JP2002164946A - Decoding circuit - Google Patents

Decoding circuit

Info

Publication number
JP2002164946A
JP2002164946A JP2000358854A JP2000358854A JP2002164946A JP 2002164946 A JP2002164946 A JP 2002164946A JP 2000358854 A JP2000358854 A JP 2000358854A JP 2000358854 A JP2000358854 A JP 2000358854A JP 2002164946 A JP2002164946 A JP 2002164946A
Authority
JP
Japan
Prior art keywords
circuit
value
amplitude
signal
received signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000358854A
Other languages
Japanese (ja)
Inventor
Munemitsu Kuwabara
宗光 桑原
Makoto Onishi
誠 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2000358854A priority Critical patent/JP2002164946A/en
Publication of JP2002164946A publication Critical patent/JP2002164946A/en
Pending legal-status Critical Current

Links

Landscapes

  • Detection And Correction Of Errors (AREA)
  • Error Detection And Correction (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem of a conventional decoding circuit that has sometimes selected an erroneous path when the C/N is small because the conventional decoding circuit provides a constant metric independently of the C/N since the metric of decoded information depends on the quantity of the C/N. SOLUTION: The C/N of a signal whose received amplitude is corrected is measured and a value a×mb that results from multiplying a correction value (a) with a branch metric mb is used for a new branch metric, and when the C/N is low, a contribution rate of the branch metric to a state metric is decreased and a weight is provided to a past state metric to select a path.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は復号回路に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a decoding circuit.

【0002】[0002]

【従来の技術】従来の復号回路について、図9〜図11
を用いて説明する。図9は従来の復号回路の構成を示す
ブロック図である。1は受信信号である直交変調波信号
の同相成分XIの入力端子、2は受信信号である直交変調
波信号の直交成分XQの入力端子、5は復号器、7は復号信
号を出力する出力端子である。図9において、復号器5
は、入力端子1から与えられる直交変調波信号の同相成
分XIと、入力端子2から与えられる直交変調波信号の直
交成分XQとを用いて軟判定復号を行う。復号された信号
は出力端子7を介して出力される。
2. Description of the Related Art FIGS.
This will be described with reference to FIG. FIG. 9 is a block diagram showing a configuration of a conventional decoding circuit. 1 is an input terminal of an in-phase component XI of a quadrature modulated wave signal as a received signal, 2 is an input terminal of a quadrature component XQ of a quadrature modulated wave signal as a received signal, 5 is a decoder, and 7 is an output terminal for outputting a decoded signal. It is. In FIG. 9, the decoder 5
Performs soft decision decoding using the in-phase component XI of the quadrature modulated wave signal supplied from the input terminal 1 and the quadrature component XQ of the quadrature modulated wave signal supplied from the input terminal 2. The decoded signal is output via the output terminal 7.

【0003】次に図10を使って、図9に示した復号回
路に入力する受信信号の入力情報系列を復号する動作に
ついて説明する。図10は入力情報系列の復号動作を説
明するためのトレリス線図である。まず受信信号の受信
点と識別点とのユークリッド距離を枝メトリックと呼
び、枝メトリックを積算したものを状態メトリックと呼
ぶ。トレリス線図とは、復号した入力情報系列の状態遷
移の時間的変化を表現したものである。各時刻ごとの状
態遷移はそれぞれパスで接続されている。更に、生き残
りパス26を太い実線とし、非生き残りパスを破線と細い
実線で示している。
Next, the operation of decoding the input information sequence of the received signal input to the decoding circuit shown in FIG. 9 will be described with reference to FIG. FIG. 10 is a trellis diagram for explaining the decoding operation of the input information sequence. First, the Euclidean distance between the reception point and the identification point of a received signal is called a branch metric, and the sum of the branch metrics is called a state metric. The trellis diagram expresses a temporal change of a state transition of the decoded input information sequence. State transitions at each time are connected by paths. Further, the surviving path 26 is indicated by a thick solid line, and the non-surviving paths are indicated by a broken line and a thin solid line.

【0004】任意の時刻t=nにおける各状態(S00
S10,S01,S11の4状態)からは、後方の4状態に向け
て接続される可能性のパスが4本ある。しかし、生き残
りパスの状態メトリック(時刻t=n-1)に枝メトリック
(時刻t=n)の値を加算(各パスにパスごとの重みを全
て加算する)して時刻t=nでの状態メトリックを求め、
その中で状態メトリックの値が一番低い1本のパスを、
その時刻までの生き残りパスとして選択して残す(nは
正整数)。これを最後の時刻t=L(図10ではL=7)まで
繰り返す。これにより、最後の時刻には、状態メトリッ
クの値が最も小さいパスを生き残りパスとして選択し
(Lは1以上の大きさの整数)、復号する。
[0004] Each state (S 00 ,
From four states) of S 10, S 01, S 11 , there paths could be connected toward the rear of the 4 states present 4. However, the value of the branch metric (time t = n) is added to the state metric of the surviving path (time t = n-1) (all weights for each path are added to each path), and the state at time t = n Find the metric,
One path with the lowest value of the state metric is
Select and leave as a surviving path until that time (n is a positive integer). This is repeated until the last time t = L (L = 7 in FIG. 10). As a result, at the last time, the path having the smallest value of the state metric is selected as a surviving path (L is an integer of 1 or more) and decoded.

【0005】図11を使ってパスの選択を説明する。図
11は信号電力対雑音電力比(以降、C/Nと称する)が
小さい場合の受信点を表すI-Q座標平面図である。時刻t
=nにおいて、信号Cに雑音Nが加わってできる受信点C+N
を考える。信号C側の識別点28(座標(x0,x1))に対
する枝メトリックmb(0)と、識別点29(座標(-x0,-x
1))に対する枝メトリックmb(1)を考え、次の時刻t=
n+1では、“t=nでの状態S00の状態メトリック”+“枝メ
トリックmb(0)”と、“t=nでの状態S01の状態メトリ
ック”+“枝メトリックmb(1)”の値の小さい方のパス
が選択され、t=n+1での状態S00の状態メトリックは小さ
い方の値となる。
The selection of a path will be described with reference to FIG. FIG. 11 is an IQ coordinate plan view showing reception points when the signal power to noise power ratio (hereinafter, referred to as C / N) is small. Time t
= n, reception point C + N formed by adding noise N to signal C
think of. The branch metric mb (0) for the discrimination point 28 (coordinates (x0, x1)) on the signal C side and the discrimination point 29 (coordinates (-x0, -x
Given the branch metric mb (1) for 1)), the next time t =
In the n + 1, "t = state in the n S 00 of the state metric" + "branch metric mb (0)" and, "t = state S 01 of the state metric in n" + "branch metric mb (1) smaller path of the value of "is selected, the state metric of the state S 00 at t = n + 1 is a value smaller.

【0006】[0006]

【発明が解決しようとする課題】前述の従来技術では、
状態メトリックはその時点までの枝メトリックを積算し
たものであり、C/Nの大小にかかわらず、等重みで枝メ
トリックを積算している。しかし情報の確からしさ(メ
トリック)はC/Nの大小で変化するので、C/Nの大きさに
よらず一定のメトリックを与える従来方式では、C/Nが
小さい場合には、誤ったパス選択がされることがあると
いう欠点があった。本発明の目的は、上記の欠点を除去
し、C/Nが小さい場合には、枝メトリックの状態メトリ
ックへの寄与率を小さくし、過去の状態メトリックに重
きを置いてパス選択を行い、C/Nが小さい場合にも正し
いパス選択ができる復号器を提供することにある。
In the above-mentioned prior art,
The state metric is obtained by integrating the branch metrics up to that point, and the branch metrics are integrated with equal weight regardless of the magnitude of C / N. However, since the certainty (metric) of the information changes depending on the magnitude of C / N, in the conventional method that provides a constant metric regardless of the magnitude of C / N, when the C / N is small, an incorrect path selection is performed. There is a disadvantage that it may be removed. An object of the present invention is to eliminate the above-mentioned disadvantages, when the C / N is small, reduce the contribution rate of the branch metric to the state metric, perform path selection with emphasis on the past state metric, and An object of the present invention is to provide a decoder capable of selecting a correct path even when / N is small.

【0007】[0007]

【課題を解決するための手段】上記の問題点を解決する
ため、本発明の復号回路は、直交変調波信号の受信振幅
値を振幅補正した信号のC/Nを測定して、枝メトリックm
bの値に基いて所定の補正係数aを乗算した値を枝メトリ
ックスとする。更に本発明の復号回路は、C/Nが低い場
合には、補正係数aを乗算することによって枝メトリッ
クの値を小さくし、過去の状態メトリックの値を支配的
にする。以上の結果、C/Nが低い場合、枝メトリックの
状態メトリックへの寄与率を小さくして、過去の状態メ
トリックに重きを置いてパス選択を行うことができる復
号回路を実現した。
In order to solve the above problems, a decoding circuit according to the present invention measures the C / N of a signal obtained by correcting the amplitude of a received amplitude of a quadrature modulated wave signal, and obtains a branch metric m.
A value obtained by multiplying the value of b by a predetermined correction coefficient a is defined as a branch metric. Further, when the C / N is low, the decoding circuit of the present invention reduces the value of the branch metric by multiplying by the correction coefficient a, and makes the value of the past state metric dominant. As a result, when the C / N is low, a decoding circuit that can reduce the contribution rate of the branch metric to the state metric and perform path selection with emphasis on the past state metric is realized.

【0008】即ち、本発明の復号回路は、直交変調波信
号を受信し、受信した信号を用いて軟判定復号を行なう
復号回路において、受信信号の信号電力対雑音電力比C/
Nを求めるC/N計算回路を有し、求めた信号電力対雑音電
力比C/Nが所定の値より小さい場合には、枝メトリック
の状態メトリックへの寄与率を小さくして、過去の状態
メトリックに重きを置いてパス選択を行うものである。
また、本発明の復号回路は、直交変調波信号を受信し、
受信した信号の受信信号を用いて軟判定復号を行なう復
号回路において、受信信号の同相成分XIと直交成分XQと
をそれぞれ振幅補正する自動利得制御回路と、受信信号
から信号電力対雑音電力比C/Nを求めるC/N計算部と、振
幅補正された信号の受信点と識別点とのユークリッド距
離である枝メトリックmbを求め、時刻t=n-1での生き残
りパスの状態メトリックに時刻t=nの枝メトリックを加
算して時刻t=nでの状態メトリックを求め、その中で、
一番低い値の状態メトリックを時刻t=nでの生き残りパ
スとし、時刻t=Lまで繰り返し、時刻t=Lの生き残りパス
を選択して復号する復号器とを有し(nは正整数、Lは1
以上の整数)、C/N計算部によって求められた信号電力
対雑音電力比C/Nの値が第1の所定数CN1より大きい場合
には、枝メトリックmbをそのまま使用し、信号電力対雑
音電力比C/Nの値が第2の所定数CN0より小さい場合に
は、枝メトリックの最大値mbmaxで割った値mb/mbmax
枝メトリックmbとし、信号電力対雑音電力比C/Nの値が
第1の所定数CN1より小さく、かつ、第2の所定数CN2
り大きい場合には、枝メトリックmbに、信号電力対雑音
電力比C/Nに応じて所定の変化をする補正係数a′を乗算
した値を枝メトリックスとして使用するものである。更
にまた、補正係数a′として、
That is, the decoding circuit of the present invention receives a quadrature modulated wave signal and performs soft decision decoding using the received signal.
A C / N calculation circuit for calculating N, and when the calculated signal power-to-noise power ratio C / N is smaller than a predetermined value, reduce the contribution rate of the branch metric to the state metric to reduce the past state Path selection is performed with emphasis on metrics.
Further, the decoding circuit of the present invention receives the quadrature modulated wave signal,
In a decoding circuit that performs soft decision decoding using the received signal of the received signal, an automatic gain control circuit that corrects the amplitude of the in-phase component XI and the quadrature component XQ of the received signal, respectively, and a signal power to noise power ratio C from the received signal C / N calculation unit for calculating / N, and a branch metric mb which is a Euclidean distance between the reception point and the identification point of the amplitude-corrected signal, and a state metric of the surviving path at time t = n-1 is calculated at time t. = n branch metrics are added to obtain the state metric at time t = n.
A state metric having the lowest value as a surviving path at time t = n, repeating until time t = L, and selecting and decoding a surviving path at time t = L (n is a positive integer, L is 1
An integer greater than one), when the value of C / N signal power obtained by the calculation section to noise power ratio C / N is first greater than the predetermined number CN 1 is to keep the branch metric mb, signal power to If the value of the noise power ratio C / N is smaller than the second predetermined number CN 0 , the value mb / mb max divided by the maximum value mb max of the branch metric is used as the branch metric mb, and the signal power to noise power ratio C When the value of / N is smaller than the first predetermined number CN 1 and larger than the second predetermined number CN 2 , the branch metric has a predetermined change according to the signal power to noise power ratio C / N. Is used as a branch metric. Furthermore, as a correction coefficient a ′,

【数2】 となる値を乗算した値を枝メトリックスとして使用する
ものである。
(Equation 2) Is used as the branch metric.

【0009】このため本発明の復号回路のC/N計算部
は、受信信号の同相成分XIと直交成分XQとをそれぞれ振
幅補正する自動利得制御回路と、自動利得制御回路によ
って振幅補正された信号の同相成分xiと直交成分xqの振
幅値から平均雑音電力Naveを求める平均雑音電力計算回
路と、振幅補正された信号の同相成分xiと直交成分xqの
振幅値から瞬時受信信号電力(C+N)instを求める瞬時
受信信号電力計算回路と、瞬時受信信号電力計算回路に
よって求められた瞬時受信信号電力(C+N)instと、平
均雑音電力Naveとの比(C+N)inst/Naveから信号電力対
雑音電力比C/Nを求めるC/N計算回路とを有する。また本
発明の復号回路の平均雑音電力計算回路は、自動利得制
御回路によって振幅補正された信号の振幅値から識別値
を引いて雑音成分を求める減算器と、減算器によって求
められ雑音成分を所定期間累積して、同相成分の平均値
ni-aveと直交成分の平均値nq-aveとを求める累積器と、
累積器によって求められた平均値ni-aveとnq-aveを自乗
加算する自乗加算手段と、自乗加算手段によって自乗加
算された値の平方根を求め、平均雑音電力Nave=√(n
i-ave 2+nq-ave 2)を求める平均雑音電力計算回路とを有
する。また本発明の復号回路の瞬時受信信号電力計算回
路は、自動利得制御回路によって振幅補正された信号の
振幅値を自乗平均する自乗平均手段と、自乗平均手段に
よって自乗平均された値と自動利得制御回路の利得AGAI
Nとの比から、瞬時受信信号電力(C+N)int=√(xi2+x
q2)/AGAINを求める瞬時受信信号電力計算回路とを有す
る。
Therefore, the C / N calculator of the decoding circuit of the present invention comprises an automatic gain control circuit for correcting the amplitude of the in-phase component XI and the quadrature component XQ of the received signal, and a signal whose amplitude has been corrected by the automatic gain control circuit. And an average noise power calculation circuit for calculating an average noise power N ave from the amplitude values of the in-phase component xi and the quadrature component xq, and the instantaneous received signal power (C + the instantaneous received signal power calculating circuit for obtaining the N) inst, the instantaneous received signal power (C + N) inst obtained by the instantaneous received signal power calculation circuit, the ratio between the average noise power N ave (C + N) inst / And a C / N calculation circuit for obtaining a signal power-to-noise power ratio C / N from N ave . The average noise power calculation circuit of the decoding circuit according to the present invention includes a subtracter for obtaining a noise component by subtracting an identification value from an amplitude value of a signal whose amplitude has been corrected by the automatic gain control circuit, and a noise component obtained by the subtractor for determining a predetermined noise component. Accumulated period, average value of in-phase component
an accumulator for obtaining n i-ave and an average value n q-ave of orthogonal components;
A square addition means for squarely adding the average values n i-ave and n q-ave obtained by the accumulator, and a square root of the value squared by the square addition means are obtained, and the average noise power N ave = √ (n
i-ave 2 + n q-ave 2 ). The instantaneous received signal power calculation circuit of the decoding circuit according to the present invention includes a root mean square means for root mean square of the amplitude value of the signal whose amplitude has been corrected by the automatic gain control circuit, Circuit gain AGAI
From the ratio of the N, instantaneous received signal power (C + N) in shea t = √ (xi 2 + x
q 2 ) and an instantaneous received signal power calculation circuit for obtaining / AGAIN.

【0010】更に、本発明の復号回路は、直交変調波信
号を受信し、受信信号の受信振幅値を補正する自動利得
制御回路と、自動利得制御回路によって振幅補正した信
号の同相成分xiから第1の識別値diを識別する第1の識
別器と、振幅補正した信号の同相成分xiから第1の識別
値diを減算する第1の減算器と、第1の減算器が減算し
た値の絶対値を求める第1の絶対値回路と、第1の絶対
値回路が求めた絶対値を累積加算する第1の累積器と、
第1の累積器の累積した値の所定ビットごとの平均値を
求める第1の除算回路と、所定ビットごとに、第1の除
算回路の出力を保存する第1のラッチと、第1のラッチ
出力を自乗する第1の自乗回路と、自動利得制御回路に
よって振幅補正した信号の直交成分xqから第2の識別値
dqを識別する第2の識別器と、振幅補正した信号の直交
成分xqから第2の識別値dqを減算する第2の減算器と、
第2の減算器が減算した値の絶対値を求める第2の絶対
値回路と、第2の絶対値回路が求めた絶対値を累積加算
する第2の累積器と、第2の累積器の累積した値の所定
ビットごとの平均値を求める第2の除算回路と、所定ビ
ットごとに、第2の除算回路の出力を保存する第2のラ
ッチと、第2のラッチ出力を自乗する第2の自乗回路
と、第1の自乗回路の出力値と第2の自乗回路の出力値
とを加算する第1の加算回路と、第1の加算回路が加算
した値の平方根を求める第1の平方根回路と、振幅補正
した信号の同相成分xiを所定ビットシフトする第1のシ
フトレジスタと、第1のシフトレジスタの出力値を自乗
する第3の自乗回路と、振幅補正した信号の直交成分xq
を所定ビットシフトする第2のシフトレジスタと、第2
のシフトレジスタの出力値を自乗する第4の自乗回路
と、第3の自乗回路の出力値と第4の自乗回路の出力値
を加算する第2の加算回路と、第2の加算回路出力値の
平方根を求める第2の平方根回路と、第2の平方根回路
の出力値と、自動利得制御回路の利得AGAINとの比を求
める第3の除算回路と、第3の除算回路の出力値と、第
1の平方根回路の出力値とのとの比を求める第4の除算
回路とを備え、振幅補正した信号の振幅値を用いて軟判
定復号を行う際に、第4の除算回路の出力に応じて枝メ
トリックの値を補正するものである。
Further, a decoding circuit according to the present invention receives an orthogonal modulation wave signal and corrects a received amplitude value of the received signal. The decoding circuit further includes an in-phase component xi of the signal whose amplitude is corrected by the automatic gain control circuit. A first discriminator for discriminating the first discrimination value di, a first subtractor for subtracting the first discrimination value di from the in-phase component xi of the amplitude-corrected signal, and a value obtained by subtracting the first subtractor. A first absolute value circuit for obtaining an absolute value, a first accumulator for accumulatively adding the absolute value obtained by the first absolute value circuit,
A first divider circuit for calculating an average value of the accumulated value of the first accumulator for each predetermined bit, a first latch for storing an output of the first divider circuit for each predetermined bit, and a first latch A first squaring circuit for squaring the output, and a second identification value based on the quadrature component xq of the signal whose amplitude has been corrected by the automatic gain control circuit.
a second discriminator for identifying dq, a second subtractor for subtracting the second identification value dq from the orthogonal component xq of the amplitude-corrected signal,
A second absolute value circuit for obtaining an absolute value of the value subtracted by the second subtractor, a second accumulator for accumulatively adding the absolute value obtained by the second absolute value circuit, and a second accumulator. A second dividing circuit for calculating an average value of the accumulated value for each predetermined bit; a second latch for storing an output of the second dividing circuit for each predetermined bit; and a second latch for squaring the second latch output Squaring circuit, a first adding circuit for adding the output value of the first squaring circuit and the output value of the second squaring circuit, and a first square root for calculating the square root of the value added by the first adding circuit A first shift register that shifts the in-phase component xi of the amplitude-corrected signal by a predetermined bit, a third square circuit that squares the output value of the first shift register, and a quadrature component xq of the amplitude-corrected signal
A second shift register for shifting a predetermined bit
A fourth squarer circuit for squaring the output value of the shift register, a second adder circuit for adding the output value of the third squarer circuit and the output value of the fourth squarer circuit, and an output value of the second adder circuit A second square root circuit for obtaining a square root of the second square root circuit, a third division circuit for obtaining a ratio of an output value of the second square root circuit to a gain AGAIN of the automatic gain control circuit, an output value of the third division circuit, A fourth division circuit for calculating a ratio with respect to an output value of the first square root circuit. When soft decision decoding is performed using the amplitude value of the amplitude-corrected signal, the fourth division circuit outputs The value of the branch metric is corrected accordingly.

【0011】[0011]

【発明の実施の形態】本発明の復号回路は、直交変調波
信号の受信振幅値を振幅補正した信号のC/Nを測定し
て、枝メトリックmbに次の式(1)で与えられる補正係数a
を掛けた値a×mbを枝メトリックとし、C/Nが小さい場合
は、枝メトリックの値を小さくし、過去の状態メトリッ
クの値を支配的にする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A decoding circuit according to the present invention measures the C / N of a signal obtained by amplitude-correcting a received amplitude value of a quadrature modulated wave signal, and corrects a branch metric mb given by the following equation (1). Coefficient a
Is multiplied by a × mb as a branch metric. If C / N is small, the value of the branch metric is reduced, and the value of the past state metric is dominant.

【数3】 (Equation 3)

【0012】以下、本発明の一実施例を図1によって説
明する。図1は本発明の復号回路の構成を示すブロック
図である。1は受信信号である直交変調波信号の同相成
分XIの入力端子、2は受信信号である直交変調波信号の
直交成分XQの入力端子、3は自動利得制御回路、5は復号
器、56は平均雑音電力計算回路、57は瞬時受信信号電力
計算回路、58はC/N計算回路、7は復号信号を出力する出
力端子である。
An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a block diagram showing the configuration of the decoding circuit of the present invention. 1 is an input terminal of the in-phase component XI of the quadrature modulated wave signal which is the received signal, 2 is an input terminal of the quadrature component XQ of the quadrature modulated wave signal which is the received signal, 3 is an automatic gain control circuit, 5 is a decoder, 56 is An average noise power calculation circuit, 57 is an instantaneous reception signal power calculation circuit, 58 is a C / N calculation circuit, and 7 is an output terminal for outputting a decoded signal.

【0013】図1において、自動利得制御回路3は、入
力端子1と2からそれぞれ与えられる直交変調波信号の同
相成分XIと直交成分XQの振幅をそれぞれを振幅補正し
て、平均雑音電力計算回路56と瞬時受信信号電力計算回
路57とにそれぞれ与える。平均雑音電力計算回路56は振
幅補正された信号の振幅値から平均雑音電力Naveを求め
C/N計算回路58に与える。瞬時受信信号電力計算回路57
は振幅補正された信号の振幅値から瞬時受信信号電力
(C+N)instを求め、C/N計算回路58に与える。C/N計算
回路58は、入力された瞬時受信信号電力(C+N)inst
平均雑音電力Na veとの比(C+N)inst/NaveからC/Nを求
め、復号器5に与える。
In FIG. 1, an automatic gain control circuit 3 corrects the amplitudes of the in-phase component XI and the quadrature component XQ of the quadrature modulated wave signal supplied from the input terminals 1 and 2, respectively, to obtain an average noise power calculation circuit. 56 and an instantaneous received signal power calculation circuit 57. The average noise power calculation circuit 56 calculates the average noise power N ave from the amplitude value of the amplitude-corrected signal.
It is given to the C / N calculation circuit 58. Instantaneous received signal power calculation circuit 57
Calculates the instantaneous received signal power (C + N) inst from the amplitude value of the signal whose amplitude has been corrected, and supplies it to the C / N calculation circuit 58. C / N calculation circuit 58 calculates the C / N from the ratio of the input instantaneous received signal power and (C + N) inst and the average noise power N a ve (C + N) inst / N ave, the decoder 5 Give to.

【0014】復号器5には、別に、自動利得制御回路3か
ら、入力直交変調波信号の同相成分XIと直交成分XQの振
幅をそれぞれについて振幅補正された信号が与えられて
いる。復号器5は式(1)で示した計算を行い、枝メトリッ
クの補正を行って軟判定復号し、復号された信号は出力
端子7を介して出力される。このようにしてC/Nが小さい
場合、枝メトリックの状態メトリックへの寄与率を小さ
くして、過去の状態メトリックに重きを置いてパス選択
を行う。
The decoder 5 is separately supplied from the automatic gain control circuit 3 with a signal in which the amplitudes of the in-phase component XI and the quadrature component XQ of the input quadrature modulated wave signal have been corrected in amplitude. The decoder 5 performs the calculation shown in Expression (1), corrects the branch metric and performs soft decision decoding, and outputs the decoded signal via the output terminal 7. When the C / N is small in this way, the contribution ratio of the branch metric to the state metric is reduced, and path selection is performed with emphasis on the past state metric.

【0015】図1で用いた平均雑音電力計算回路56の一
実施例を、図2を用いて説明する。図2は平均雑音電力
計算回路56の一実施例の構成を示すブロック図である。
30は識別値di生成部、31は識別値dq生成部、50と51は減
算器、32と33は絶対値回路、34と35は累積器、53と54は
除算回路、36と37はラッチ、38と39は自乗回路、42は加
算回路、44は平方根回路、55は累積数M生成部、61と62
は累積レジスタ、59と60は加算器である。累積器34は累
積レジスタ61と加算器59とからなり、累積器35は累積レ
ジスタ62と加算器60とからなっている。
One embodiment of the average noise power calculation circuit 56 used in FIG. 1 will be described with reference to FIG. FIG. 2 is a block diagram showing the configuration of one embodiment of the average noise power calculation circuit 56.
30 is an identification value di generator, 31 is an identification value dq generator, 50 and 51 are subtractors, 32 and 33 are absolute value circuits, 34 and 35 are accumulators, 53 and 54 are division circuits, and 36 and 37 are latches. , 38 and 39 are squaring circuits, 42 is an adding circuit, 44 is a square root circuit, 55 is a cumulative number M generator, 61 and 62
Is an accumulation register, and 59 and 60 are adders. The accumulator 34 includes an accumulation register 61 and an adder 59, and the accumulator 35 includes an accumulation register 62 and an adder 60.

【0016】図2において、識別値di生成部30は識別値
diを生成し減算器50の減算入力側端子に与える。また直
交変調波信号の同相成分XIが減算器50の加算入力端子側
に与えられる。同様に、識別値qi生成部31は識別値qiを
生成し減算器51の減算入力側端子に与える。また直交変
調波信号の直交成分XQが減算器51の加算入力端子側に与
えられる。減算器50は入力された同相成分XIから識別値
diを減算し、雑音成分ni(ni=XI-di)を出力し、絶対
値回路32に与える。同様に、減算器51は入力された直交
成分XQから識別値dqを減算し、雑音成分nq(nq=XQ-d
q)を出力し、絶対値回路33に与える。絶対値回路32は
同相成分の雑音成分niの絶対値|ni|を求め、累積器34
に与え、また同様に、絶対値回路33は直交成分の雑音成
分nqの絶対値|nq|を求め、累積器35に与える。
In FIG. 2, the identification value di generator 30 has an identification value
di is generated and applied to the subtraction input side terminal of the subtractor 50. Further, the in-phase component XI of the quadrature modulated wave signal is provided to the addition input terminal side of the subtractor 50. Similarly, the identification value qi generation unit 31 generates the identification value qi and supplies it to the subtraction input side terminal of the subtractor 51. Further, the orthogonal component XQ of the orthogonal modulation wave signal is provided to the addition input terminal side of the subtractor 51. The subtractor 50 determines the identification value from the input in-phase component XI.
The di is subtracted, and a noise component ni (ni = XI-di) is output and given to the absolute value circuit 32. Similarly, the subtractor 51 subtracts the discrimination value dq from the input orthogonal component XQ and outputs a noise component nq (nq = XQ−d
q) is output and given to the absolute value circuit 33. The absolute value circuit 32 calculates the absolute value | ni | of the noise component ni of the in-phase component, and
Similarly, the absolute value circuit 33 obtains the absolute value | nq | of the noise component nq of the orthogonal component, and supplies it to the accumulator 35.

【0017】次に、同相成分と直交成分とについて、そ
れぞれ平均値を求めるが、ディジタル変調信号は通常、
信号平面(I-Q平面)の原点に対して点対称に信号点が
配置されるので、そのまま平均すると平均値は0となっ
てしまう。そこで、同相成分、直交成分のそれぞれの絶
対値を求めた後に平均を取る。これによって、信号平面
上の各信号点は全て、第1象限(同相成分I、直交成分Q
とも正極性)に移され、平均値が求められる。
Next, an average value is obtained for each of the in-phase component and the quadrature component.
Since the signal points are arranged point-symmetrically with respect to the origin of the signal plane (IQ plane), the average value becomes 0 if averaged as it is. Therefore, an average is calculated after obtaining the absolute values of the in-phase component and the quadrature component. Thus, all signal points on the signal plane are all in the first quadrant (in-phase component I, quadrature component Q
(Both positive polarity), and the average value is obtained.

【0018】即ち、絶対値回路32と33は、雑音成分niと
nqの絶対値|ni|と|nq|をそれぞれ出力し、累積器34と35
は雑音成分の絶対値を、それぞれ、M回累積加算して次
の式(2)で表す累積値ni-totalとnq-totalとを出力す
る。
That is, the absolute value circuits 32 and 33 generate the noise component ni
The absolute values | ni | and | nq | of nq are output, and accumulators 34 and 35 are output.
Is the absolute value of the noise component, respectively, and M times accumulating outputs the accumulated value n i-total and n q-total expressed by the following equation (2).

【数4】 (Equation 4)

【0019】累積器は動作クロックfCLK(Hz)で動作
し、雑音成分をM回累積するのにM/fCL K(sec)かかると
する。除算回路53と54は累積値ni-totalとnq-totalを累
積数Mで割り、平均値ni-avgとnq-avgとを出力する。式
(3)は平均値ni-avgとnq-avgとを求める計算式である。
Assume that the accumulator operates with the operation clock f CLK (Hz), and it takes M / f CL K (sec) to accumulate the noise component M times. The division circuits 53 and 54 divide the cumulative values ni-total and nq-total by the cumulative number M and output the average values ni -avg and nq-avg . formula
(3) is a calculation formula for calculating the average values ni -avg and nq-avg .

【数5】 (Equation 5)

【0020】累積器34の出力は除算回路53に与えられ、
累積器35の出力は除算回路54に与えられる。除算回路53
と除算回路54には、別に、累積数M生成部55から出力さ
れる係数Mが与えられ、それぞれ係数Mによって同相成分
の平均値ni-avgと直交成分のnq-avgとが求められ、それ
ぞれラッチ36と37とに与えられる。ラッチ36と37とはそ
れぞれ、Mビット毎に平均値ni-avgとnq-avgを保存し、
自乗回路38と39とにそれぞれ与える。自乗回路38と39
は、それぞれ、ラッチ36と37の出力を自乗し、ni-avg 2
とnq-avg 2を出力し、加算回路42に与える。加算回路42
は、入力された自乗値ni-avg 2とnq-avg 2を加算し、n
i-avg 2+nq-avg 2を出力し、平方根回路44に与える。
The output of the accumulator 34 is given to a division circuit 53,
The output of the accumulator 35 is provided to a division circuit 54. Division circuit 53
And the division circuit 54, separately, given the coefficients M output from the cumulative number M generator 55, and the n q-avg orthogonal components and the average value n i-avg-phase component are respectively determined by the factor M , Respectively, to latches 36 and 37, respectively. Latches 36 and 37 store the average values n i-avg and n q-avg for each M bits, respectively.
To the squaring circuits 38 and 39, respectively. Squared circuits 38 and 39
Squares the outputs of latches 36 and 37, respectively, and n i-avg 2
And n q-avg 2 are output to the adder 42. Adder circuit 42
Adds the input squared value n i-avg 2 and n q-avg 2 to obtain n
i-avg 2 + nq -avg 2 is output and given to the square root circuit 44.

【0021】平方根回路44は、加算回路42の出力ni-avg
2+nq-avg 2の平方根を取り、式(4)によって平均雑音電
力を求め、出力端子73を介して出力する。
The square root circuit 44 outputs the output ni-avg of the adding circuit 42.
Take the square root of 2 + n q-avg 2 , find the average noise power by equation (4), and output through the output terminal 73.

【数6】 (Equation 6)

【0022】図1で用いた瞬時受信信号電力計算回路57
の一実施例を図3によって説明する。図3は瞬時受信信
号電力計算回路57の一実施例の構成を示すブロック図で
ある。46と47はシフトレジスタ、40と41は自乗回路、43
は加算回路、45は平方根回路、48は除算回路、52は自動
利得制御回路の利得である。平均雑音電力計算回路56の
累積加算動作は、雑音成分をM回累積するのにM/fCL K(s
ec)の時間がかかるので、これとタイミングを合わせる
ため、振幅補正した信号の振幅値xi,xqをMビットシフ
トするシフトレジスタ46と47を、動作クロックfCLK(H
z)で動作させる。
The instantaneous received signal power calculation circuit 57 used in FIG.
One embodiment will be described with reference to FIG. FIG. 3 is a block diagram showing the configuration of an embodiment of the instantaneous received signal power calculation circuit 57. 46 and 47 are shift registers, 40 and 41 are square circuits, 43
Is an addition circuit, 45 is a square root circuit, 48 is a division circuit, and 52 is a gain of the automatic gain control circuit. In the accumulative addition operation of the average noise power calculation circuit 56, M / f CL K (s
ec), the shift registers 46 and 47, which shift the amplitude values xi and xq of the amplitude-corrected signal by M bits, to the operation clock f CLK (H
Operate in z).

【0023】自乗回路40はシフトレジス46の出力を自乗
して、自乗値xi2を加算回路43に与える。また自乗回路4
1はシフトレジス47の出力を自乗して、自乗値xq2を加算
回路43に与える。加算回路43は自乗回路40と41の出力を
加算し、加算値xi2+xq2を加平方根回路45に与える。平
方根回路45は加算回路43の出力(xi2+xq2)の平方根を
取り、平方根の値√(xi2+xq2)を出力する。除算回路4
8は平方根回路45の出力√(xi2+xq2)を自動利得制御回
路の利得AGAINで割り、割った値を瞬時受信信号電力(C
+N)instとする。即ち、 (C+N)inst=√(xi2+xq2)/AGAIN を算出して、出力する。この平方根回路45の出力√(xi
2+xq2)を自動利得制御回路3の利得AGAINで割るのは、
自動利得制御回路3で受信振幅値が利得AGAIN倍されてい
るからである。
The squaring circuit 40 squares the output of the shift register 46 and supplies the squared value xi 2 to the adding circuit 43. Square circuit 4
1 squares the output of the shift register 47 and gives the squared value xq 2 to the addition circuit 43. The addition circuit 43 adds the outputs of the squaring circuits 40 and 41 and supplies the added value xi 2 + xq 2 to the square root circuit 45. The square root circuit 45 takes the square root of the output (xi 2 + xq 2 ) of the adder circuit 43 and outputs the square root value √ (xi 2 + xq 2 ). Division circuit 4
8 is obtained by dividing the output √ (xi 2 + xq 2 ) of the square root circuit 45 by the gain AGAIN of the automatic gain control circuit, and dividing the divided value by the instantaneous received signal power (C
+ N) Inst . That is, (C + N) inst = √ (xi 2 + xq 2 ) / AGAIN is calculated and output. The output こ の (xi
2 + xq 2 ) is divided by the gain AGAIN of the automatic gain control circuit 3.
This is because the reception amplitude value is multiplied by the gain AGAIN in the automatic gain control circuit 3.

【0024】図1で用いたC/N計算回路の一実施例を図
4によって説明する。図4は、本発明のC/N計算回路の
一実施例の構成を示すブロック図である。49は除算回路
である。除算回路49は瞬時受信信号電力(C+N)inst
=√(xi2+xq2)/AGAINを平均雑音電力Nave=√(ni-ave 2
+nq-ave 2)で割り、信号電力対雑音電力比C/Nを出力す
る。即ち、 C/N=(C+N)inst/Nave=(√(xi2+xq2)/AGAIN)/√
(ni-ave 2+nq-ave 2
An embodiment of the C / N calculation circuit used in FIG. 1 will be described with reference to FIG. FIG. 4 is a block diagram showing a configuration of one embodiment of the C / N calculation circuit of the present invention. 49 is a division circuit. The dividing circuit 49 calculates the instantaneous received signal power (C + N) inst
= √ (xi 2 + xq 2 ) / AGAIN to the average noise power N ave = √ (n i-ave 2
+ n q-ave Divide by 2 ) and output the signal power to noise power ratio C / N. That is, C / N = (C + N) inst / N ave = (√ (xi 2 + xq 2 ) / AGAIN) / √
(N i-ave 2 + n q-ave 2 )

【0025】本発明の復号回路の動作タイミングを図5
によって説明する。図5は、本発明の復号回路の一実施
例の動作タイミングを示す図である。上述の図4のよう
に、C/Nは、雑音成分をM回累積し、これから平均雑音電
力Na veを求め、そして瞬時受信信号電力(C+N)inst
の比から求められる。ところが平均雑音電力Naveは、雑
音成分のM個目で初めて決まるから、M-1個目まではC/N
を求めることができない。そこで時刻t=n-1の期間に雑
音成分の累積値から求めた平均雑音電力Naveは、ラッチ
を用いて次の時刻t=nの期間その値を保持しておく。そ
して時刻t=n-1の瞬時受信信号電力(C+N)instは1時刻
の期間だけ遅らせる。その結果時刻t=nにおいて、時刻t
=n-1の各C/Nを求めることができる。つまり雑音成分の
累積計算と平均雑音電力Naveの計算は時刻t=n-1の期間
で行い、各C/Nの計算は時刻t=n期間に行う。
FIG. 5 shows the operation timing of the decoding circuit of the present invention.
It will be explained by. FIG. 5 is a diagram showing the operation timing of one embodiment of the decoding circuit of the present invention. As mentioned above Figure 4, C / N is a noise component accumulates M times, determined from the ratio of the future to determine the average noise power N a ve, and the instantaneous received signal power (C + N) inst. However, since the average noise power N ave is determined for the first time by the M-th noise component, C / N
Can not ask. Therefore, the average noise power N ave obtained from the accumulated value of the noise components during the period of time t = n−1 is held by using a latch during the next period of time t = n. Then, the instantaneous received signal power (C + N) inst at time t = n−1 is delayed by one time period. As a result, at time t = n, time t
= n-1 for each C / N. That is, the cumulative calculation of the noise component and the calculation of the average noise power N ave are performed in the period of time t = n−1, and the calculation of each C / N is performed in the period of time t = n.

【0026】本発明の復号回路の枝メトリックの補正に
ついて説明する。例えば時刻t=nにおいて、信号C(x0,
x1)に雑音Nが加わった受信点C+Nの、信号C側の識別点2
8(x0,x1)に対する枝メトリックmb(0)と、識別点29
(-x0,-x1)に対する枝メトリックmb(1)を考え、次
の時刻t=n+1では、“状態S00の状態メトリック(t=
n)”+mb(0)と、“状態S01の状態メトリック(t=
n)”+mb(1)の値の小さい方のパスが選択され、状態S
00の状態メトリックは小さい方の値になる。
The correction of the branch metric of the decoding circuit of the present invention will be described. For example, at time t = n, the signal C (x0,
x1) Identification point 2 on the signal C side of the reception point C + N with noise N added
Branch metric mb (0) for 8 (x0, x1) and identification point 29
(-X0, -x1) consider the branch metric mb (1) with respect to, in the next time t = n + 1, "the state S 00 of the state metric (t =
n) “+ mb (0)” and “state S 01 state metric (t =
n) The path with the smaller value of "+ mb (1) is selected, and the state S
The state metric of 00 becomes the smaller value.

【0027】C/Nの違いによる受信点の領域を図6によ
って説明する。図6は、本発明の復号回路の一実施例の
C/Nの違いによる受信点の領域を示す図である。CN1<C/
Nの場合(図6(a)参照)、受信点C+Nが存在する領域は
識別点28の近傍(図6(a)の斜線部)であり、雑音Nの大
きさによって受信点が第1象限から移動することはな
い。故に“状態S00の状態メトリック”+mb(0)と、
“状態S01の状態メトリック”+mb(1)の値の小さい方
のパスを選択すれば良い。この場合は枝メトリックの補
正をする必要がなく、枝メトリックmbをそのまま使うの
で補正係数a=1とする。これより枝メトリックはa×mb=m
bとなる。但し枝メトリックの最大値はmbmaxとする。例
えば、識別点28(+1,+1)、信号C=√2,雑音N=(√2)/3
とすると、 CN1は次のようになる。即ち、 CN1=(√2)/((√2)/3) =3(真値)=20×log103=9.54≒10(dB)
The area of the receiving point depending on the C / N will be described with reference to FIG. FIG. 6 shows an embodiment of the decoding circuit of the present invention.
FIG. 6 is a diagram illustrating a region of a reception point according to a difference in C / N. CN 1 <C /
In the case of N (see FIG. 6 (a)), the area where the receiving point C + N exists is near the identification point 28 (the hatched portion in FIG. 6 (a)), You do not move from one quadrant. Therefore a "state metric of state S 00" + mb (0) ,
"State S 01 of the state metric" + mb may be selected the smaller path of the value of (1). In this case, there is no need to correct the branch metric, and the branch metric mb is used as it is, so the correction coefficient a = 1. From this, the branch metric is a × mb = m
becomes b. However, the maximum value of the branch metric is mb max . For example, identification point 28 (+1, +1), signal C = √2, noise N = (√2) / 3
Then, CN 1 becomes as follows. That is, CN 1 = (√2) / ((√2) / 3) = 3 (true value) = 20 × log 10 3 = 9.54 ≒ 10 (dB)

【0028】C/N<CN0の場合(図6(b)参照)、受信点C
+Nが存在する領域は図6(b)の斜線部であり、雑音Nの大
きさによって受信点が第1象限から移動することがあ
る。故に“状態S00の状態メトリック”+mb(0)と、
“状態S01の状態メトリック”+mb(1)の値の小さい方
のパスを選択することができない。そこで枝メトリック
mb(0)とmb(1)に補正係数a=1/mbmaxを掛けて、各枝
メトリックの値を1以下にする。次に“状態S00の状態メ
トリック”+mb(0)と、“状態S01の状態メトリック”+
mb(1)の値の小さい方のパスを選択する。つまり枝メ
トリックの最大値はmbmaxであるから、仮に枝メトリッ
クの値がmbm axであっても、mbmaxで割ってやることで、
枝メトリックの値を1にすることができる。
If C / N <CN 0 (see FIG. 6B), the receiving point C
The area where + N exists is the shaded area in FIG. 6B, and the receiving point may move from the first quadrant depending on the magnitude of the noise N. Therefore a "state metric of state S 00" + mb (0) ,
"State S 01 of the state metric" + mb (1) of not be able to choose the path of smaller value. So the branch metric
By multiplying mb (0) and mb (1) by the correction coefficient a = 1 / mb max , the value of each branch metric is set to 1 or less. And then "state S 00 of the state metric" + mb (0), "state S 01 of the state metric" +
Select the path with the smaller value of mb (1). That maximum value of the branch metric because it is mb max, the value of if the branch metric is a mb m ax, that'll divided by mb max,
The value of the branch metric can be 1.

【0029】このようにして値1以下に補正された枝メ
トリックが状態メトリックに加算されると、パスの選択
時において、比較される状態メトリックの大きさは、加
算される枝メトリックの値よりも、過去の状態メトリッ
クの値の方が支配的になる。つまり枝メトリックの値を
1以下にする事で、状態メトリックに対する寄与率を最
小限にして、過去の状態メトリックに重きを置いてパス
の選択を行う。例えば識別点28(+1,+1)、信号C=√
2,雑音N=1とすると、CN0は次のようになる。即ち、 CN0=(√2)/1 =√2(真値)=20×log10(√2)=3.01≒3(dB)
When the branch metric corrected to a value of 1 or less is added to the state metric, the size of the compared state metric at the time of selecting a path is smaller than the value of the added branch metric. , The value of the past state metric becomes dominant. In other words, the value of the branch metric
By setting the value to 1 or less, the contribution to the state metric is minimized, and the path is selected with emphasis on the past state metrics. For example, identification point 28 (+1, +1), signal C = √
2, if noise N = 1, CN 0 becomes as follows. That is, CN 0 = (√2) / 1 = √2 (true value) = 20 × log 10 (√2) = 3.01 ≒ 3 (dB)

【0030】CN0<C/N<CN1の場合(図6(c)参照)は、
受信点C+Nが存在する領域は図6(c)の斜線部あり、雑音
Nの大きさによって受信点が第1象限から移動すること
はない。故に“状態S00の状態メトリック”+mb(0)
と、“状態S01の状態メトリック”+mb(1)の値の小さ
い方のパスを状態メトリックとして選択すれば良い。し
かしCN1<C/Nの場合に比べ、受信点C+Nは識別点28から
離れているので、枝メトリックの値は大きくなる。つま
り枝メトリックの状態メトリックへの寄与率が大きくな
る。これを防ぐために枝メトリックの値mbに補正係数a=
a′(1/mbmax<a′<1)を掛け、枝メトリックの値を小
さくし、状態メトリックに対する寄与率を小さくする。
つまり過去の状態メトリックに重きを置いてパスの選択
を行う。図7に枝メトリックの補正関数を示す。図7は
本発明の復号回路のC/Nの値と補正係数aとの関係の一実
施例を表す図である。横軸は、C/Nの値、縦軸が補正係
数aである。CN<C/N0の場合は補正係数a=1/mbmax、C/N0
≦CN≦C/N1の場合は補正係数a=a′、ただし、a′はC/N
の関数で、次の式(5)とする。
When CN 0 <C / N <CN 1 (see FIG. 6C),
The region where the receiving point C + N exists is indicated by the hatched portion in FIG.
The receiving point does not move from the first quadrant due to the size of N. Therefore "state metric of state S 00" + mb (0)
When, "state S 01 state metrics" + mb may be selected smaller path of the value of (1) as the state metric. However, compared to the case where CN 1 <C / N, the value of the branch metric is large because the reception point C + N is far from the identification point 28. That is, the contribution rate of the branch metric to the state metric increases. In order to prevent this, the correction coefficient a =
Multiply by a ′ (1 / mb max <a ′ <1) to reduce the value of the branch metric and reduce the contribution to the state metric.
That is, the path is selected with emphasis on the past state metrics. FIG. 7 shows a correction function of the branch metric. FIG. 7 is a diagram illustrating an embodiment of the relationship between the C / N value and the correction coefficient a of the decoding circuit of the present invention. The horizontal axis represents the value of C / N, and the vertical axis represents the correction coefficient a. When CN <C / N 0 , correction coefficient a = 1 / mb max , C / N 0
When ≤CN≤C / N 1 , correction coefficient a = a ', where a' is C / N
And the following equation (5).

【数7】 上記実施例では、補正係数a′は、1/mbmaxと1の間の、
一次関数で表したCNの関数であるが、一時関数である必
要はなく、他に例えば、CNが小さくなると補正係数a′
の値が急減するような関数であっても良い。
(Equation 7) In the above embodiment, the correction coefficient a ′ is between 1 / mb max and 1,
Although it is a function of CN expressed by a linear function, it is not necessary to be a temporary function, and for example, when CN becomes smaller, a correction coefficient a ′
May be a function in which the value of?

【0031】図8は本発明の復号回路のC/Nと補正係数a
の関係の一実施例を示す図である。図8では、図2で説
明した平均雑音電力計算回路と、図3で説明した瞬時受
信信号電力計算回路、図4で説明したC/N計算回路を用
いている。3は自動利得制御回路、5は復号器、30は識別
値di生成部、31は識別値dq生成部、32と33は絶対値回
路、34と35は累積加算器、36と37はラッチ、38〜41は自
乗回路、42と43は加算回路、44と45は平方根回路、46と
47はシフトレジスタ、48と49は除算回路、50と51は減算
器、53と54は除算回路、55は累積数Mである。
FIG. 8 shows the C / N and the correction coefficient a of the decoding circuit of the present invention.
FIG. 6 is a diagram showing an example of the relationship of FIG. FIG. 8 uses the average noise power calculation circuit described in FIG. 2, the instantaneous received signal power calculation circuit described in FIG. 3, and the C / N calculation circuit described in FIG. 3 is an automatic gain control circuit, 5 is a decoder, 30 is an identification value di generator, 31 is an identification value dq generator, 32 and 33 are absolute value circuits, 34 and 35 are cumulative adders, 36 and 37 are latches, 38 to 41 are square circuits, 42 and 43 are addition circuits, 44 and 45 are square root circuits, 46 and
47 is a shift register, 48 and 49 are division circuits, 50 and 51 are subtractors, 53 and 54 are division circuits, and 55 is a cumulative number M.

【0032】図8において、自動利得制御回路3は直交
変調波信号の受信振幅値1と2を振幅補正する。平均雑音
電力計算回路56は振幅補正した信号の振幅値から平均雑
音電力Naveを求める。瞬時受信信号電力計算回路57は振
幅補正した信号の振幅値から瞬時受信信号電力(C+N)
instを求める。C/N計算回路58は瞬時受信信号電力(C+
N)instと平均雑音電力Naveとの比(C+N)inst/Nave
ら信号電力対雑音電力比C/Nを求める。復号器5は式(1)
で示した補正を行って軟判定復号する。このようにして
C/Nが低い場合、枝メトリックの状態メトリックへの寄
与率を小さくして、過去の状態メトリックに重きを置い
てパス選択を行う。
In FIG. 8, the automatic gain control circuit 3 corrects the amplitudes of the received amplitude values 1 and 2 of the quadrature modulated wave signal. The average noise power calculation circuit 56 calculates an average noise power N ave from the amplitude value of the amplitude-corrected signal. The instantaneous received signal power calculation circuit 57 calculates the instantaneous received signal power (C + N) from the amplitude value of the amplitude-corrected signal.
Find inst . The C / N calculation circuit 58 calculates the instantaneous received signal power (C +
N) Ratio of inst and average noise power N ave (C + N) The signal power to noise power ratio C / N is obtained from inst / N ave . Decoder 5 is given by equation (1)
And performs soft decision decoding. Like this
When the C / N is low, the contribution rate of the branch metric to the state metric is reduced, and path selection is performed with emphasis on the past state metric.

【0033】[0033]

【発明の効果】本発明によれば、C/Nが低い場合、枝メ
トリックの状態メトリックへの寄与率を小さくして、過
去の状態メトリックに重きを置いてパス選択を行うこと
ができる。
According to the present invention, when the C / N is low, the contribution ratio of the branch metric to the state metric can be reduced, and the path selection can be performed with emphasis on the past state metric.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の復号回路の一実施例の構成を示すブ
ロック図。
FIG. 1 is a block diagram showing a configuration of an embodiment of a decoding circuit of the present invention.

【図2】 本発明の平均雑音電力計算回路の一実施例の
構成を示すブロック図。
FIG. 2 is a block diagram showing a configuration of an embodiment of an average noise power calculation circuit according to the present invention.

【図3】 本発明の瞬時受信信号電力計算回路の一実施
例の構成を示すブロック図。
FIG. 3 is a block diagram showing a configuration of an embodiment of an instantaneous received signal power calculation circuit of the present invention.

【図4】 本発明のC/N計算回路の一実施例の構成を示
すブロック図。
FIG. 4 is a block diagram showing a configuration of an embodiment of a C / N calculation circuit according to the present invention.

【図5】 本発明の復号回路の一実施例の動作タイミン
グを示す図。
FIG. 5 is a diagram showing operation timing of an embodiment of the decoding circuit of the present invention.

【図6】 本発明の復号回路の一実施例のC/Nの違いに
よる受信点の領域を示す図。
FIG. 6 is a diagram showing a region of a reception point due to a difference in C / N in an embodiment of the decoding circuit of the present invention.

【図7】 本発明の復号回路のC/Nと補正係数aの関係の
一実施例を示す図。
FIG. 7 is a diagram showing an embodiment of the relationship between the C / N and the correction coefficient a of the decoding circuit of the present invention.

【図8】 本発明の復号回路の一実施例の構成を示すブ
ロック図。
FIG. 8 is a block diagram showing a configuration of one embodiment of a decoding circuit of the present invention.

【図9】 従来の復号回路の構成を示すブロック図。FIG. 9 is a block diagram showing a configuration of a conventional decoding circuit.

【図10】 入力情報系列の復号動作を説明するための
トレリス線図。
FIG. 10 is a trellis diagram for explaining an operation of decoding an input information sequence.

【図11】 C/Nが低い場合の受信点を示すI-Q平面図。FIG. 11 is an IQ plan view showing reception points when C / N is low.

【符号の説明】[Explanation of symbols]

1,2:入力端子、 3: 自動利得制御回路、 5: 復号
器、 7:出力端子、26:生き残りパス、 28,29:識
別点、 30,31:識別値生成部、 32,33:絶対値回
路、 34,35:累積器、 36,37:ラッチ、 38,39,
40,41:自乗回路、 42,43:加算回路、 44,45:平
方根回路、 46,47:シフトレジスタ、 48,49:除算
回路、 50,51: 減算器、 52:自動利得制御回路の
利得、53,54: 除算回路、 55:累積数M生成部、 5
6: 平均雑音電力計算回路、57:瞬時受信信号電力計算
回路、 58:C/N計算回路、 59,60:加算回路、61,6
2:累積レジスタ。
1, 2: input terminal, 3: automatic gain control circuit, 5: decoder, 7: output terminal, 26: surviving path, 28, 29: identification point, 30, 31: identification value generator, 32, 33: absolute Value circuit, 34, 35: accumulator, 36, 37: latch, 38, 39,
40, 41: Square circuit, 42, 43: Adder circuit, 44, 45: Square root circuit, 46, 47: Shift register, 48, 49: Divider circuit, 50, 51: Subtractor, 52: Gain of automatic gain control circuit , 53, 54: Divider circuit, 55: Cumulative number M generator, 5
6: Average noise power calculation circuit, 57: Instantaneous reception signal power calculation circuit, 58: C / N calculation circuit, 59, 60: Addition circuit, 61, 6
2: Cumulative register.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5B001 AA10 AD06 5J065 AA01 AB01 AC02 AD10 AF02 AG05 AH02 AH03 AH05 AH06 AH12 AH21 5K004 AA08 JA02 JD05 JH03 JJ10 5K014 AA01 BA10 BA11 EA01 FA11 GA01 HA05  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 5B001 AA10 AD06 5J065 AA01 AB01 AC02 AD10 AF02 AG05 AH02 AH03 AH05 AH06 AH12 AH21 5K004 AA08 JA02 JD05 JH03 JJ10 5K014 AA01 BA10 BA11 EA01 FA11 GA01 HA05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 直交変調波信号を受信し、受信した信号
を用いて軟判定復号を行なう復号回路において、 前記受信信号の信号電力対雑音電力比C/Nを求めるC/N計
算回路を有し、 求めた該信号電力対雑音電力比C/Nが所定の値より小さ
い場合には、枝メトリックの状態メトリックへの寄与率
を小さくして、過去の状態メトリックに重きを置いてパ
ス選択を行うことを特徴とする復号回路。
1. A decoding circuit for receiving a quadrature modulated wave signal and performing soft-decision decoding using the received signal, comprising a C / N calculation circuit for obtaining a signal power-to-noise power ratio C / N of the received signal. If the obtained signal power-to-noise power ratio C / N is smaller than a predetermined value, the contribution rate of the branch metric to the state metric is reduced, and the path selection is performed with emphasis on the past state metric. A decoding circuit.
【請求項2】 直交変調波信号を受信し、受信した信号
の受信信号を用いて軟判定復号を行なう復号回路におい
て、 前記受信信号の同相成分XIと直交成分XQとをそれぞれ振
幅補正する自動利得制御回路と、 前記受信信号から信号電力対雑音電力比C/Nを求めるC/N
計算部と、 前記振幅補正された信号の受信点と識別点とのユークリ
ッド距離である枝メトリックmbを求め、時刻t=n-1での
生き残りパスの状態メトリックに時刻t=nの枝メトリッ
クを加算して時刻t=nでの状態メトリックを求め、その
中で、一番低い値の状態メトリックを時刻t=nでの生き
残りパスとし、時刻t=Lまで繰り返し、時刻t=Lの生き残
りパスを選択して復号する復号器とを有し(nは正整
数、Lは1以上の整数)、 前記C/N計算部によって求められた前記信号電力対雑音
電力比C/Nの値が第1の所定数CN1より大きい場合には、
前記枝メトリックmbをそのまま使用し、 前記信号電力対雑音電力比C/Nの値が第2の所定数CN0
り小さい場合には、枝メトリックの最大値mbmaxで割っ
た値mb/mbmaxを枝メトリックmbとし、 前記信号電力対雑音電力比C/Nの値が第1の所定数CN1
り小さく、かつ、第2の所定数CN2より大きい場合に
は、前記枝メトリックmbに、前記信号電力対雑音電力比
C/Nに応じて所定の変化をする補正係数a′を乗算した値
を枝メトリックスとして使用することを特徴とする復号
回路。
2. A decoding circuit for receiving a quadrature modulated wave signal and performing soft-decision decoding using a received signal of the received signal, comprising: an automatic gain for amplitude correcting the in-phase component XI and the quadrature component XQ of the received signal, respectively. A control circuit, and C / N for obtaining a signal power to noise power ratio C / N from the received signal.
The calculation unit, obtains a branch metric mb which is a Euclidean distance between the reception point and the identification point of the amplitude-corrected signal, and calculates a branch metric at time t = n as a state metric of a surviving path at time t = n-1. The state metric at the time t = n is obtained by addition, and the state metric having the lowest value is set as the surviving path at the time t = n, and the surviving path at the time t = L is repeated until the time t = L. (N is a positive integer, L is an integer of 1 or more), and the value of the signal power to noise power ratio C / N obtained by the C / N calculation unit is If it is larger than the predetermined number CN 1 of 1 ,
Said branch metric mb used as is, the signal power when the value of noise power ratio C / N is a second predetermined number CN 0 smaller than the maximum value mb max divided by the value mb / mb max branch metrics Is a branch metric mb, and when the value of the signal power-to-noise power ratio C / N is smaller than a first predetermined number CN 1 and larger than a second predetermined number CN 2 , The signal power to noise power ratio
A decoding circuit characterized by using a value obtained by multiplying a correction coefficient a 'that changes a predetermined value according to C / N as a branch metric.
【請求項3】 請求項2記載の復号回路において、 前記補正係数a′は 【数1】 となる値であることを特徴とする復号回路。3. The decoding circuit according to claim 2, wherein said correction coefficient a ′ is given by: A decoding circuit characterized in that: 【請求項4】 請求項2または請求項3のいずれかに記
載の復号回路において、前記C/N計算部は、 前記受信信号の同相成分XIと直交成分XQとをそれぞれ振
幅補正する自動利得制御回路と、 該自動利得制御回路によって振幅補正された信号の同相
成分xiと直交成分xqの振幅値から平均雑音電力Naveを求
める平均雑音電力計算回路と、 前記振幅補正された信号の同相成分xiと直交成分xqの振
幅値から瞬時受信信号電力(C+N)instを求める瞬時受
信信号電力計算回路と、 該瞬時受信信号電力計算回路によって求められた瞬時受
信信号電力(C+N)ins tと、前記平均雑音電力Naveとの
比(C+N)inst/Naveから信号電力対雑音電力比C/Nを求
めるC/N計算回路とを有することを特徴とする復号回
路。
4. The decoding circuit according to claim 2, wherein the C / N calculation unit corrects an amplitude of each of the in-phase component XI and the quadrature component XQ of the received signal. A circuit for calculating an average noise power N ave from the amplitude values of the in-phase component xi and the quadrature component xq of the signal whose amplitude has been corrected by the automatic gain control circuit; and an in-phase component xi of the amplitude-corrected signal. An instantaneous received signal power (C + N) inst circuit for calculating an instantaneous received signal power (C + N) inst from the amplitude value of the orthogonal component xq; and an instantaneous received signal power (C + N) ins t obtained by the instantaneous received signal power calculation circuit. And a C / N calculation circuit for calculating a signal power-to-noise power ratio C / N from a ratio (C + N) inst / N ave of the average noise power N ave .
【請求項5】 請求項4記載の復号回路において、前記
平均雑音電力計算回路は、 前記自動利得制御回路によって振幅補正された信号の振
幅値から識別値を引いて雑音成分を求める減算器と、 該減算器によって求められ雑音成分を所定期間累積し
て、同相成分の平均値ni -aveと直交成分の平均値nq-ave
とを求める累積器と、 該累積器によって求められた平均値ni-aveとnq-aveを自
乗加算する自乗加算手段と、 該自乗加算手段によって自乗加算された値の平方根を求
め、平均雑音電力Nave=√(ni-ave 2+nq-ave 2)を求める
平均雑音電力計算回路とを有することを特徴とする復号
回路。
5. The decoding circuit according to claim 4, wherein the average noise power calculation circuit subtracts an identification value from an amplitude value of the signal whose amplitude has been corrected by the automatic gain control circuit to obtain a noise component. The noise component obtained by the subtracter is accumulated for a predetermined period, and the average value n i -ave of the in-phase component and the average value n q-ave of the quadrature component are accumulated.
An accumulator that calculates the square root of the value obtained by the square addition by the square addition means for square-adding the average values n i-ave and n q-ave obtained by the accumulator. And a mean noise power calculation circuit for obtaining a noise power N ave = √ ( ni -ave 2 + n q-ave 2 ).
【請求項6】 請求項4記載の復号回路において、前記
瞬時受信信号電力計算回路は、 前記自動利得制御回路によって振幅補正された信号の振
幅値を自乗平均する自乗平均手段と、 該自乗平均手段によって自乗平均された値と前記自動利
得制御回路の利得AGAINとの比から、瞬時受信信号電力
(C+N)int=√(xi2+xq2)/AGAINを求める瞬時受信信
号電力計算回路とを有することを特徴とする復号回路。
6. The decoding circuit according to claim 4, wherein said instantaneous received signal power calculation circuit comprises: a root mean square means for root mean square of an amplitude value of the signal corrected in amplitude by said automatic gain control circuit; from the ratio of the gain AGAIN the square mean value said automatic gain control circuit by the instantaneous received signal power (C + N) in shea t = √ (xi 2 + xq 2) / AGAIN instantaneous received signal power calculation for determining the And a decoding circuit.
【請求項7】 直交変調波信号を受信し、該受信信号の
受信振幅値を補正する自動利得制御回路と、 該自動利得制御回路によって振幅補正した信号の同相成
分xiから第1の識別値diを識別する第1の識別器と、 前記振幅補正した信号の同相成分xiから前記第1の識別
値diを減算する第1の減算器と、 該第1の減算器が減算した値の絶対値を求める第1の絶
対値回路と、 該第1の絶対値回路が求めた絶対値を累積加算する第1
の累積器と、 該第1の累積器の累積した値の所定ビットごとの平均値
を求める第1の除算回路と、 該所定ビットごとに、前記第1の除算回路の出力を保存
する第1のラッチと、 該第1のラッチ出力を自乗する第1の自乗回路と、 前記自動利得制御回路によって振幅補正した信号の直交
成分xqから第2の識別値dqを識別する第2の識別器と、 前記振幅補正した信号の直交成分xqから前記第2の識別
値dqを減算する第2の減算器と、 該第2の減算器が減算した値の絶対値を求める第2の絶
対値回路と、 該第2の絶対値回路が求めた絶対値を累積加算する第2
の累積器と、 該第2の累積器の累積した値の所定ビットごとの平均値
を求める第2の除算回路と、 該所定ビットごとに、前記第2の除算回路の出力を保存
する第2のラッチと、 該第2のラッチ出力を自乗する第2の自乗回路と、 前記第1の自乗回路の出力値と前記第2の自乗回路の出
力値とを加算する第1の加算回路と、 該第1の加算回路が加算した値の平方根を求める第1の
平方根回路と、 前記振幅補正した信号の同相成分xiを所定ビットシフト
する第1のシフトレジスタと、 該第1のシフトレジスタの出力値を自乗する第3の自乗
回路と、 前記振幅補正した信号の直交成分xqを前記所定ビットシ
フトする第2のシフトレジスタと、 該第2のシフトレジスタの出力値を自乗する第4の自乗
回路と、 前記第3の自乗回路の出力値と該第4の自乗回路の出力
値を加算する第2の加算回路と、 該第2の加算回路出力値の平方根を求める第2の平方根
回路と、 該第2の平方根回路の出力値と、自動利得制御回路の利
得againとの比を求める第3の除算回路と、 該第3の除算回路の出力値と、前記第1の平方根回路の
出力値とのとの比を求める第4の除算回路とを備え、 前記振幅補正した信号の振幅値を用いて軟判定復号を行
う際に、前記第4の除算回路の出力に応じて枝メトリッ
クの値を補正することを特徴とする復号回路。
7. An automatic gain control circuit that receives a quadrature modulated wave signal and corrects a received amplitude value of the received signal, and a first identification value di from an in-phase component xi of the signal whose amplitude is corrected by the automatic gain control circuit. A first discriminator for discriminating the signal; a first subtractor for subtracting the first discrimination value di from the in-phase component xi of the amplitude-corrected signal; and an absolute value of a value subtracted by the first subtractor. And a first absolute value circuit for cumulatively adding the absolute values obtained by the first absolute value circuit.
An accumulator, a first divider circuit for calculating an average value of the accumulated value of the first accumulator for each predetermined bit, and a first divider for storing an output of the first divider circuit for each predetermined bit. A first squaring circuit for squaring the first latch output, and a second discriminator for discriminating a second discrimination value dq from a quadrature component xq of the signal whose amplitude has been corrected by the automatic gain control circuit. A second subtractor for subtracting the second identification value dq from the quadrature component xq of the amplitude-corrected signal, a second absolute value circuit for obtaining an absolute value of the value subtracted by the second subtractor, A second method for cumulatively adding the absolute values obtained by the second absolute value circuit;
An accumulator, a second divider circuit for obtaining an average value of the accumulated value of the second accumulator for each predetermined bit, and a second divider for storing an output of the second divider circuit for each predetermined bit. A second squaring circuit for squaring the second latch output; a first adding circuit for adding an output value of the first squaring circuit to an output value of the second squaring circuit; A first square root circuit for calculating a square root of the value added by the first adding circuit; a first shift register for shifting the in-phase component xi of the amplitude-corrected signal by a predetermined bit; and an output of the first shift register A third square circuit for squaring the value, a second shift register for shifting the quadrature component xq of the amplitude-corrected signal by the predetermined bit, and a fourth square circuit for squaring the output value of the second shift register. And the output value of the third squaring circuit and the A second addition circuit for adding the output value of the square circuit of the second addition circuit, a second square root circuit for obtaining a square root of the output value of the second addition circuit, an output value of the second square root circuit, and an automatic gain control circuit A third division circuit for calculating a ratio of the third division circuit to a gain, and a fourth division circuit for calculating a ratio between an output value of the third division circuit and an output value of the first square root circuit. A decoding circuit for correcting a value of a branch metric according to an output of the fourth division circuit when performing soft decision decoding using the amplitude value of the amplitude-corrected signal.
JP2000358854A 2000-11-27 2000-11-27 Decoding circuit Pending JP2002164946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000358854A JP2002164946A (en) 2000-11-27 2000-11-27 Decoding circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000358854A JP2002164946A (en) 2000-11-27 2000-11-27 Decoding circuit

Publications (1)

Publication Number Publication Date
JP2002164946A true JP2002164946A (en) 2002-06-07

Family

ID=18830692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000358854A Pending JP2002164946A (en) 2000-11-27 2000-11-27 Decoding circuit

Country Status (1)

Country Link
JP (1) JP2002164946A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142832A (en) * 2005-11-18 2007-06-07 Denso Corp Soft decision value correction method, receiver, and program
US7240276B2 (en) 2002-10-01 2007-07-03 Kabushiki Kaisha Toshiba Method and apparatus for turbo coding and decoding in a disk drive
JP2007208870A (en) * 2006-02-06 2007-08-16 Univ Meijo Error correction device, method, and program, and receiver
JP2008112527A (en) * 2006-10-31 2008-05-15 Fujitsu Ltd Decoder and reproduction system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7240276B2 (en) 2002-10-01 2007-07-03 Kabushiki Kaisha Toshiba Method and apparatus for turbo coding and decoding in a disk drive
JP2007142832A (en) * 2005-11-18 2007-06-07 Denso Corp Soft decision value correction method, receiver, and program
JP4539539B2 (en) * 2005-11-18 2010-09-08 株式会社デンソー Soft decision value correction method, receiver, program
JP2007208870A (en) * 2006-02-06 2007-08-16 Univ Meijo Error correction device, method, and program, and receiver
JP4736044B2 (en) * 2006-02-06 2011-07-27 学校法人 名城大学 Error correction apparatus, reception apparatus, error correction method, and error correction program
JP2008112527A (en) * 2006-10-31 2008-05-15 Fujitsu Ltd Decoder and reproduction system
JP4652310B2 (en) * 2006-10-31 2011-03-16 富士通株式会社 Decoder and reproducing apparatus
US8015499B2 (en) 2006-10-31 2011-09-06 Fujitsu Limited Decoder and reproducing device

Similar Documents

Publication Publication Date Title
JP2001333002A (en) Method for estimating transmitting antenna weight in mobile communication system and mobile communication terminal
JPH05315977A (en) Method for decoding soft decision maximum and decoder
JP3169646B2 (en) Cross polarization interference compensator
JP4584668B2 (en) Automatic gain control circuit and method
KR100483004B1 (en) Soft Decision Decoder, Apparatus of Generalized Log Likelihood Ratio considered Channel Estimation Errors for Soft Decision Decoding at QAM Signals and method thereof
JP3206574B2 (en) Signal estimation device and storage medium storing program
RU2214679C2 (en) Method of quantization for iterative decoder in communication system
JP2002164946A (en) Decoding circuit
US6434193B1 (en) Apparatus and method for waveform equalization coefficient generation
US20030026347A1 (en) Path metric normalization
US6675184B1 (en) Adaptive type signal estimator
EP0927465A2 (en) A reception method and a receiver
JP2002076920A (en) Error correction device
US6529557B1 (en) Add-compare selection circuit
JP4139706B2 (en) Receiver
CN110022162B (en) Signal receiver including interference suppression filter and related methods
JPH06261030A (en) Frame synchronization detecting circuit
CN115580356A (en) Phase noise suppression method and equipment
JP6567211B2 (en) Transmission path estimation apparatus and transmission path estimation method
JP2005341258A (en) Equalizing processor corresponding to multi-level modulation, received signal processing system, receiver and equalizing processing method corresponding to multi-level modulation
JP2001156865A (en) Measuring device for receiving performance
KR0160719B1 (en) A decoder
US20050163259A1 (en) Processing device and processing method
US20040064313A1 (en) Noise reduction apparatus with a function of preventing data degradation
WO2001069796A1 (en) Viterbi decoder