K4、及び、K6にe+n
+sである。
FIG. 2B shows a time chart of the signal voltage component.
It is. The signal voltage component has a period K1~ K6Excitation current
The size and direction change in synchronization with
It changes greatly immediately after the start time and immediately before the end time of each period
To be stable. The differential noise component e is the excitation frequency of the excitation current
This occurs when a high frequency is used for the number, and increases according to the excitation frequency.
Add. Adhesion-influencing component n is insulated from the detector of the electromagnetic flowmeter
Generated when volatile deposits adhere, and increase according to the amount of the deposits
I do. The flow signal component s is generated when the liquid moves,
It increases with body flow and conductivity. The electromagnetic flow meter is
Sampling the signal voltage component just before the end time of each period
I do. The magnitude of the signal voltage component is equal to the period K 1, KThree,as well as,
KFiveE + n and the period KTwo, KFourAnd K6E + n
+ S.

【0022】同図(c)は、ランプ状ノイズ電圧成分の
タイムチャートである。ランプ状ノイズ電圧成分は、そ
の大きさが時間に比例して直線的に増加する。電磁流量
計は、無励磁期間K1の開始時刻に、ランプ状ノイズ電
圧成分の大きさをゼロにし、各期間の終了時刻の直前に
ランプ状ノイズ電圧成分をサンプリングする。ランプ状
ノイズ電圧成分の大きさは、固定分をaとし、変化分を
bとすると、期間K1にaであり、期間K2にa+bであ
り、期間K3にa+2bであり、以下同様にして、期間
6にa+5bである。
FIG. 3C is a time chart of the ramp noise voltage component. The magnitude of the ramp noise voltage component linearly increases in proportion to time. Electromagnetic flow meter, the start time of the non-magnetic-excitation period K 1, the magnitude of the ramp-like noise voltage component to zero, sampling the ramp-like noise voltage component just before the end time of each period. The size of the ramp-like noise voltage component, a fixed frequency is a, if the variation is is b, a a period K 1, a period K 2 to a + b, a a + 2b in the period K 3, in the same manner Te, which is a + 5b in the period K 6.

【0023】絶縁性付着物が付着した状態において、流
体起電力は、信号電圧成分とランプ状ノイズ電圧成分と
の合計電圧であり、励磁期間K1〜K5から得られる流体
起電力の大きさV21〜V25は、以下の式1〜式5に示すよ
うになる。 V21=e+n+a・・・・・式1 V22=e+n+s+a+b・・・・・式2 V23=−e−n+a+2b・・・・・式3 V24=−e−n−s+a+3b・・・・・式4 V25=e+n+a+4b・・・・・式5
In the state where the insulating deposit is attached, the fluid electromotive force is the total voltage of the signal voltage component and the ramp-shaped noise voltage component, and the magnitude of the fluid electromotive force obtained from the excitation periods K 1 to K 5. V 21 to V 25 are as shown in the following formulas 1 to 5. V 21 = e + n + a... Formula 1 V 22 = e + n + s + a + b... Formula 2 V 23 = −en−a + 2b... Formula 3 V 24 = −en−s + a + 3b. Equation 4 V 25 = e + n + a + 4b Equation 5

【0024】演算結果R1は、以下に示す式6に式1〜式5
を代入して求められる。 R1= −V21+V22+V23−V24・・・・・式6 R1= −(e+n+a)+(e+n+s+a+b)+(−e−n+a+2b)− (−e−n−s+a+3b) =−e−n−a+e+n+s+a+b−e−n+ a+2b+e+n+s−a−3b=2s・・・・・式7 演算結果R1は、式7に示すように、流量信号成分sの項
から成る。
The calculation result R 1 is obtained by adding Equations 1 to 5 to Equation 6 shown below.
Is obtained by substituting R 1 = −V 21 + V 22 + V 23 −V 24 ... Equation 6 R 1 = − (e + n + a) + (e + n + s + a + b) + (− en−a + 2b) − (− en−s + a + 3b) = − e −n−a + e + n + s + a + b−en−a + 2b + e + n + s−a−3b = 2s Equation 7 The calculation result R 1 includes the term of the flow signal component s as shown in Equation 7.

【0025】演算結果R2は、以下に示す式8に式1〜式5
を代入して求められる。 R2=(−V21+2V22−2V24+V25)/2・・・・・式8 R2={−(e+n+a)+2(e+n+s+a+b)−2(−e−n−s+a +3b)+(e+n+a+4b)}/2={−e−n−a+2e+2n+2s+ 2a+2b+2e+2n+2s−2a−6b+e+n+a+4b}/2=2s+ 2e+2n・・・・・式9 演算結果R2は、式9に示すように、流量信号成分s、微
分ノイズ成分e、及び、付着影響成分nの項から成る。
The calculation result R 2 is obtained by using the following equations 8 to 1 to 5
Is obtained by substituting R 2 = (− V 21 + 2V 22 −2V 24 + V 25 ) / 2 Equation 8 R 2 = {− (e + n + a) +2 (e + n + s + a + b) −2 (−en−s + a + 3b) + (e + n + a + 4b) )} / 2 = {- e -n-a + 2e + 2n + 2s + 2a + 2b + 2e + 2n + 2s-2a-6b + e + n + a + 4b} / 2 = 2s + 2e + 2n ····· formula 9 operation result R 2, as shown in equation 9, the flow rate signal component s, differential noise It consists of components e and adhesion-affecting components n.

【0026】絶縁性付着物が付着しない状態において、
流体起電力は、励磁期間K1〜K5から得られる流体起電
力の大きさV11〜V15は、以下の式10〜式14に示すよう
になる。 V11=e+a・・・・・式10 V12=e+s+a+b・・・・・式11 V13=−e+a+2b・・・・・式12 V14=−e−s+a+3b・・・・・式13 V15=e+a+4b・・・・・式14
In a state where the insulating deposits do not adhere,
Fluid electromotive force exciting period K 1 ~K fluid electromotive force obtained from 5 size V 11 ~V 15 is as shown in Equation 10 Equation 14 below. V 11 = e + a ····· formula 10 V 12 = e + s + a + b ····· formula 11 V 13 = -e + a + 2b ····· formula 12 V 14 = -e-s + a + 3b ····· formula 13 V 15 = E + a + 4b ... Equation 14

【0027】演算結果R3は、以下に示す式15に式10〜
式14を代入して求められる。 R3= −V11+V12+V13−V14・・・・・式15 R3= −(e+a)+(e+s+a+b)+(−e+a+2b)−(−e−s+ a+3b) =−e−a+e+s+a+b−e+a+2b+e+s−a−3b= 2s・・・・・式16 演算結果R3は、式16に示すように、流量信号成分sの
項から成る。
The operation result R 3 is obtained by adding the following equation (10) to equation (15).
It is obtained by substituting equation 14. R 3 = −V 11 + V 12 + V 13 −V 14 Formula 15 R 3 = − (e + a) + (e + s + a + b) + (− e + a + 2b) − (− e−s + a + 3b) = − e−a + e + s + a + b− e + a + 2b + e + s-a-3b = 2s ····· formula 16 operation result R 3, as shown in equation 16, consisting of section of the flow signal component s.

【0028】演算結果R4は、以下に示す式17に式10〜
式14を代入して求められる。 R4=(−V11+2V12−2V14+V15)/2・・・・・式17 R4={−(e+a)+2(e+s+a+b)−2(−e−s+a+3b)+( e+a+4b)}/2={−e−a+2e+2s+2a+2b+2e+2s−2 a−6b+e+a+4b}/2=2s+2e・・・・・式18 演算結果R4は、式18に示すように、流量信号成分s及
び微分ノイズ成分eの項から成る。
The operation result R 4 is obtained by adding the following equation (10) to equation (17).
It is obtained by substituting equation 14. R 4 = (− V 11 + 2V 12 −2V 14 + V 15 ) / 2 Equation 17 R 4 = {− (e + a) +2 (e + s + a + b) −2 (−es−a + 3b) + (e + a + 4b)} / 2 = {− ea−2e + 2s + 2a + 2b + 2e + 2s−2 a−6b + e + a + 4b} / 2 = 2s + 2e (18) The calculation result R 4 is composed of the terms of the flow signal component s and the differential noise component e as shown in Expression 18. .

【0029】図2は、図1の電磁流量計が自己診断の前
に実行する準備処理のフローチャートである。電磁流量
計は、予め絶縁性付着物が検出器に付着していない状態
で、演算結果R3の式15から流量信号成分の2sを求め
(ステップS11)、演算結果R4の式17から流量信号
成分及び微分ノイズ成分2s+2eを求める(ステップ
S12)。演算結果R4から演算結果R3を減算して、微
分ノイズ成分2eを求め、この値をRAM変数Aに格納
する(ステップS13)。
FIG. 2 is a flowchart of a preparation process executed by the electromagnetic flow meter of FIG. 1 before self-diagnosis. Electromagnetic flow meter, in a state not adhering to advance the insulating deposits detector, from Equation 15 of the operation result R 3 seeking 2s of the flow signal component (step S11), and the flow rate from the equation 17 of the operation result R 4 The signal component and the differential noise component 2s + 2e are obtained (step S12). Operation result by subtracting the calculation result R 3 from R 4, obtains a differential noise component 2e, and stores this value in RAM variable A (step S13).

【0030】図3は、図1の電磁流量計が実行する自己
診断処理のフローチャートである。演算結果R1の式6か
ら流量信号成分の2sを求め(ステップS21)、演算
結果R2の式8から流量信号成分、微分ノイズ成分、及
び、付着影響成分の2s+2e+2nを求める(ステッ
プS22)。演算結果R2から演算結果R1を減算して、
微分ノイズ成分及び付着影響成分の2e+2nを求め、
この値をRAM変数Bに格納する。RAM変数Bの値か
らRAM変数Aの値を減算し、付着影響成分の2nを求
めてRAM変数Cに格納して(ステップS23)、RA
M変数Cの値が所定値以上であるか判断し絶縁性付着物
の影響量を調べる(ステップS24)。“NO”であれ
ば、付着影響成分が小さいものとしてステップS21か
ら処理を継続し、“YES”であれば、付着影響成分が
大きいものとしてアラームを出力し(ステップS2
5)、ステップS21から処理を継続する。
FIG. 3 is a flowchart of a self-diagnosis process executed by the electromagnetic flow meter of FIG. Operation result sought 2s of the flow signal component from Equation 6 R 1 (step S21), and the flow rate signal component from the equation 8 of the operation result R 2, differential noise component, and obtains a 2s + 2e + 2n attachment influence component (step S22). Operation result by subtracting the calculation result R 1 from R 2,
Find 2e + 2n of the differential noise component and the adhesion influence component,
This value is stored in RAM variable B. The value of the RAM variable A is subtracted from the value of the RAM variable B, 2n of the adhesion influence component is obtained and stored in the RAM variable C (step S23), and RA
It is determined whether or not the value of the M variable C is equal to or more than a predetermined value, and the influence amount of the insulating deposit is checked (step S24). If “NO”, the processing is continued from step S21 assuming that the adhesion affecting component is small, and if “YES”, an alarm is output assuming that the adhesion affecting component is large (step S2).
5) The process is continued from step S21.

【0031】また、電磁流量計は、上記演算手順に代え
て、絶縁性付着物が付着しない状態の流体起電力の大き
さV11〜V15を内部に記憶し、絶縁性付着物が付着した
状態で流体起電力の大きさV21〜V25が得られると、以
下に示す計算式から付着影響成分nを直接求めることも
できる。
[0031] The electromagnetic flowmeter, instead of the calculation procedure, the fluid electromotive force of magnitude V 11 ~V 15 in a state where the insulating deposit does not adhere stored therein, the insulating coating has attached When the magnitudes V 21 to V 25 of the fluid electromotive force are obtained in the state, the adhesion influence component n can be directly obtained from the following formula.

【0032】微分ノイズ成分及び付着影響成分e+n
は、式19に示すように、演算結果R2の式8から演算結果
1の式6を減算することで求められる。 e+n=(−V21+2V22−2V24+V25)/4−(−V21+V22+V23−V24 )/2=V21/4−V23/2+V25/4・・・・・式19
Differential noise component and adhesion influence component e + n
, As shown in Equation 19 is calculated by subtracting the equation 6 of the operation result R 1 from Equation 8 of the operation result R 2. e + n = (- V 21 + 2V 22 -2V 24 + V 25) / 4 - (- V 21 + V 22 + V 23 -V 24) / 2 = V 21/4-V 23/2 + V 25/4 ····· formula 19

【0033】微分ノイズ成分eは、式20に示すように、
演算結果R4の式17から演算結果R3の式15を減算するこ
とで求められる。 e=(−V11+2V12−2V14+V15)/4−(−V11+V12+V13−V14)/ 2=V11/4−V13/2+V15/4・・・・・式20
The differential noise component e is given by
Obtained by subtracting the formula 15 of the operation result R 3 from Equation 17 of the operation result R 4. e = (- V 11 + 2V 12 -2V 14 + V 15) / 4 - (- V 11 + V 12 + V 13 -V 14) / 2 = V 11/4-V 13/2 + V 15/4 ····· formula 20

【0034】付着影響成分nは、式21に示すように、式
19から式20を減算することで求められる。 n=(V21/4−V23/2+V25/4)−(V11/4−V13/2+V15/4)・ ・・・・式21
The adhesion-influencing component n is given by the following equation:
It is obtained by subtracting equation 20 from 19. n = (V 21/4- V 23/2 + V 25/4) - (V 11/4-V 13/2 + V 15/4) · ···· formula 21

【0035】図4は、図1の電磁流量計の適用例を示す
励磁電流のタイムチャートである。同図(a)は、2値
励磁方式への適用例を示す第1具体例である。第1具体
例の励磁電流は、正励磁及び負励磁を繰り返す2値励磁
期間に、正励磁、無励磁、及び、負励磁を繰り返す3値
励磁期間が挿入され、2値励磁を行う周期T1、及び、
3値励磁を行う周期T2を有する。図1の電磁流量計
は、周期T2に5つの流量起電力を取得し、絶縁性付着
物の付着量に対する自己診断を行う。
FIG. 4 is a time chart of an exciting current showing an application example of the electromagnetic flow meter of FIG. FIG. 7A is a first specific example showing an application example to a binary excitation method. In the excitation current of the first specific example, a ternary excitation period in which positive excitation, non-excitation and negative excitation are repeated is inserted in a binary excitation period in which positive excitation and negative excitation are repeated, and a cycle T 1 for performing binary excitation. ,as well as,
It has a period T 2 for performing ternary excitation. Electromagnetic flowmeter of FIG. 1, the period T 2 to get the five flow electromotive force, performs a self-diagnosis for the adhesion amount of the insulating deposits.

【0036】同図(b)は、2周波励磁方式への適用例
を示す第2具体例である。第2具体例の励磁電流は、長
い周期T4で正励磁及び負励磁を繰り返す低周波分に、
短い周期T3で正励磁及び負励磁を繰り返す高周波分を
重畳する2周波励磁方式である。励磁電流の低周波分に
おける変化点付近では、3値励磁が行われている。図1
の電磁流量計は、この変化点付近である期間K7〜K9
5つの流量起電力を夫々取得し、絶縁性付着物の付着量
に対する自己診断を行う。
FIG. 4B is a second specific example showing an example of application to a two-frequency excitation system. The exciting current of the second specific example has a low frequency component in which positive excitation and negative excitation are repeated at a long cycle T 4 ,
It is a two-frequency excitation mode for superposing a high-frequency component to repeat the positive excitation and negative excitation in a short cycle T 3. In the vicinity of a change point in a low frequency portion of the exciting current, ternary excitation is performed. FIG.
Electromagnetic flow meter is a period K 7 ~K 9 is near the changing point five flow electromotive force respectively acquired, performs self-diagnosis for the deposition of insulating deposits.

【0037】上記実施形態例によれば、正励磁、無励
磁、及び、負励磁の3値励磁方式の各励磁期間に、流体
の移動中に検出された起電力を演算することにより、付
着影響成分を検出できるので、絶縁性付着物の付着量を
調べる自己診断が行える。
According to the above embodiment, during each excitation period of the ternary excitation system of the positive excitation, the non-excitation, and the negative excitation, the electromotive force detected during the movement of the fluid is calculated, so that the adhesion effect is calculated. Since the components can be detected, a self-diagnosis for checking the amount of the insulating deposit can be performed.

【0038】図5は、本発明の第2実施形態例の電磁流
量計が実行する準備処理のフローチャートである。本実
施形態例の電磁流量計は、3値励磁方式に代えて2値励
磁方式を実施し、絶縁性付着物の付着影響成分を検出す
る点が異なる。電磁流量計は、予め絶縁性付着物が検出
器に付着していない状態で、準備処理を実施する。
FIG. 5 is a flowchart of a preparation process executed by the electromagnetic flow meter according to the second embodiment of the present invention. The electromagnetic flow meter according to the present embodiment is different from the first embodiment in that a binary excitation method is used instead of the ternary excitation method, and that the adhesion influence component of the insulating deposit is detected. The electromagnetic flowmeter performs a preparation process in a state where the insulating deposit is not attached to the detector in advance.

【0039】図6は、図5の電磁流量計が取り扱う各信
号のタイムチャートである。励磁電流は、使用励磁周波
数fHの期間及び低励磁周波数fLの期間を有する。低励
磁周波数fLは、使用励磁周波数fHに比して周波数が十
分低い周波数が選択される。励磁電流は、使用励磁周波
数fHの期間に、周期T5の正励磁及び負励磁をi回繰り
返し、低励磁周波数fLの期間に、周期T6の正励磁及び
負励磁をj回繰り返す。流量起電力の信号電圧成分は、
大きさ及び方向が励磁電流に応じて変化し、使用励磁周
波数fHの期間に、微分ノイズ成分e及び流量信号成分
1から成り、低励磁周波数fLの期間に、流量信号成分
1から成る。
FIG. 6 is a time chart of each signal handled by the electromagnetic flow meter of FIG. Excitation current has a duration of the period of use excitation frequency f H and the low excitation frequency f L. As the low excitation frequency f L , a frequency whose frequency is sufficiently lower than the used excitation frequency f H is selected. Exciting current, the duration of use excitation frequency f H, the positive excitation and negative excitation period T 5 repeated i times, the period of the low excitation frequency f L, the positive excitation and negative excitation period T 6 is repeated j times. The signal voltage component of the flow electromotive force is
Magnitude and direction changes according to the exciting current, the duration of use excitation frequency f H, consist differential noise component e and the flow rate signal components s 1, the periods of low excitation frequency f L, the flow rate signal component s 1 Become.

【0040】電磁流量計は、使用励磁周波数fHの期
間、正励磁及び負励磁の信号電圧成分を周期T5毎にi
回サンプリングする。正励磁の信号電圧成分の大きさと
負励磁の信号電圧成分の大きさとを加算し、i個の加算
値を合計して平均化する(ステップS31)。この平均
化処理FH1を以下に示す。 FH1={(e+s1)−(−e−s1)+ 〜 +(e+s1)−(−e−s1)}/ i=2e+2s1・・・・・式22
The electromagnetic flow meter, a period of use the excitation frequency f H, i the signal voltage component of the positive excitation and negative excitation per period T 5
Sampling times. The magnitude of the positive excitation signal voltage component and the magnitude of the negative excitation signal voltage component are added, and the i added values are summed and averaged (step S31). The averaging process F H1 is shown below. F H1 = {(e + s 1 )-(− e−s 1 ) + to + (e + s 1 ) − (− e−s 1 )} / i = 2e + 2s 1 ...

【0041】低励磁周波数fLの期間、正励磁及び負励
磁の信号電圧成分を周期T6毎にj回サンプリングする。
正励磁の信号電圧成分の大きさと負励磁の信号電圧成分
の大きさとを加算し、j個の加算値を合計して平均化す
る(ステップS32)。この平均化処理FL1を以下に示
す。 FL1={(s1)−(−s1)+ 〜 +(s1)−(−s1)}/j=2s1・・・ ・・式23
During the period of the low excitation frequency f L , the signal voltage components of the positive excitation and the negative excitation are sampled j times every cycle T 6 .
The magnitude of the positive excitation signal voltage component and the magnitude of the negative excitation signal voltage component are added, and the j addition values are summed and averaged (step S32). The averaging process FL1 is shown below. F L1 = {(s 1 ) − (− s 1 ) + to + (s 1 ) − (− s 1 )} / j = 2s 1 Equation 23

【0042】平均化処理FH1の処理値から平均化処理F
L1の処理値を減算して、微分ノイズ成分e求め、RAM
変数Aに格納する(ステップS33)。この処理を以下
に示す。 A=FH1−FL1=2e+2s1−2s1=2e・・・・・式24
The averaging process from the process value of the averaging process F H1 F
The differential noise component e is obtained by subtracting the processing value of L1 ,
It is stored in the variable A (step S33). This processing is described below. A = F H1 −F L1 = 2e + 2s 1 −2s 1 = 2e Equation 24

【0043】図7は、図5の準備処理の後に電磁流量計
が実行するメイン処理のフローチャートである。電磁流
量計は、図5の準備処理により微分ノイズ成分eを求め
ると、メイン処理を実行する。図8は、図7のメイン処
理を実行する電磁流量計が取り扱う各信号のタイムチャ
ートである。励磁電流は、図6と同様に流れる。流量起
電力の信号電圧成分は、使用励磁周波数fHの期間に、
微分ノイズ成分e、付着影響成分n、及び、流量信号成
分s2から成り、低励磁周波数fLの期間に、流量信号成
分s2から成る。
FIG. 7 is a flowchart of a main process executed by the electromagnetic flow meter after the preparation process of FIG. The electromagnetic flow meter executes the main process when the differential noise component e is obtained by the preparation process of FIG. FIG. 8 is a time chart of each signal handled by the electromagnetic flow meter that executes the main process of FIG. The exciting current flows as in FIG. Signal voltage components of the flow electromotive force, the duration of use excitation frequency f H,
Differential noise component e, adhesion influence component n and consists flow signal component s 2, the periods of low excitation frequency f L, consisting of the flow rate signal component s 2.

【0044】電磁流量計は、付着影響成分を検出する時
期であるか判断する(ステップS41)。“NO”であ
れば、ステップS46から処理を継続し、“YES”で
あれば、使用励磁周波数fHの期間に、正励磁及び負励
磁の信号電圧成分を周期T5毎にi回サンプリングす
る。正励磁の信号電圧成分の大きさと負励磁の信号電圧
成分の大きさとを加算し、i個の加算値を合計して平均
化する(ステップS42)。この平均化処理FH2を以下
に示す。 FH2={(e+n+s2)−(−e−n−s2)+ 〜 +(e+n+s2)−(− e−n−s2)}/i=2e+2n+2s2・・・・・式25
The electromagnetic flow meter determines whether it is time to detect an adhesion affecting component (step S41). If "NO", processing continues from step S46, if "YES", the period of use excitation frequency f H, that i times sampling of the signal voltage component of the positive excitation and negative excitation per period T 5 . The magnitude of the positive excitation signal voltage component and the magnitude of the negative excitation signal voltage component are added, and the i added values are summed and averaged (step S42). The averaging process F H2 is shown below. F H2 = {(e + n + s 2 )-(− en−s 2 ) + to + (e + n + s 2 ) − (− en−s− 2 )} / i = 2e + 2n + 2s 2 ...

【0045】低励磁周波数fLの期間に、正励磁及び負
励磁の信号電圧成分を周期T6毎にj回サンプリングす
る。正励磁の信号電圧成分の大きさから負励磁の信号電
圧成分の大きさを減算し、j個の減算値を合計して平均
化する(ステップS43)。この平均化処理FL2を以下
に示す。 FL2={(s2)−(−s2)+ 〜 +(s2)−(−s2)}/j=2s2・・・ ・・式26
During the period of the low excitation frequency f L , the signal voltage components of the positive excitation and the negative excitation are sampled j times every cycle T 6 . The magnitude of the negative excitation signal voltage component is subtracted from the magnitude of the positive excitation signal voltage component, and the j subtracted values are summed and averaged (step S43). The averaging process FL2 is shown below. F L2 = {(s 2 ) − (− s 2 ) + to + (s 2 ) − (− s 2 )} / j = 2s 2 ...

【0046】平均化処理FH2の処理値から平均化処理F
L2の処理値を減算して、微分ノイズ成分e及び付着影響
成分n求め、RAM変数Bに格納する(ステップS4
4)。この処理を以下に示す。 B=FH2−FL2=2e+2n+2s2−2s2=2e+2n・・・・・式27
Averaging processing F The averaging processing F is calculated from the processing value of H2.
By subtracting the processing value of L2 , the differential noise component e and the adhesion influence component n are obtained and stored in the RAM variable B (step S4).
4). This processing is described below. B = F H2 −F L2 = 2e + 2n + 2s 2 −2s 2 = 2e + 2n Equation 27

【0047】RAM変数BからRAM変数Aを減算して
付着影響成分を求め、この付着影響成分が所定値より大
きいか判断し絶縁性付着物の影響量を調べる(ステップ
S45)。この処理を以下に示す。 B−A=2e+2n−2e=2n・・・・・式28
The RAM-variable A is subtracted from the RAM-variable B to determine the adhesion-influencing component, and it is determined whether or not the adhesion-affecting component is greater than a predetermined value, and the influence of the insulating adhered matter is checked (step S45). This processing is described below. BA = 2e + 2n-2e = 2n Equation 28

【0048】ステップS45の判断が“NO”であれ
ば、付着影響成分が小さいものとして所定の手順に従う
流量の測定を行い(ステップS46)、付着影響成分を
検出する時期であるか判断する(ステップS47)。
“NO”であれば、ステップS46から処理を継続し、
“YES”であれば、ステップS42から処理を継続す
る。ステップS45の判断が“YES”であれば、付着
影響成分が大きいものとしてアラームを出力する。
If the determination in step S45 is "NO", the flow rate is measured according to a predetermined procedure assuming that the adhesion affecting component is small (step S46), and it is determined whether it is time to detect the adhesion affecting component (step S46). S47).
If “NO”, the process is continued from step S46,
If "YES", the process is continued from step S42. If the determination in step S45 is "YES", an alarm is output assuming that the adhesion affecting component is large.

【0049】上記実施形態例によれば、第1の周波数及
び第2の周波数で正励磁及び負励磁の2値励磁方式の各
励磁期間に、流体の移動中に検出された起電力を演算す
ることにより、付着影響成分を検出できるので、絶縁性
付着物の付着量を調べる自己診断が行える。
According to the above-described embodiment, the electromotive force detected during the movement of the fluid is calculated in each of the excitation periods of the binary excitation method of the positive excitation and the negative excitation at the first frequency and the second frequency. Thus, the adhesion-influencing component can be detected, so that a self-diagnosis for checking the amount of the adhered insulating substance can be performed.

【0050】以上、本発明をその好適な実施形態例に基
づいて説明したが、本発明の電磁流量計は、上記実施形
態例の構成にのみ限定されるものでなく、上記実施形態
例の構成から種々の修正及び変更を施した電磁流量計
も、本発明の範囲に含まれる。
Although the present invention has been described based on the preferred embodiment, the electromagnetic flow meter of the present invention is not limited to the configuration of the above-described embodiment, but may be of the above-described embodiment. Electromagnetic flowmeters with various modifications and alterations from are also included in the scope of the present invention.

【0051】[0051]

【発明の効果】以上説明したように、本発明の電磁流量
計では、正励磁、無励磁、及び、負励磁の3値励磁方式
の各励磁期間に、流体の移動中に検出された起電力を演
算することにより、付着影響成分を検出できるので、絶
縁性付着物の付着量を調べる自己診断が行える。
As described above, according to the electromagnetic flowmeter of the present invention, the electromotive force detected during the movement of the fluid during each of the three excitation periods of the positive excitation, the non-excitation, and the negative excitation. Is calculated, the adhesion-influencing component can be detected, so that a self-diagnosis for examining the amount of the adhered insulating substance can be performed.

【0052】また、第1の周波数及び第2の周波数で正
励磁及び負励磁の2値励磁方式の各励磁期間に、流体の
移動中に検出された起電力を演算することにより、付着
影響成分を検出できるので、絶縁性付着物の付着量を調
べる自己診断が行える。
Further, by calculating the electromotive force detected during the movement of the fluid in each of the excitation periods of the binary excitation method of the positive excitation and the negative excitation at the first frequency and the second frequency, the adhesion influence component is calculated. Can be detected, so that a self-diagnosis can be performed to check the amount of the attached insulating substance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態例の電磁流量計が取り扱
う各信号のタイムチャートである。
FIG. 1 is a time chart of each signal handled by an electromagnetic flow meter according to a first embodiment of the present invention.

【図2】図1の電磁流量計が自己診断の前に実行する準
備処理のフローチャートである。
FIG. 2 is a flowchart of a preparation process executed by the electromagnetic flow meter of FIG. 1 before self-diagnosis.

【図3】図1の電磁流量計が実行する自己診断処理のフ
ローチャートである。
FIG. 3 is a flowchart of a self-diagnosis process executed by the electromagnetic flow meter of FIG. 1;

【図4】図1の電磁流量計の適用例を示す励磁電流のタ
イムチャートである。
FIG. 4 is a time chart of an exciting current showing an application example of the electromagnetic flow meter of FIG. 1;

【図5】本発明の第2実施形態例の電磁流量計が実行す
る準備処理のフローチャートである。
FIG. 5 is a flowchart of a preparation process executed by the electromagnetic flow meter according to the second embodiment of the present invention.

【図6】図5の電磁流量計が取り扱う各信号のタイムチ
ャートである。
6 is a time chart of each signal handled by the electromagnetic flow meter of FIG.

【図7】図5の準備処理の後に電磁流量計が実行するメ
イン処理のフローチャートである。
FIG. 7 is a flowchart of a main process executed by the electromagnetic flow meter after the preparation process of FIG. 5;

【図8】図7のメイン処理を実行する電磁流量計が取り
扱う各信号のタイムチャートである。
8 is a time chart of each signal handled by the electromagnetic flow meter that executes the main processing of FIG. 7;

【図9】従来の電磁流量計が取り扱う各信号のタイムチ
ャートである。
FIG. 9 is a time chart of each signal handled by a conventional electromagnetic flow meter.

【符号の説明】[Explanation of symbols]

e 微分ノイズ成分 n 付着影響成分 s 流量信号成分 a,b ランプ状ノイズ成分 e Differential noise component n Adhesion effect component s Flow rate signal component a, b Ramp noise component

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】管内を移動する導電性流体の前記移動方向
に垂直な磁界を印加する磁界印加手段と、前記磁界によ
って導電性流体内に発生する起電力を測定する起電力測
定手段とを備え、前記磁界印加手段が一方の方向の磁界
を発生する正励磁、磁界を停止する無励磁、及び、前記
一方の方向と逆方向の磁界を発生する負励磁を繰り返す
3値励磁を行う電磁流量計において、 前記起電力測定手段によって予め絶縁性付着物が付着し
ない状態で流体の移動中に検出された起電力と、絶縁性
付着物が付着した状態で流体の移動中に検出された起電
力とに基づいて、前記電磁流量計に付着した絶縁性付着
物の付着量を演算することを特徴とする電磁流量計。
A magnetic field applying means for applying a magnetic field perpendicular to the moving direction of the conductive fluid moving in the pipe; and an electromotive force measuring means for measuring an electromotive force generated in the conductive fluid by the magnetic field. An electromagnetic flowmeter that performs ternary excitation in which the magnetic field applying means repeats positive excitation for generating a magnetic field in one direction, non-excitation for stopping the magnetic field, and negative excitation for generating a magnetic field in a direction opposite to the one direction. In the above, the electromotive force detected during the movement of the fluid in a state where the insulative deposit is not attached in advance by the electromotive force measuring means, An electromagnetic flowmeter, which calculates the amount of the insulating deposit attached to the electromagnetic flowmeter based on the following formula.
【請求項2】前記絶縁性付着物が付着しない状態で検出
された起電力は、微分ノイズ成分と流量信号成分とを含
み、前記絶縁性付着物が付着しない状態で3値励磁を行
って測定された起電力から前記微分ノイズ成分を求め
る、請求項1に記載の電磁流量計。
2. An electromotive force detected in a state in which the insulating substance is not attached includes a differential noise component and a flow signal component, and is measured by performing ternary excitation in a state in which the insulating substance is not attached. The electromagnetic flowmeter according to claim 1, wherein the differential noise component is obtained from the obtained electromotive force.
【請求項3】前記絶縁性付着物が付着しない状態で、連
続する無励磁、正励磁、無励磁、負励磁、及び、無励磁
のときに検出された起電力を夫々V11、V12、V13、V
14、及び、V15とすると、 前記微分ノイズ成分を、V11/4−V13/2+V15/4
によって求める、請求項2に記載の電磁流量計。
3. The electromotive force detected at the time of continuous non-excitation, positive excitation, non-excitation, negative excitation, and non-excitation in a state where the insulative deposit is not adhered is V 11 , V 12 , respectively. V 13, V
14 and V 15 , the differential noise component is calculated as V 11 / 4−V 13/2 + V 15/4
3. The electromagnetic flow meter according to claim 2, wherein the flow rate is determined by:
【請求項4】前記絶縁性付着物が付着した状態で、連続
する無励磁、正励磁、無励磁、負励磁、及び、無励磁の
ときに検出された起電力を夫々V21、V22、V23
24、及び、V25とすると、 絶縁性付着物の付着影響成分を、(V21/4−V23/2
+V25/4)−(V11/4−V13/2+V15/4)によ
って求める、請求項3に記載の電磁流量計。
4. An electromotive force detected at the time of continuous non-excitation, positive excitation, non-excitation, negative excitation, and non-excitation in a state where the insulating deposit is adhered, is V 21 , V 22 , respectively. V 23 ,
Assuming that V 24 and V 25 , the adhesion-influencing component of the insulating deposit is (V 21 / 4−V 23/2)
+ V 25/4) - ( V 11/4-V 13/2 + V 15/4) determined by an electromagnetic flowmeter according to claim 3.
【請求項5】管内を移動する導電性流体の前記移動方向
に垂直な磁界を印加する磁界印加手段と、前記磁界によ
って導電性流体内に発生する起電力を測定する起電力測
定手段とを備え、前記磁界印加手段が一方の方向の磁界
を発生する正励磁、及び、前記一方の方向と逆方向の磁
界を発生する負励磁を繰り返す2値励磁を行う電磁流量
計において、 前記起電力測定手段によって予め絶縁性付着物が付着し
ない状態で、前記導電性流体の移動中に第1の周波数、
及び、該第1の周波数よりも低い第2の周波数で、夫々
前記2値励磁を繰り返して検出された各起電力と、絶縁
性付着物が付着した状態で、前記導電性流体の移動中に
前記第1及び第2の周波数で、夫々前記2値励磁を繰り
返して検出された各起電力とに基づいて、前記電磁流量
計に付着した絶縁性付着物の付着量を演算することを特
徴とする電磁流量計。
5. A magnetic field applying means for applying a magnetic field perpendicular to the moving direction of a conductive fluid moving in a pipe, and an electromotive force measuring means for measuring an electromotive force generated in the conductive fluid by the magnetic field. An electromagnetic flowmeter that performs a binary excitation in which the magnetic field applying means repeats positive excitation for generating a magnetic field in one direction and negative excitation for generating a magnetic field in a direction opposite to the one direction; The first frequency during the movement of the conductive fluid, in a state where the insulating deposit is not attached beforehand,
And, at a second frequency lower than the first frequency, each electromotive force detected by repeating the binary excitation, and a state in which an insulating adhered substance is attached, while the conductive fluid is moving, At the first and second frequencies, based on the respective electromotive forces detected by repeating the binary excitation, the amount of the insulating deposit attached to the electromagnetic flowmeter is calculated. Electromagnetic flow meter.
【請求項6】前記絶縁性付着物が付着しない状態では、
第1の周波数で検出される起電力は微分ノイズ成分と流
量信号成分とを含み、第2の周波数で検出される起電力
は流量信号成分を含み、該双方の起電力に基づいて前記
微分ノイズ成分を求める、請求項5に記載の電磁流量
計。
6. In a state where the insulating deposit is not attached,
The electromotive force detected at the first frequency includes a differential noise component and a flow signal component, and the electromotive force detected at the second frequency includes a flow signal component. The electromagnetic flowmeter according to claim 5, wherein the component is determined.
【請求項7】前記絶縁性付着物が付着した状態では、前
記第1の周波数で検出される起電力は微分ノイズ成分と
流量信号成分と絶縁性付着物の付着影響成分とを含み、
前記第2の周波数で検出された起電力は流量信号成分を
含み、該双方の起電力に基づいて前記微分ノイズ成分及
び付着影響成分を求める、請求項6に記載の電磁流量
計。
7. An electromotive force detected at the first frequency in a state where the insulating deposit is attached, includes a differential noise component, a flow signal component, and an adhesion affecting component of the insulating deposit.
The electromagnetic flowmeter according to claim 6, wherein the electromotive force detected at the second frequency includes a flow signal component, and the differential noise component and the adhesion influence component are obtained based on the two electromotive forces.
JP2000362640A 2000-11-29 2000-11-29 Electromagnetic flowmeter Pending JP2002168666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000362640A JP2002168666A (en) 2000-11-29 2000-11-29 Electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000362640A JP2002168666A (en) 2000-11-29 2000-11-29 Electromagnetic flowmeter

Publications (1)

Publication Number Publication Date
JP2002168666A true JP2002168666A (en) 2002-06-14

Family

ID=18833879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000362640A Pending JP2002168666A (en) 2000-11-29 2000-11-29 Electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JP2002168666A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066372A1 (en) 2010-11-19 2012-05-24 Yamatake Corporation Electromagnetic flow meter
CN105937925A (en) * 2015-03-05 2016-09-14 横河电机株式会社 Electromagnetic flowmeter
EP3064905A3 (en) * 2015-03-05 2016-09-21 Yokogawa Electric Corporation Electromagnetic flowmeter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066372A1 (en) 2010-11-19 2012-05-24 Yamatake Corporation Electromagnetic flow meter
US10295386B2 (en) 2010-11-19 2019-05-21 Azbil Corporation Electromagnetic flow meter
CN105937925A (en) * 2015-03-05 2016-09-14 横河电机株式会社 Electromagnetic flowmeter
EP3064905A3 (en) * 2015-03-05 2016-09-21 Yokogawa Electric Corporation Electromagnetic flowmeter
US9683878B2 (en) 2015-03-05 2017-06-20 Yokogawa Electric Corporation Electromagnetic flowmeter
CN105937925B (en) * 2015-03-05 2019-04-19 横河电机株式会社 Electromagnetic flowmeter

Similar Documents

Publication Publication Date Title
JP5492201B2 (en) Method and device for inductive conductivity measurement of fluid media
JP3915459B2 (en) Electromagnetic flow meter
JP7210916B2 (en) electromagnetic flow meter
US20050115334A1 (en) Method for operating a magnetoinductive flowmeter
US20230213367A1 (en) Method of operating a magnetically-inductive flowmeter
JP2002328052A (en) Magnet guidance flowmeter and magnet guidance flow measuring method for fluid
US6708569B2 (en) Method of operating an electromagnetic flowmeter
JP4424511B2 (en) Electromagnetic flow meter and electromagnetic flow meter system
JP2002168666A (en) Electromagnetic flowmeter
JP5877260B1 (en) How to determine the empty state of an electromagnetic flow meter
US9599494B2 (en) Method for operating a magnetic-inductive flowmeter with improved compensation of the interfering voltage
US6834555B2 (en) Magnetoinductive flow measuring method
US6820499B2 (en) Method for determining the uncertainty factor of a measuring procedure employing a measuring frequency
RU2410646C2 (en) Method to operate device for measurement of speed of medium flow of magnetic induction flow metre (versions) and magnetic conduction flow metre
JP3965130B2 (en) Magnetic induction flow measurement method
JP3290843B2 (en) Electromagnetic flow meter
JP3018310B2 (en) Electromagnetic flow meter
RU2308685C1 (en) Method of measuring flow rate
JPS60174915A (en) Low frequency exciting electromagnetic flow meter
JP2004069593A (en) Average flow rate measuring method
JP3328877B2 (en) Electromagnetic flow meter
JPH0829223A (en) Electromagnetic flowmeter
RU2267791C2 (en) Harmonic process amplitude meter (versions)
JPH01288724A (en) Electrode fouling detector for electromagnetic flowmeter
JPS60117142A (en) Measurement for corrosion rate of metal