JP2002168612A - Method for measuring displacement of bedrock - Google Patents

Method for measuring displacement of bedrock

Info

Publication number
JP2002168612A
JP2002168612A JP2000362143A JP2000362143A JP2002168612A JP 2002168612 A JP2002168612 A JP 2002168612A JP 2000362143 A JP2000362143 A JP 2000362143A JP 2000362143 A JP2000362143 A JP 2000362143A JP 2002168612 A JP2002168612 A JP 2002168612A
Authority
JP
Japan
Prior art keywords
displacement
acceleration
rock
speed
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000362143A
Other languages
Japanese (ja)
Inventor
Atsuo Hirata
篤夫 平田
Masahiko Yamazoe
雅彦 山添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOPE KENSETSU CONSULTANT KK
REISHU KENSETSU KOGYO KK
RICOTECH KK
RS TECHNOLOGY KK
Original Assignee
HOPE KENSETSU CONSULTANT KK
REISHU KENSETSU KOGYO KK
RICOTECH KK
RS TECHNOLOGY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOPE KENSETSU CONSULTANT KK, REISHU KENSETSU KOGYO KK, RICOTECH KK, RS TECHNOLOGY KK filed Critical HOPE KENSETSU CONSULTANT KK
Priority to JP2000362143A priority Critical patent/JP2002168612A/en
Publication of JP2002168612A publication Critical patent/JP2002168612A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method with which the displacement of bedrock can be measured with high accuracy as much as possible, even though the cast is relatively low. SOLUTION: This method uses an acceleration sensor or speed sensor, which measures the acceleration or speed of vibrations caused by the displacement of the bedrock. The acceleration or speed sensor is fixedly set up in a measuring hole bored into the bedrock. The displacement of the bedrock is obtained by receiving and measuring the vibrations, caused by the displacement of the bedrock by means of the sensor and respectively integrating measured acceleration values twice or speed values once with time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人為的あるいは自
然発生的な原因によって生じる岩盤の力学的な変位量を
測定する測定法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the amount of mechanical displacement of a rock mass caused by an artificial or spontaneous cause.

【0002】[0002]

【従来技術】岩盤の挙動測定のうち、発破作業や鉱山掘
削あるいは地震や地滑りなどに伴う人為的あるいは自然
発生的な岩盤の動的な変位量を測定するには、通常、高
精度な歪みゲージを岩盤内の所定位置に配置し、得られ
たデータを解析して変位量を得る。また、ボーリング孔
に長さの異なる複数の測定用ロッドを挿入し、これらの
ロッドの伸縮をダイヤルゲージなどで計ることによっ
て、ロッド間の岩盤の変位量を測定する。更に、特開平
2000−97736号には、岩盤に埋設された送信部
から出力される磁束を地上に配設した受信部によって受
信し、得られた出力電圧を検波した後、検波信号を除算
回路によって割り算処理して変位量を測定する手法が開
示されている。
2. Description of the Related Art In measuring the behavior of a rock mass, a high-precision strain gauge is usually used for measuring the dynamic displacement amount of a rock mass which is artificially or spontaneously generated due to blasting work, mine excavation, earthquake or landslide. Is arranged at a predetermined position in the rock, and the obtained data is analyzed to obtain a displacement amount. In addition, a plurality of measuring rods having different lengths are inserted into the boring holes, and the expansion and contraction of these rods are measured with a dial gauge or the like to measure the displacement amount of the rock between the rods. Further, Japanese Patent Application Laid-Open No. 2000-97736 discloses that a magnetic flux output from a transmitting unit buried in rock is received by a receiving unit arranged on the ground, and the obtained output voltage is detected. A method of measuring the amount of displacement by performing division processing is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、歪みゲ
ージを用いる測定法は、全体のシステムが大型化するば
かりでなく、一旦固定された歪みゲージを簡単に他所に
移動して再使用することができず、高価となる。また、
測定用ロッドによる変位量測定の場合、伸縮測定を1日
に1回とか1週間に1回というように時間を置いて行う
ものであるために、変位量を連続的に把握することがで
きない。更に、上記公報記載の技術は、送信部から受信
部に向けて出力される磁束が、地球磁場や岩盤中の磁力
線などのノイズによって影響を受けるため、正確な測定
を行ないにくい。
However, the measuring method using a strain gauge not only increases the size of the entire system but also allows the strain gauge once fixed to be easily moved to another place and reused. Not expensive. Also,
In the case of measuring the amount of displacement using a measuring rod, since the measurement of expansion and contraction is performed at intervals such as once a day or once a week, the amount of displacement cannot be continuously grasped. Further, in the technique described in the above publication, since the magnetic flux output from the transmitting unit to the receiving unit is affected by noises such as the earth's magnetic field and the lines of magnetic force in the rock, it is difficult to perform an accurate measurement.

【0004】本発明の目的は、比較的に安価でありなが
ら、岩盤の変位量をできる限り高精度にしかも連続的に
測定し得る、測定法を提供することにある。
[0004] It is an object of the present invention to provide a measuring method which can measure the displacement of a rock mass with high accuracy and continuously while being relatively inexpensive.

【0005】[0005]

【課題を達成するための手段】本発明に係る岩盤の変位
量測定法は、岩盤変位に伴う振動の加速度もしくは速度
を計測する加速度センサもしくは速度センサを使用す
る。すなわち、岩盤に掘削した計測孔内に、加速度セン
サあるいは速度センサを固定、設置する。そして、上記
振動を加速度センサもしくは速度センサによって受振、
測定し、測定された加速度値もしくは速度値を、加速度
の場合には2回、速度の場合には1回、それぞれ時間積
分することによって岩盤の変位量を得る、ものである。
According to the present invention, there is provided a method for measuring the amount of displacement of a rock using an acceleration sensor or a speed sensor for measuring the acceleration or speed of vibration accompanying the rock displacement. That is, an acceleration sensor or a speed sensor is fixed and installed in the measurement hole excavated in the rock. Then, the vibration is received by an acceleration sensor or a speed sensor,
The displacement amount of the rock is obtained by time-integrating the measured acceleration value or the measured speed value twice in the case of acceleration and once in the case of speed.

【0006】加速度センサあるいは速度センサは、でき
る限り高感度のものが望ましいが、別段、特定構造のも
のに制限されるものではない。岩盤の断層などを調査す
るための例えば特開平11−166857号記載の弾性
波速度センサなどであっても良い。加速度センサもしく
は速度センサは、X軸、Y軸及びZ軸の3方向からの変
位による振動の加速度もしくは速度を同時に計測して、
上記積分処理を行うことによって岩盤の三次元の変位量
を得るようにするのが望ましい。各センサは、測定対象
となる岩盤に深度位置を変えるなどして所要の間隔をお
いて複数個設置される。
It is desirable that the acceleration sensor or the speed sensor have as high a sensitivity as possible, but it is not particularly limited to a specific structure. For example, an elastic wave velocity sensor described in Japanese Patent Application Laid-Open No. 11-166857 for investigating a rock fault or the like may be used. The acceleration sensor or speed sensor simultaneously measures the acceleration or speed of vibration due to displacement from three directions of the X axis, Y axis and Z axis,
It is desirable to obtain the three-dimensional displacement amount of the rock by performing the integration processing. A plurality of sensors are installed at required intervals on the rock to be measured, for example, by changing the depth position.

【0007】[0007]

【実施の最良の形態】以下、本発明方法の一実施例を図
面を参照しつつ説明する。図1は、本発明方法を隧道周
囲の岩盤変位の測定に適用した例を示す概念構成図であ
る。図中符号1は隧道、2は岩盤、3は岩盤に掘削した
計測孔である。計測孔内には、加速度センサ4(4a〜
4d)が挿入、固定されている。加速度センサ4は、岩
盤が変位することによって発生した振動を計測孔内壁面
を介して受振し、その測定値を外部に連続的に出力す
る。本実施例では、加速度センサ4は、計測孔3の長さ
方向に4つ配設され、それぞれ個別に測定値信号を出力
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the method of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual configuration diagram showing an example in which the method of the present invention is applied to measurement of rock displacement around a tunnel. In the figure, reference numeral 1 is a tunnel, 2 is a bedrock, and 3 is a measurement hole excavated in the bedrock. The acceleration sensor 4 (4a-
4d) is inserted and fixed. The acceleration sensor 4 receives the vibration generated by the displacement of the rock through the inner wall surface of the measurement hole, and continuously outputs the measured value to the outside. In the present embodiment, four acceleration sensors 4 are arranged in the length direction of the measurement holes 3 and individually output measured value signals.

【0008】この測定加速度信号は、第一の積分回路5
に入力されて時間積分されることにより、速度信号とし
て取り出される。そして、速度信号は、さらに第二の積
分回路6に入力されて再度時間積分される。第二の積分
回路6によって処理された信号は、変位信号7となる。
測定加速度信号等の各出力信号は、必要に応じ増幅回路
によって増幅されて後続の回路に入力される。測定加速
度信号に対するこれらの積分及び増幅に関する処理は、
連続的に行われる。また、積分回路からの出力信号に対
しては、補正回路を設けるようにしても良い。
The measured acceleration signal is supplied to the first integrating circuit 5
And time-integrated to obtain a speed signal. Then, the speed signal is further input to the second integration circuit 6 and time-integrated again. The signal processed by the second integration circuit 6 becomes a displacement signal 7.
Each output signal such as a measured acceleration signal is amplified by an amplifier circuit as necessary and input to a subsequent circuit. The processing for these integration and amplification for the measured acceleration signal is
It is performed continuously. In addition, a correction circuit may be provided for an output signal from the integration circuit.

【0009】加速度センサ4の測定出力信号の一例を、
図2に示す。同図は、0.6秒間の加速度センサの測定
記録である。測定された振動の加速度は、略0.13秒
時点でピークに達し、略0.27秒時点で略0になって
いる。図3は、図2の測定加速度信号を積分して得られ
た速度信号の時間と速度の関係を示す。速度は、ピーク
時で約3.6(kine)である。図4は、図3の速度信号
を再度時間積分して得られた変位量を示す。0.13秒
時点で始まった変位は略0.27秒時点で終息し、その
変位量は約0.18cmであったことが解る。
An example of a measurement output signal of the acceleration sensor 4 is as follows.
As shown in FIG. The figure shows a measurement record of the acceleration sensor for 0.6 seconds. The measured acceleration of the vibration reaches a peak at about 0.13 seconds, and becomes substantially zero at about 0.27 seconds. FIG. 3 shows a relationship between time and speed of a speed signal obtained by integrating the measured acceleration signal of FIG. The speed is about 3.6 (kine) at the peak. FIG. 4 shows a displacement amount obtained by time-integrating the speed signal of FIG. 3 again. It can be seen that the displacement that started at 0.13 seconds ends at about 0.27 seconds, and the amount of displacement was about 0.18 cm.

【0010】図5は、μひずみゲージ式変位計を用いて
計測した時の岩盤の変位量の測定値と、上記実施例方法
によって得られた対応時点での変位値とを比較した表図
である。図中丸印が図4で例示しているピーク変位を、
また、四角印が図4の場合の0.6秒時の最終変位値を
示す。10回にわたる時点で比較した結果は、いずれも
完璧に近く一致している。したがって、本発明方法によ
る変位量測定は、従来タイプの変位計による測定とほと
んど誤差を生じることなく行えることが理解できる。
FIG. 5 is a table showing a comparison between the measured value of the displacement of the rock when measured using a μ strain gauge type displacement meter and the displacement at the corresponding time obtained by the method of the above embodiment. is there. The circle displacement in the figure indicates the peak displacement exemplified in FIG.
Also, the square marks indicate the final displacement value at 0.6 seconds in the case of FIG. The results of the comparison over 10 times are almost perfectly consistent. Therefore, it can be understood that the displacement measurement by the method of the present invention can be performed with almost no error as compared with the measurement by the conventional displacement meter.

【0011】計測孔内には、加速度センサではなく、速
度センサを配設することもできる。この場合には、速度
センサからの出力信号は、図1に符号7の経路で示すよ
うに第二の積分回路に入力されて1回の時間積分処理の
みが行われる。その結果は、加速度センサを用いる場合
と何等異なるものではない。また、加速度センサは、一
方向からの振動の加速度を検出するのではなく、三次元
的に配置することにより、X軸、Y軸、及びZ軸方向の
変位測定が可能となる。この場合、センサの検出部を三
次元的に配置する場合と、加速度センサを三次元的に配
設する場合のいずれであっても良い。
In the measurement hole, a speed sensor can be provided instead of an acceleration sensor. In this case, the output signal from the speed sensor is input to the second integration circuit as shown by the path 7 in FIG. 1, and only one time integration process is performed. The result is no different from using an acceleration sensor. The acceleration sensor does not detect the acceleration of the vibration from one direction but arranges it three-dimensionally, thereby enabling displacement measurement in the X-axis, Y-axis, and Z-axis directions. In this case, either the case where the detection unit of the sensor is three-dimensionally arranged or the case where the acceleration sensor is three-dimensionally arranged may be used.

【0012】[0012]

【発明の効果】本発明によれば、次の効果を奏する。加
速度センサあるいは速度センサによる測定値を2回もし
くは1回、時間積分することにより岩盤の変位量を算出
するようにしたので、比較的に安価でありながら、変位
量をできる限り高精度に測定できる。しかも、変位計を
時間を置いてスポットで読み取る場合とは異なり、常時
連続的に振動波を測定するので、岩盤の変位量を連続的
に測定できる。
According to the present invention, the following effects can be obtained. The amount of displacement of the rock is calculated by integrating the value measured by the acceleration sensor or the speed sensor twice or once with time, so that the displacement can be measured with the highest possible accuracy while being relatively inexpensive. . In addition, unlike the case where the displacement meter is read at a spot with a time interval, the vibration wave is continuously measured, so that the displacement amount of the rock can be continuously measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る方法の適用例を示す概
略構成図。
FIG. 1 is a schematic configuration diagram showing an application example of a method according to an embodiment of the present invention.

【図2】加速度センサから出力された測定加速度信号の
一例を示す波形図。
FIG. 2 is a waveform chart showing an example of a measured acceleration signal output from an acceleration sensor.

【図3】図2の測定加速度信号を時間積分した速度信号
を示す波形図。
FIG. 3 is a waveform diagram showing a speed signal obtained by time-integrating the measured acceleration signal of FIG. 2;

【図4】図3の速度信号を再度時間積分した岩盤変位量
を示すグラフ。
FIG. 4 is a graph showing a rock displacement amount obtained by time-integrating the speed signal of FIG. 3 again.

【図5】本発明方法によって得られた変位値と変位計に
よる測定値とを比較した表図。
FIG. 5 is a table showing a comparison between a displacement value obtained by the method of the present invention and a value measured by a displacement meter.

【符号の説明】[Explanation of symbols]

1 隧道。 2 岩盤。 3 計測孔。 4(4a〜4d)加速度センサ。 5 第一の積分回路。 6 第二の積分回路。 1 Tunnel. 2 Bedrock. 3 Measurement hole. 4 (4a to 4d) acceleration sensors. 5 First integration circuit. 6 Second integration circuit.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 500548079 株式会社ホープ建設コンサルタント 熊本県熊本市神水2丁目2番3号 (72)発明者 平田 篤夫 熊本県熊本市出水5丁目15番8号 アール エステクノロジイ株式会社内 (72)発明者 山添 雅彦 熊本県熊本市神水2丁目2番3号 株式会 社リコテック内 Fターム(参考) 2D043 AA00 AB07 2F069 AA02 AA04 AA06 AA43 BB40 GG19 GG41 GG65 HH30 NN06 2F076 BB09 BD02 BD04 BD19 BE09 ──────────────────────────────────────────────────続 き Continued on the front page (71) Applicant 500548079 Hope Construction Consultant Co., Ltd. 2-3-2 Kamisui, Kumamoto City, Kumamoto Prefecture (72) Inventor Atsuo Hirata 5-15-8 Izumi, Kumamoto City, Kumamoto Prefecture Within Technology Co., Ltd. (72) Inventor Masahiko Yamazoe 2-3-2 Kamisui, Kumamoto-shi, Kumamoto F-term in Licotec Co., Ltd. (Reference) 2D043 AA00 AB07 2F069 AA02 AA04 AA06 AA43 BB40 GG19 GG41 GG65 HH30 NN06 2F076 BB09 BD02 BD04 BD19 BE09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】岩盤に掘削した計測孔内に、岩盤の変位に
伴う振動の加速度を計測する加速度センサを固定し、 この加速度センサによって受振、測定された加速度値
を、2回、時間積分することによって岩盤の変位量を得
る、 ことを特徴とする岩盤の変位量測定法。
An acceleration sensor for measuring acceleration of vibration accompanying displacement of a rock is fixed in a measurement hole excavated in the rock, and acceleration values received and measured by the acceleration sensor are time-integrated twice. A method for measuring the amount of displacement of a rock mass, wherein the displacement amount of the rock mass is obtained by performing the method.
【請求項2】岩盤に掘削した計測孔内に、岩盤の変位に
伴う振動の速度を計測する速度センサを固定し、 この速度センサによって受振、測定された加速度値を、
1回、時間積分することによって岩盤の変位量を得る、 ことを特徴とする岩盤の変位量測定法。
2. A speed sensor for measuring a speed of vibration accompanying displacement of a rock is fixed in a measurement hole excavated in the rock, and an acceleration value received and measured by the speed sensor is
A method for measuring the displacement of a rock mass, wherein the displacement amount of the rock mass is obtained by performing time integration once.
【請求項3】前記加速度センサもしくは速度センサが、
X軸、Y軸及びZ軸の3方向からの振動による加速度も
しくは速度を計測し、岩盤の三次元方向の変位量を得
る、 請求項1もしくは2記載の岩盤の変位量測定方法。
3. The acceleration sensor or the speed sensor according to claim 1,
The rock mass displacement amount measuring method according to claim 1 or 2, wherein an acceleration or a speed due to vibrations from three directions of the X axis, the Y axis and the Z axis is measured to obtain a three-dimensional displacement amount of the rock mass.
JP2000362143A 2000-11-29 2000-11-29 Method for measuring displacement of bedrock Pending JP2002168612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000362143A JP2002168612A (en) 2000-11-29 2000-11-29 Method for measuring displacement of bedrock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000362143A JP2002168612A (en) 2000-11-29 2000-11-29 Method for measuring displacement of bedrock

Publications (1)

Publication Number Publication Date
JP2002168612A true JP2002168612A (en) 2002-06-14

Family

ID=18833471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000362143A Pending JP2002168612A (en) 2000-11-29 2000-11-29 Method for measuring displacement of bedrock

Country Status (1)

Country Link
JP (1) JP2002168612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215913A (en) * 2007-03-01 2008-09-18 Kinki Regional Development Bureau Ministry Of Land Infrastructure & Transport Falling stone risk determination system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215913A (en) * 2007-03-01 2008-09-18 Kinki Regional Development Bureau Ministry Of Land Infrastructure & Transport Falling stone risk determination system

Similar Documents

Publication Publication Date Title
EP0005372B1 (en) Apparatus for monitoring the vibrational behaviour of structural elements in a composite structure
US8991260B2 (en) Pseudo rock and analysis system using the same
NO20004352L (en) Method of forming a model of a geological formation limited by dynamic and static data
JP2717231B2 (en) Underground hearing system
Walter Air-blast and the science of dynamic pressure measurements
CN113552629A (en) Tunnel surrounding rock longitudinal wave velocity determination method and device and computer equipment
EP1268977B1 (en) Method for estimating the position of a drill
JP2002168612A (en) Method for measuring displacement of bedrock
CN112649889A (en) Six-component seismic data and absolute gravity measuring instrument and measuring method
JP3099042B2 (en) Judgment method for strength of ground improvement body
JP4818010B2 (en) Early prediction method of earthquake magnitude and early prediction program of earthquake magnitude based on building deformation during earthquake
Paulsson et al. A fiber optic single well seismic system for geothermal reservoir imaging and monitoring
KR100390082B1 (en) Method of detecting an explosive time in seismic tomography survey and apparatus thereof
JP2005291903A (en) Hydrophone for underwater geophone, and multipoint observation underwater geophone
JPS62266484A (en) Inspection for tip position of excavation tube using magnetic sensor
Liu et al. Design of Array MEMS Vector Vibration Sensor in the Location of Pipeline Inspection Gauge
JP2757058B2 (en) Underground excavator relative position detector
US20230204620A1 (en) Single axis resonant accelerometer
JP2003315360A (en) Dynamic characteristic measuring device of acceleration sensor
Walter VALIDATING THE DATA BEFORE THE STRUCTURAL MODEL.
JPH0843092A (en) Hole-drilling displacement measurement system
Yin et al. Assessment of pile integrity by low-strain stress wave method
CN201298080Y (en) Earthquake wave CT imaging piezoelectric ceramics string detector
DeMetz Sr Sensitivity requirements for fiber optic pressure and velocity sensors
Richmond et al. Using Microcontrollers to Create Portable, Self-Contained Seismic Sensors