JP2002165522A - Method for promoting growth of plant - Google Patents
Method for promoting growth of plantInfo
- Publication number
- JP2002165522A JP2002165522A JP2000403726A JP2000403726A JP2002165522A JP 2002165522 A JP2002165522 A JP 2002165522A JP 2000403726 A JP2000403726 A JP 2000403726A JP 2000403726 A JP2000403726 A JP 2000403726A JP 2002165522 A JP2002165522 A JP 2002165522A
- Authority
- JP
- Japan
- Prior art keywords
- plant
- wind
- plants
- water
- growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/25—Greenhouse technology, e.g. cooling systems therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/20—Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
- Y02P60/21—Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures
Landscapes
- Greenhouses (AREA)
- Hydroponics (AREA)
Abstract
Description
【0001】本発明は、例えば果樹栽培、野菜栽培、花
木栽培、植木栽培、鉢栽培、盆栽に関し、家の内外で栽
培する植物において、植物の成長あるいは野菜・果実の
栽培を著しく促進させる方法及びそれらの植物の育成装
置。The present invention relates to, for example, fruit tree cultivation, vegetable cultivation, flowering tree cultivation, planting cultivation, pot cultivation, and bonsai. Equipment for growing those plants.
【0002】植物の成長を促進させる方法としては適度
な水と適切な施肥による養分の補給、日照時間や湿度の
調整などがあげられる。特に、水、施肥、日照時間、湿
度をコンピュータ制御することで植物成長の最適化が計
られていることは公知である。Methods for promoting plant growth include replenishment of nutrients with appropriate water and appropriate fertilization, adjustment of sunshine hours and humidity, and the like. In particular, it is known that plant growth is optimized by computer control of water, fertilization, daylight hours and humidity.
【0003】モーツァルト、ベートーヴェンなどの音
楽、あるいはテレビを聞かせたり、話しかけたりすれ
ば、野菜、樹木などの植物の成長が改善されること、あ
るいは機械的、電磁気的振動が果樹の成熟や種子の発芽
に良好な結果をもたらすことは公知である。これらはい
ずれも植物に20Hz以上の低周波あるいは高周波を機
械的あるいは電気的に付与する、いわゆる、周波数制御
により、植物の成長を促すものであるが、植物体に人工
風を付加するものではない。なお、音あるいは機械的・
電磁気的振動の周波数が200Hz以下の低周波になる
と所謂、低周波公害が発生し、人体に悪い影響を及ぼす
場合がある。このため、現在までのところ、20Hz以
下の超低周波範囲における音・振動を植物の成長促進に
利用することは振幅制御、周波数制御のどちらも全く行
なわれていない。[0003] Listening to or talking to music such as Mozart or Beethoven, or television, can improve the growth of plants such as vegetables and trees, or mechanical and electromagnetic vibrations can cause fruit tree maturation and seed germination. Are known to give good results. All of these methods apply a low frequency or a high frequency of 20 Hz or more to plants mechanically or electrically, so-called frequency control to promote the growth of plants, but do not add artificial wind to plants. . In addition, sound or mechanical
When the frequency of the electromagnetic vibration is a low frequency of 200 Hz or less, so-called low frequency pollution occurs, which may have a bad influence on the human body. For this reason, to date, the use of sound / vibration in the ultra-low frequency range of 20 Hz or less for promoting plant growth has not performed either amplitude control or frequency control at all.
【0004】一方、風通しを良くすることが植物の成長
に必要であることはしばしば経験することであるが、風
が植物の生育に及ぼすメカニズムの科学的な解明はなさ
れておらず、そのため、風が植物にもたらす原理を積極
的に活用した植物生育のバイオ手法を、農業・林業・果
樹・花木などの産業振興に適用することは全く行なわれ
ていない。[0004] On the other hand, it is often experienced that improving the ventilation is necessary for the growth of plants, but the mechanism by which wind affects the growth of plants has not been scientifically elucidated. No biotechnology for plant growth that actively utilizes the principles brought by plants to plants has been applied to industrial promotion such as agriculture, forestry, fruit trees, and flowers and trees.
【0005】本発明は上述の事情に鑑みて為されたもの
であって、人工風を植物体に付与することによって植物
体内の導管内水の遠心力を増加させ植物体の水吸上げ量
を高め、植物体の成長を著しく向上させ、果樹栽培、野
菜栽培、花木栽培、植木栽培、鉢栽培、盆栽に関する農
業・林業・果樹・花木の産業を飛躍的に発展させること
ができる植物体育成装置および方法を提供することを目
的とする。The present invention has been made in view of the above-mentioned circumstances, and increases the centrifugal force of water in a conduit in a plant by applying artificial wind to the plant to reduce the amount of water absorbed by the plant. A plant cultivation device that can significantly increase the growth of plant bodies, and can dramatically develop the agriculture, forestry, fruit trees, and flowering industries related to fruit tree cultivation, vegetable cultivation, flowering tree cultivation, planting cultivation, pot cultivation, and bonsai. And a method.
【0006】上述の目的を達成させるための植物成長促
進法とは、人工風を植物に付与し、超低周波の固有振動
で揺れる植物の揺れ幅を与えることで、植物における導
管内の流れを活発化させる方法である。その原理を次に
示す。[0006] The plant growth promotion method for achieving the above-mentioned object is to apply a synthetic wind to a plant to give a swinging width of the plant which fluctuates due to a natural vibration of an extremely low frequency, thereby controlling a flow in a conduit in the plant. It is a way to activate. The principle is shown below.
【0007】植物には水とミネラルを輸送する導管、光
合成で作られた栄養分を輸送する篩管がある。前者の水
・ミネラルは、根圧力と導管の毛細管現象による吸上げ
力と葉の蒸散力とにより、水のポテンシャルが低下する
方向、すなわち根から幹へ、幹から葉へと供給される。
この内、根圧力と蒸散力は細胞の浸透圧に基づく生命活
動であるが、導管の吸上げ力は生命活動でない物理原理
に基づく毛細管現象によるものである。なお、篩管は生
命活動を行なう細胞からなっている。更に、植物の導管
・篩管は動物の動脈に対応するものであるが、植物は心
臓に相当する器官を持たず、更には静脈も備わっていな
い。Plants have conduits for transporting water and minerals, and sieve tubes for transporting photosynthetic nutrients. The former water / mineral is supplied in a direction in which the potential of water decreases, that is, from the root to the trunk, from the stem to the leaves, due to the root pressure, the suction force due to the capillary action of the conduit, and the transpiration force of the leaves.
Among them, the root pressure and the transpiration force are life activities based on the osmotic pressure of cells, whereas the suction force of the conduit is due to capillary action based on a physical principle which is not a life activity. The sieve tube is composed of cells that perform vital activities. Further, the conduits and sieve tubes of the plant correspond to the arteries of the animal, but the plant does not have an organ corresponding to the heart and further has no veins.
【0008】他方、動物は動脈と静脈を有しており、そ
の上、両脈の循環は心臓の鼓動、すなわち超低周波振動
を行うポンプ作用で末端の微細血管においても効率良
く、かつ、むら無く行なわれている。On the other hand, animals have arteries and veins, and the circulation of both pulses is efficient even in the terminal microvessels due to the pulsation of the heart, that is, the pumping action of very low frequency oscillation, and the unevenness is even. It is done without.
【0009】従って、植物においても人工風により幹・
茎・葉脈を適度な大きさに一方向、あるいは多方向に揺
らすことで、生命活動がない導管に、心臓のポンプ作用
に対応する超低周波の固有振動において風速を付与、ま
たは風速による植物の振れ幅制御を行うことで導管内の
流量を調節すれば、従来のポンプ作用に加えて、適度な
大きさの揺れに基づく遠心力効果が新たに重畳されて、
水・ミネラルが葉内の隅々まで効率良く輸送されるた
め、植物の成長は著しく助長される。[0009] Therefore, even in plants, the trunk
By shaking the stems and veins to an appropriate size in one direction or in multiple directions, wind velocity is imparted to non-vital conduits at the very low frequency natural vibration corresponding to the pumping action of the heart, or the plant If the flow rate in the conduit is adjusted by controlling the swing width, in addition to the conventional pump action, the centrifugal force effect based on a moderate amount of swing is newly superimposed,
Since water and minerals are efficiently transported to every corner of the leaf, plant growth is significantly promoted.
【0010】植物内の導管に適度なポンプ作用を定期的
あるいは長期に外部より付与する具体的な方法には、
音、振動、風がある。これらは導管内の水・ミネラルの
流れに活力を与えたり、あるいは活力を減じたりする作
用がある。同時に、気孔からの酸素放出、炭酸ガス吸収
も促進あるいは減少する。従って、音・振動・風などの
条件を変えれば、植物の成長を任意に制御することが可
能である。[0010] Specific methods for externally imparting an appropriate pumping action to a conduit in a plant on a regular or long-term basis include:
There is sound, vibration and wind. These have the effect of energizing or reducing the flow of water and minerals in the conduit. At the same time, the release of oxygen from the pores and the absorption of carbon dioxide gas are promoted or reduced. Therefore, it is possible to arbitrarily control plant growth by changing conditions such as sound, vibration, and wind.
【0011】50Hz以上の低周波・高周波を有する音
・振動が植物の成長を促進し、あるいは抑制することは
公知である。しかし、これらの手法では植物の固有振動
にもとづく揺れを大幅に変えることは不可能である。更
には、音・振動が、条件によって、人体に及ぼす害につ
いても明らかにされている。It is known that sounds and vibrations having a low frequency and a high frequency of 50 Hz or more promote or suppress plant growth. However, it is impossible to drastically change the shaking based on the natural vibration of the plant by these methods. Furthermore, it has been clarified that harm caused by sound and vibration to the human body depending on conditions.
【0012】一方、自然の風が植物の成長に必要である
ことはしばしば経験することである。一般に、自然の風
あるいは人工風は植物の幹・枝・梢・葉を20Hz以下
の超低周波の固有振動で揺らすが、植物体は様々な方向
に振れており、しかも風が人体に害を及ぼす影響は少な
い。その上、植物の固有な揺れは人工風の風速を変える
ことで大幅な調節ができる。On the other hand, it is often experienced that natural winds are necessary for plant growth. In general, natural wind or artificial wind shakes the trunk, branches, treetops, and leaves of a plant with natural vibration of an ultra-low frequency of 20 Hz or less, but the plant body shakes in various directions, and the wind harms the human body. The effect is small. In addition, the inherent sway of the plant can be greatly controlled by changing the wind speed of the artificial wind.
【0013】そこで、送風機で発生する人工風が付与す
る超低周波の固有振動を利用する植物の成長促進法では
遠心力作用がポンプ作用に加わるため、低周波・高周波
における音・振動を利用する場合のポンプ作用だけに基
づく植物成長促進法よりも、効率的で、かつ、迅速に植
物の成長を行わせることができる。更に、植物を取巻く
複数の送風機を備えれば、植物はあらゆる方向に揺れ動
かせることができる。同時に、人体に対しても無害であ
る。更に、本発明は今までに全く試みられていない。Therefore, in a plant growth promotion method utilizing an ultra-low frequency natural vibration imparted by an artificial wind generated by a blower, centrifugal force acts on a pump action, so that sound and vibration at a low frequency and a high frequency are used. It is possible to cause the plant to grow more efficiently and quickly than the plant growth promotion method based only on the pump action in the case. Furthermore, the plant can be swung in any direction by providing a plurality of blowers surrounding the plant. At the same time, it is harmless to the human body. Furthermore, the present invention has not been attempted at all.
【0014】以下では本発明の植物体育成装置と方法を
図における具体的な実施形態に基づいて説明する。Hereinafter, a plant growing apparatus and method of the present invention will be described based on a specific embodiment shown in the drawings.
【実施例1】Embodiment 1
【0015】植物の成長促進状態は水の吸上げ量を調べ
ることで評価できる。人工風が植物の水吸上げ量に及ぼ
す影響を、無風の場合と送風機で人工風を当てた場合に
ついて、図1の実験装置で調査した。図1では送風機1
からの人工風が植物2のみに当たるよう透明板3で植物
2を囲っており、植物2と送風機1の間隔は1mであ
る。容器内にある栄養水4が風により蒸発することを防
ぐため、容器にはビニールの蓋5が施されている。水の
吸上げ量は植物と栄養水容器の総合重量を測定すること
で求めた。なお、植物における葉の面積差が水吸上げ量
に及ぼす影響を補正するため、以下では気孔一個当たり
の水吸上げ量を用いる。[0015] The growth promoting state of a plant can be evaluated by examining the amount of water absorbed. The effect of the artificial wind on the amount of water absorbed by the plants was investigated using the experimental apparatus shown in FIG. 1 in the case of no wind and in the case where the artificial wind was applied by a blower. In FIG. 1, the blower 1
The plant 2 is surrounded by the transparent plate 3 so that the artificial wind from the plant 2 hits only the plant 2, and the interval between the plant 2 and the blower 1 is 1 m. The container is provided with a vinyl lid 5 to prevent the nutrient water 4 in the container from evaporating due to the wind. The water uptake was determined by measuring the total weight of the plant and the nutrient water container. In addition, in order to correct the influence of the leaf area difference on the water uptake amount in the plant, the water uptake amount per pore is used below.
【0016】水耕栽培の観葉植物であるポトスを用い
た。光合成が活発である昼間の10時から18時までの
8時間について人工風を当て、かつ、2時間毎に重量変
化を調べた。測定開始時を基準とした、無風の場合と風
速0.4m/秒の人工風の場合における重量の経過時間
変化を図2に示す。両者はいずれも直線的に変化してお
り、かつ、同一の経過時間では人工風の水吸上げ量は無
風のそれより大きいことがわかる。[0016] Pothos, a hydroponic houseplant was used. An artificial wind was applied for 8 hours from 10 o'clock to 18 o'clock in the daytime when photosynthesis was active, and the weight change was checked every 2 hours. FIG. 2 shows changes in the elapsed time of the weight in the case of no wind and in the case of the artificial wind with a wind speed of 0.4 m / sec based on the measurement start time. Both show linear changes, and it can be seen that the amount of water sucked by the artificial wind is larger than that of the no wind at the same elapsed time.
【0017】図3は図2における人工風と無風の差、言
いかえれば、植物が風速0.4m/秒の人工風に曝され
ることに起因する水吸上げ量の増加を示す。水吸い上げ
量は時間が経るにつれて直線的に増大することから、人
工風を植物に当てれば水の吸上げは著しく改善されるこ
と、及び、単位時間当たりの水吸上げ量は一定であるこ
とがわかる。FIG. 3 shows the difference between the artificial wind and no wind in FIG. 2, in other words, the increase in water absorption due to the plants being exposed to the artificial wind at a wind speed of 0.4 m / sec. Since the water uptake increases linearly with time, the water uptake is significantly improved by applying artificial wind to the plants, and the water uptake per unit time is constant. Understand.
【0018】風速を0.0〜2.0m/秒に変化させた
場合の風速と水吸上げ量の関係を図4に示す。同図よ
り、風速が大きくなれば、水吸上げ量も直線的に増大す
ることがわかる。FIG. 4 shows the relationship between the wind speed and the amount of water suction when the wind speed is changed from 0.0 to 2.0 m / sec. It can be seen from the figure that as the wind speed increases, the amount of water suction increases linearly.
【実施例2】Embodiment 2
【0019】植物における水吸上げ量と葉柄の機械的振
動との関連を図5の実験装置で調べた。同図の実験装置
ではプラスチック板6をポトスの茎の支柱に取付け、そ
の板先端を加振モーター7の周期的な外力付加で振動さ
せる方法により植物を振動させた。葉の振動数及び振れ
幅は葉柄に歪ゲージ8を取付け、電圧増幅器9を介して
測定した。用いた植物は水耕栽培のポトスである。The relationship between the amount of water absorbed by plants and the mechanical vibration of the petiole was examined using the experimental apparatus shown in FIG. In the experimental apparatus shown in the figure, a plastic plate 6 was attached to a support of a pothos stalk, and the plant was vibrated by a method in which the tip of the plate was vibrated by applying a periodic external force of a vibration motor 7. The frequency and amplitude of the leaf were measured via a voltage amplifier 9 with a strain gauge 8 attached to the petiole. The plant used was hydroponic pothos.
【0020】図6に葉柄の振動波形及び振動スペクトル
を示す。図6のFFT解析より、葉柄は主に約4Hzの
固有振動数で揺れていること、及び図6の振動波形にお
ける振れ幅は約0.4mVに対応する大きさであること
がわかる。なお、葉柄の振動数はプラスチック板の振れ
幅の大きさによらず一定である。FIG. 6 shows the vibration waveform and vibration spectrum of the petiole. From the FFT analysis of FIG. 6, it can be seen that the petiole mainly oscillates at a natural frequency of about 4 Hz, and that the amplitude of the oscillation waveform in FIG. 6 corresponds to about 0.4 mV. The frequency of the petiole is constant irrespective of the magnitude of the swing width of the plastic plate.
【0021】プラスチック板の振れ幅を変えることで得
られる葉柄の振れ幅と水吸上げ量との関係を図7に示
す。同図より、葉柄の振れ幅が大きくなるほど、水吸上
げ量は増大するが、0.4mV以上に対応する振れ幅で
は飽和して、一定になることがわかる。従って、導管内
の流圧を増加させるために、0.4mV以上に相当する
振り幅で葉柄を揺らせたとしても、もはや、水吸上げ量
を増やすことはできない。FIG. 7 shows the relationship between the run-out width of the petiole obtained by changing the run-out width of the plastic plate and the amount of water suction. From the figure, it can be seen that as the swing width of the petiole increases, the amount of water suction increases, but it becomes saturated and constant at the swing width corresponding to 0.4 mV or more. Therefore, even if the petiole is shaken with a swing width equal to or more than 0.4 mV in order to increase the flow pressure in the conduit, it is no longer possible to increase the water uptake amount.
【0022】次に、水吸上げ量に対する実施例1の人工
風効果と実施例2の振動効果を比較する。まず、人工風
の風速と葉柄の振れ幅の関係を調べたところ、両者は図
8の正比例関係を示した。そこで、葉柄の振れ幅をパラ
メータに選び、図4と図7を風速と水吸上げ量の関係に
再整理した。その結果を図9に示す。同図より、0.6
m/秒以下の風速では水吸上げ量に及ぼす人工風効果と
振動効果はほぼ同一であることが確認できる。0.6m
/秒以上の風速における両曲線の水吸上げ量差は、主と
して、風速が増加すると葉周辺の圧力が低下し、そのた
め、気孔からの水蒸散が活発化すること、に起因するも
のと考えられる。Next, the artificial wind effect of the first embodiment and the vibration effect of the second embodiment with respect to the water suction amount will be compared. First, when the relationship between the wind speed of the artificial wind and the swing width of the petiole was examined, both showed the direct proportional relationship in FIG. Therefore, the swing width of the petiole was selected as a parameter, and FIGS. 4 and 7 were rearranged to show the relationship between the wind speed and the water suction amount. FIG. 9 shows the result. From the figure, 0.6
At a wind speed of m / sec or less, it can be confirmed that the artificial wind effect and the vibration effect on the water suction amount are almost the same. 0.6m
It is considered that the difference between the water uptake amounts of the two curves at a wind speed of / second or more is mainly due to the fact that as the wind speed increases, the pressure around the leaves decreases, and thus water transpiration from the pores becomes active. .
【0023】以上より、(1)導管内の水・ミネラルを
最も効率良く根から葉に供給させる風速で生じる植物の
揺れ幅が存在すること、(2)実施例1における最適な
風速は0.6m/秒であり、このとき、ポトスの葉柄
は、主に、4Hzに相当する超低周波の固有振動を呈す
ること、がわかる。From the above, (1) there is a fluctuation width of the plant that occurs at the wind speed that allows water and minerals in the conduit to be supplied from the roots to the leaves most efficiently, and (2) the optimum wind speed in Example 1 is 0. It is 6 m / sec, and at this time, it can be seen that the petiole of the pothos mainly exhibits an extremely low frequency natural vibration corresponding to 4 Hz.
【実施例3】Embodiment 3
【0024】水耕栽培用トマト10に人工風を当てるこ
とで、トマト10の成長を促進させる装置を図10で説
明する。送風ダクト11内に送風機1を設置し、絞り調
節付送風出口12から送風入口13に向かって人工風を
発生させ、トマト10の葉に人工風を当てる。人工風を
ランダムにトマト10の葉に当てるため、回転テーブル
14を用いて、トマト10を回転させる。この装置で、
風速、送風時間長、送風時間の間隔、回転テーブル14
の回転速度について最適条件を付与すれば、トマト10
の収穫期間の短縮と風味の向上を図ることができる。An apparatus for promoting the growth of tomato 10 by applying an artificial wind to the hydroponic tomato 10 will be described with reference to FIG. The blower 1 is installed in the blower duct 11, an artificial wind is generated from the blower outlet 12 with throttle control toward the blower inlet 13, and the artificial wind is applied to the leaves of the tomato 10. In order to randomly apply artificial wind to the leaves of the tomato 10, the tomato 10 is rotated using the turntable 14. With this device,
Wind speed, blast time length, blast time interval, rotary table 14
If optimal conditions are given for the rotation speed of tomato,
It is possible to shorten the harvest period and improve the flavor.
【0025】無風の場合と人工風の場合に関する、トマ
トの実10個の平均横断面直径と生育日数の関係を図1
1に示す。人工風の条件は風速0.6m/秒、送風時間
1時間、送風間隔1時間であり、送風期間は落花直後か
ら3週間である。図11より、トマトの実は人工風を当
てれば無風の場合に比べて、約20%大きく成長するこ
とがわかる。FIG. 1 shows the relationship between the average cross-sectional diameter of ten tomato seeds and the number of growing days in the case of no wind and the case of artificial wind.
It is shown in FIG. The conditions of the artificial wind are a wind speed of 0.6 m / sec, a blowing time of 1 hour, and a blowing interval of 1 hour, and the blowing period is 3 weeks immediately after the falling flowers. From FIG. 11, it can be seen that the tomato fruit grows about 20% larger when the artificial wind is applied than when there is no wind.
【実施例4】Embodiment 4
【0026】水耕用ロックウール栽培の西洋バラ15に
人工風を当てることで、バラ茎の成長を促進させる装置
を図12に示す。ウール槽16に平行配置された直動ガ
イド17に取付けた送風機1は駆動モーター18で往復
移動できる。周辺環境の明るさを光度センサー19で感
知して制御ボックス20に送り、電灯21の光度、送風
機1の移動速度と風速を制御する。送風機1は、上下左
右に首振りすることで、西洋バラ15に当たる風の向き
を任意の方向に制御できる。この装置で、光度、風速、
風向、移動速度を調節すれば、バラ茎の伸長を著しく増
加でき、高級バラの育成を効率良く行うことができる。FIG. 12 shows an apparatus for promoting the growth of rose stalks by applying artificial wind to western roses 15 cultivated in rock wool for hydroponics. The blower 1 attached to the linear motion guide 17 arranged in parallel with the wool tank 16 can reciprocate by the drive motor 18. The brightness of the surrounding environment is sensed by the light intensity sensor 19 and sent to the control box 20 to control the light intensity of the electric light 21 and the moving speed and wind speed of the blower 1. The blower 1 can control the direction of the wind hitting the western rose 15 in an arbitrary direction by swinging up, down, left, and right. With this device, light intensity, wind speed,
By adjusting the wind direction and the moving speed, the elongation of the rose stalk can be remarkably increased, and high-grade roses can be efficiently grown.
【0027】無風の場合と人工風の場合に関する、西洋
バラ10本の平均伸長状況と育成日数の関係を図13に
示す。同図より、バラ茎は最適な人工風を当てることに
より、無風の場合に比べて約25%大きくなることがわ
かる。FIG. 13 shows the relationship between the average elongation status of 10 western roses and the number of days of breeding in the case of no wind and the case of artificial wind. From the figure, it can be seen that the rose stem is about 25% larger by applying the optimal artificial wind than in the case of no wind.
【0028】本発明は、以上で説明したように、植物の
成長を人工風で高めようとするものであって、植物を人
工風により適度な揺れを与えれば、導管内の水・ミネラ
ルが葉に供給される。また、人工風量制御し、植物の揺
れ幅で超低周波の固有振動させれば、さらにその効果は
増大する。この原理を用いた果樹栽培、野菜栽培、花木
栽培、植木栽培、鉢栽培、盆栽に対する育成装置では植
物の成長を著しく促進させることができる。As described above, the present invention aims to enhance the growth of plants by artificial wind, and if the plant is given an appropriate shaking by artificial wind, the water and minerals in the conduit will be affected by the leaves. Supplied to Further, if the artificial air volume is controlled and the natural vibration of the extremely low frequency is caused by the fluctuation width of the plant, the effect is further increased. A growing apparatus for fruit tree cultivation, vegetable cultivation, flowering tree cultivation, planting cultivation, pot cultivation, and bonsai using this principle can remarkably promote plant growth.
【図1】人工風による植物の成長促進状態を確認するた
めの実験装置である。FIG. 1 is an experimental device for confirming a state of promoting plant growth by artificial wind.
【図2】人工風あるいは無風における水吸上げ量と経過
時間の関係を示した図である。FIG. 2 is a diagram showing the relationship between the amount of water suction and the elapsed time in an artificial wind or no wind.
【図3】風速0.4m/秒時の人工風に起因する水吸上
げ量と経過時間の関係を示した図である。FIG. 3 is a diagram showing a relationship between an amount of water suctioned by an artificial wind at a wind speed of 0.4 m / sec and an elapsed time.
【図4】風速0.0m/秒〜2.0m/秒における風速
と水吸上げ量の関係を示した図である。FIG. 4 is a diagram showing a relationship between a wind speed and a water suction amount at a wind speed of 0.0 m / sec to 2.0 m / sec.
【図5】植物における水吸上げ量と葉柄の機械的振動と
の関連を調べる実験装置である。FIG. 5 is an experimental apparatus for examining the relationship between the amount of water sucked up in a plant and the mechanical vibration of the petiole.
【図6】葉柄の機械的振動のFFT解析と振動波形を示
した図である。FIG. 6 is a diagram showing an FFT analysis of mechanical vibration of a petiole and a vibration waveform.
【図7】葉柄の振れ幅と水吸上げ量の関係を示した図で
ある。FIG. 7 is a diagram showing the relationship between the runout width of a petiole and the amount of water absorbed.
【図8】機械的振動による振れ幅と風速の関係を示した
図である。FIG. 8 is a diagram showing a relationship between a swing width due to mechanical vibration and a wind speed.
【図9】FIG. 9
【図7】の葉柄の振れ幅を風速に置き換えることによっ
て、FIG. 7: By replacing the swing width of the petiole with the wind speed,
【図4】とFIG. 4 and
【図7 【図7】の関係を再調整した図である。FIG. 7 is a diagram in which the relationship of FIG. 7 is readjusted.
【図10】トマトに人工風を当てることによって、トマ
トの実の成長を促進させる装置を示した図である。FIG. 10 is a view showing an apparatus for promoting the growth of tomato fruits by applying artificial wind to the tomatoes.
【図11】トマトの実の平均横断面直径と生育時間の関
係を示した図である。FIG. 11 is a diagram showing the relationship between the average cross-sectional diameter of a tomato fruit and the growth time.
【図12】西洋バラに人工風を当てることによって、バ
ラ茎の成長を促進させる装置を示した図である。FIG. 12 is a view showing an apparatus for promoting the growth of rose stems by applying artificial wind to western roses.
【図13】西洋バラの茎伸長と生育時間の関係を示した
図である。FIG. 13 is a diagram showing the relationship between stem growth and growth time of western roses.
1 送風機 2 植物 3 透明板 4 栄養水 5 蓋 6 プラスチック板 7 加振モーター 8 歪ゲージ 9 電圧増幅器 10 トマト 11 送風ダクト 12 絞り調節付送風出口 13 送風入口 14 回転テーブル 15 西洋バラ 16 ウール槽 17 直動ガイド 18 駆動モーター 19 光度センサー 20 制御ボックス 21 電灯 DESCRIPTION OF SYMBOLS 1 Blower 2 Plant 3 Transparent plate 4 Nutrient water 5 Lid 6 Plastic plate 7 Vibration motor 8 Strain gauge 9 Voltage amplifier 10 Tomato 11 Ventilation duct 12 Ventilation outlet with throttling 13 Ventilation inlet 14 Rotary table 15 Western rose 16 Wool tank 17 Direct Motion guide 18 Drive motor 19 Light intensity sensor 20 Control box 21 Light
Claims (6)
備えたことを特徴とする植物体育成装置。1. An apparatus for growing a plant, comprising blowing means for applying an artificial wind to the plant.
とする請求項1記載の植物育成装置。2. The plant growing apparatus according to claim 1, wherein said blowing means is a blower.
調節でき、植物体の揺れが調整できるインバータ付送風
機であることを特徴とする請求項1記載の植物育成装
置。3. The plant growing apparatus according to claim 1, wherein the blower is a blower with an inverter capable of adjusting a wind speed applied to the plant and adjusting a swing of the plant.
い、そのダクト経路に風取出口を設け、各取出口には風
量調整用の絞りなどを設置し、さらに、各取出口から植
物体の近くまでジャバラチューブなどを用いたことを特
徴とする請求項1記載の植物育成装置。4. An air duct is used as said air blowing means, an air outlet is provided in the duct path, and a throttle for adjusting the air volume is installed at each outlet, and furthermore, near each plant from the outlet. 2. The plant growing apparatus according to claim 1, wherein a bellows tube is used.
とを特徴とする、請求項1記載の植物育成装置。5. The plant growing apparatus according to claim 1, further comprising a plurality of blowers surrounding the plant.
当する20Hz以下の超低周波になるような風速を植物
体に付加することを特徴とする植物体育成方法。6. A method for growing a plant, comprising applying a wind speed to the plant such that the vibration of the plant becomes an extremely low frequency of 20 Hz or less corresponding to the natural frequency of the plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000403726A JP2002165522A (en) | 2000-11-30 | 2000-11-30 | Method for promoting growth of plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000403726A JP2002165522A (en) | 2000-11-30 | 2000-11-30 | Method for promoting growth of plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002165522A true JP2002165522A (en) | 2002-06-11 |
Family
ID=18867794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000403726A Pending JP2002165522A (en) | 2000-11-30 | 2000-11-30 | Method for promoting growth of plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002165522A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007295875A (en) * | 2006-05-01 | 2007-11-15 | Fulta Electric Machinery Co Ltd | Grape cultivation field equipped with ventilation fan, and method of grape cultivation in the field |
JP2011055812A (en) * | 2009-09-15 | 2011-03-24 | Fulta Electric Machinery Co Ltd | Local blowing apparatus of greenhouse and the blower |
JP2012050401A (en) * | 2010-09-02 | 2012-03-15 | Fulta Electric Machinery Co Ltd | Frost protection fan |
JP2012531910A (en) * | 2009-06-29 | 2012-12-13 | アダムス,アーサー,ヘンリー | Apparatus and method for promoting plant growth |
JP2015112083A (en) * | 2013-12-13 | 2015-06-22 | 学校法人桐蔭学園 | Method and device for evaluating health condition of plant and method for cultivating plant |
WO2016059752A1 (en) * | 2014-10-14 | 2016-04-21 | パナソニックIpマネジメント株式会社 | Solution cultivation method for low potassium vegetable, low potassium vegetable and cultivation device |
WO2019031181A1 (en) * | 2017-08-10 | 2019-02-14 | ヤンマー株式会社 | Fruit growth monitoring system and fruit growth monitoring method |
WO2021187598A1 (en) * | 2020-03-19 | 2021-09-23 | プランツラボラトリー株式会社 | Wind power device and growing system |
-
2000
- 2000-11-30 JP JP2000403726A patent/JP2002165522A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007295875A (en) * | 2006-05-01 | 2007-11-15 | Fulta Electric Machinery Co Ltd | Grape cultivation field equipped with ventilation fan, and method of grape cultivation in the field |
JP2012531910A (en) * | 2009-06-29 | 2012-12-13 | アダムス,アーサー,ヘンリー | Apparatus and method for promoting plant growth |
JP2011055812A (en) * | 2009-09-15 | 2011-03-24 | Fulta Electric Machinery Co Ltd | Local blowing apparatus of greenhouse and the blower |
JP2012050401A (en) * | 2010-09-02 | 2012-03-15 | Fulta Electric Machinery Co Ltd | Frost protection fan |
JP2015112083A (en) * | 2013-12-13 | 2015-06-22 | 学校法人桐蔭学園 | Method and device for evaluating health condition of plant and method for cultivating plant |
WO2016059752A1 (en) * | 2014-10-14 | 2016-04-21 | パナソニックIpマネジメント株式会社 | Solution cultivation method for low potassium vegetable, low potassium vegetable and cultivation device |
JP6011902B2 (en) * | 2014-10-14 | 2016-10-25 | パナソニックIpマネジメント株式会社 | Hydroponic cultivation method for low potassium vegetables |
JP2016214261A (en) * | 2014-10-14 | 2016-12-22 | パナソニックIpマネジメント株式会社 | Nutrient liquid cultivation method of low potassium vegetable, low potassium vegetable and cultivation device |
US10785926B2 (en) | 2014-10-14 | 2020-09-29 | Panasonic Intellectual Property Management Co., Ltd. | Solution cultivation method for low potassium vegetable, low potassium vegetable and cultivation device |
WO2019031181A1 (en) * | 2017-08-10 | 2019-02-14 | ヤンマー株式会社 | Fruit growth monitoring system and fruit growth monitoring method |
US11255822B2 (en) | 2017-08-10 | 2022-02-22 | Yanmar Power Technology Co., Ltd. | Fruit growth monitoring system and fruit growth monitoring method |
WO2021187598A1 (en) * | 2020-03-19 | 2021-09-23 | プランツラボラトリー株式会社 | Wind power device and growing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10117385B2 (en) | Method and apparatus for selective photomorphogenesis in plants | |
WO2015037163A1 (en) | Hydroponic cultivation device and hydroponic cultivation method | |
JP2016034243A (en) | Hydroponic method and hydroponic apparatus of panax ginseng | |
Xu et al. | Effects of fertigation management on growth and photosynthesis of tomato plants grown in peat, rockwool and NFT | |
Christie et al. | Aeroponics-a production system and research tool | |
BRPI0813454B1 (en) | METHOD OF PRODUCTION OF PINACEAE FAMILY TREE ROOTS. | |
JP5628945B2 (en) | Hydroponics apparatus and hydroponics method | |
Budiarto et al. | A review of root pruning to regulate citrus growth | |
JP2002165522A (en) | Method for promoting growth of plant | |
CN105724203B (en) | A kind of three-dimensional mist water spray training flower culture method | |
Sarmah et al. | Quality blooming of marigold in hydroponics | |
JPH0956282A (en) | Water culture of plant with its cutting and device for water culture of plant with cutting and support of cutting of plant on water culture and cutting of plant on water culture | |
Batukaev et al. | Block-container system for growing strawberry planting material in greenhouses | |
Bhatta et al. | Cultivation of Underutilized Vegetables in a Hydroponic and Aeroponic System | |
KR100356610B1 (en) | Method for producing non-infected garlic microbulb from immature bulbil by hydroponics | |
Rahman et al. | The effects of irrigation timing on growth, yield, and physiological traits of hydroponic lettuce. | |
CN110419428A (en) | A kind of plant cultivation method | |
Akhoundnejad | The effect of the music on the growth and development of bean plant in different medium | |
KR102509615B1 (en) | water culture method of Rhizobium | |
JP2002112653A (en) | Automatic pollination device | |
Råberg | Soundscapes in Plant Cultivation: A Literature Review on Music’s Influence in Plant Growth | |
Sethi et al. | Self regulating wick type zero energy hydroponics system for greenhouse tomatoes | |
CN208016596U (en) | Water ploughs plant cultivating device aerial construction | |
Singh et al. | Aeroponic production of AMF inoculum and its application for sustainable agriculture | |
JP2007312760A (en) | Method for sound-cultivating field crop |