JP5877260B1 - How to determine the empty state of an electromagnetic flow meter - Google Patents

How to determine the empty state of an electromagnetic flow meter Download PDF

Info

Publication number
JP5877260B1
JP5877260B1 JP2015089794A JP2015089794A JP5877260B1 JP 5877260 B1 JP5877260 B1 JP 5877260B1 JP 2015089794 A JP2015089794 A JP 2015089794A JP 2015089794 A JP2015089794 A JP 2015089794A JP 5877260 B1 JP5877260 B1 JP 5877260B1
Authority
JP
Japan
Prior art keywords
fluid
excitation
value
empty
empty state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015089794A
Other languages
Japanese (ja)
Other versions
JP2016206078A (en
Inventor
尚 鳥丸
尚 鳥丸
竹田 修
修 竹田
強 逢
強 逢
立功 陳
立功 陳
経偉 陸
経偉 陸
迪斐 姚
迪斐 姚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP2015089794A priority Critical patent/JP5877260B1/en
Application granted granted Critical
Publication of JP5877260B1 publication Critical patent/JP5877260B1/en
Publication of JP2016206078A publication Critical patent/JP2016206078A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】電磁流量計における測定管内の流体の空状態を正確に判定できる。【解決手段】時間tに測定管内の流体が接液状態から非接液状態になった場合に、電極とアース間の電極インピーダンスが無限大となり、外部からの誘導ノイズの影響を大きく受けることになる。そのため、(c)の正弦波に示すような商用交流電源に基づく誘導ノイズが、非接液状態となった時間t以降に発生する。この誘導ノイズの周波数成分の信号レベルが、予め流体が静止し測定管中に前記流体が満たされているときの自動ゼロ点調整処理時に設定した閾値s1又は閾値s2を上回る又は下回ることで、測定管内の流体が空状態であることを検知する。【選択図】図3An empty state of a fluid in a measurement pipe in an electromagnetic flow meter can be accurately determined. When the fluid in the measuring tube changes from the wetted state to the non-wetted state at time t, the electrode impedance between the electrode and the ground becomes infinite and is greatly affected by externally induced noise. Become. Therefore, induction noise based on a commercial AC power source as shown by the sine wave in (c) occurs after time t when the liquid contact state is reached. Measurement is performed when the signal level of the frequency component of the induced noise exceeds or falls below the threshold value s1 or threshold value s2 set during the automatic zero adjustment process when the fluid is stationary and the fluid is filled in the measurement tube. Detect that the fluid in the tube is empty. [Selection] Figure 3

Description

本発明は、測定管内の流体の空状態を判定する電磁流量計の空状態判定方法に関するものである。   The present invention relates to a method for determining an empty state of an electromagnetic flow meter that determines an empty state of a fluid in a measuring tube.

電磁流量計は、測定管中を流れ導電性を有する流体に、励磁コイルにより交流磁場を印加して、ファラディの法則に従い、流体方向と磁場方向に直交する方向に誘起される起電力から流体の流速を求め、流量に換算している。   An electromagnetic flowmeter applies an alternating magnetic field to a fluid that flows through a measuring tube and has electrical conductivity by means of an excitation coil, and in accordance with Faraday's law, an electromotive force induced in a direction perpendicular to the fluid direction and the direction of the magnetic field. The flow velocity is obtained and converted to a flow rate.

図4は特許文献1に開示された従来の空検知機能を備えた電磁流量計の構成図を示している。この電磁流量計は、検出部1と変換部2とから構成されており、検出部1は被測定流体が流れる測定管3と、この測定管3の周囲に配置される励磁コイル4と、測定管3内に配置された一対の電極5a、5bとから成っている。   FIG. 4 shows a configuration diagram of an electromagnetic flow meter having a conventional sky detection function disclosed in Patent Document 1. In FIG. The electromagnetic flow meter includes a detection unit 1 and a conversion unit 2. The detection unit 1 includes a measurement tube 3 through which a fluid to be measured flows, an excitation coil 4 disposed around the measurement tube 3, and a measurement. It consists of a pair of electrodes 5a and 5b arranged in the tube 3.

変換部2には、電極5a、5bにより誘起される2つの流量信号を受信するバッファアンプ6a、6bが設けられている。これらのバッファアンプ6a、6bの出力は、バッファアンプ6a、6bの出力差を求める差動アンプ7に接続され、更に差動アンプ7の出力は、流量演算等を実行するCPU8、出力回路9の順に接続されている。   The converter 2 is provided with buffer amplifiers 6a and 6b that receive two flow signals induced by the electrodes 5a and 5b. The outputs of the buffer amplifiers 6a and 6b are connected to a differential amplifier 7 for obtaining an output difference between the buffer amplifiers 6a and 6b. Further, the output of the differential amplifier 7 is supplied from the CPU 8 and the output circuit 9 for executing a flow rate calculation and the like. Connected in order.

また、励磁回路10による励磁電流の出力が励磁コイル4及びCPU8に接続されている。この励磁回路10により励磁コイル4に定電流である励磁電流を供給している。   Further, the output of the excitation current from the excitation circuit 10 is connected to the excitation coil 4 and the CPU 8. The excitation circuit 10 supplies an excitation current, which is a constant current, to the excitation coil 4.

この励磁回路10による定電流の出力により、励磁コイル4によって測定管3内に磁場を印加する。導電性を有する流体に対して、流体方向と磁場方向に直交方向に誘起される起電力EsをCPU8に出力することで、流体の流速vが測定され、更にこの流速vに測定管3の断面積を乗じて流量を求めることができる。   A magnetic field is applied to the measuring tube 3 by the exciting coil 4 by the constant current output from the exciting circuit 10. An electromotive force Es induced in a direction orthogonal to the fluid direction and the magnetic field direction is output to the CPU 8 with respect to the conductive fluid, and the flow velocity v of the fluid is measured. The flow rate can be obtained by multiplying the area.

電磁流量計では、測定中に検出部1の測定管3が導電性流体で満たされていることが精度保証の条件となっている。しかし、実際のプラントでは流体が測定管3内で空状態となって、測定管3が完全に流体で満たされずに、電極5a、5bが露出してしまうことがある。このように、電極5a、5bが露出してしまうと、電磁流量計の出力は不定となり、プラント操業上に大きな支障をもたらすことになる。   In an electromagnetic flow meter, the accuracy guarantee is that the measurement tube 3 of the detection unit 1 is filled with a conductive fluid during measurement. However, in an actual plant, the fluid may be empty in the measurement tube 3, and the electrodes 5a and 5b may be exposed without the measurement tube 3 being completely filled with the fluid. Thus, if the electrodes 5a and 5b are exposed, the output of the electromagnetic flowmeter becomes indefinite, resulting in a great hindrance to plant operation.

そこで、図4に示すように変換部2に空検知部11を配置し、測定管3内の流体の空状態を判定し、警報を出力するようにしている。空検知部11で発生した正負パルス電流を電極5a、5b間に通電し、パルス電流により発生した両電極5a、5b間のインピーダンスに応じた交流電圧信号は、差動アンプ7で差動増幅される。差動アンプ7の出力信号を空検知部11で直流電圧に変換した後に、この直流電圧に比例した周波数信号に変換され、CPU8に出力される。CPU8は入力値と記憶している基準周波数信号と比較して空検知出力信号を発生する。   Therefore, as shown in FIG. 4, an empty detection unit 11 is arranged in the conversion unit 2 to determine an empty state of the fluid in the measurement tube 3 and output an alarm. The positive / negative pulse current generated in the sky detection unit 11 is passed between the electrodes 5a and 5b, and the AC voltage signal corresponding to the impedance between the electrodes 5a and 5b generated by the pulse current is differentially amplified by the differential amplifier 7. The After the output signal of the differential amplifier 7 is converted into a DC voltage by the sky detection unit 11, it is converted into a frequency signal proportional to the DC voltage and output to the CPU 8. The CPU 8 generates an empty detection output signal by comparing the input value with the stored reference frequency signal.

また、図4に示すような空検知部11を変換部2に設けずに、差動アンプ7の出力を監視して、流体の空状態を判定する方法も従来から知られている。   In addition, a method for determining the empty state of the fluid by monitoring the output of the differential amplifier 7 without providing the conversion unit 2 with the empty detection unit 11 as shown in FIG.

特開2002−162267号公報JP 2002-162267 A

特許文献1に示す空検知部11は、電極5a、5bと直結するように配置するため、変換部2全体のインピーダンスが影響を受けてしまうという問題がある。また、正負パルス電流を電極5a、5b間に供給する必要があり、例えば電極5a、5bの接点及び空検知部11間で地絡等が発生した場合には、流体の空検知ができなくなるという問題もある。   Since the sky detection unit 11 shown in Patent Document 1 is arranged so as to be directly connected to the electrodes 5a and 5b, there is a problem that the impedance of the entire conversion unit 2 is affected. Further, it is necessary to supply a positive / negative pulse current between the electrodes 5a and 5b. For example, when a ground fault occurs between the contact points of the electrodes 5a and 5b and the sky detection unit 11, it is impossible to detect the fluid empty. There is also a problem.

また、上述の空検知部11を変換部2に設けずに差動アンプ7の出力を監視して、流体の空状態を判定する方法では、2つの電極5a、5bに誘起される商用交流電源ノイズがほぼ同相になり、差動アンプ7の出力においてこれらのノイズが相殺されるため、コモンモードで重畳するノイズに基づく流体の空状態を検知することは難しい。なお、このノイズの相殺は、特許文献1の変換部2でも発生する。   In the method of determining the empty state of the fluid by monitoring the output of the differential amplifier 7 without providing the above-described empty detection unit 11 in the conversion unit 2, the commercial AC power source induced by the two electrodes 5a and 5b is used. Since the noise is almost in phase and these noises are canceled at the output of the differential amplifier 7, it is difficult to detect the fluid empty state based on the noise superimposed in the common mode. Note that this noise cancellation also occurs in the conversion unit 2 of Patent Document 1.

このように、電極5a、5b間の差動電圧出力の異常を検出し、空状態を判定する手法は従来から知られているが、電極5a、5bに誘導されるノイズは同相成分が大きく、差動出力では正確な空状態を検知することが難しい。   As described above, a technique for detecting an abnormality in the differential voltage output between the electrodes 5a and 5b and determining an empty state has been conventionally known, but the noise induced in the electrodes 5a and 5b has a large in-phase component, It is difficult to detect an accurate sky condition with differential output.

本発明の目的は、上述の課題を解消し、ノイズの影響を除去して、測定管内の流体の空状態を正確に判定できる電磁流量計の空状態判定方法を提供することにある。   An object of the present invention is to provide a method for determining an empty state of an electromagnetic flow meter that eliminates the above-described problems, eliminates the influence of noise, and can accurately determine the empty state of a fluid in a measurement tube.

上記目的を達成するための本発明に係る電磁流量計の空状態判定方法は、所定の周期で励磁コイルに間欠的に通電し励磁及び励磁休止を繰り返す電磁流量計において、流体が静止し測定管中に前記流体が満たされているときの自動ゼロ点調整処理に併せて、前記励磁休止時の励磁休止区間で測定した電極電位の測定値をA/D変換処理し、該A/D変換値に対して、交流電源周波数のバンドパスフィルタによる抽出処理を行い、抽出した周波数成分に基づいて空判定閾値を設定し、前記流体の流量測定中に前記励磁休止区間で測定した前記電極電位の測定値をA/D変換処理し、該A/D変換値に対して、前記バンドパスフィルタによる抽出処理を行うことで抽出した交流電源周波数成分の信号レベルと前記空判定閾値とを比較して、前記流体の空状態を判定することを特徴とする。 In order to achieve the above object, the electromagnetic flow meter empty state determination method according to the present invention is a measurement tube in which an electromagnetic flow meter is intermittently energized at a predetermined cycle and the excitation and excitation pauses are repeated. In addition to the automatic zero point adjustment processing when the fluid is filled in, the A / D conversion processing is performed on the measured value of the electrode potential measured in the excitation pause section during the excitation pause , and the A / D conversion value In response to the extraction processing by the band pass filter of the AC power supply frequency, an empty determination threshold is set based on the extracted frequency component, and the measurement of the electrode potential measured in the excitation pause section during the flow measurement of the fluid A / D conversion is performed on the value, and the signal level of the AC power frequency component extracted by performing the extraction process using the bandpass filter on the A / D conversion value is compared with the empty determination threshold value. the flow And judging the empty state.

本発明に係る電磁流量計の空状態判定方法によれば、自動ゼロ点調整時に各電極の個別の誘導電位を測定し、測定したノイズを空状態の判定基準として使用しているため、設置条件等に関係なく実使用状態における条件を基に正確な空状態を判定することができる。   According to the method for determining an empty state of an electromagnetic flow meter according to the present invention, the individual induced potential of each electrode is measured during automatic zero adjustment, and the measured noise is used as a determination criterion for the empty state. It is possible to determine an accurate empty state based on conditions in the actual use state regardless of the above.

実施例の電磁流量計の構成図である。It is a block diagram of the electromagnetic flowmeter of an Example. 電極に誘導される外部ノイズ伝達の説明図である。It is explanatory drawing of the external noise transmission induced | guided | derived to an electrode. 接液状態から非接液状態になった状態の波形図である。It is a wave form diagram of the state which changed from the wetted state to the non-wetted state. 従来の空検知機能を備えた電磁流量計の構成図である。It is a block diagram of the electromagnetic flowmeter provided with the conventional sky detection function.

本発明を図1〜図3に図示の実施例に基づいて詳細に説明する。
図1は実施例の電磁流量計の構成図であり、図4と同一の符号は同一の回路を示している。検出部1は、流体が流れる測定管3、この測定管3の周囲に配置された励磁コイル4、測定管3中に一対の電極5a、5bが露出して配置されている。測定管3の内壁は絶縁材によりコーティングされているが、測定管3自体は地絡されており、外部からの誘導ノイズをシールドしている。
The present invention will be described in detail based on the embodiment shown in FIGS.
FIG. 1 is a configuration diagram of an electromagnetic flow meter of an embodiment, and the same reference numerals as those in FIG. 4 indicate the same circuits. The detection unit 1 includes a measurement tube 3 through which a fluid flows, an excitation coil 4 disposed around the measurement tube 3, and a pair of electrodes 5 a and 5 b exposed in the measurement tube 3. The inner wall of the measuring tube 3 is coated with an insulating material, but the measuring tube 3 itself is grounded and shields induced noise from the outside.

変換部2には、電極5a、5bにそれぞれ対応するバッファアンプ6a、6bが設けられ、バッファアンプ6a、6bのそれぞれの出力は差動アンプ7及びマルチプレクサ12に接続されている。このマルチプレクサ12はタイミング信号発生回路13から入力されるタイミング信号により、タイミング信号発生回路13で生成したタイミングに同期して、バッファアンプ6a、6bの出力を交互に切り替えてCPU8に出力する。   The conversion unit 2 is provided with buffer amplifiers 6a and 6b corresponding to the electrodes 5a and 5b, respectively, and the outputs of the buffer amplifiers 6a and 6b are connected to the differential amplifier 7 and the multiplexer 12, respectively. The multiplexer 12 switches the outputs of the buffer amplifiers 6 a and 6 b alternately and outputs the same to the CPU 8 in synchronization with the timing generated by the timing signal generating circuit 13 by the timing signal input from the timing signal generating circuit 13.

差動アンプ7の出力は、A/D変換部の機能を有すると共に流量演算等を実行するCPU8、更に出力回路9に順次に接続されている。また、CPU8ではバッファアンプ6a、6bからの出力を継続的にサンプリングしてA/D変換処理した後に、商用交流電源周波数をバンドパスフィルタ処理をして空診断に利用する。   The output of the differential amplifier 7 is sequentially connected to a CPU 8 that functions as an A / D converter and executes a flow rate calculation, and further to an output circuit 9. Further, the CPU 8 continuously samples the outputs from the buffer amplifiers 6a and 6b and performs A / D conversion processing, and then uses the commercial AC power supply frequency for band diagnosis by performing band-pass filter processing.

一方、変換部2内の励磁回路10の出力は、励磁コイル4とCPU8に接続され、タイミング信号発生回路13の出力は、マルチプレクサ12、CPU8、励磁回路10に接続されている。   On the other hand, the output of the excitation circuit 10 in the conversion unit 2 is connected to the excitation coil 4 and the CPU 8, and the output of the timing signal generation circuit 13 is connected to the multiplexer 12, the CPU 8, and the excitation circuit 10.

タイミング信号発生回路13で生成される低周波の周期に同期して、励磁回路10から正励磁、負励磁を有する励磁周期Tの励磁電流Iexが励磁コイル4に供給されると、測定管3を流れる流体の流速に比例する流量信号として、電極5a、5b間に起電力Esが誘起される。   In synchronization with the low frequency cycle generated by the timing signal generation circuit 13, when the excitation current Iex of the excitation cycle T having positive excitation and negative excitation is supplied from the excitation circuit 10 to the excitation coil 4, the measurement tube 3 is connected. An electromotive force Es is induced between the electrodes 5a and 5b as a flow rate signal proportional to the flow velocity of the flowing fluid.

電極5a、5b間に誘起され、更にバッファアンプ6a又は6bから出力される起電力Esは、次の(1)式で与えられる。
起電力Es=κ・B・v・D ・・・(1)
The electromotive force Es induced between the electrodes 5a and 5b and output from the buffer amplifier 6a or 6b is given by the following equation (1).
Electromotive force Es = κ · B · v · D (1)

なお、κは比例定数、Bは励磁コイル4による磁束密度、vは被測定流体の流速、Dは測定管3の口径である。   Here, κ is a proportional constant, B is the magnetic flux density by the exciting coil 4, v is the flow velocity of the fluid to be measured, and D is the diameter of the measuring tube 3.

磁束密度Bが励磁電流Iexに比例するとすれば、(1)式を基に流速vは次の(2)式で得られる。なお、αは検出部1ごとに定まる定数である。
v=α・Es/Iex ・・・(2)
If the magnetic flux density B is proportional to the excitation current Iex, the flow velocity v can be obtained from the following equation (2) based on the equation (1). Α is a constant determined for each detection unit 1.
v = α · Es / Iex (2)

起電力Esはバッファアンプ6a又は6bで受信され、差動アンプ7を経てCPU8に入力される。CPU8では、差動アンプ7から入力された電極5a、5bからの起電力Es及びタイミング信号発生回路13の出力を基に、励磁電流Iexに同期したタイミングで同期整流をすると同時に、(2)式による励磁電流Iexとの比較演算がなされ、得られた流速vが出力回路9に入力される。出力回路9では、プロセス用の所定の出力信号に変換される。   The electromotive force Es is received by the buffer amplifier 6a or 6b, and is input to the CPU 8 through the differential amplifier 7. The CPU 8 performs synchronous rectification at the timing synchronized with the excitation current Iex based on the electromotive force Es from the electrodes 5a and 5b input from the differential amplifier 7 and the output of the timing signal generation circuit 13, and at the same time, the expression (2) Is compared with the excitation current Iex, and the obtained flow velocity v is input to the output circuit 9. In the output circuit 9, it is converted into a predetermined output signal for the process.

また、電磁流量計では定電流回路での損失を削減するため、励磁をスイッチング方式で行うことが多く、この定電流回路では負荷が変化しても、定電流の供給を継続する。異なる口径の測定管3の励磁コイル4に対しても、励磁による安定した磁場を作る等の目的で、励磁回路10により励磁コイル4に定電流である励磁電流Iexを区間供給している。   Further, in order to reduce the loss in the constant current circuit in the electromagnetic flow meter, the excitation is often performed by a switching method, and the constant current continues to be supplied even when the load changes. The exciting current Iex, which is a constant current, is supplied to the exciting coil 4 by the exciting circuit 10 for the purpose of creating a stable magnetic field by exciting the exciting coil 4 of the measuring tube 3 having a different diameter.

励磁回路10による定電流の出力により、励磁コイル4によって磁場を流体に印加する。導電性を有する流体に対して、流体方向と磁場方向に直交方向に誘起される起電力Esに基づいて、流体の流速vを求め、更にこの流速vに測定管3の断面積を乗じて流量を求めることができる。   The magnetic field is applied to the fluid by the exciting coil 4 by the constant current output from the exciting circuit 10. For a fluid having conductivity, a flow velocity v of the fluid is obtained based on an electromotive force Es induced in a direction orthogonal to the fluid direction and the magnetic field direction, and the flow velocity v is multiplied by the cross-sectional area of the measuring tube 3 to obtain a flow rate. Can be requested.

図2は電極5a、5bに誘導される外部ノイズの伝達の様子を示している。通常の流体測定状態では、測定管3は導電性流体で満たされており、電極5a、5bが接液状態のときは、電極5a、5b間に発生する流量起電力の信号源抵抗Rsは、流体導電率σ、電極5a、5bの直径dを用いて、(3)式で表される。
Rs=1/(σ・d) ・・・(3)
FIG. 2 shows how external noise is transmitted to the electrodes 5a and 5b. In a normal fluid measurement state, the measurement tube 3 is filled with a conductive fluid, and when the electrodes 5a and 5b are in a liquid contact state, the signal source resistance Rs of the flow electromotive force generated between the electrodes 5a and 5b is Using the fluid conductivity σ and the diameter d of the electrodes 5a and 5b, it is expressed by the equation (3)
Rs = 1 / (σ · d) (3)

ノイズ源の起電力をEn、ノイズ源インピーダンスをZnとし、図示のように信号源抵抗Rsを電極5a、5bと大地間の抵抗と仮定すると、電極5a、5bに誘導される誘導ノイズの大きさenは、次の(4)式で表される。
en={Rs/(Rs+Zn)}・En ・・・(4)
Assuming that the electromotive force of the noise source is En, the noise source impedance is Zn, and the signal source resistance Rs is a resistance between the electrodes 5a and 5b and the ground as illustrated, the magnitude of the induced noise induced in the electrodes 5a and 5b. en is expressed by the following equation (4).
en = {Rs / (Rs + Zn)} · En (4)

これらの(3)、(4)式から分かるように、誘導ノイズenの大きさは使用条件である流体導電率σに依存している。流体導電率σが電磁流量計の定める流体導電率の仕様の範囲内(Rs<<Zn)であるならば、外部からの誘導ノイズenは測定管3の地絡によりシールドされているので、流量測定結果に与える影響は少ない。   As can be seen from these equations (3) and (4), the magnitude of the induction noise en depends on the fluid conductivity σ which is a use condition. If the fluid conductivity σ is within the range of the specifications of the fluid conductivity determined by the electromagnetic flow meter (Rs << Zn), the induction noise en from the outside is shielded by the ground fault of the measuring tube 3, so the flow rate There is little impact on the measurement results.

測定管3が非満水状態となり、更に電極5a、5bに対して流体が非接液状態となると、電極5a、5bと大地間の電極インピーダンスが無限大となり、外部からの誘導ノイズの影響を大きく受けることになる。   When the measuring tube 3 is in a non-full state and the fluid is in a non-wetted state with respect to the electrodes 5a and 5b, the electrode impedance between the electrodes 5a and 5b and the ground becomes infinite, greatly affecting the influence of external induction noise. Will receive.

外部からの誘導ノイズで最も顕著なものは、商用交流電源からの誘導ノイズである。従って、各電極5a、5bの電極電位に重畳されている商用交流電源の周波数成分により、電極インピーダンスを推測し、検出部1が空状態か否かを判断する方法が考えられる。   The most prominent inductive noise from the outside is the inductive noise from the commercial AC power supply. Therefore, a method is conceivable in which the electrode impedance is estimated based on the frequency component of the commercial AC power source superimposed on the electrode potentials of the electrodes 5a and 5b, and whether or not the detection unit 1 is in an empty state.

しかし、商用交流電源による誘導ノイズ源の大きさ、ノイズ源インピーダンスZnの大きさは設置条件によって大きく異なり、流体導電率σも測定管3内の流体の種類等により異なるため、空状態の判定のためには、電磁流量計毎に設定した判断基準が必要とされる。   However, the size of the inductive noise source and the noise source impedance Zn by the commercial AC power supply vary greatly depending on the installation conditions, and the fluid conductivity σ also varies depending on the type of fluid in the measuring tube 3, etc. For this purpose, a criterion set for each electromagnetic flow meter is required.

この判断基準は、流量のゼロ点に調整保存する自動ゼロ点調整時の調整処理と併せて、所定のサンプリング周期で各電極5a、5bの電極電位を連続的に測定し、A/D変換処理をした後に、商用交流電源周波数のバンドパスフィルタを通過させた周波数成分に基づいて設定される。   This determination criterion is based on the A / D conversion process by continuously measuring the electrode potentials of the electrodes 5a and 5b at a predetermined sampling period in addition to the adjustment process at the time of automatic zero adjustment that is adjusted and stored at the zero point of the flow rate. Is set based on the frequency component that has passed through the band-pass filter of the commercial AC power supply frequency.

自動ゼロ点調整時において複数回の励磁周期T毎に、所定のサンプリング周期の測定値に対して、上述のバンドパスフィルタを通過させる。このバンドパスフィルタの出力成分に対して最大値、最小値を求め、これらの複数の最大値及び複数の最小値のそれぞれの平均値を算出する。ただし、これらの平均値は、自動ゼロ点調整時は測定管3内に流体を満たした状態での値があるので、微少の揺動範囲に過ぎないものである。   At the time of automatic zero adjustment, the above-described band-pass filter is passed through the measurement value of a predetermined sampling period every plural excitation periods T. A maximum value and a minimum value are obtained for the output component of the bandpass filter, and an average value of each of the plurality of maximum values and the plurality of minimum values is calculated. However, these average values are only a minute swing range because there is a value in a state where the measuring tube 3 is filled with fluid during automatic zero point adjustment.

従って、複数の最大値及び複数の最小値のそれぞれの平均値に対して、数十〜数百倍した値を閾値とし、これらのプラスマイナスの閾値を、閾値s1、s2として設定する。或いは、バンドパスフィルタ出力した絶対値平均値の数十〜数百倍した値を閾値sと設定してもよい。これらの倍率は流体及び測定管3の径等に応じて適宜に設定しておく。 Therefore, a value obtained by multiplying the average value of the plurality of maximum values and the plurality of minimum values by several tens to several hundreds is set as a threshold value, and these plus and minus threshold values are set as threshold values s1 and s2. Alternatively, a value obtained by multiplying the average value of absolute values output by the bandpass filter by several tens to several hundreds may be set as the threshold s. These magnifications are set appropriately according to the fluid, the diameter of the measuring tube 3, and the like.

なお、自動ゼロ点調整とは、測定管3内を満たした流体が流速ゼロの状態であっても、一定のバイアス量がオフセットとして出力しているので、このオフセット分を差し引いてゼロ点に調整する処理のことであり、この処理によりCPU8において、より正確な流量を算出することが可能となる。   Note that automatic zero point adjustment means that even if the fluid filling the measuring tube 3 is in a state of zero flow velocity, a constant bias amount is output as an offset, so this offset is subtracted and adjusted to the zero point. This process enables the CPU 8 to calculate a more accurate flow rate.

次に、判断基準である閾値s1、s2を利用して測定管3の流体の空判定を行う場合は、まずマルチプレクサ12によって、タイミング信号発生回路13からのタイミング時間によりバッファアンプ6a、6bの出力を別個にCPU8に電極電位を選択入力を行う。   Next, when determining whether the fluid in the measurement tube 3 is empty using the threshold values s1 and s2 that are determination criteria, first, the multiplexer 12 outputs the outputs of the buffer amplifiers 6a and 6b based on the timing time from the timing signal generation circuit 13. The electrode potential is selectively input to the CPU 8 separately.

次にCPU8において、バッファアンプ6a、6bから入力値に対して継続的に所定の時間間隔でサンプリングしてA/D変換処理を行う。これらのA/D変換処理を行った測定値に商用交流電源周波数をバンドパスフィルタ処理して、商用交流電源周波数以外の周波数帯域の信号成分を減衰させて、50/60Hzの商用交流電源の周波数成分のみを抽出する。   Next, the CPU 8 continuously samples the input values from the buffer amplifiers 6a and 6b at predetermined time intervals and performs A / D conversion processing. The frequency of the commercial AC power supply of 50/60 Hz is obtained by performing band-pass filter processing on the commercial AC power supply frequency to the measurement values subjected to these A / D conversion processes to attenuate signal components in frequency bands other than the commercial AC power supply frequency. Extract only the components.

そして、この抽出処理を行った商用交流電源の誘導ノイズ成分である周波数成分と、自動ゼロ点調整時に設定した閾値s1、s2とを比較する。商用交流電源の周波数成分の信号レベルが閾値s1又は閾値s2を上回った又は下回った場合は、測定管3内の流体が非接液状態、つまり空状態と判定する。このように、コモンモードで入力してくる商用交流電源に基づく誘導ノイズを監視することで、空状態の判定が可能となる。   And the frequency component which is an induction noise component of the commercial alternating current power supply which performed this extraction process is compared with threshold value s1, s2 set at the time of automatic zero point adjustment. When the signal level of the frequency component of the commercial AC power supply exceeds or falls below the threshold value s1 or threshold value s2, it is determined that the fluid in the measurement tube 3 is in a non-wetted state, that is, an empty state. As described above, it is possible to determine the empty state by monitoring the induction noise based on the commercial AC power input in the common mode.

また、励磁周期T以下の所定間隔毎にA/D変換値のバンドパスフィルタ処理した周波数成分の信号レベルが、複数回に渡って閾値s1又は閾値s2を上回った又は下回った場合、或いはA/D変換値のバンドパスフィルタ処理を行った周波数成分の信号レベルの絶対値が、1回又は複数回に渡って閾値sを上回った場合に、空状態と判定することもできる。   Further, when the signal level of the frequency component subjected to the band-pass filter processing of the A / D conversion value at a predetermined interval equal to or less than the excitation cycle T exceeds or falls below the threshold value s1 or s2 for a plurality of times, or A / D When the absolute value of the signal level of the frequency component subjected to the band-pass filter processing of the D conversion value exceeds the threshold value s once or a plurality of times, it can also be determined as an empty state.

更に、複数の連続する周波数成分の信号レベルの絶対値の平均値が、閾値sを上回った場合に空状態と判定してもよいし、複数回の励磁周期T毎の周波数成分の信号レベルの最大値、最小値を求め、これらの複数の最大値及び複数の最小値のそれぞれの平均値に対して、閾値s1又は閾値s2を上回った又は下回った場合に、空状態と判定するようにしてもよい。   Furthermore, when the average value of the absolute values of the signal levels of a plurality of continuous frequency components exceeds the threshold value s, it may be determined as an empty state, or the signal level of the frequency component for each of a plurality of excitation periods T may be determined. The maximum value and the minimum value are obtained, and when the average value of each of the plurality of maximum values and the plurality of minimum values exceeds or falls below the threshold value s1 or the threshold value s2, the empty state is determined. Also good.

このようにバンドパスフィルタ処理した周波数成分の信号レベルの平均値を算出することで、突発的なノイズやフローノイズに基づく空状態の誤検知を回避することができる。   By calculating the average value of the signal levels of the frequency components that have been subjected to the band-pass filter in this way, it is possible to avoid erroneous detection of an empty state based on sudden noise or flow noise.

図3は時間tに流体が接液状態から非接液状態になった際の、(a)励磁電流波形、(b)励磁電流Iexと相似の振幅を持つ信号波形である流量信号波形、(c)バンドパスフィルタ処理後の商用交流電源周波数成分の波形である。   FIG. 3 shows (a) an excitation current waveform and (b) a flow rate signal waveform that is a signal waveform having an amplitude similar to the excitation current Iex when the fluid changes from a wetted state to a non-wetted state at time t. c) The waveform of the commercial AC power frequency component after the band pass filter processing.

(a)の励磁電流波形では、励磁周期T内で正励磁区間、負励磁区間の次に励磁休止区間を設けている。なお、励磁周期Tは商用交流電源の周期の整数倍に同期しており、間欠的な励磁処理が省電力化のためになされている。   In the excitation current waveform of (a), an excitation pause period is provided after a positive excitation period and a negative excitation period within the excitation period T. The excitation cycle T is synchronized with an integral multiple of the cycle of the commercial AC power supply, and intermittent excitation processing is performed for power saving.

時間tに測定管3内の流体が接液状態から非接液状態になった場合に、上述の通り電極5a、5bと大地間の電極インピーダンスが無限大となり、商用交流電源からの誘導ノイズの影響を大きく受けることになる。このため、(c)の波形図に示すように時間t以前の接液状態である微少の信号レベルは、非接液状態の時間t以降に極端に増大することになる。   When the fluid in the measuring tube 3 changes from the wetted state to the non-wetted state at time t, the electrode impedance between the electrodes 5a and 5b and the ground becomes infinite as described above, and the induced noise from the commercial AC power supply It will be greatly affected. For this reason, as shown in the waveform diagram of (c), the minute signal level in the liquid contact state before the time t is extremely increased after the time t in the non-wetted state.

周波数成分の信号レベルと、予め流体が静止し測定管中に流体が満たされているときの自動ゼロ点調整処理時に設定したプラスマイナスの閾値s1又は閾値s2とを比較することで、測定管3内の流体が接液状態か非接液状態、つまり空状態であるか否かを検知することができる。   By comparing the signal level of the frequency component with the plus / minus threshold value s1 or threshold value s2 set in the automatic zero adjustment process when the fluid is stationary and the fluid is filled in the measurement tube, the measurement tube 3 It is possible to detect whether the fluid inside is in a wetted state or a non-wetted state, that is, in an empty state.

本実施例では、使用条件、流体導電率、接地条件に関係なく、自動ゼロ調時に保存した判断基準である閾値sを利用して、空状態を判定することもできる。従って、特許文献1に示すような空検知部11を設置する必要はない。   In this embodiment, the empty state can also be determined using the threshold value s, which is a determination criterion stored during automatic zero adjustment, regardless of the use conditions, fluid conductivity, and grounding conditions. Therefore, it is not necessary to install the sky detection unit 11 as shown in Patent Document 1.

また、バンドパスフィルタの代りに商用電源周波数以下の周波数成分のみを抽出するローパスフィルタを使用してもよい。このローパスフィルタにより、A/D変換の際の折り返し雑音の除去及び突発的なディジタル誤差による影響を避けることができる。   Moreover, you may use the low-pass filter which extracts only the frequency component below a commercial power supply frequency instead of a band pass filter. By this low-pass filter, it is possible to eliminate the aliasing noise at the time of A / D conversion and to avoid the influence due to the sudden digital error.

CRフィルタ等のハードウェアから成るローパスフィルタを用いることによって、前述のバンドパスフィルタ処理時のCPU8のソフトウェア処理による負荷を軽減することが可能である。   By using a low-pass filter made of hardware such as a CR filter, it is possible to reduce the load caused by the software processing of the CPU 8 during the above-described band-pass filter processing.

更には、図3(a)に示すような励起休止区間を設けて励磁を間欠的に行う場合には、励磁休止区間において空判定処理を行うようにしてもよい。励磁電流が存在している期間、つまり正励磁、負励磁の励磁電流Iexを出力している期間では、流量信号起電力及び励磁電流の時間変化に伴う電磁流動ノイズが発生している。   Furthermore, when an excitation pause interval as shown in FIG. 3A is provided and excitation is performed intermittently, the sky determination process may be performed in the excitation pause interval. In the period in which the excitation current exists, that is, in the period in which the excitation current Iex for positive excitation and negative excitation is output, electromagnetic flow noise is generated due to the time change of the flow signal electromotive force and the excitation current.

この励磁電流が存在している期間においては、電磁流動ノイズも重畳されて出力されてしまうので、電磁流動ノイズの影響をカットする空判定を行うために、励磁休止区間にサンプリングしたA/D変換値のバンドパスフィルタ処理を行った信号レベルを基に上述の空判定処理を行うことが好ましい。   During the period in which the excitation current exists, electromagnetic flow noise is also superimposed and output. Therefore, A / D conversion sampled in the excitation pause period is performed in order to perform the sky determination to cut the influence of the electromagnetic flow noise. It is preferable to perform the above-described empty determination processing based on the signal level that has been subjected to the band-pass filter processing of values.

1 検出部
2 変換部
3 測定管
4 励磁コイル
5a、5b 電極
6a、6b バッファアンプ
7 差動アンプ
8 CPU
9 出力回路
10 励磁回路
12 マルチプレクサ
13 タイミング信号発生回路
DESCRIPTION OF SYMBOLS 1 Detection part 2 Conversion part 3 Measuring tube 4 Excitation coil 5a, 5b Electrode 6a, 6b Buffer amplifier 7 Differential amplifier 8 CPU
9 Output Circuit 10 Excitation Circuit 12 Multiplexer 13 Timing Signal Generation Circuit

Claims (3)

所定の周期で励磁コイルに間欠的に通電し励磁及び励磁休止を繰り返す電磁流量計において、
流体が静止し測定管中に前記流体が満たされているときの自動ゼロ点調整処理に併せて、前記励磁休止時の励磁休止区間で測定した電極電位の測定値をA/D変換処理し、該A/D変換値に対して、交流電源周波数のバンドパスフィルタによる抽出処理を行い、抽出した周波数成分に基づいて空判定閾値を設定し、
前記流体の流量測定中に前記励磁休止区間で測定した前記電極電位の測定値をA/D変換処理し、該A/D変換値に対して、前記バンドパスフィルタによる抽出処理を行うことで抽出した交流電源周波数成分の信号レベルと前記空判定閾値とを比較して、前記流体の空状態を判定することを特徴とする電磁流量計の空状態判定方法。
In an electromagnetic flow meter that repeats excitation and excitation pause by energizing the excitation coil intermittently at a predetermined cycle,
Along with the automatic zero adjustment process when the fluid is stationary and the fluid is filled in the measuring tube, the measured value of the electrode potential measured in the excitation pause section at the time of the excitation pause is A / D converted, The A / D conversion value is subjected to extraction processing by a band pass filter of the AC power supply frequency, and an empty determination threshold is set based on the extracted frequency component,
An A / D conversion process is performed on the measured value of the electrode potential measured in the excitation pause interval during the flow rate measurement of the fluid , and the A / D conversion value is extracted by performing an extraction process using the band-pass filter. A method for determining an empty state of an electromagnetic flowmeter, wherein the empty state of the fluid is determined by comparing a signal level of an AC power frequency component that has been performed and the empty determination threshold value.
複数回の前記励磁休止区間での前記周波数成分の信号レベルの最大値、最小値を求め、複数の前記最大値及び複数の前記最小値のそれぞれの平均値と、前記空判定閾値を比較して、前記測定管中の前記流体の空状態を判定することを特徴とする請求項に記載の電磁流量計の空状態判定方法。 The maximum value of the signal level of the frequency components in the plurality of the excitation pause interval, finds the minimum, compared with the respective average value of a plurality of said maximum values and a plurality of said minimum value, and the air-determination threshold Te, empty state determination method of an electromagnetic flowmeter according to claim 1, wherein the determining the empty state of the fluid in the measuring tube. 前記空判定閾値は前記平均値に対してプラスマイナスの2つの閾値を設定したことを特徴とする請求項2に記載の空状態判定方法。 The empty state determination method according to claim 2, wherein the empty determination threshold value is set to two plus or minus threshold values with respect to the average value .
JP2015089794A 2015-04-24 2015-04-24 How to determine the empty state of an electromagnetic flow meter Expired - Fee Related JP5877260B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015089794A JP5877260B1 (en) 2015-04-24 2015-04-24 How to determine the empty state of an electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089794A JP5877260B1 (en) 2015-04-24 2015-04-24 How to determine the empty state of an electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JP5877260B1 true JP5877260B1 (en) 2016-03-02
JP2016206078A JP2016206078A (en) 2016-12-08

Family

ID=55434764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089794A Expired - Fee Related JP5877260B1 (en) 2015-04-24 2015-04-24 How to determine the empty state of an electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JP5877260B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020107323A1 (en) * 2018-11-29 2020-06-04 深圳市大疆创新科技有限公司 Electromagnetic flowmeter and plant protection unmanned aerial vehicle having electromagnetic flowmeter
CN113447099A (en) * 2021-06-25 2021-09-28 上海肯特仪表股份有限公司 Automatic zero correction method for electromagnetic water meter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441931B2 (en) 2018-02-12 2022-09-13 Ifm Electronic Gmbh Method for operating a magnetoinductive flowmeter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194195A (en) * 2000-01-13 2001-07-19 Yokogawa Electric Corp Electromagnetic flow meter, and filling apparatus using the electromagnetic flow meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194195A (en) * 2000-01-13 2001-07-19 Yokogawa Electric Corp Electromagnetic flow meter, and filling apparatus using the electromagnetic flow meter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN1009506025; *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020107323A1 (en) * 2018-11-29 2020-06-04 深圳市大疆创新科技有限公司 Electromagnetic flowmeter and plant protection unmanned aerial vehicle having electromagnetic flowmeter
CN113447099A (en) * 2021-06-25 2021-09-28 上海肯特仪表股份有限公司 Automatic zero correction method for electromagnetic water meter

Also Published As

Publication number Publication date
JP2016206078A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP3915459B2 (en) Electromagnetic flow meter
US9651411B2 (en) Electromagnetic flowmeter and self-diagnosing method of exciting circuit unit thereof
EP0416866B1 (en) Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies
EP1042651B1 (en) Electrode integrity checking
US8739636B2 (en) Electromagnetic flow meter having a circuit that provides positive and negative magnetic excitation electric currents to a magnetic excitation coil
JP6364470B2 (en) Electromagnetic flowmeter with automatic adjustment function based on detected complex impedance
JP5458221B2 (en) Electromagnetic flow meter
EP3049770B1 (en) Magnetic flowmeter with saturation detection and/or prevention
JP5877260B1 (en) How to determine the empty state of an electromagnetic flow meter
JP2019052909A (en) Electromagnetic flowmeter error detection circuit and error detection method, and electromagnetic flowmeter
JP4424511B2 (en) Electromagnetic flow meter and electromagnetic flow meter system
JP5877259B1 (en) Electromagnetic flow meter signal extraction method
EP3144644B1 (en) Method and apparatus for interference reduction
JP6229852B2 (en) Electromagnetic flow meter
US20210164821A1 (en) Method for determining the viscosity of a medium by means of a coriolis mass flow meter and coriolis mass flow meter for performing the method
JP2013257276A (en) Electromagnetic flow meter
US6820499B2 (en) Method for determining the uncertainty factor of a measuring procedure employing a measuring frequency
JP5522473B2 (en) Electromagnetic flow meter
JP2000028408A (en) Electromagnetic flow meter
JP5530331B2 (en) Electromagnetic flow meter
RU2310816C2 (en) Vortex electromagnetic converter of liquid metal flow rate
JP3658975B2 (en) Electromagnetic flow meter
JP6135924B2 (en) Electromagnetic flow meter
RU2720712C1 (en) Magnetic-inductive flow meter control method and magnetic-inductive flow meter
JPH10221134A (en) Electromagnetic flowmeter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151216

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R150 Certificate of patent or registration of utility model

Ref document number: 5877260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees